New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 12143 for NEMO/branches/2019/ENHANCE-02_ISF_nemo/doc/latex/NEMO/subfiles/chap_misc.tex – NEMO

Ignore:
Timestamp:
2019-12-10T12:57:49+01:00 (4 years ago)
Author:
mathiot
Message:

update ENHANCE-02_ISF_nemo to 12072 (sette in progress)

Location:
NEMO/branches/2019/ENHANCE-02_ISF_nemo/doc
Files:
5 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/ENHANCE-02_ISF_nemo/doc

    • Property svn:externals set to
      ^/utils/badges badges
      ^/utils/logos logos
  • NEMO/branches/2019/ENHANCE-02_ISF_nemo/doc/latex

    • Property svn:ignore deleted
  • NEMO/branches/2019/ENHANCE-02_ISF_nemo/doc/latex/NEMO

    • Property svn:externals set to
      ^/utils/figures/NEMO figures
  • NEMO/branches/2019/ENHANCE-02_ISF_nemo/doc/latex/NEMO/subfiles

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
         1*.ind 
        82*.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
  • NEMO/branches/2019/ENHANCE-02_ISF_nemo/doc/latex/NEMO/subfiles/chap_misc.tex

    r11179 r12143  
    22 
    33\begin{document} 
    4 % ================================================================ 
    5 % Chapter --- Miscellaneous Topics 
    6 % ================================================================ 
     4 
    75\chapter{Miscellaneous Topics} 
    86\label{chap:MISC} 
    97 
    10 \minitoc 
    11  
    12 \newpage 
    13  
    14 % ================================================================ 
    15 % Representation of Unresolved Straits 
    16 % ================================================================ 
     8\thispagestyle{plain} 
     9 
     10\chaptertoc 
     11 
     12\paragraph{Changes record} ~\\ 
     13 
     14{\footnotesize 
     15  \begin{tabularx}{\textwidth}{l||X|X} 
     16    Release & Author(s) & Modifications \\ 
     17    \hline 
     18    {\em   4.0} & {\em ...} & {\em ...} \\ 
     19    {\em   3.6} & {\em ...} & {\em ...} \\ 
     20    {\em   3.4} & {\em ...} & {\em ...} \\ 
     21    {\em <=3.4} & {\em ...} & {\em ...} 
     22  \end{tabularx} 
     23} 
     24 
     25\clearpage 
     26 
     27%% ================================================================================================= 
    1728\section{Representation of unresolved straits} 
    1829\label{sec:MISC_strait} 
     
    2738balance the net evaporation occurring over the Mediterranean region. 
    2839This problem occurs even in eddy permitting simulations. 
    29 For example, in ORCA 1/4\deg several straits of the Indonesian archipelago (Ombai, Lombok...) 
     40For example, in ORCA 1/4\deg\ several straits of the Indonesian archipelago (Ombai, Lombok...) 
    3041are much narrow than even a single ocean grid-point. 
    3142 
    32 We describe briefly here the three methods that can be used in \NEMO to handle such improperly resolved straits. 
    33 The first two consist of opening the strait by hand while ensuring that the mass exchanges through 
    34 the strait are not too large by either artificially reducing the surface of the strait grid-cells or, 
    35 locally increasing the lateral friction. 
    36 In the third one, the strait is closed but exchanges of mass, heat and salt across the land are allowed. 
    37 Note that such modifications are so specific to a given configuration that no attempt has been made to 
    38 set them in a generic way. 
    39 However, examples of how they can be set up is given in the ORCA 2\deg and 0.5\deg configurations. 
    40 For example, for details of implementation in ORCA2, search: \texttt{IF( cp\_cfg == "orca" .AND. jp\_cfg == 2 )} 
    41  
    42 % ------------------------------------------------------------------------------------------------------------- 
    43 %       Hand made geometry changes 
    44 % ------------------------------------------------------------------------------------------------------------- 
     43We describe briefly here the two methods that can be used in \NEMO\ to handle such 
     44improperly resolved straits. The methods consist of opening the strait while ensuring 
     45that the mass exchanges through the strait are not too large by either artificially 
     46reducing the cross-sectional area of the strait grid-cells or, locally increasing the 
     47lateral friction. 
     48 
     49%% ================================================================================================= 
    4550\subsection{Hand made geometry changes} 
    4651\label{subsec:MISC_strait_hand} 
    4752 
    48 $\bullet$ reduced scale factor in the cross-strait direction to a value in better agreement with 
    49 the true mean width of the strait (\autoref{fig:MISC_strait_hand}). 
    50 This technique is sometime called "partially open face" or "partially closed cells". 
    51 The key issue here is only to reduce the faces of $T$-cell 
    52 (\ie change the value of the horizontal scale factors at $u$- or $v$-point) but not the volume of the $T$-cell. 
    53 Indeed, reducing the volume of strait $T$-cell can easily produce a numerical instability at 
    54 that grid point that would require a reduction of the model time step. 
    55 The changes associated with strait management are done in \mdl{domhgr}, 
    56 just after the definition or reading of the horizontal scale factors.  
    57  
    58 $\bullet$ increase of the viscous boundary layer thickness by local increase of the fmask value at the coast 
    59 (\autoref{fig:MISC_strait_hand}). 
    60 This is done in \mdl{dommsk} together with the setting of the coastal value of fmask (see  \autoref{sec:LBC_coast}). 
    61  
    62 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     53The first method involves reducing the scale factor in the cross-strait direction to a 
     54value in better agreement with the true mean width of the strait 
     55(\autoref{fig:MISC_strait_hand}).  This technique is sometime called "partially open face" 
     56or "partially closed cells".  The key issue here is only to reduce the faces of $T$-cell 
     57(\ie\ change the value of the horizontal scale factors at $u$- or $v$-point) but not the 
     58volume of the $T$-cell.  Indeed, reducing the volume of strait $T$-cell can easily produce 
     59a numerical instability at that grid point which would require a reduction of the model 
     60time step.  Thus to instigate a local change in the width of a Strait requires two steps: 
     61 
     62\begin{itemize} 
     63 
     64\item Add \texttt{e1e2u} and \texttt{e1e2v} arrays to the \np{cn_domcfg}{cn\_domcfg} file. These 2D 
     65arrays should contain the products of the unaltered values of: $\texttt{e1u}*\texttt{e2u}$ 
     66and $\texttt{e1u}*\texttt{e2v}$ respectively. That is the original surface areas of $u$- 
     67and $v$- cells respectively.  These areas are usually defined by the corresponding product 
     68within the \NEMO\ code but the presence of \texttt{e1e2u} and \texttt{e1e2v} in the 
     69\np{cn_domcfg}{cn\_domcfg} file will suppress this calculation and use the supplied fields instead. 
     70If the model domain is provided by user-supplied code in \mdl{usrdef\_hgr}, then this 
     71routine should also return \texttt{e1e2u} and \texttt{e1e2v} and set the integer return 
     72argument \texttt{ie1e2u\_v} to a non-zero value. Values other than 0 for this argument 
     73will suppress the calculation of the areas. 
     74 
     75\item Change values of \texttt{e2u} or \texttt{e1v} (either in the \np{cn_domcfg}{cn\_domcfg} file or 
     76via code in  \mdl{usrdef\_hgr}), whereever a Strait reduction is required. The choice of 
     77whether to alter \texttt{e2u} or \texttt{e1v} depends. respectively,  on whether the 
     78Strait in question is North-South orientated (\eg\ Gibraltar) or East-West orientated (\eg 
     79Lombok). 
     80 
     81\end{itemize} 
     82 
     83The second method is to increase the viscous boundary layer thickness by a local increase 
     84of the fmask value at the coast. This method can also be effective in wider passages.  The 
     85concept is illustarted in the second part of  \autoref{fig:MISC_strait_hand} and changes 
     86to specific locations can be coded in \mdl{usrdef\_fmask}. The \forcode{usr_def_fmask} 
     87routine is always called after \texttt{fmask} has been defined according to the choice of 
     88lateral boundary condition as discussed in \autoref{sec:LBC_coast}. The default version of 
     89\mdl{usrdef\_fmask} contains settings specific to ORCA2 and ORCA1 configurations. These are 
     90meant as examples only; it is up to the user to verify settings and provide alternatives 
     91for their own configurations. The default \forcode{usr_def_fmask} makes no changes to 
     92\texttt{fmask} for any other configuration. 
     93 
    6394\begin{figure}[!tbp] 
    64   \begin{center} 
    65     \includegraphics[width=\textwidth]{Fig_Gibraltar} 
    66     \includegraphics[width=\textwidth]{Fig_Gibraltar2} 
    67     \caption{ 
    68       \protect\label{fig:MISC_strait_hand} 
    69       Example of the Gibraltar strait defined in a $1^{\circ} \times 1^{\circ}$ mesh. 
    70       \textit{Top}: using partially open cells. 
    71       The meridional scale factor at $v$-point is reduced on both sides of the strait to account for 
    72       the real width of the strait (about 20 km). 
    73       Note that the scale factors of the strait $T$-point remains unchanged. 
    74       \textit{Bottom}: using viscous boundary layers. 
    75       The four fmask parameters along the strait coastlines are set to a value larger than 4, 
    76       \ie "strong" no-slip case (see \autoref{fig:LBC_shlat}) creating a large viscous boundary layer that 
    77       allows a reduced transport through the strait. 
    78     } 
    79   \end{center} 
     95  \centering 
     96  \includegraphics[width=0.66\textwidth]{MISC_Gibraltar} 
     97  \includegraphics[width=0.66\textwidth]{MISC_Gibraltar2} 
     98  \caption[Two methods to defined the Gibraltar strait]{ 
     99    Example of the Gibraltar strait defined in a 1\deg\ $\times$ 1\deg\ mesh. 
     100    \textit{Top}: using partially open cells. 
     101    The meridional scale factor at $v$-point is reduced on both sides of the strait to 
     102    account for the real width of the strait (about 20 km). 
     103    Note that the scale factors of the strait $T$-point remains unchanged. 
     104    \textit{Bottom}: using viscous boundary layers. 
     105    The four fmask parameters along the strait coastlines are set to a value larger than 4, 
     106    \ie\ "strong" no-slip case (see \autoref{fig:LBC_shlat}) creating a large viscous boundary layer 
     107    that allows a reduced transport through the strait.} 
     108  \label{fig:MISC_strait_hand} 
    80109\end{figure} 
    81 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    82  
    83 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     110 
    84111\begin{figure}[!tbp] 
    85   \begin{center} 
    86     \includegraphics[width=\textwidth]{Fig_closea_mask_example} 
    87     \caption{ 
    88       \protect\label{fig:closea_mask_example} 
    89       Example of mask fields for the closea module. \textit{Left}: a 
    90       closea\_mask field; \textit{Right}: a closea\_mask\_rnf 
    91       field. In this example, if ln\_closea is set to .true., the mean 
    92       freshwater flux over each of the American Great Lakes will be 
    93       set to zero, and the total residual for all the lakes, if 
    94       negative, will be put into the St Laurence Seaway in the area 
    95       shown.  
    96     } 
    97   \end{center} 
     112  \centering 
     113  \includegraphics[width=0.66\textwidth]{MISC_closea_mask_example} 
     114  \caption[Mask fields for the \protect\mdl{closea} module]{ 
     115    Example of mask fields for the \protect\mdl{closea} module. 
     116    \textit{Left}: a closea\_mask field; 
     117    \textit{Right}: a closea\_mask\_rnf field. 
     118    In this example, if \protect\np{ln_closea}{ln\_closea} is set to \forcode{.true.}, 
     119    the mean freshwater flux over each of the American Great Lakes will be set to zero, 
     120    and the total residual for all the lakes, if negative, will be put into 
     121    the St Laurence Seaway in the area shown.} 
     122  \label{fig:MISC_closea_mask_example} 
    98123\end{figure} 
    99 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    100  
    101 % ================================================================ 
    102 % Closed seas 
    103 % ================================================================ 
    104 \section[Closed seas (\textit{closea.F90})] 
    105 {Closed seas (\protect\mdl{closea})} 
     124 
     125%% ================================================================================================= 
     126\section[Closed seas (\textit{closea.F90})]{Closed seas (\protect\mdl{closea})} 
    106127\label{sec:MISC_closea} 
    107128 
     
    117138to zero and put the residual flux into the ocean. 
    118139 
    119 Prior to NEMO 4 the locations of inland seas and lakes was set via 
    120 hardcoded indices for various ORCA configurations. From NEMO 4 onwards 
     140Prior to \NEMO\ 4 the locations of inland seas and lakes was set via 
     141hardcoded indices for various ORCA configurations. From \NEMO\ 4 onwards 
    121142the inland seas and lakes are defined using mask fields in the 
    122143domain configuration file. The options are as follows. 
    123144 
    124145\begin{enumerate} 
    125 \item{{\bfseries No ``closea\_mask'' field is included in domain configuration 
     146\item {{\bfseries No ``closea\_mask'' field is included in domain configuration 
    126147  file.} In this case the closea module does nothing.} 
    127148 
    128 \item{{\bfseries A field called closea\_mask is included in the domain 
     149\item {{\bfseries A field called closea\_mask is included in the domain 
    129150configuration file and ln\_closea=.false. in namelist namcfg.} In this 
    130151case the inland seas defined by the closea\_mask field are filled in 
     
    132153closea\_mask that is nonzero is set to be a land point.} 
    133154 
    134 \item{{\bfseries A field called closea\_mask is included in the domain 
     155\item {{\bfseries A field called closea\_mask is included in the domain 
    135156configuration file and ln\_closea=.true. in namelist namcfg.} Each 
    136157inland sea or group of inland seas is set to a positive integer value 
    137 in the closea\_mask field (see Figure \ref{fig:closea_mask_example} 
     158in the closea\_mask field (see \autoref{fig:MISC_closea_mask_example} 
    138159for an example). The net surface flux over each inland sea or group of 
    139160inland seas is set to zero each timestep and the residual flux is 
     
    141162closea\_mask is zero).} 
    142163 
    143 \item{{\bfseries Fields called closea\_mask and closea\_mask\_rnf are 
     164\item {{\bfseries Fields called closea\_mask and closea\_mask\_rnf are 
    144165included in the domain configuration file and ln\_closea=.true. in 
    145166namelist namcfg.} This option works as for option 3, except that if 
     
    150171by the closea\_mask\_rnf field. Each mapping is defined by a positive 
    151172integer value for the inland sea(s) and the corresponding runoff 
    152 points. An example is given in Figure 
    153 \ref{fig:closea_mask_example}. If no mapping is provided for a 
     173points. An example is given in 
     174\autoref{fig:MISC_closea_mask_example}. If no mapping is provided for a 
    154175particular inland sea then the residual is spread over the global 
    155176ocean.} 
    156177 
    157 \item{{\bfseries Fields called closea\_mask and closea\_mask\_emp are 
     178\item {{\bfseries Fields called closea\_mask and closea\_mask\_emp are 
    158179included in the domain configuration file and ln\_closea=.true. in 
    159180namelist namcfg.} This option works the same as option 4 except that 
     
    165186 
    166187There is a python routine to create the closea\_mask fields and append 
    167 them to the domain configuration file in the utils/tools/DOMAINcfg directory.  
    168  
    169 % ================================================================ 
    170 % Sub-Domain Functionality  
    171 % ================================================================ 
     188them to the domain configuration file in the utils/tools/DOMAINcfg directory. 
     189 
     190%% ================================================================================================= 
    172191\section{Sub-domain functionality} 
    173192\label{sec:MISC_zoom} 
    174193 
     194%% ================================================================================================= 
    175195\subsection{Simple subsetting of input files via NetCDF attributes} 
    176196 
    177 The extended grids for use with the under-shelf ice cavities will result in redundant rows around Antarctica if 
    178 the ice cavities are not active. 
    179 A simple mechanism for subsetting input files associated with the extended domains has been implemented to 
    180 avoid the need to maintain different sets of input fields for use with or without active ice cavities. 
    181 The existing 'zoom' options are overly complex for this task and marked for deletion anyway. 
    182 This alternative subsetting operates for the j-direction only and works by optionally looking for and 
    183 using a global file attribute (named: \np{open\_ocean\_jstart}) to determine the starting j-row for input. 
    184 The use of this option is best explained with an example: 
    185 consider an ORCA1 configuration using the extended grid bathymetry and coordinate files: 
    186 \vspace{-10pt} 
    187 \ifile{eORCA1\_bathymetry\_v2} 
    188 \ifile{eORCA1\_coordinates} 
    189 \noindent These files define a horizontal domain of 362x332. 
    190 Assuming the first row with open ocean wet points in the non-isf bathymetry for this set is row 42 
    191 (\fortran indexing) then the formally correct setting for \np{open\_ocean\_jstart} is 41. 
    192 Using this value as the first row to be read will result in a 362x292 domain which is the same size as 
    193 the original ORCA1 domain. 
    194 Thus the extended coordinates and bathymetry files can be used with all the original input files for ORCA1 if 
    195 the ice cavities are not active (\np{ln\_isfcav = .false.}). 
    196 Full instructions for achieving this are: 
    197  
    198 \noindent Add the new attribute to any input files requiring a j-row offset, i.e: 
    199 \vspace{-10pt} 
     197The extended grids for use with the under-shelf ice cavities will result in redundant rows 
     198around Antarctica if the ice cavities are not active.  A simple mechanism for subsetting 
     199input files associated with the extended domains has been implemented to avoid the need to 
     200maintain different sets of input fields for use with or without active ice cavities.  This 
     201subsetting operates for the j-direction only and works by optionally looking for and using 
     202a global file attribute (named: \np{open_ocean_jstart}{open\_ocean\_jstart}) to determine the starting j-row 
     203for input.  The use of this option is best explained with an example: 
     204\medskip 
     205 
     206\noindent Consider an ORCA1 
     207configuration using the extended grid domain configuration file: \ifile{eORCA1\_domcfg.nc} 
     208This file define a horizontal domain of 362x332.  The first row with 
     209open ocean wet points in the non-isf bathymetry for this set is row 42 (\fortran\ indexing) 
     210then the formally correct setting for \np{open_ocean_jstart}{open\_ocean\_jstart} is 41.  Using this value as 
     211the first row to be read will result in a 362x292 domain which is the same size as the 
     212original ORCA1 domain.  Thus the extended domain configuration file can be used with all 
     213the original input files for ORCA1 if the ice cavities are not active (\np{ln\_isfcav = 
     214.false.}).  Full instructions for achieving this are: 
     215 
     216\begin{itemize} 
     217\item Add the new attribute to any input files requiring a j-row offset, i.e: 
    200218\begin{cmds} 
    201 ncatted  -a open_ocean_jstart,global,a,d,41 eORCA1_coordinates.nc  
    202 ncatted  -a open_ocean_jstart,global,a,d,41 eORCA1_bathymetry_v2.nc 
     219ncatted  -a open_ocean_jstart,global,a,d,41 eORCA1_domcfg.nc 
    203220\end{cmds} 
    204   
    205 \noindent Add the logical switch to \ngn{namcfg} in the configuration namelist and set true: 
    206 %--------------------------------------------namcfg-------------------------------------------------------- 
    207  
    208 \nlst{namcfg} 
    209 %-------------------------------------------------------------------------------------------------------------- 
    210  
    211 \noindent Note the j-size of the global domain is the (extended j-size minus \np{open\_ocean\_jstart} + 1 ) and 
    212 this must match the size of all datasets other than bathymetry and coordinates currently. 
    213 However the option can be extended to any global, 2D and 3D, netcdf, input field by adding the: 
    214 \vspace{-10pt} 
     221 
     222\item Add the logical switch \np{ln_use_jattr}{ln\_use\_jattr} to \nam{cfg}{cfg} in the configuration 
     223namelist (if it is not already there) and set \forcode{.true.} 
     224\end{itemize} 
     225 
     226\noindent Note that with this option, the j-size of the global domain is (extended 
     227j-size minus \np{open_ocean_jstart}{open\_ocean\_jstart} + 1 ) and this must match the \texttt{jpjglo} value 
     228for the configuration. This means an alternative version of \ifile{eORCA1\_domcfg.nc} must 
     229be created for when \np{ln_use_jattr}{ln\_use\_jattr} is active. The \texttt{ncap2} tool provides a 
     230convenient way of achieving this: 
     231 
     232\begin{cmds} 
     233ncap2 -s 'jpjglo=292' eORCA1_domcfg.nc nORCA1_domcfg.nc 
     234\end{cmds} 
     235 
     236The domain configuration file is unique in this respect since it also contains the value of \jp{jpjglo} 
     237that is read and used by the model. 
     238Any other global, 2D and 3D, netcdf, input field can be prepared for use in a reduced domain by adding the 
     239\texttt{open\_ocean\_jstart} attribute to the file's global attributes. 
     240In particular this is true for any field that is read by \NEMO\ using the following optional argument to 
     241the appropriate call to \np{iom_get}{iom\_get}. 
     242 
    215243\begin{forlines} 
    216244lrowattr=ln_use_jattr 
    217245\end{forlines} 
    218 optional argument to the appropriate \np{iom\_get} call and the \np{open\_ocean\_jstart} attribute to 
    219 the corresponding input files. 
    220 It remains the users responsibility to set \np{jpjdta} and \np{jpjglo} values in 
    221 the \np{namelist\_cfg} file according to their needs. 
    222  
    223 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    224 \begin{figure}[!ht] 
    225   \begin{center} 
    226     \includegraphics[width=\textwidth]{Fig_LBC_zoom} 
    227     \caption{ 
    228       \protect\label{fig:LBC_zoom} 
    229       Position of a model domain compared to the data input domain when the zoom functionality is used. 
    230     } 
    231   \end{center} 
    232 \end{figure} 
    233 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    234  
    235  
    236 % ================================================================ 
    237 % Accuracy and Reproducibility 
    238 % ================================================================ 
    239 \section[Accuracy and reproducibility (\textit{lib\_fortran.F90})] 
    240 {Accuracy and reproducibility (\protect\mdl{lib\_fortran})} 
     246 
     247Currently, only the domain configuration variables make use of this optional argument so 
     248this facility is of little practical use except for tests where no other external input 
     249files are needed or you wish to use an extended domain configuration with inputs from 
     250earlier, non-extended configurations. Alternatively, it should be possible to exclude 
     251empty rows for extended domain, forced ocean runs using interpolation on the fly, by 
     252adding the optional argument to \texttt{iom\_get} calls for the weights and initial 
     253conditions. Experimenting with this remains an exercise for the user. 
     254 
     255%% ================================================================================================= 
     256\section[Accuracy and reproducibility (\textit{lib\_fortran.F90})]{Accuracy and reproducibility (\protect\mdl{lib\_fortran})} 
    241257\label{sec:MISC_fortran} 
    242258 
    243 \subsection[Issues with intrinsinc SIGN function (\texttt{\textbf{key\_nosignedzero}})] 
    244 {Issues with intrinsinc SIGN function (\protect\key{nosignedzero})} 
     259%% ================================================================================================= 
     260\subsection[Issues with intrinsinc SIGN function (\texttt{\textbf{key\_nosignedzero}})]{Issues with intrinsinc SIGN function (\protect\key{nosignedzero})} 
    245261\label{subsec:MISC_sign} 
    246262 
    247 The SIGN(A, B) is the \fortran intrinsic function delivers the magnitude of A with the sign of B. 
     263The SIGN(A, B) is the \fortran\ intrinsic function delivers the magnitude of A with the sign of B. 
    248264For example, SIGN(-3.0,2.0) has the value 3.0. 
    249265The problematic case is when the second argument is zero, because, on platforms that support IEEE arithmetic, 
     
    257273and the processor is capable of distinguishing between positive and negative zero, 
    258274and B is negative real zero. 
    259 Then SIGN delivers a negative result where, under \fninety rules, it used to return a positive result. 
     275Then SIGN delivers a negative result where, under \fninety\ rules, it used to return a positive result. 
    260276This change may be especially sensitive for the ice model, 
    261277so we overwrite the intrinsinc function with our own function simply performing :   \\ 
     
    267283some computers/compilers. 
    268284 
    269  
     285%% ================================================================================================= 
    270286\subsection{MPP reproducibility} 
    271287\label{subsec:MISC_glosum} 
    272288 
    273289The numerical reproducibility of simulations on distributed memory parallel computers is a critical issue. 
    274 In particular, within NEMO global summation of distributed arrays is most susceptible to rounding errors, 
     290In particular, within \NEMO\ global summation of distributed arrays is most susceptible to rounding errors, 
    275291and their propagation and accumulation cause uncertainty in final simulation reproducibility on 
    276292different numbers of processors. 
    277293To avoid so, based on \citet{he.ding_JS01} review of different technics, 
    278294we use a so called self-compensated summation method. 
    279 The idea is to estimate the roundoff error, store it in a buffer, and then add it back in the next addition.  
     295The idea is to estimate the roundoff error, store it in a buffer, and then add it back in the next addition. 
    280296 
    281297Suppose we need to calculate $b = a_1 + a_2 + a_3$. 
     
    295311The self-compensated summation method should be used in all summation in i- and/or j-direction. 
    296312See \mdl{closea} module for an example. 
    297 Note also that this implementation may be sensitive to the optimization level.  
    298  
     313Note also that this implementation may be sensitive to the optimization level. 
     314 
     315%% ================================================================================================= 
    299316\subsection{MPP scalability} 
    300317\label{subsec:MISC_mppsca} 
     
    316333be set at all the locations actually required by each individual for the fold operation. 
    317334This alternative method should give identical results to the default \textsc{ALLGATHER} method and 
    318 is recommended for large values of \np{jpni}. 
    319 The new method is activated by setting \np{ln\_nnogather} to be true (\ngn{nammpp}). 
     335is recommended for large values of \np{jpni}{jpni}. 
     336The new method is activated by setting \np{ln_nnogather}{ln\_nnogather} to be true (\nam{mpp}{mpp}). 
    320337The reproducibility of results using the two methods should be confirmed for each new, 
    321338non-reference configuration. 
    322339 
    323 % ================================================================ 
    324 % Model optimisation, Control Print and Benchmark 
    325 % ================================================================ 
     340%% ================================================================================================= 
    326341\section{Model optimisation, control print and benchmark} 
    327342\label{sec:MISC_opt} 
    328 %--------------------------------------------namctl------------------------------------------------------- 
    329  
    330 \nlst{namctl}  
    331 %-------------------------------------------------------------------------------------------------------------- 
    332  
    333 Options are defined through the  \ngn{namctl} namelist variables. 
    334  
     343 
     344\begin{listing} 
     345  \nlst{namctl} 
     346  \caption{\forcode{&namctl}} 
     347  \label{lst:namctl} 
     348\end{listing} 
     349 
     350Options are defined through the  \nam{ctl}{ctl} namelist variables. 
     351 
     352%% ================================================================================================= 
    335353\subsection{Vector optimisation} 
    336354 
     
    338356This is very a very efficient way to increase the length of vector calculations and thus 
    339357to speed up the model on vector computers. 
    340   
     358 
    341359% Add here also one word on NPROMA technique that has been found useless, since compiler have made significant progress during the last decade. 
    342   
     360 
    343361% Add also one word on NEC specific optimisation (Novercheck option for example) 
    344   
     362 
     363%% ================================================================================================= 
    345364\subsection{Control print} 
    346365 
    347 The \np{ln\_ctl} switch was originally used as a debugging option in two modes: 
     366The \np{ln_ctl}{ln\_ctl} switch was originally used as a debugging option in two modes: 
    348367 
    349368\begin{enumerate} 
    350 \item{\np{ln\_ctl}: compute and print the trends averaged over the interior domain in all TRA, DYN, LDF and 
     369\item {\np{ln_ctl}{ln\_ctl}: compute and print the trends averaged over the interior domain in all TRA, DYN, LDF and 
    351370ZDF modules. 
    352371This option is very helpful when diagnosing the origin of an undesired change in model results. } 
    353372 
    354 \item{also \np{ln\_ctl} but using the nictl and njctl namelist parameters to check the source of differences between 
     373\item {also \np{ln_ctl}{ln\_ctl} but using the nictl and njctl namelist parameters to check the source of differences between 
    355374mono and multi processor runs.} 
    356375\end{enumerate} 
    357376 
    358377However, in recent versions it has also been used to force all processors to assume the 
    359 reporting role. Thus when \np{ln\_ctl} is true all processors produce their own versions 
     378reporting role. Thus when \np{ln_ctl}{ln\_ctl} is true all processors produce their own versions 
    360379of files such as: ocean.output, layout.dat, etc.  All such files, beyond the the normal 
    361380reporting processor (narea == 1), are named with a \_XXXX extension to their name, where 
     
    363382such as run.stat (and its netCDF counterpart: run.stat.nc) and tracer.stat contain global 
    364383information and are only ever produced by the reporting master (narea == 1). For version 
    365 4.0 a start has been made to return \np{ln\_ctl} to its original function by introducing 
     3844.0 a start has been made to return \np{ln_ctl}{ln\_ctl} to its original function by introducing 
    366385a new control structure which allows finer control over which files are produced. This 
    367386feature is still evolving but it does already allow the user to: select individually the 
     
    389408at a suitably long interval. For example: 
    390409 
    391 \begin{verbatim}      
     410\begin{verbatim} 
    392411       sn_cfctl%ptimincr  = 25 
    393412\end{verbatim} 
    394413 
    395 will carry out the global communications and write the information every 25 timesteps. This  
     414will carry out the global communications and write the information every 25 timesteps. This 
    396415increment also applies to the time.step file which is otherwise updated every timestep. 
    397416 
    398 % ================================================================ 
    399 \biblio 
    400  
    401 \pindex 
     417\subinc{\input{../../global/epilogue}} 
    402418 
    403419\end{document} 
Note: See TracChangeset for help on using the changeset viewer.