Changeset 12051


Ignore:
Timestamp:
2019-12-04T16:52:57+01:00 (7 weeks ago)
Author:
laurent
Message:

Writing the doc for SBCBLK!

Location:
NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc/latex/NEMO
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc/latex/NEMO/main/bibliography.bib

    r12046 r12051  
    31483148} 
    31493149 
     3150@book{sverdrup.johnson.ea_1942, 
     3151author = {H. U. Sverdrup and Martin W. Johnson and Richard H. Fleming}, 
     3152title = {The Oceans, Their Physics, Chemistry, and General Biology}, 
     3153publisher = {Prentice-Hall}, 
     3154address = {New York}, 
     3155year = {1942}, 
     3156pages = {1087}, 
     3157} 
     3158 
     3159@article{kraus.businger_QJRMS96, 
     3160author = "E. B. Kraus and J. A. Businger", 
     3161title = "Atmosphere-ocean interaction.", 
     3162journal="Quarterly Journal of the Royal Meteorological Society",, 
     3163year = "1996", 
     3164volume = "122", 
     3165number = "529", 
     3166pages = "324-325", 
     3167publisher = "John Wiley & Sons, Ltd", 
     3168issn = "1477-870X", 
     3169doi = "10.1002/qj.49712252914" 
     3170} 
     3171 
     3172@article{josey.gulev.ea_2013, 
     3173title = "Exchanges through the ocean surface", 
     3174journal = "Ocean Circulation and Climate - A 21st Century Perspective, Int. Geophys. Ser.", 
     3175year = "2013", 
     3176author = "S. A. Josey and S. Gulev and L. Yu", 
     3177pages = "115-140, edited by G. Siedler et al., Academic Press, Oxford", 
     3178volume = "103", 
     3179doi = "10.1016/B978-0-12-391851-2.00005-2" 
     3180} 
     3181 
     3182@article{fairall.bradley.ea_JGR96, 
     3183  year = "1996", 
     3184 journal = "Journal of Geophysical Research: Oceans", 
     3185  month = "jan", 
     3186  publisher = "American Geophysical Union", 
     3187  volume = "101", 
     3188  number = "C1", 
     3189  pages = "1295-1308", 
     3190  author = "C. W. Fairall and E. F. Bradley and J. S. Godfrey and G. A. Wick and J. B. Edson and G. S. Young", 
     3191  title = "Cool-skin and warm-layer effects on sea surface temperature", 
     3192  doi = "10.1029/95jc03190" 
     3193} 
     3194 
     3195@article{zeng.beljaars_GRL05, 
     3196  year = "2005", 
     3197  month = "jul", 
     3198  publisher = "American Geophysical Union", 
     3199  volume = "32", 
     3200  number = "14", 
     3201  author = "Xubin Zeng and Anton Beljaars", 
     3202  title = "A prognostic scheme of sea surface skin temperature for modeling and data assimilation", 
     3203  journal = "Geophysical Research Letters", 
     3204  doi = "10.1029/2005gl023030" 
     3205} 
     3206 
  • NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc/latex/NEMO/subfiles/chap_SBC.tex

    r12046 r12051  
    556556% aerodynamic bulk formulae: 
    557557 
     558Note: all the NEMO Fortran routines involved in the present section have been 
     559 initially developed (and are still developped in parallel) in 
     560 the \href{https://brodeau.github.io/aerobulk/}{\texttt{AeroBulk}} open-source project 
     561\citep{brodeau.barnier.ea_JPO17}. 
    558562 
    559563%%% Bulk formulae are this: 
    560 \subsection{Bulk formulae} 
     564\subsection{Bulk formulae}\label{subsec:SBC_blkform} 
    561565% 
    562566In NEMO, the set of equations that relate each component of the surface fluxes 
     
    594598$\rho$ is the density of air. $C_D$, $C_H$ and $C_E$ are the bulk transfer 
    595599coefficients for momentum, sensible heat, and moisture, respectively (hereafter 
    596 referd to as BTCs). 
     600referred to as BTCs). 
    597601% 
    598602$C_P$ is the heat capacity of moist air, and $L_v$ is the latent heat of 
     
    603607respectively. $\gamma z$ is a temperature correction term which accounts for the 
    604608adiabatic lapse rate and approximates the potential temperature at height 
    605 $z$ \citep{Josey_al_2013}. 
     609$z$ \citep{josey.gulev.ea_2013}. 
    606610% 
    607611$\mathbf{U}_z$ is the wind speed vector at height $z$ above the sea surface 
     
    610614% 
    611615The bulk scalar wind speed, namely $U_B$, is the scalar wind speed, 
    612 $|\mathbf{U}_z|$, with the potential inclusion of a gustiness contribution 
    613 (section \ref{s_res2}.\ref{ss_calm}). 
     616$|\mathbf{U}_z|$, with the potential inclusion of a gustiness contribution . 
    614617% 
    615618$a$ and $\delta$ are the albedo and emissivity of the sea surface, respectively.\\ 
     
    619622$T_s$ is the sea surface temperature. $q_s$ is the saturation specific humidity 
    620623of air at temperature $T_s$ and includes a 2\% reduction to account for the 
    621 presence of salt in seawater \citep{Sverdrup_al_1942,Kraus_Businger_1996}. 
    622 Depending on the bulk parameterization used, $T_s$ can either be the temperature 
     624presence of salt in seawater \citep{sverdrup.johnson.ea_1942,kraus.businger_QJRMS96}. 
     625Depending on the bulk parametrization used, $T_s$ can either be the temperature 
    623626at the air-sea interface (skin temperature, hereafter SSST) or at typically a 
    624627few tens of centimeters below the surface (bulk sea surface temperature, 
     
    627630The SSST differs from the SST due to the contributions of two effects of 
    628631opposite sign, the \emph{cool skin} and \emph{warm layer} (hereafter CS and WL, 
    629 respectively). 
    630 % 
    631 Technically, when the ECMWF or COARE* bulk parameterizations are selected 
     632respectively, see section\,\ref{subsec:SBC_skin}). 
     633% 
     634Technically, when the ECMWF or COARE* bulk parametrizations are selected 
    632635(\np[=.true.]{ln_ECMWF}{ln\_ECMWF} or \np[=.true.]{ln_COARE*}{ln\_COARE\*}), 
    633 $T_s$ is the SSST, as opposed to the NCAR bulk parameterization 
     636$T_s$ is the SSST, as opposed to the NCAR bulk parametrization 
    634637(\np[=.true.]{ln_NCAR}{ln\_NCAR}) for which $T_s$ is the bulk SST (\ie~temperature 
    635638at first T-point level). 
     
    640643 
    641644 
    642 \subsection{Bulk parameterizations} 
     645 
     646\subsection{Bulk parametrizations}\label{subsec:SBC_blk_ocean} 
     647%%%\label{subsec:SBC_param} 
    643648 
    644649Accuracy of the estimate of surface turbulent fluxes by means of bulk formulae 
    645650strongly relies on that of the bulk transfer coefficients: $C_D$, $C_H$ and 
    646651$C_E$. They are estimated with what we refer to as a \emph{bulk 
    647 parameterization} algorithm. 
    648  
    649 ... also to adjust humidity and temperature of air to the wind reference measurement 
    650 height (generally 10\,m). 
    651  
    652 Over the open ocean, four bulk parameterization algorithms are available: 
     652parametrization} algorithm. When relevant, these algorithms also perform the 
     653height adjustment of humidity and temperature to the wind reference measurement 
     654height (from \np{rn_zqt}{rn\_zqt} to \np{rn_zu}{rn\_zu}). 
     655 
     656 
     657 
     658For the open ocean, four bulk parametrization algorithms are available: 
    653659\begin{itemize} 
    654 \item NCAR, formerly known as CORE, \citep{large.yeager_rpt04} 
     660\item NCAR, formerly known as CORE, \citep{large.yeager_rpt04,large.yeager_CD09} 
    655661\item COARE 3.0 \citep{fairall.bradley.ea_JC03} 
    656662\item COARE 3.6 \citep{edson.jampana.ea_JPO13} 
    657 \item ECMWF (IFS documentation, cy41) 
     663\item ECMWF (IFS documentation, cy45) 
    658664\end{itemize} 
    659665 
    660666 
    661 \subsubsection{Appropriate use of the  NCAR algorithm} 
    662  
    663 NCAR bulk parameterizations (formerly know as CORE) is meant to be used with the 
     667Differences between versions 3.0 and 3.6 of the COARE algorithm mainly ... wind 
     668stress BLABLA \citep{edson.jampana.ea_JPO13,brodeau.barnier.ea_JPO17}. 
     669Therefore it is recommanded to use version 3.6 of the COARE algorithms rather 
     670than version 3. 
     671 
     672 
     673 
     674 
     675\subsection{Cool-skin and warm-layer parametrizations}\label{subsec:SBC_skin} 
     676%\subsection[Cool-skin and warm-layer parameterizations 
     677%(\forcode{ln_skin_cs} \& \forcode{ln_skin_wl})]{Cool-skin and warm-layer parameterizations (\protect\np{ln_skin_cs}{ln\_skin\_cs} \& \np{ln_skin_wl}{ln\_skin\_wl})} 
     678%\label{subsec:SBC_skin} 
     679% 
     680As opposed to the NCAR bulk parametrization, more advanced bulk 
     681parametrizations such as COARE3.x and ECMWF are meant to be used with the skin 
     682temperature $T_s$ rather than the bulk SST (which, in NEMO is the temperature at 
     683the first T-point level, see section\,\ref{subsec:SBC_blkform}). 
     684% 
     685As such, the relevant cool-skin and warm-layer parametrization must be 
     686activated through \np[=T]{ln_skin_cs}{ln\_skin\_cs} 
     687and \np[=T]{ln_skin_wl}{ln\_skin\_wl} to use COARE3.x or ECMWF in a consistent 
     688way. 
     689 
     690\texttt{\#LB: ADD BLBLA ABOUT THE TWO CS/WL PARAMETRIZATIONS (ECMWF and COARE) !!!} 
     691 
     692For the cool-skin scheme parametrization COARE and ECMWF algorithms share the same 
     693basis: \citet{fairall.bradley.ea_JGR96}. With some minor updates based 
     694on \citet{zeng.beljaars_GRL05} for ECMWF, and \citet{fairall.ea_19} for COARE 
     6953.6. 
     696 
     697For the warm-layer scheme, ECMWF is based on \citet{zeng.beljaars_GRL05} with a 
     698recent update from \citet{takaya.bidlot.ea_JGR10} (consideration of the 
     699turbulence input from Langmuir circulation). 
     700 
     701Importantly, COARE warm-layer scheme \citep{fairall.ea_19} includes a prognostic 
     702equation for the thickness of the warm-layer, while it is considered as constant 
     703in the ECWMF algorithm. 
     704 
     705 
     706\subsection{Appropriate use of each bulk parametrization} 
     707 
     708\subsubsection{NCAR} 
     709 
     710NCAR bulk parametrizations (formerly know as CORE) is meant to be used with the 
    664711CORE II atmospheric forcing \citep{large.yeager_CD09}. Hence the following 
    665712namelist parameters must be set: 
     
    679726 
    680727 
    681 \subsubsection{Appropriate use of the ECMWF algorithm} 
    682  
     728\subsubsection{ECMWF} 
     729% 
    683730With a DFS* or any ECMWF-based type of atmospheric forcing, we strongly 
    684 recommand to use the ECMWF bulk parameterizations with the cool-skin and 
    685 warm-layer parameterizations turned on. In ECMWF reanalyzes, since air temperature and humidity are provided at the 2\,m height, and that the humidity is provided as a dew-point temperature, the namelist must be tuned as follows: 
     731recommend to use the ECMWF bulk parametrizations with the cool-skin and 
     732warm-layer parametrizations turned on. In ECMWF reanalyzes, since air 
     733temperature and humidity are provided at the 2\,m height, and given that the 
     734humidity is provided as the dew-point temperature, the namelist must be tuned as 
     735follows: 
    686736% 
    687737\begin{verbatim} 
     
    698748  ... 
    699749\end{verbatim} 
    700  
     750% 
    701751Note: when \np{ln_ECMWF}{ln\_ECMWF} is selected, the selection 
    702 of \np{ln_skin_cs}{ln\_skin\_cs} and \np{ln_skin_wl}{ln\_skin\_wl} implicitely 
    703 triggers the use of the ECMWF cool-skin and warm-layer parameterizations, 
     752of \np{ln_skin_cs}{ln\_skin\_cs} and \np{ln_skin_wl}{ln\_skin\_wl} implicitly 
     753triggers the use of the ECMWF cool-skin and warm-layer parametrizations, 
    704754respectively (found in \textit{sbcblk\_skin\_ecmwf.F90}). 
    705755 
    706756 
    707 \subsubsection{Appropriate use of the COARE 3.x algorithms} 
    708  
     757\subsubsection{COARE 3.x} 
     758% 
     759Since the ECMWF parametrization is largely based on the COARE* parametrization, 
     760the two algorithms are very similar in terms of structure and closure approach 
     761(see \citet{brodeau.barnier.ea_JPO17} for the differences). As such, the 
     762namelist tuning for COARE 3.x is identical to that of ECMWF: 
     763% 
    709764\begin{verbatim} 
    710765  ... 
     
    716771\end{verbatim} 
    717772 
    718 Note: when \np{ln_COARE3pX}{ln\_COARE3pX} is selected, the selection 
    719 of \np{ln_skin_cs}{ln\_skin\_cs} and \np{ln_skin_wl}{ln\_skin\_wl} implicitely 
    720 triggers the use of the COARE cool-skin and warm-layer parameterizations, 
     773Note: when \np[=T]{ln_COARE3p0}{ln\_COARE3p0} is selected, the selection 
     774of \np{ln_skin_cs}{ln\_skin\_cs} and \np{ln_skin_wl}{ln\_skin\_wl} implicitly 
     775triggers the use of the COARE cool-skin and warm-layer parametrizations, 
    721776respectively (found in \textit{sbcblk\_skin\_coare.F90}). 
    722777 
     
    735790 
    736791 
    737 \subsection[Cool-skin and warm-layer parameterizations (\forcode{ln_skin_cs} \& \forcode{ln_skin_wl})]{Cool-skin and warm-layer parameterizations (\protect\np{ln_skin_cs}{ln\_skin\_cs} \& \np{ln_skin_wl}{ln\_skin\_wl})} 
    738 \label{subsec:SBC_skin} 
    739  
    740 As oposed to the NCAR bulk parameterization, more advanced bulk 
    741 parameterizations such as COARE3.x and ECMWF are meant to be used with the skin 
    742 temperature $T_s$ rather than the bulk SST (which, in NEMO is the temperature at 
    743 the first T-point level). 
    744 % 
    745 So that, technically, the cool-skin and warm-layer parameterization must be 
    746 activated (XXX) to use COARE3.x and ECMWF in a consistant way. 
    747  
    748  
    749 \subsection{Air humidity} 
    750  
    751 Air humidity can be provided as three different parameters: specific humidity 
    752 [kg/kg], relative humidity [\%], or dew-point temperature [K] (LINK to namelist 
    753 parameters)... 
    754  
    755  
    756 ~\\ 
    757  
    758  
    759  
     792 
     793\subsection{Prescribed near-surface atmospheric state} 
    760794 
    761795The atmospheric fields used depend on the bulk formulae used.  In forced mode, 
     
    765799% 
    766800 
    767  
    768 thanks to the \href{https://brodeau.github.io/aerobulk/}{Aerobulk} package 
    769 (\citet{brodeau.barnier.ea_JPO17}): 
    770  
    771 The choice is made by setting to true one of the following namelist 
    772 variable: \np{ln_NCAR}{ln\_NCAR}, \np{ln_COARE_3p0}{ln\_COARE\_3p0}, \np{ln_COARE_3p6}{ln\_COARE\_3p6} 
    773 and \np{ln_ECMWF}{ln\_ECMWF}.  For sea-ice, three possibilities can be selected: 
    774 a constant transfer coefficient (1.4e-3; default 
    775 value), \citet{lupkes.gryanik.ea_JGR12} (\np{ln_Cd_L12}{ln\_Cd\_L12}), 
    776 and \citet{lupkes.gryanik_JGR15} (\np{ln_Cd_L15}{ln\_Cd\_L15}) parameterizations 
     801%The choice is made by setting to true one of the following namelist 
     802%variable: \np{ln_NCAR}{ln\_NCAR}, \np{ln_COARE_3p0}{ln\_COARE\_3p0}, \np{ln_COARE_3p6}{ln\_COARE\_3p6} 
     803%and \np{ln_ECMWF}{ln\_ECMWF}.  
    777804 
    778805Common options are defined through the \nam{sbc_blk}{sbc\_blk} namelist variables. 
     
    832859the namsbc\_blk namelist (see \autoref{subsec:SBC_fldread}). 
    833860 
    834 %% ================================================================================================= 
    835 \subsection[Ocean-Atmosphere Bulk formulae (\textit{sbcblk\_algo\_coare3p0.F90, sbcblk\_algo\_coare3p6.F90, sbcblk\_algo\_ecmwf.F90, sbcblk\_algo\_ncar.F90})]{Ocean-Atmosphere Bulk formulae (\mdl{sbcblk\_algo\_coare3p0}, \mdl{sbcblk\_algo\_coare3p6}, \mdl{sbcblk\_algo\_ecmwf}, \mdl{sbcblk\_algo\_ncar})} 
    836 \label{subsec:SBC_blk_ocean} 
    837  
    838 Four different bulk algorithms are available to compute surface turbulent momentum and heat fluxes over the ocean. 
    839 COARE 3.0, COARE 3.6 and ECMWF schemes mainly differ by their roughness lenghts computation and consequently 
    840 their neutral transfer coefficients relationships with neutral wind. 
    841 \begin{itemize} 
    842 \item NCAR (\np[=.true.]{ln_NCAR}{ln\_NCAR}): The NCAR bulk formulae have been developed by \citet{large.yeager_rpt04}. 
    843   They have been designed to handle the NCAR forcing, a mixture of NCEP reanalysis and satellite data. 
    844   They use an inertial dissipative method to compute the turbulent transfer coefficients 
    845   (momentum, sensible heat and evaporation) from the 10m wind speed, air temperature and specific humidity. 
    846   This \citet{large.yeager_rpt04} dataset is available through 
    847   the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/NCAR.html}{GFDL web site}. 
    848   Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
    849   This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 
    850 \item COARE 3.0 (\np[=.true.]{ln_COARE_3p0}{ln\_COARE\_3p0}): See \citet{fairall.bradley.ea_JC03} for more details 
    851 \item COARE 3.6 (\np[=.true.]{ln_COARE_3p6}{ln\_COARE\_3p6}): See \citet{edson.jampana.ea_JPO13} for more details 
    852 \item ECMWF (\np[=.true.]{ln_ECMWF}{ln\_ECMWF}): Based on \href{https://www.ecmwf.int/node/9204}{IFS (Cy40r1)} implementation and documentation. 
    853   Surface roughness lengths needed for the Obukhov length are computed 
    854   following \citet{beljaars_QJRMS95}. 
    855 \end{itemize} 
     861 
     862\subsubsection{Air humidity} 
     863 
     864Air humidity can be provided as three different parameters: specific humidity 
     865[kg/kg], relative humidity [\%], or dew-point temperature [K] (LINK to namelist 
     866parameters)... 
     867 
     868 
     869~\\ 
     870 
     871 
     872 
     873 
     874 
     875 
     876 
     877 
     878 
     879 
     880%% ================================================================================================= 
     881%\subsection[Ocean-Atmosphere Bulk formulae (\textit{sbcblk\_algo\_coare3p0.F90, sbcblk\_algo\_coare3p6.F90, %sbcblk\_algo\_ecmwf.F90, sbcblk\_algo\_ncar.F90})]{Ocean-Atmosphere Bulk formulae (\mdl{sbcblk\_algo\_coare3p0}, %\mdl{sbcblk\_algo\_coare3p6}, \mdl{sbcblk\_algo\_ecmwf}, \mdl{sbcblk\_algo\_ncar})} 
     882%\label{subsec:SBC_blk_ocean} 
     883 
     884%Four different bulk algorithms are available to compute surface turbulent momentum and heat fluxes over the ocean. 
     885%COARE 3.0, COARE 3.6 and ECMWF schemes mainly differ by their roughness lenghts computation and consequently 
     886%their neutral transfer coefficients relationships with neutral wind. 
     887%\begin{itemize} 
     888%\item NCAR (\np[=.true.]{ln_NCAR}{ln\_NCAR}): The NCAR bulk formulae have been developed by \citet{large.yeager_rpt04}. 
     889%  They have been designed to handle the NCAR forcing, a mixture of NCEP reanalysis and satellite data. 
     890%  They use an inertial dissipative method to compute the turbulent transfer coefficients 
     891%  (momentum, sensible heat and evaporation) from the 10m wind speed, air temperature and specific humidity. 
     892%  This \citet{large.yeager_rpt04} dataset is available through 
     893%  the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/NCAR.html}{GFDL web site}. 
     894%  Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
     895%  This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 
     896%\item COARE 3.0 (\np[=.true.]{ln_COARE_3p0}{ln\_COARE\_3p0}): See \citet{fairall.bradley.ea_JC03} for more details 
     897%\item COARE 3.6 (\np[=.true.]{ln_COARE_3p6}{ln\_COARE\_3p6}): See \citet{edson.jampana.ea_JPO13} for more details 
     898%\item ECMWF (\np[=.true.]{ln_ECMWF}{ln\_ECMWF}): Based on \href{https://www.ecmwf.int/node/9204}{IFS (Cy40r1)} %implementation and documentation. 
     899%  Surface roughness lengths needed for the Obukhov length are computed 
     900%  following \citet{beljaars_QJRMS95}. 
     901%\end{itemize} 
    856902 
    857903%% ================================================================================================= 
    858904\subsection{Ice-Atmosphere Bulk formulae} 
    859905\label{subsec:SBC_blk_ice} 
     906 
     907 
     908\texttt{\#out\_of\_place:} 
     909 For sea-ice, three possibilities can be selected: 
     910a constant transfer coefficient (1.4e-3; default 
     911value), \citet{lupkes.gryanik.ea_JGR12} (\np{ln_Cd_L12}{ln\_Cd\_L12}), 
     912and \citet{lupkes.gryanik_JGR15} (\np{ln_Cd_L15}{ln\_Cd\_L15}) parameterizations 
     913\texttt{\#out\_of\_place.} 
     914 
     915 
     916 
    860917 
    861918Surface turbulent fluxes between sea-ice and the atmosphere can be computed in three different ways: 
Note: See TracChangeset for help on using the changeset viewer.