New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 12178 for NEMO/branches/2019/dev_r11078_OSMOSIS_IMMERSE_Nurser/doc/latex/NEMO/subfiles/chap_model_basics.tex – NEMO

Ignore:
Timestamp:
2019-12-11T12:02:38+01:00 (4 years ago)
Author:
agn
Message:

updated trunk to v 11653

Location:
NEMO/branches/2019/dev_r11078_OSMOSIS_IMMERSE_Nurser/doc
Files:
5 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r11078_OSMOSIS_IMMERSE_Nurser/doc

    • Property svn:ignore deleted
    • Property svn:externals set to
      ^/utils/badges badges
      ^/utils/logos logos
  • NEMO/branches/2019/dev_r11078_OSMOSIS_IMMERSE_Nurser/doc/latex

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r11078_OSMOSIS_IMMERSE_Nurser/doc/latex/NEMO

    • Property svn:externals set to
      ^/utils/figures/NEMO figures
  • NEMO/branches/2019/dev_r11078_OSMOSIS_IMMERSE_Nurser/doc/latex/NEMO/subfiles

    • Property svn:ignore set to
      *.ind
      *.ilg
  • NEMO/branches/2019/dev_r11078_OSMOSIS_IMMERSE_Nurser/doc/latex/NEMO/subfiles/chap_model_basics.tex

    r11123 r12178  
    33\begin{document} 
    44 
    5 % ================================================================ 
    6 % Chapter 1  Model Basics 
    7 % ================================================================ 
    85\chapter{Model Basics} 
    9 \label{chap:PE} 
    10 \minitoc 
    11  
    12 \newpage 
    13  
    14 % ================================================================ 
    15 % Primitive Equations 
    16 % ================================================================ 
     6\label{chap:MB} 
     7 
     8\thispagestyle{plain} 
     9 
     10\chaptertoc 
     11 
     12\paragraph{Changes record} ~\\ 
     13 
     14{\footnotesize 
     15  \begin{tabular}{l||l|l} 
     16    Release          & Author(s)                                   & Modifications       \\ 
     17    \hline 
     18    {\em        4.0} & {\em Mike Bell                            } & {\em Review       } \\ 
     19    {\em        3.6} & {\em Tim Graham and Gurvan Madec          } & {\em Updates      } \\ 
     20    {\em $\leq$ 3.4} & {\em Gurvan Madec and S\'{e}bastien Masson} & {\em First version} \\ 
     21  \end{tabular} 
     22} 
     23 
     24\clearpage 
     25 
     26%% ================================================================================================= 
    1727\section{Primitive equations} 
    18 \label{sec:PE_PE} 
    19  
    20 % ------------------------------------------------------------------------------------------------------------- 
    21 %        Vector Invariant Formulation  
    22 % ------------------------------------------------------------------------------------------------------------- 
    23  
     28\label{sec:MB_PE} 
     29 
     30%% ================================================================================================= 
    2431\subsection{Vector invariant formulation} 
    25 \label{subsec:PE_Vector} 
     32\label{subsec:MB_PE_vector} 
    2633 
    2734The ocean is a fluid that can be described to a good approximation by the primitive equations, 
    28 \ie the Navier-Stokes equations along with a nonlinear equation of state which 
     35\ie\ the Navier-Stokes equations along with a nonlinear equation of state which 
    2936couples the two active tracers (temperature and salinity) to the fluid velocity, 
    3037plus the following additional assumptions made from scale considerations: 
    3138 
    32 \begin{enumerate} 
    33 \item 
    34   \textit{spherical earth approximation}: the geopotential surfaces are assumed to be spheres so that 
    35   gravity (local vertical) is parallel to the earth's radius 
    36 \item 
    37   \textit{thin-shell approximation}: the ocean depth is neglected compared to the earth's radius 
    38 \item 
    39   \textit{turbulent closure hypothesis}: the turbulent fluxes 
     39\begin{labeling}{Neglect of additional Coriolis terms} 
     40\item [\textit{Spherical Earth approximation}] The geopotential surfaces are assumed to 
     41  be oblate spheroids that follow the Earth's bulge; 
     42  these spheroids are approximated by spheres with gravity locally vertical 
     43  (parallel to the Earth's radius) and independent of latitude 
     44  \citep[][section 2]{white.hoskins.ea_QJRMS05}. 
     45\item [\textit{Thin-shell approximation}] The ocean depth is neglected compared to the earth's radius 
     46\item [\textit{Turbulent closure hypothesis}] The turbulent fluxes 
    4047  (which represent the effect of small scale processes on the large-scale) 
    4148  are expressed in terms of large-scale features 
    42 \item 
    43   \textit{Boussinesq hypothesis}: density variations are neglected except in their contribution to 
    44   the buoyancy force 
     49\item [\textit{Boussinesq hypothesis}] Density variations are neglected except in 
     50  their contribution to the buoyancy force 
    4551  \begin{equation} 
    46     \label{eq:PE_eos} 
     52    \label{eq:MB_PE_eos} 
    4753    \rho = \rho \ (T,S,p) 
    4854  \end{equation} 
    49 \item 
    50   \textit{Hydrostatic hypothesis}: the vertical momentum equation is reduced to a balance between 
    51   the vertical pressure gradient and the buoyancy force 
     55\item [\textit{Hydrostatic hypothesis}] The vertical momentum equation is reduced to 
     56  a balance between the vertical pressure gradient and the buoyancy force 
    5257  (this removes convective processes from the initial Navier-Stokes equations and so 
    5358  convective processes must be parameterized instead) 
    5459  \begin{equation} 
    55     \label{eq:PE_hydrostatic} 
     60    \label{eq:MB_PE_hydrostatic} 
    5661    \pd[p]{z} = - \rho \ g 
    5762  \end{equation} 
    58 \item 
    59   \textit{Incompressibility hypothesis}: the three dimensional divergence of the velocity vector $\vect U$ 
    60   is assumed to be zero. 
     63\item [\textit{Incompressibility hypothesis}] The three dimensional divergence of 
     64  the velocity vector $\vect U$ is assumed to be zero. 
    6165  \begin{equation} 
    62     \label{eq:PE_continuity} 
     66    \label{eq:MB_PE_continuity} 
    6367    \nabla \cdot \vect U = 0 
    6468  \end{equation} 
    65 \end{enumerate} 
     69\item [\textit{Neglect of additional Coriolis terms}] The Coriolis terms that vary with 
     70  the cosine of latitude are neglected. 
     71  These terms may be non-negligible where the Brunt-V\"{a}is\"{a}l\"{a} frequency $N$ is small, 
     72  either in the deep ocean or in the sub-mesoscale motions of the mixed layer, 
     73  or near the equator \citep[][section 1]{white.hoskins.ea_QJRMS05}. 
     74  They can be consistently included as part of the ocean dynamics 
     75  \citep[][section 3(d)]{white.hoskins.ea_QJRMS05} and are retained in the MIT ocean model. 
     76\end{labeling} 
    6677 
    6778Because the gravitational force is so dominant in the equations of large-scale motions, 
    68 it is useful to choose an orthogonal set of unit vectors $(i,j,k)$ linked to the earth such that 
     79it is useful to choose an orthogonal set of unit vectors $(i,j,k)$ linked to the Earth such that 
    6980$k$ is the local upward vector and $(i,j)$ are two vectors orthogonal to $k$, 
    70 \ie tangent to the geopotential surfaces. 
    71 Let us define the following variables: $\vect U$ the vector velocity, $\vect U = \vect U_h + w \, \vect k$ 
    72 (the subscript $h$ denotes the local horizontal vector, \ie over the $(i,j)$ plane),  
     81\ie\ tangent to the geopotential surfaces. 
     82Let us define the following variables: 
     83$\vect U$ the vector velocity, $\vect U = \vect U_h + w \, \vect k$ 
     84(the subscript $h$ denotes the local horizontal vector, \ie\ over the $(i,j)$ plane), 
    7385$T$ the potential temperature, $S$ the salinity, $\rho$ the \textit{in situ} density. 
    7486The vector invariant form of the primitive equations in the $(i,j,k)$ vector system provides 
    7587the following equations: 
    7688\begin{subequations} 
    77   \label{eq:PE} 
     89  \label{eq:MB_PE} 
    7890  \begin{gather} 
    79     \intertext{$-$ the momentum balance} 
    80     \label{eq:PE_dyn} 
    81     \pd[\vect U_h]{t} = - \lt[ (\nabla \times \vect U) \times \vect U + \frac{1}{2} \nabla \lt( \vect U^2 \rt) \rt]_h 
    82                         - f \; k \times \vect U_h - \frac{1}{\rho_o} \nabla_h p 
    83                         + \vect D^{\vect U} + \vect F^{\vect U} \\ 
    84     \intertext{$-$ the heat and salt conservation equations} 
    85     \label{eq:PE_tra_T} 
     91    \shortintertext{$-$ the momentum balance} 
     92    \label{eq:MB_PE_dyn} 
     93    \pd[\vect U_h]{t} = - \lt[ (\nabla \times \vect U) \times \vect U + \frac{1}{2} \nabla \lt( \vect U^2 \rt) \rt]_h - f \; k \times \vect U_h - \frac{1}{\rho_o} \nabla_h p + \vect D^{\vect U} + \vect F^{\vect U} 
     94    \shortintertext{$-$ the heat and salt conservation equations} 
     95    \label{eq:MB_PE_tra_T} 
    8696    \pd[T]{t} = - \nabla \cdot (T \ \vect U) + D^T + F^T \\ 
    87     \label{eq:PE_tra_S} 
     97    \label{eq:MB_PE_tra_S} 
    8898    \pd[S]{t} = - \nabla \cdot (S \ \vect U) + D^S + F^S 
    8999  \end{gather} 
     
    91101where $\nabla$ is the generalised derivative vector operator in $(i,j,k)$ directions, $t$ is the time, 
    92102$z$ is the vertical coordinate, $\rho$ is the \textit{in situ} density given by the equation of state 
    93 (\autoref{eq:PE_eos}), $\rho_o$ is a reference density, $p$ the pressure, 
     103(\autoref{eq:MB_PE_eos}), $\rho_o$ is a reference density, $p$ the pressure, 
    94104$f = 2 \vect \Omega \cdot k$ is the Coriolis acceleration 
    95 (where $\vect \Omega$ is the Earth's angular velocity vector), and $g$ is the gravitational acceleration. 
     105(where $\vect \Omega$ is the Earth's angular velocity vector), 
     106and $g$ is the gravitational acceleration. 
    96107$\vect D^{\vect U}$, $D^T$ and $D^S$ are the parameterisations of small-scale physics for momentum, 
    97108temperature and salinity, and $\vect F^{\vect U}$, $F^T$ and $F^S$ surface forcing terms. 
    98 Their nature and formulation are discussed in \autoref{sec:PE_zdf_ldf} and \autoref{subsec:PE_boundary_condition}. 
    99  
    100 % ------------------------------------------------------------------------------------------------------------- 
    101 % Boundary condition 
    102 % ------------------------------------------------------------------------------------------------------------- 
     109Their nature and formulation are discussed in \autoref{sec:MB_zdf_ldf} and 
     110\autoref{subsec:MB_boundary_condition}. 
     111 
     112%% ================================================================================================= 
    103113\subsection{Boundary conditions} 
    104 \label{subsec:PE_boundary_condition} 
     114\label{subsec:MB_boundary_condition} 
    105115 
    106116An ocean is bounded by complex coastlines, bottom topography at its base and 
    107117an air-sea or ice-sea interface at its top. 
    108118These boundaries can be defined by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,k,t)$, 
    109 where $H$ is the depth of the ocean bottom and $\eta$ is the height of the sea surface. 
    110 Both $H$ and $\eta$ are usually referenced to a given surface, $z = 0$, chosen as a mean sea surface 
    111 (\autoref{fig:ocean_bc}). 
    112 Through these two boundaries, the ocean can exchange fluxes of heat, fresh water, salt, and momentum with 
    113 the solid earth, the continental margins, the sea ice and the atmosphere. 
    114 However, some of these fluxes are so weak that even on climatic time scales of thousands of years 
    115 they can be neglected. 
     119where $H$ is the depth of the ocean bottom and $\eta$ is the height of the sea surface 
     120(discretisation can introduce additional artificial ``side-wall'' boundaries). 
     121Both $H$ and $\eta$ are referenced to a surface of constant geopotential 
     122(\ie\ a mean sea surface height) on which $z = 0$ (\autoref{fig:MB_ocean_bc}). 
     123Through these two boundaries, the ocean can exchange fluxes of heat, fresh water, salt, 
     124and momentum with the solid earth, the continental margins, the sea ice and the atmosphere. 
     125However, some of these fluxes are so weak that 
     126even on climatic time scales of thousands of years they can be neglected. 
    116127In the following, we briefly review the fluxes exchanged at the interfaces between the ocean and 
    117128the other components of the earth system. 
    118129 
    119 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    120 \begin{figure}[!ht] 
    121   \begin{center} 
    122     \includegraphics[]{Fig_I_ocean_bc} 
    123     \caption{ 
    124       \protect\label{fig:ocean_bc} 
    125       The ocean is bounded by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,t)$, 
    126       where $H$ is the depth of the sea floor and $\eta$ the height of the sea surface. 
    127       Both $H$ and $\eta$ are referenced to $z = 0$. 
    128     } 
    129   \end{center} 
     130\begin{figure} 
     131  \centering 
     132  \includegraphics[width=0.66\textwidth]{Fig_I_ocean_bc} 
     133  \caption[Ocean boundary conditions]{ 
     134    The ocean is bounded by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,t)$, 
     135    where $H$ is the depth of the sea floor and $\eta$ the height of the sea surface. 
     136    Both $H$ and $\eta$ are referenced to $z = 0$.} 
     137  \label{fig:MB_ocean_bc} 
    130138\end{figure} 
    131 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    132139 
    133140\begin{description} 
    134 \item[Land - ocean interface:] 
    135   the major flux between continental margins and the ocean is a mass exchange of fresh water through river runoff. 
     141\item [Land - ocean] The major flux between continental margins and the ocean is a mass exchange of 
     142  fresh water through river runoff. 
    136143  Such an exchange modifies the sea surface salinity especially in the vicinity of major river mouths. 
    137   It can be neglected for short range integrations but has to be taken into account for long term integrations as 
     144  It can be neglected for short range integrations but 
     145  has to be taken into account for long term integrations as 
    138146  it influences the characteristics of water masses formed (especially at high latitudes). 
    139147  It is required in order to close the water cycle of the climate system. 
    140   It is usually specified as a fresh water flux at the air-sea interface in the vicinity of river mouths. 
    141 \item[Solid earth - ocean interface:] 
    142   heat and salt fluxes through the sea floor are small, except in special areas of little extent. 
    143   They are usually neglected in the model 
    144   \footnote{ 
     148  It is usually specified as a fresh water flux at the air-sea interface in 
     149  the vicinity of river mouths. 
     150\item [Solid earth - ocean] Heat and salt fluxes through the sea floor are small, 
     151  except in special areas of little extent. 
     152  They are usually neglected in the model \footnote{ 
    145153    In fact, it has been shown that the heat flux associated with the solid Earth cooling 
    146     (\ie the geothermal heating) is not negligible for the thermohaline circulation of the world ocean 
    147     (see \autoref{subsec:TRA_bbc}). 
     154    (\ie\ the geothermal heating) is not negligible for 
     155    the thermohaline circulation of the world ocean (see \autoref{subsec:TRA_bbc}). 
    148156  }. 
    149157  The boundary condition is thus set to no flux of heat and salt across solid boundaries. 
    150   For momentum, the situation is different. There is no flow across solid boundaries, 
    151   \ie the velocity normal to the ocean bottom and coastlines is zero (in other words, 
    152   the bottom velocity is parallel to solid boundaries). This kinematic boundary condition 
    153   can be expressed as: 
     158  For momentum, the situation is different. 
     159  There is no flow across solid boundaries, 
     160  \ie\ the velocity normal to the ocean bottom and coastlines is zero 
     161  (in other words, the bottom velocity is parallel to solid boundaries). 
     162  This kinematic boundary condition can be expressed as: 
    154163  \begin{equation} 
    155     \label{eq:PE_w_bbc} 
     164    \label{eq:MB_w_bbc} 
    156165    w = - \vect U_h \cdot \nabla_h (H) 
    157166  \end{equation} 
    158167  In addition, the ocean exchanges momentum with the earth through frictional processes. 
    159168  Such momentum transfer occurs at small scales in a boundary layer. 
    160   It must be parameterized in terms of turbulent fluxes using bottom and/or lateral boundary conditions. 
     169  It must be parameterized in terms of turbulent fluxes using 
     170  bottom and/or lateral boundary conditions. 
    161171  Its specification depends on the nature of the physical parameterisation used for 
    162   $\vect D^{\vect U}$ in \autoref{eq:PE_dyn}. 
    163   It is discussed in \autoref{eq:PE_zdf}.% and Chap. III.6 to 9. 
    164 \item[Atmosphere - ocean interface:] 
    165   the kinematic surface condition plus the mass flux of fresh water PE (the precipitation minus evaporation budget) 
    166   leads to: 
     172  $\vect D^{\vect U}$ in \autoref{eq:MB_PE_dyn}. 
     173  It is discussed in \autoref{eq:MB_zdf}. % and Chap. III.6 to 9. 
     174\item [Atmosphere - ocean] The kinematic surface condition plus the mass flux of fresh water PE 
     175  (the precipitation minus evaporation budget) leads to: 
    167176  \[ 
    168     % \label{eq:PE_w_sbc} 
     177    % \label{eq:MB_w_sbc} 
    169178    w = \pd[\eta]{t} + \lt. \vect U_h \rt|_{z = \eta} \cdot \nabla_h (\eta) + P - E 
    170179  \] 
    171   The dynamic boundary condition, neglecting the surface tension (which removes capillary waves from the system) 
    172   leads to the continuity of pressure across the interface $z = \eta$. 
     180  The dynamic boundary condition, neglecting the surface tension 
     181  (which removes capillary waves from the system) leads to 
     182  the continuity of pressure across the interface $z = \eta$. 
    173183  The atmosphere and ocean also exchange horizontal momentum (wind stress), and heat. 
    174 \item[Sea ice - ocean interface:] 
    175   the ocean and sea ice exchange heat, salt, fresh water and momentum. 
     184\item [Sea ice - ocean] The ocean and sea ice exchange heat, salt, fresh water and momentum. 
    176185  The sea surface temperature is constrained to be at the freezing point at the interface. 
    177186  Sea ice salinity is very low ($\sim4-6 \, psu$) compared to those of the ocean ($\sim34 \, psu$). 
    178   The cycle of freezing/melting is associated with fresh water and salt fluxes that cannot be neglected. 
     187  The cycle of freezing/melting is associated with fresh water and salt fluxes that 
     188  cannot be neglected. 
    179189\end{description} 
    180190 
    181 % ================================================================ 
    182 % The Horizontal Pressure Gradient 
    183 % ================================================================ 
     191%% ================================================================================================= 
    184192\section{Horizontal pressure gradient} 
    185 \label{sec:PE_hor_pg} 
    186  
    187 % ------------------------------------------------------------------------------------------------------------- 
    188 % Pressure Formulation 
    189 % ------------------------------------------------------------------------------------------------------------- 
     193\label{sec:MB_hor_pg} 
     194 
     195%% ================================================================================================= 
    190196\subsection{Pressure formulation} 
    191 \label{subsec:PE_p_formulation} 
     197\label{subsec:MB_p_formulation} 
    192198 
    193199The total pressure at a given depth $z$ is composed of a surface pressure $p_s$ at 
    194200a reference geopotential surface ($z = 0$) and a hydrostatic pressure $p_h$ such that: 
    195201$p(i,j,k,t) = p_s(i,j,t) + p_h(i,j,k,t)$. 
    196 The latter is computed by integrating (\autoref{eq:PE_hydrostatic}), 
    197 assuming that pressure in decibars can be approximated by depth in meters in (\autoref{eq:PE_eos}). 
     202The latter is computed by integrating (\autoref{eq:MB_PE_hydrostatic}), 
     203assuming that pressure in decibars can be approximated by depth in meters in (\autoref{eq:MB_PE_eos}). 
    198204The hydrostatic pressure is then given by: 
    199205\[ 
    200   % \label{eq:PE_pressure} 
     206  % \label{eq:MB_pressure} 
    201207  p_h (i,j,z,t) = \int_{\varsigma = z}^{\varsigma = 0} g \; \rho (T,S,\varsigma) \; d \varsigma 
    202208\] 
    203209Two strategies can be considered for the surface pressure term: 
    204 $(a)$ introduce of a  new variable $\eta$, the free-surface elevation, 
     210\begin{enumerate*}[label=(\textit{\alph*})] 
     211\item introduce of a new variable $\eta$, the free-surface elevation, 
    205212for which a prognostic equation can be established and solved; 
    206 $(b)$ assume that the ocean surface is a rigid lid, 
     213\item assume that the ocean surface is a rigid lid, 
    207214on which the pressure (or its horizontal gradient) can be diagnosed. 
     215\end{enumerate*} 
    208216When the former strategy is used, one solution of the free-surface elevation consists of 
    209217the excitation of external gravity waves. 
    210218The flow is barotropic and the surface moves up and down with gravity as the restoring force. 
    211219The phase speed of such waves is high (some hundreds of metres per second) so that 
    212 the time step would have to be very short if they were present in the model. 
     220the time step has to be very short when they are present in the model. 
    213221The latter strategy filters out these waves since the rigid lid approximation implies $\eta = 0$, 
    214 \ie the sea surface is the surface $z = 0$. 
     222\ie\ the sea surface is the surface $z = 0$. 
    215223This well known approximation increases the surface wave speed to infinity and 
    216 modifies certain other longwave dynamics (\eg barotropic Rossby or planetary waves). 
     224modifies certain other longwave dynamics (\eg\ barotropic Rossby or planetary waves). 
    217225The rigid-lid hypothesis is an obsolescent feature in modern OGCMs. 
    218 It has been available until the release 3.1 of \NEMO, and it has been removed in release 3.2 and followings. 
    219 Only the free surface formulation is now described in the this document (see the next sub-section). 
    220  
    221 % ------------------------------------------------------------------------------------------------------------- 
    222 % Free Surface Formulation 
    223 % ------------------------------------------------------------------------------------------------------------- 
     226It has been available until the release 3.1 of \NEMO, 
     227and it has been removed in release 3.2 and followings. 
     228Only the free surface formulation is now described in this document (see the next sub-section). 
     229 
     230%% ================================================================================================= 
    224231\subsection{Free surface formulation} 
    225 \label{subsec:PE_free_surface} 
     232\label{subsec:MB_free_surface} 
    226233 
    227234In the free surface formulation, a variable $\eta$, the sea-surface height, 
    228235is introduced which describes the shape of the air-sea interface. 
    229 This variable is solution of a prognostic equation which is established by forming the vertical average of 
    230 the kinematic surface condition (\autoref{eq:PE_w_bbc}): 
     236This variable is solution of a prognostic equation which is established by 
     237forming the vertical average of the kinematic surface condition (\autoref{eq:MB_w_bbc}): 
    231238\begin{equation} 
    232   \label{eq:PE_ssh} 
     239  \label{eq:MB_ssh} 
    233240  \pd[\eta]{t} = - D + P - E \quad \text{where} \quad D = \nabla \cdot \lt[ (H + \eta) \; \overline{U}_h \, \rt] 
    234241\end{equation} 
    235 and using (\autoref{eq:PE_hydrostatic}) the surface pressure is given by: $p_s = \rho \, g \, \eta$. 
    236  
    237 Allowing the air-sea interface to move introduces the external gravity waves (EGWs) as 
     242and using (\autoref{eq:MB_PE_hydrostatic}) the surface pressure is given by: 
     243$p_s = \rho \, g \, \eta$. 
     244 
     245Allowing the air-sea interface to move introduces 
     246the \textbf{E}xternal \textbf{G}ravity \textbf{W}aves (EGWs) as 
    238247a class of solution of the primitive equations. 
    239 These waves are barotropic because of hydrostatic assumption, and their phase speed is quite high. 
     248These waves are barotropic (\ie\ nearly independent of depth) and their phase speed is quite high. 
    240249Their time scale is short with respect to the other processes described by the primitive equations. 
    241250 
    242251Two choices can be made regarding the implementation of the free surface in the model, 
    243252depending on the physical processes of interest. 
    244  
    245 $\bullet$ If one is interested in EGWs, in particular the tides and their interaction with 
    246 the baroclinic structure of the ocean (internal waves) possibly in shallow seas, 
    247 then a non linear free surface is the most appropriate. 
    248 This means that no approximation is made in \autoref{eq:PE_ssh} and that 
    249 the variation of the ocean volume is fully taken into account. 
    250 Note that in order to study the fast time scales associated with EGWs it is necessary to 
    251 minimize time filtering effects 
    252 (use an explicit time scheme with very small time step, or a split-explicit scheme with reasonably small time step, 
    253 see \autoref{subsec:DYN_spg_exp} or \autoref{subsec:DYN_spg_ts}). 
    254  
    255 $\bullet$ If one is not interested in EGW but rather sees them as high frequency noise, 
    256 it is possible to apply an explicit filter to slow down the fastest waves while 
    257 not altering the slow barotropic Rossby waves. 
    258 If further, an approximative conservation of heat and salt contents is sufficient for the problem solved, 
    259 then it is sufficient to solve a linearized version of \autoref{eq:PE_ssh}, 
    260 which still allows to take into account freshwater fluxes applied at the ocean surface \citep{roullet.madec_JGR00}. 
    261 Nevertheless, with the linearization, an exact conservation of heat and salt contents is lost. 
    262  
    263 The filtering of EGWs in models with a free surface is usually a matter of discretisation of 
    264 the temporal derivatives, 
     253\begin{itemize} 
     254\item If one is interested in EGWs, in particular the tides and their interaction with 
     255  the baroclinic structure of the ocean (internal waves) possibly in shallow seas, 
     256  then a non linear free surface is the most appropriate. 
     257  This means that no approximation is made in \autoref{eq:MB_ssh} and that 
     258  the variation of the ocean volume is fully taken into account. 
     259  Note that in order to study the fast time scales associated with EGWs it is necessary to 
     260  minimize time filtering effects 
     261  (use an explicit time scheme with very small time step, 
     262  or a split-explicit scheme with reasonably small time step, 
     263  see \autoref{subsec:DYN_spg_exp} or \autoref{subsec:DYN_spg_ts}). 
     264\item If one is not interested in EGWs but rather sees them as high frequency noise, 
     265  it is possible to apply an explicit filter to slow down the fastest waves while 
     266  not altering the slow barotropic Rossby waves. 
     267  If further, an approximative conservation of heat and salt contents is sufficient for 
     268  the problem solved, then it is sufficient to solve a linearized version of \autoref{eq:MB_ssh}, 
     269  which still allows to take into account freshwater fluxes applied at the ocean surface 
     270  \citep{roullet.madec_JGR00}. 
     271  Nevertheless, with the linearization, an exact conservation of heat and salt contents is lost. 
     272\end{itemize} 
     273The filtering of EGWs in models with a free surface is usually 
     274a matter of discretisation of the temporal derivatives, 
    265275using a split-explicit method \citep{killworth.webb.ea_JPO91, zhang.endoh_JGR92} or 
    266 the implicit scheme \citep{dukowicz.smith_JGR94} or 
    267 the addition of a filtering force in the momentum equation \citep{roullet.madec_JGR00}. 
    268 With the present release, \NEMO offers the choice between 
    269 an explicit free surface (see \autoref{subsec:DYN_spg_exp}) or 
    270 a split-explicit scheme strongly inspired the one proposed by \citet{shchepetkin.mcwilliams_OM05} 
    271 (see \autoref{subsec:DYN_spg_ts}). 
    272  
    273 % ================================================================ 
    274 % Curvilinear z-coordinate System 
    275 % ================================================================ 
    276 \section{Curvilinear \textit{z-}coordinate system} 
    277 \label{sec:PE_zco} 
    278  
    279 % ------------------------------------------------------------------------------------------------------------- 
    280 % Tensorial Formalism 
    281 % ------------------------------------------------------------------------------------------------------------- 
     276the implicit scheme \citep{dukowicz.smith_JGR94} or the addition of a filtering force in 
     277the momentum equation \citep{roullet.madec_JGR00}. 
     278With the present release, \NEMO\ offers the choice between an explicit free surface 
     279(see \autoref{subsec:DYN_spg_exp}) or a split-explicit scheme strongly inspired the one proposed by 
     280\citet{shchepetkin.mcwilliams_OM05} (see \autoref{subsec:DYN_spg_ts}). 
     281 
     282%% ================================================================================================= 
     283\section{Curvilinear \textit{z}-coordinate system} 
     284\label{sec:MB_zco} 
     285 
     286%% ================================================================================================= 
    282287\subsection{Tensorial formalism} 
    283 \label{subsec:PE_tensorial} 
     288\label{subsec:MB_tensorial} 
    284289 
    285290In many ocean circulation problems, the flow field has regions of enhanced dynamics 
    286 (\ie surface layers, western boundary currents, equatorial currents, or ocean fronts). 
     291(\ie\ surface layers, western boundary currents, equatorial currents, or ocean fronts). 
    287292The representation of such dynamical processes can be improved by 
    288293specifically increasing the model resolution in these regions. 
     
    293298A solution consists of introducing an appropriate coordinate transformation that 
    294299shifts the singular point onto land \citep{madec.imbard_CD96, murray_JCP96}. 
    295 As a consequence, it is important to solve the primitive equations in various curvilinear coordinate systems. 
    296 An efficient way of introducing an appropriate coordinate transform can be found when using a tensorial formalism. 
     300As a consequence, 
     301it is important to solve the primitive equations in various curvilinear coordinate systems. 
     302An efficient way of introducing an appropriate coordinate transform can be found when 
     303using a tensorial formalism. 
    297304This formalism is suited to any multidimensional curvilinear coordinate system. 
    298 Ocean modellers mainly use three-dimensional orthogonal grids on the sphere (spherical earth approximation), 
    299 with preservation of the local vertical. Here we give the simplified equations for this particular case. 
    300 The general case is detailed by \citet{eiseman.stone_SR80} in their survey of the conservation laws of fluid dynamics. 
     305Ocean modellers mainly use three-dimensional orthogonal grids on the sphere 
     306(spherical earth approximation), with preservation of the local vertical. 
     307Here we give the simplified equations for this particular case. 
     308The general case is detailed by \citet{eiseman.stone_SR80} in 
     309their survey of the conservation laws of fluid dynamics. 
    301310 
    302311Let $(i,j,k)$ be a set of orthogonal curvilinear coordinates on 
     
    304313$(i,j,k)$ linked to the earth such that 
    305314$k$ is the local upward vector and $(i,j)$ are two vectors orthogonal to $k$, 
    306 \ie along geopotential surfaces (\autoref{fig:referential}). 
     315\ie\ along geopotential surfaces (\autoref{fig:MB_referential}). 
    307316Let $(\lambda,\varphi,z)$ be the geographical coordinate system in which a position is defined by 
    308317the latitude $\varphi(i,j)$, the longitude $\lambda(i,j)$ and 
    309318the distance from the centre of the earth $a + z(k)$ where $a$ is the earth's radius and 
    310 $z$ the altitude above a reference sea level (\autoref{fig:referential}). 
     319$z$ the altitude above a reference sea level (\autoref{fig:MB_referential}). 
    311320The local deformation of the curvilinear coordinate system is given by $e_1$, $e_2$ and $e_3$, 
    312321the three scale factors: 
    313322\begin{equation} 
    314   \label{eq:scale_factors} 
    315   \begin{aligned} 
    316     e_1 &= (a + z) \lt[ \lt( \pd[\lambda]{i} \cos \varphi \rt)^2 + \lt( \pd[\varphi]{i} \rt)^2 \rt]^{1/2} \\ 
    317     e_2 &= (a + z) \lt[ \lt( \pd[\lambda]{j} \cos \varphi \rt)^2 + \lt( \pd[\varphi]{j} \rt)^2 \rt]^{1/2} \\ 
    318     e_3 &= \lt( \pd[z]{k} \rt) 
    319   \end{aligned} 
     323  \label{eq:MB_scale_factors} 
     324    e_1 = (a + z) \lt[ \lt( \pd[\lambda]{i} \cos \varphi \rt)^2 + \lt( \pd[\varphi]{i} \rt)^2 \rt]^{1/2} \quad e_2 = (a + z) \lt[ \lt( \pd[\lambda]{j} \cos \varphi \rt)^2 + \lt( \pd[\varphi]{j} \rt)^2 \rt]^{1/2} \quad e_3 = \lt( \pd[z]{k} \rt) 
    320325\end{equation} 
    321326 
    322 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    323 \begin{figure}[!tb] 
    324   \begin{center} 
    325     \includegraphics[]{Fig_I_earth_referential} 
    326     \caption{ 
    327       \protect\label{fig:referential} 
    328       the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear 
    329       coordinate system $(i,j,k)$. 
    330     } 
    331   \end{center} 
     327\begin{figure} 
     328  \centering 
     329  \includegraphics[width=0.33\textwidth]{Fig_I_earth_referential} 
     330  \caption[Geographical and curvilinear coordinate systems]{ 
     331    the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear 
     332    coordinate system $(i,j,k)$.} 
     333  \label{fig:MB_referential} 
    332334\end{figure} 
    333 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    334335 
    335336Since the ocean depth is far smaller than the earth's radius, $a + z$, can be replaced by $a$ in 
    336 (\autoref{eq:scale_factors}) (thin-shell approximation). 
     337(\autoref{eq:MB_scale_factors}) (thin-shell approximation). 
    337338The resulting horizontal scale factors $e_1$, $e_2$  are independent of $k$ while 
    338339the vertical scale factor is a single function of $k$ as $k$ is parallel to $z$. 
    339340The scalar and vector operators that appear in the primitive equations 
    340 (\autoref{eq:PE_dyn} to \autoref{eq:PE_eos}) can be written in the tensorial form, 
     341(\autoref{eq:MB_PE_dyn} to \autoref{eq:MB_PE_eos}) can then be written in the tensorial form, 
    341342invariant in any orthogonal horizontal curvilinear coordinate system transformation: 
    342343\begin{subequations} 
    343   % \label{eq:PE_discrete_operators} 
    344   \begin{gather} 
    345     \label{eq:PE_grad} 
    346     \nabla q =   \frac{1}{e_1} \pd[q]{i} \; \vect i 
    347                + \frac{1}{e_2} \pd[q]{j} \; \vect j 
    348                + \frac{1}{e_3} \pd[q]{k} \; \vect k \\ 
    349     \label{eq:PE_div} 
    350     \nabla \cdot \vect A =   \frac{1}{e_1 \; e_2} \lt[ \pd[(e_2 \; a_1)]{\partial i} + \pd[(e_1 \; a_2)]{j} \rt] 
    351                            + \frac{1}{e_3} \lt[ \pd[a_3]{k} \rt] 
    352   \end{gather} 
    353   \begin{multline} 
    354     \label{eq:PE_curl} 
    355       \nabla \times \vect{A} =   \lt[ \frac{1}{e_2} \pd[a_3]{j} - \frac{1}{e_3} \pd[a_2]{k}   \rt] \vect i \\ 
    356                                + \lt[ \frac{1}{e_3} \pd[a_1]{k} - \frac{1}{e_1} \pd[a_3]{i}   \rt] \vect j \\ 
    357                                + \frac{1}{e_1 e_2} \lt[ \pd[(e_2 a_2)]{i} - \pd[(e_1 a_1)]{j} \rt] \vect k 
    358   \end{multline} 
    359   \begin{gather} 
    360     \label{eq:PE_lap} 
    361     \Delta q = \nabla \cdot (\nabla q) \\ 
    362     \label{eq:PE_lap_vector} 
    363     \Delta \vect A = \nabla (\nabla \cdot \vect A) - \nabla \times (\nabla \times \vect A) 
    364   \end{gather} 
     344  % \label{eq:MB_discrete_operators} 
     345  \begin{align} 
     346    \label{eq:MB_grad} 
     347    \nabla q &=   \frac{1}{e_1} \pd[q]{i} \; \vect i + \frac{1}{e_2} \pd[q]{j} \; \vect j + \frac{1}{e_3} \pd[q]{k} \; \vect k \\ 
     348    \label{eq:MB_div} 
     349    \nabla \cdot \vect A &=   \frac{1}{e_1 \; e_2} \lt[ \pd[(e_2 \; a_1)]{\partial i} + \pd[(e_1 \; a_2)]{j} \rt] + \frac{1}{e_3} \lt[ \pd[a_3]{k} \rt] \\ 
     350    \label{eq:MB_curl} 
     351      \nabla \times \vect{A} &=   \lt[ \frac{1}{e_2} \pd[a_3]{j} - \frac{1}{e_3} \pd[a_2]{k}   \rt] \vect i + \lt[ \frac{1}{e_3} \pd[a_1]{k} - \frac{1}{e_1} \pd[a_3]{i}   \rt] \vect j + \frac{1}{e_1 e_2} \lt[ \pd[(e_2 a_2)]{i} - \pd[(e_1 a_1)]{j} \rt] \vect k \\ 
     352    \label{eq:MB_lap} 
     353    \Delta q &= \nabla \cdot (\nabla q) \\ 
     354    \label{eq:MB_lap_vector} 
     355    \Delta \vect A &= \nabla (\nabla \cdot \vect A) - \nabla \times (\nabla \times \vect A) 
     356  \end{align} 
    365357\end{subequations} 
    366 where $q$ is a scalar quantity and $\vect A = (a_1,a_2,a_3)$ a vector in the $(i,j,k)$ coordinates system. 
    367  
    368 % ------------------------------------------------------------------------------------------------------------- 
    369 % Continuous Model Equations 
    370 % ------------------------------------------------------------------------------------------------------------- 
     358where $q$ is a scalar quantity and 
     359$\vect A = (a_1,a_2,a_3)$ a vector in the $(i,j,k)$ coordinates system. 
     360 
     361%% ================================================================================================= 
    371362\subsection{Continuous model equations} 
    372 \label{subsec:PE_zco_Eq} 
     363\label{subsec:MB_zco_Eq} 
    373364 
    374365In order to express the Primitive Equations in tensorial formalism, 
    375 it is necessary to compute the horizontal component of the non-linear and viscous terms of the equation using 
    376 \autoref{eq:PE_grad}) to \autoref{eq:PE_lap_vector}. 
    377 Let us set $\vect U = (u,v,w) = \vect U_h + w \; \vect k $, the velocity in the $(i,j,k)$ coordinates system and 
    378 define the relative vorticity $\zeta$ and the divergence of the horizontal velocity field $\chi$, by: 
     366it is necessary to compute the horizontal component of the non-linear and viscous terms of 
     367the equation using \autoref{eq:MB_grad}) to \autoref{eq:MB_lap_vector}. 
     368Let us set $\vect U = (u,v,w) = \vect U_h + w \; \vect k $, 
     369the velocity in the $(i,j,k)$ coordinates system, 
     370and define the relative vorticity $\zeta$ and the divergence of the horizontal velocity field $\chi$, 
     371by: 
    379372\begin{gather} 
    380   \label{eq:PE_curl_Uh} 
     373  \label{eq:MB_curl_Uh} 
    381374  \zeta = \frac{1}{e_1 e_2} \lt[ \pd[(e_2 \, v)]{i} - \pd[(e_1 \, u)]{j} \rt] \\ 
    382   \label{eq:PE_div_Uh} 
     375  \label{eq:MB_div_Uh} 
    383376  \chi  = \frac{1}{e_1 e_2} \lt[ \pd[(e_2 \, u)]{i} + \pd[(e_1 \, v)]{j} \rt] 
    384377\end{gather} 
    385378 
    386 Using the fact that the horizontal scale factors $e_1$ and $e_2$ are independent of $k$ and that 
     379Using again the fact that the horizontal scale factors $e_1$ and $e_2$ are independent of $k$ and that 
    387380$e_3$  is a function of the single variable $k$, 
    388 $NLT$ the nonlinear term of \autoref{eq:PE_dyn} can be transformed as follows: 
    389 \begin{alignat*}{2} 
    390   &NLT &=   &\lt[ (\nabla \times {\vect U}) \times {\vect U} + \frac{1}{2} \nabla \lt( {\vect U}^2 \rt) \rt]_h \\ 
    391   &    &=   &\lt( 
    392     \begin{array}{*{20}c} 
    393                 \lt[ \frac{1}{e_3} \pd[u]{k} - \frac{1}{e_1} \pd[w]{i} \rt] w - \zeta \; v   \\ 
    394                 \zeta \; u - \lt[ \frac{1}{e_2} \pd[w]{j} - \frac{1}{e_3} \pd[v]{k} \rt] \ w 
    395     \end{array} 
    396                                                                                              \rt) 
    397           + \frac{1}{2} \lt( 
    398     \begin{array}{*{20}c} 
    399                              \frac{1}{e_1} \pd[(u^2 + v^2 + w^2)]{i} \\ 
    400                              \frac{1}{e_2} \pd[(u^2 + v^2 + w^2)]{j} 
    401     \end{array} 
    402                                                                      \rt) \\ 
    403   &    &=   &\lt( 
    404     \begin{array}{*{20}c} 
    405                   -\zeta \; v \\ 
    406                    \zeta \; u 
    407     \end{array} 
    408                               \rt) 
    409           + \frac{1}{2} \lt( 
    410     \begin{array}{*{20}c} 
    411                              \frac{1}{e_1} \pd[(u^2 + v^2)]{i} \\ 
    412                              \frac{1}{e_2} \pd[(u^2 + v^2)]{j} 
    413     \end{array} 
    414                                                                \rt) \\ 
    415   &    &  &+ \frac{1}{e_3} \lt( 
    416     \begin{array}{*{20}c} 
    417                                 w \; \pd[u]{k} \\ 
    418                                 w \; \pd[v]{k} 
    419     \end{array} 
    420                                                \rt) 
    421            - \lt( 
    422     \begin{array}{*{20}c} 
    423                   \frac{w}{e_1} \pd[w]{i} - \frac{1}{2 e_1} \pd[w^2]{i} \\ 
    424                   \frac{w}{e_2} \pd[w]{j} - \frac{1}{2 e_2} \pd[w^2]{j} 
    425     \end{array} 
    426                                                                         \rt) 
    427 \end{alignat*} 
    428 The last term of the right hand side is obviously zero, and thus the nonlinear term of 
    429 \autoref{eq:PE_dyn} is written in the $(i,j,k)$ coordinate system: 
     381$NLT$ the nonlinear term of \autoref{eq:MB_PE_dyn} can be transformed as follows: 
     382\begin{align*} 
     383  NLT &= \lt[ (\nabla \times {\vect U}) \times {\vect U} + \frac{1}{2} \nabla \lt( {\vect U}^2 \rt) \rt]_h \\ 
     384      &= \lt( 
     385        \begin{array}{*{20}c} 
     386          \lt[ \frac{1}{e_3} \pd[u]{k} - \frac{1}{e_1} \pd[w]{i} \rt] w - \zeta \; v   \\ 
     387          \zeta \; u - \lt[ \frac{1}{e_2} \pd[w]{j} - \frac{1}{e_3} \pd[v]{k} \rt] \ w 
     388        \end{array} 
     389  \rt) 
     390  + \frac{1}{2} \lt( 
     391  \begin{array}{*{20}c} 
     392    \frac{1}{e_1} \pd[(u^2 + v^2 + w^2)]{i} \\ 
     393    \frac{1}{e_2} \pd[(u^2 + v^2 + w^2)]{j} 
     394  \end{array} 
     395  \rt) \\ 
     396      &= \lt( 
     397        \begin{array}{*{20}c} 
     398          -\zeta \; v \\ 
     399          \zeta \; u 
     400        \end{array} 
     401  \rt) 
     402  + \frac{1}{2} \lt( 
     403  \begin{array}{*{20}c} 
     404    \frac{1}{e_1} \pd[(u^2 + v^2)]{i} \\ 
     405    \frac{1}{e_2} \pd[(u^2 + v^2)]{j} 
     406  \end{array} 
     407  \rt) 
     408  + \frac{1}{e_3} \lt( 
     409  \begin{array}{*{20}c} 
     410    w \; \pd[u]{k} \\ 
     411    w \; \pd[v]{k} 
     412  \end{array} 
     413  \rt) 
     414  - \lt( 
     415  \begin{array}{*{20}c} 
     416    \frac{w}{e_1} \pd[w]{i} - \frac{1}{2 e_1} \pd[w^2]{i} \\ 
     417    \frac{w}{e_2} \pd[w]{j} - \frac{1}{2 e_2} \pd[w^2]{j} 
     418  \end{array} 
     419  \rt) 
     420\end{align*} 
     421The last term of the right hand side is obviously zero, 
     422and thus the \textbf{N}on\textbf{L}inear \textbf{T}erm ($NLT$) of \autoref{eq:MB_PE_dyn} is written in 
     423the $(i,j,k)$ coordinate system: 
    430424\begin{equation} 
    431   \label{eq:PE_vector_form} 
    432   NLT =   \zeta \; \vect k \times \vect U_h + \frac{1}{2} \nabla_h \lt( \vect U_h^2 \rt) 
    433         + \frac{1}{e_3} w \pd[\vect U_h]{k} 
     425  \label{eq:MB_vector_form} 
     426  NLT = \zeta \; \vect k \times \vect U_h + \frac{1}{2} \nabla_h \lt( \vect U_h^2 \rt) + \frac{1}{e_3} w \pd[\vect U_h]{k} 
    434427\end{equation} 
    435428 
    436429This is the so-called \textit{vector invariant form} of the momentum advection term. 
    437430For some purposes, it can be advantageous to write this term in the so-called flux form, 
    438 \ie to write it as the divergence of fluxes. 
    439 For example, the first component of \autoref{eq:PE_vector_form} (the $i$-component) is transformed as follows: 
    440 \begin{alignat*}{2} 
     431\ie\ to write it as the divergence of fluxes. 
     432For example, 
     433the first component of \autoref{eq:MB_vector_form} (the $i$-component) is transformed as follows: 
     434\begin{alignat*}{3} 
    441435  &NLT_i &= &- \zeta \; v + \frac{1}{2 \; e_1} \pd[ (u^2 + v^2) ]{i} + \frac{1}{e_3} w \ \pd[u]{k} \\ 
    442   &      &=  &\frac{1}{e_1 \; e_2} \lt( -v \pd[(e_2 \, v)]{i} + v \pd[(e_1 \, u)]{j} \rt) 
    443             + \frac{1}{e_1 e_2} \lt( e_2 \; u \pd[u]{i} + e_2 \; v \pd[v]{i} \rt) \\ 
    444   &      & &+ \frac{1}{e_3} \lt( w \; \pd[u]{k} \rt) \\ 
    445   &      &=  &\frac{1}{e_1 \; e_2} \lt[ - \lt( v^2 \pd[e_2]{i} + e_2 \, v \pd[v]{i} \rt) 
    446                                      + \lt( \pd[ \lt( e_1 \, u \, v \rt)]{j} -         e_1 \, u \pd[v]{j} \rt) \rt. \\ 
    447   &      &                       &\lt. + \lt( \pd[ \lt( e_2 \, u \, u \rt)]{i} - u \pd[ \lt( e_2 u \rt)]{i} \rt) 
    448                                      + e_2 v \pd[v]{i}                                                         \rt] \\ 
     436  &      &= &\frac{1}{e_1 \; e_2} \lt( -v \pd[(e_2 \, v)]{i} + v \pd[(e_1 \, u)]{j} \rt) + \frac{1}{e_1 e_2} \lt( e_2 \; u \pd[u]{i} + e_2 \; v \pd[v]{i} \rt) + \frac{1}{e_3} \lt( w \; \pd[u]{k} \rt) \\ 
     437  &      &= &\frac{1}{e_1 \; e_2} \lt[ - \lt( v^2 \pd[e_2]{i} + e_2 \, v \pd[v]{i} \rt) + \lt( \pd[ \lt( e_1 \, u \, v \rt)]{j} - e_1 \, u \pd[v]{j} \rt) \rt. \lt. + \lt( \pd[ \lt( e_2 \, u \, u \rt)]{i} - u \pd[ \lt( e_2 u \rt)]{i} \rt) + e_2 v \pd[v]{i} \rt] \\ 
    449438  &      & &+ \frac{1}{e_3} \lt( \pd[(w \, u)]{k} - u \pd[w]{k} \rt) \\ 
    450   &      &=  &\frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, u)]{i} + \pd[(e_1 \, u \, v)]{j} \rt) 
    451             + \frac{1}{e_3} \pd[(w \, u)]{k} \\ 
    452   &      & &+ \frac{1}{e_1 e_2} \lt[ - u \lt( \pd[(e_1 v)]{j} - v \, \pd[e_1]{j} \rt) 
    453                                   - u \pd[(e_2 u)]{i}                              \rt] 
    454             - \frac{1}{e_3} \pd[w]{k} u \\ 
     439  &      &= &\frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, u)]{i} + \pd[(e_1 \, u \, v)]{j} \rt) + \frac{1}{e_3} \pd[(w \, u)]{k} + \frac{1}{e_1 e_2} \lt[ - u \lt( \pd[(e_1 v)]{j} - v \, \pd[e_1]{j} \rt) - u \pd[(e_2 u)]{i} \rt] - \frac{1}{e_3} \pd[w]{k} u \\ 
    455440  &      & &+ \frac{1}{e_1 e_2} \lt( - v^2 \pd[e_2]{i} \rt) \\ 
    456   &      &= &\nabla \cdot (\vect U \, u) - (\nabla \cdot \vect U) \ u 
    457             + \frac{1}{e_1 e_2} \lt( -v^2 \pd[e_2]{i} + u v \, \pd[e_1]{j} \rt) \\ 
    458   \intertext{as $\nabla \cdot {\vect U} \; = 0$ (incompressibility) it comes:} 
     441  &      &= &\nabla \cdot (\vect U \, u) - (\nabla \cdot \vect U) \ u + \frac{1}{e_1 e_2} \lt( -v^2 \pd[e_2]{i} + u v \, \pd[e_1]{j} \rt) \\ 
     442  \shortintertext{as $\nabla \cdot {\vect U} \; = 0$ (incompressibility) it becomes:} 
    459443  &      &= &\, \nabla \cdot (\vect U \, u) + \frac{1}{e_1 e_2} \lt( v \; \pd[e_2]{i} - u \; \pd[e_1]{j} \rt) (-v) 
    460444\end{alignat*} 
     
    462446The flux form of the momentum advection term is therefore given by: 
    463447\begin{equation} 
    464   \label{eq:PE_flux_form} 
    465   NLT =   \nabla \cdot \lt( 
    466     \begin{array}{*{20}c} 
    467                             \vect U \, u \\ 
    468                             \vect U \, v 
    469     \end{array} 
    470                                          \rt) 
    471         + \frac{1}{e_1 e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \vect k \times \vect U_h 
     448  \label{eq:MB_flux_form} 
     449  NLT = \nabla \cdot \lt( 
     450  \begin{array}{*{20}c} 
     451    \vect U \, u \\ 
     452    \vect U \, v 
     453  \end{array} 
     454  \rt) 
     455  + \frac{1}{e_1 e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \vect k \times \vect U_h 
    472456\end{equation} 
    473457 
    474458The flux form has two terms, 
    475 the first one is expressed as the divergence of momentum fluxes (hence the flux form name given to this formulation) 
    476 and the second one is due to the curvilinear nature of the coordinate system used. 
    477 The latter is called the \textit{metric} term and can be viewed as a modification of the Coriolis parameter:  
     459the first one is expressed as the divergence of momentum fluxes 
     460(hence the flux form name given to this formulation) and 
     461the second one is due to the curvilinear nature of the coordinate system used. 
     462The latter is called the \textit{metric} term and can be viewed as 
     463a modification of the Coriolis parameter: 
    478464\[ 
    479   % \label{eq:PE_cor+metric} 
     465  % \label{eq:MB_cor+metric} 
    480466  f \to f + \frac{1}{e_1 e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) 
    481467\] 
    482468 
    483469Note that in the case of geographical coordinate, 
    484 \ie when $(i,j) \to (\lambda,\varphi)$ and $(e_1,e_2) \to (a \, \cos \varphi,a)$, 
     470\ie\ when $(i,j) \to (\lambda,\varphi)$ and $(e_1,e_2) \to (a \, \cos \varphi,a)$, 
    485471we recover the commonly used modification of the Coriolis parameter $f \to f + (u / a) \tan \varphi$. 
    486472 
     
    488474the following tensorial formalism: 
    489475 
    490 \begin{itemize} 
    491 \item 
    492   \textbf{Vector invariant form of the momentum equations}: 
     476\begin{description} 
     477\item [Vector invariant form of the momentum equations] 
    493478  \begin{equation} 
    494     \label{eq:PE_dyn_vect} 
    495     \begin{split} 
    496     % \label{eq:PE_dyn_vect_u} 
    497       \pd[u]{t} = &+ (\zeta + f) \, v - \frac{1}{2 e_1} \pd[]{i} (u^2 + v^2) 
    498                    - \frac{1}{e_3} w \pd[u]{k} - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) \\ 
    499                   &+ D_u^{\vect U} + F_u^{\vect U} \\ 
    500       \pd[v]{t} = &- (\zeta + f) \, u - \frac{1}{2 e_2} \pd[]{j} (u^2 + v^2) 
    501                    - \frac{1}{e_3} w \pd[v]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) \\  
    502                   &+ D_v^{\vect U} + F_v^{\vect U} 
    503     \end{split} 
     479    \label{eq:MB_dyn_vect} 
     480    \begin{gathered} 
     481    % \label{eq:MB_dyn_vect_u} 
     482      \pd[u]{t} = + (\zeta + f) \, v - \frac{1}{2 e_1} \pd[]{i} (u^2 + v^2) - \frac{1}{e_3} w \pd[u]{k} - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) + D_u^{\vect U} + F_u^{\vect U} \\ 
     483      \pd[v]{t} = - (\zeta + f) \, u - \frac{1}{2 e_2} \pd[]{j} (u^2 + v^2) - \frac{1}{e_3} w \pd[v]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) + D_v^{\vect U} + F_v^{\vect U} 
     484    \end{gathered} 
    504485  \end{equation} 
    505 \item 
    506   \textbf{flux form of the momentum equations}: 
    507   % \label{eq:PE_dyn_flux} 
    508   \begin{multline*} 
    509     % \label{eq:PE_dyn_flux_u} 
    510     \pd[u]{t} = + \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v \\ 
    511                 - \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, u)]{i} + \pd[(e_1 \, v \, u)]{j} \rt) \\ 
    512                 - \frac{1}{e_3} \pd[(w \, u)]{k} - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) 
    513                 + D_u^{\vect U} + F_u^{\vect U} 
    514   \end{multline*} 
    515   \begin{multline*} 
    516     % \label{eq:PE_dyn_flux_v} 
    517     \pd[v]{t} = - \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u \\ 
    518                 + \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, v)]{i} + \pd[(e_1 \, v \, v)]{j} \rt) \\ 
    519                 - \frac{1}{e_3} \pd[(w \, v)]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) 
    520                 + D_v^{\vect U} + F_v^{\vect U} 
    521   \end{multline*} 
    522   where $\zeta$, the relative vorticity, is given by \autoref{eq:PE_curl_Uh} and $p_s$, the surface pressure, 
    523   is given by: 
     486\item [Flux form of the momentum equations] 
     487  % \label{eq:MB_dyn_flux} 
     488  \begin{alignat*}{2} 
     489    % \label{eq:MB_dyn_flux_u} 
     490    \pd[u]{t} = &+ \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v - \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, u)]{i} + \pd[(e_1 \, v \, u)]{j} \rt) - \frac{1}{e_3} \pd[(w \, u)]{k} \\ 
     491    &- \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) + D_u^{\vect U} + F_u^{\vect U} 
     492  \end{alignat*} 
     493  \begin{alignat*}{2} 
     494    % \label{eq:MB_dyn_flux_v} 
     495    \pd[v]{t} = &- \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u - \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, v)]{i} + \pd[(e_1 \, v \, v)]{j} \rt) - \frac{1}{e_3} \pd[(w \, v)]{k} \\ 
     496    &- \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) + D_v^{\vect U} + F_v^{\vect U} 
     497  \end{alignat*} 
     498  where $\zeta$, the relative vorticity, is given by \autoref{eq:MB_curl_Uh} and 
     499  $p_s$, the surface pressure, is given by: 
    524500  \[ 
    525   % \label{eq:PE_spg} 
     501  % \label{eq:MB_spg} 
    526502    p_s = \rho \,g \, \eta 
    527503  \] 
    528   with $\eta$ is solution of \autoref{eq:PE_ssh}. 
     504  and $\eta$ is the solution of \autoref{eq:MB_ssh}. 
    529505 
    530506  The vertical velocity and the hydrostatic pressure are diagnosed from the following equations: 
    531507  \[ 
    532   % \label{eq:w_diag} 
    533     \pd[w]{k} = - \chi \; e_3 \qquad  
    534   % \label{eq:hp_diag} 
     508  % \label{eq:MB_w_diag} 
     509    \pd[w]{k} = - \chi \; e_3 \qquad 
     510  % \label{eq:MB_hp_diag} 
    535511    \pd[p_h]{k} = - \rho \; g \; e_3 
    536512  \] 
    537   where the divergence of the horizontal velocity, $\chi$ is given by \autoref{eq:PE_div_Uh}. 
    538 \item \textit{tracer equations}: 
    539   \[ 
    540     %\label{eq:S} 
    541     \pd[T]{t} = - \frac{1}{e_1 e_2} \lt[ \pd[(e_2 T \, u)]{i} + \pd[(e_1 T \, v)]{j} \rt] 
    542                 - \frac{1}{e_3} \pd[(T \, w)]{k} + D^T + F^T \\ 
    543     %\label{eq:T} 
    544     \pd[S]{t} = - \frac{1}{e_1 e_2} \lt[ \pd[(e_2 S \, u)]{i} + \pd[(e_1 S \, v)]{j} \rt] 
    545                 - \frac{1}{e_3} \pd[(S \, w)]{k} + D^S + F^S 
    546     %\label{eq:rho} 
     513  where the divergence of the horizontal velocity, $\chi$ is given by \autoref{eq:MB_div_Uh}. 
     514\item [Tracer equations] 
     515  \begin{gather*} 
     516    \pd[T]{t} = - \frac{1}{e_1 e_2} \lt[ \pd[(e_2 T \, u)]{i} + \pd[(e_1 T \, v)]{j} \rt] - \frac{1}{e_3} \pd[(T \, w)]{k} + D^T + F^T \\ 
     517    \pd[S]{t} = - \frac{1}{e_1 e_2} \lt[ \pd[(e_2 S \, u)]{i} + \pd[(e_1 S \, v)]{j} \rt] - \frac{1}{e_3} \pd[(S \, w)]{k} + D^S + F^S \\ 
    547518    \rho = \rho \big( T,S,z(k) \big) 
    548   \] 
    549 \end{itemize} 
    550  
    551 The expression of $\vect D^{U}$, $D^{S}$ and $D^{T}$ depends on the subgrid scale parameterisation used. 
    552 It will be defined in \autoref{eq:PE_zdf}. 
     519  \end{gather*} 
     520\end{description} 
     521 
     522The expression of $\vect D^{U}$, $D^{S}$ and $D^{T}$ depends on 
     523the subgrid scale parameterisation used. 
     524It will be defined in \autoref{eq:MB_zdf}. 
    553525The nature and formulation of $\vect F^{\vect U}$, $F^T$ and $F^S$, the surface forcing terms, 
    554526are discussed in \autoref{chap:SBC}. 
    555527 
    556 \newpage 
    557  
    558 % ================================================================ 
    559 % Curvilinear generalised vertical coordinate System 
    560 % ================================================================ 
     528%% ================================================================================================= 
    561529\section{Curvilinear generalised vertical coordinate system} 
    562 \label{sec:PE_gco} 
     530\label{sec:MB_gco} 
    563531 
    564532The ocean domain presents a huge diversity of situation in the vertical. 
     
    567535varying from more than 6,000 meters in abyssal trenches to zero at the coast. 
    568536Last but not least, the ocean stratification exerts a strong barrier to vertical motions and mixing. 
    569 Therefore, in order to represent the ocean with respect to 
    570 the first point a space and time dependent vertical coordinate that follows the variation of the sea surface height 
    571 \eg an \zstar-coordinate; 
    572 for the second point, a space variation to fit the change of bottom topography 
    573 \eg a terrain-following or $\sigma$-coordinate; 
    574 and for the third point, one will be tempted to use a space and time dependent coordinate that 
    575 follows the isopycnal surfaces, \eg an isopycnic coordinate. 
    576  
    577 In order to satisfy two or more constrains one can even be tempted to mixed these coordinate systems, as in 
    578 HYCOM (mixture of $z$-coordinate at the surface, isopycnic coordinate in the ocean interior and $\sigma$ at 
    579 the ocean bottom) \citep{chassignet.smith.ea_JPO03} or 
    580 OPA (mixture of $z$-coordinate in vicinity the surface and steep topography areas and $\sigma$-coordinate elsewhere) 
    581 \citep{madec.delecluse.ea_JPO96} among others. 
     537Therefore, in order to represent the ocean with respect to the first point 
     538a space and time dependent vertical coordinate that follows the variation of the sea surface height 
     539\eg\ an \zstar-coordinate; 
     540for the second point, 
     541a space variation to fit the change of bottom topography 
     542\eg\ a terrain-following or $\sigma$-coordinate; 
     543and for the third point, 
     544one will be tempted to use a space and time dependent coordinate that follows the isopycnal surfaces, 
     545\eg\ an isopycnic coordinate. 
     546 
     547In order to satisfy two or more constraints one can even be tempted to mixed these coordinate systems, 
     548as in HYCOM (mixture of $z$-coordinate at the surface, isopycnic coordinate in the ocean interior and 
     549$\sigma$ at the ocean bottom) \citep{chassignet.smith.ea_JPO03} or 
     550OPA (mixture of $z$-coordinate in vicinity the surface and steep topography areas and 
     551$\sigma$-coordinate elsewhere) \citep{madec.delecluse.ea_JPO96} among others. 
    582552 
    583553In fact one is totally free to choose any space and time vertical coordinate by 
    584554introducing an arbitrary vertical coordinate : 
    585555\begin{equation} 
    586   \label{eq:PE_s} 
     556  \label{eq:MB_s} 
    587557  s = s(i,j,k,t) 
    588558\end{equation} 
    589 with the restriction that the above equation gives a single-valued monotonic relationship between $s$ and $k$, 
    590 when $i$, $j$ and $t$ are held fixed. 
    591 \autoref{eq:PE_s} is a transformation from the $(i,j,k,t)$ coordinate system with independent variables into 
     559with the restriction that the above equation gives a single-valued monotonic relationship between 
     560$s$ and $k$, when $i$, $j$ and $t$ are held fixed. 
     561\autoref{eq:MB_s} is a transformation from 
     562the $(i,j,k,t)$ coordinate system with independent variables into 
    592563the $(i,j,s,t)$ generalised coordinate system with $s$ depending on the other three variables through 
    593 \autoref{eq:PE_s}. 
     564\autoref{eq:MB_s}. 
    594565This so-called \textit{generalised vertical coordinate} \citep{kasahara_MWR74} is in fact 
    595 an Arbitrary Lagrangian--Eulerian (ALE) coordinate. 
    596 Indeed, choosing an expression for $s$ is an arbitrary choice that determines 
    597 which part of the vertical velocity (defined from a fixed referential) will cross the levels (Eulerian part) and 
    598 which part will be used to move them (Lagrangian part). 
    599 The coordinate is also sometime referenced as an adaptive coordinate \citep{hofmeister.burchard.ea_OM10}, 
    600 since the coordinate system is adapted in the course of the simulation. 
     566an \textbf{A}rbitrary \textbf{L}agrangian--\textbf{E}ulerian (ALE) coordinate. 
     567Indeed, one has a great deal of freedom in the choice of expression for $s$. 
     568The choice determines which part of the vertical velocity (defined from a fixed referential) 
     569will cross the levels (Eulerian part) and which part will be used to move them (Lagrangian part). 
     570The coordinate is also sometimes referenced as an adaptive coordinate 
     571\citep{hofmeister.burchard.ea_OM10}, since the coordinate system is adapted in 
     572the course of the simulation. 
    601573Its most often used implementation is via an ALE algorithm, 
    602574in which a pure lagrangian step is followed by regridding and remapping steps, 
    603 the later step implicitly embedding the vertical advection 
     575the latter step implicitly embedding the vertical advection 
    604576\citep{hirt.amsden.ea_JCP74, chassignet.smith.ea_JPO03, white.adcroft.ea_JCP09}. 
    605577Here we follow the \citep{kasahara_MWR74} strategy: 
    606 a regridding step (an update of the vertical coordinate) followed by an eulerian step with 
     578a regridding step (an update of the vertical coordinate) followed by an Eulerian step with 
    607579an explicit computation of vertical advection relative to the moving s-surfaces. 
    608580 
    609581%\gmcomment{ 
    610582%A key point here is that the $s$-coordinate depends on $(i,j)$ ==> horizontal pressure gradient... 
    611 the generalized vertical coordinates used in ocean modelling are not orthogonal, 
     583The generalized vertical coordinates used in ocean modelling are not orthogonal, 
    612584which contrasts with many other applications in mathematical physics. 
    613585Hence, it is useful to keep in mind the following properties that may seem odd on initial encounter. 
     
    615587The horizontal velocity in ocean models measures motions in the horizontal plane, 
    616588perpendicular to the local gravitational field. 
    617 That is, horizontal velocity is mathematically the same regardless the vertical coordinate, be it geopotential, 
    618 isopycnal, pressure, or terrain following. 
     589That is, horizontal velocity is mathematically the same regardless of the vertical coordinate, 
     590be it geopotential, isopycnal, pressure, or terrain following. 
    619591The key motivation for maintaining the same horizontal velocity component is that 
    620592the hydrostatic and geostrophic balances are dominant in the large-scale ocean. 
    621 Use of an alternative quasi -horizontal velocity, for example one oriented parallel to the generalized surface, 
     593Use of an alternative quasi -horizontal velocity, 
     594for example one oriented parallel to the generalized surface, 
    622595would lead to unacceptable numerical errors. 
    623596Correspondingly, the vertical direction is anti -parallel to the gravitational force in 
     
    626599the surface of a constant generalized vertical coordinate. 
    627600 
    628 It is the method used to measure transport across the generalized vertical coordinate surfaces which differs between 
    629 the vertical coordinate choices. 
    630 That is, computation of the dia-surface velocity component represents the fundamental distinction between 
     601It is the method used to measure transport across the generalized vertical coordinate surfaces which 
     602differs between the vertical coordinate choices. 
     603That is, 
     604computation of the dia-surface velocity component represents the fundamental distinction between 
    631605the various coordinates. 
    632 In some models, such as geopotential, pressure, and terrain following, this transport is typically diagnosed from 
    633 volume or mass conservation. 
    634 In other models, such as isopycnal layered models, this transport is prescribed based on assumptions about 
    635 the physical processes producing a flux across the layer interfaces. 
     606In some models, such as geopotential, pressure, and terrain following, 
     607this transport is typically diagnosed from volume or mass conservation. 
     608In other models, such as isopycnal layered models, 
     609this transport is prescribed based on assumptions about the physical processes producing 
     610a flux across the layer interfaces. 
    636611 
    637612In this section we first establish the PE in the generalised vertical $s$-coordinate, 
     
    639614%} 
    640615 
    641 % ------------------------------------------------------------------------------------------------------------- 
    642 % The s-coordinate Formulation 
    643 % ------------------------------------------------------------------------------------------------------------- 
     616%% ================================================================================================= 
    644617\subsection{\textit{S}-coordinate formulation} 
    645618 
    646 Starting from the set of equations established in \autoref{sec:PE_zco} for the special case $k = z$ and 
    647 thus $e_3 = 1$, we introduce an arbitrary vertical coordinate $s = s(i,j,k,t)$, 
     619Starting from the set of equations established in \autoref{sec:MB_zco} for 
     620the special case $k = z$ and thus $e_3 = 1$, 
     621we introduce an arbitrary vertical coordinate $s = s(i,j,k,t)$, 
    648622which includes $z$-, \zstar- and $\sigma$-coordinates as special cases 
    649623($s = z$, $s = \zstar$, and $s = \sigma = z / H$ or $ = z / \lt( H + \eta \rt)$, resp.). 
    650 A formal derivation of the transformed equations is given in \autoref{apdx:A}. 
    651 Let us define the vertical scale factor by $e_3 = \partial_s z$  ($e_3$ is now a function of $(i,j,k,t)$ ), 
     624A formal derivation of the transformed equations is given in \autoref{apdx:SCOORD}. 
     625Let us define the vertical scale factor by $e_3 = \partial_s z$ 
     626($e_3$ is now a function of $(i,j,k,t)$ ), 
    652627and the slopes in the $(i,j)$ directions between $s$- and $z$-surfaces by: 
    653628\begin{equation} 
    654   \label{eq:PE_sco_slope} 
     629  \label{eq:MB_sco_slope} 
    655630  \sigma_1 = \frac{1}{e_1} \; \lt. \pd[z]{i} \rt|_s \quad \text{and} \quad 
    656631  \sigma_2 = \frac{1}{e_2} \; \lt. \pd[z]{j} \rt|_s 
    657632\end{equation} 
    658 We also introduce $\omega$, a dia-surface velocity component, defined as the velocity  
    659 relative to the moving $s$-surfaces and normal to them: 
     633We also introduce $\omega$, a dia-surface velocity component, 
     634defined as the velocity relative to the moving $s$-surfaces and normal to them: 
    660635\[ 
    661   % \label{eq:PE_sco_w} 
    662   \omega = w - e_3 \, \pd[s]{t} - \sigma_1 \, u - \sigma_2 \, v 
     636  % \label{eq:MB_sco_w} 
     637  \omega = w -  \, \lt. \pd[z]{t} \rt|_s - \sigma_1 \, u - \sigma_2 \, v 
    663638\] 
    664639 
    665 The equations solved by the ocean model \autoref{eq:PE} in $s$-coordinate can be written as follows 
    666 (see \autoref{sec:A_momentum}): 
    667  
    668 \begin{itemize} 
    669 \item \textbf{Vector invariant form of the momentum equation}: 
    670   \begin{multline*} 
    671   % \label{eq:PE_sco_u_vector} 
    672     \pd[u]{t} = + (\zeta + f) \, v - \frac{1}{2 \, e_1} \pd[]{i} (u^2 + v^2) - \frac{1}{e_3} \omega \pd[u]{k} \\ 
    673                 - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) + g \frac{\rho}{\rho_o} \sigma_1 
    674                 + D_u^{\vect U} + F_u^{\vect U} 
    675   \end{multline*} 
    676   \begin{multline*} 
    677   % \label{eq:PE_sco_v_vector} 
    678     \pd[v]{t} = - (\zeta + f) \, u - \frac{1}{2 \, e_2} \pd[]{j}(u^2 + v^2) - \frac{1}{e_3} \omega \pd[v]{k} \\ 
    679                 - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) + g \frac{\rho}{\rho_o} \sigma_2 
    680                 + D_v^{\vect U} + F_v^{\vect U} 
    681   \end{multline*} 
    682 \item \textbf{Flux form of the momentum equation}: 
    683   \begin{multline*} 
    684   % \label{eq:PE_sco_u_flux} 
    685     \frac{1}{e_3} \pd[(e_3 \, u)]{t} = + \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v \\ 
    686                                        - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[(e_2 \, e_3 \, u \, u)]{i} + \pd[(e_1 \, e_3 \, v \, u)]{j} \rt) \\ 
    687                                        - \frac{1}{e_3} \pd[(\omega \, u)]{k} 
    688                                        - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) 
    689                                        + g \frac{\rho}{\rho_o} \sigma_1 + D_u^{\vect U} + F_u^{\vect U} 
    690   \end{multline*} 
    691   \begin{multline*} 
    692   % \label{eq:PE_sco_v_flux} 
    693     \frac{1}{e_3} \pd[(e_3 \, v)]{t} = - \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u \\ 
    694                                        - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[( e_2 \; e_3 \, u \, v)]{i} + \pd[(e_1 \; e_3 \, v \, v)]{j} \rt) \\ 
    695                                        - \frac{1}{e_3} \pd[(\omega \, v)]{k} 
    696                                        - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) 
    697                                        + g \frac{\rho}{\rho_o}\sigma_2 + D_v^{\vect U} + F_v^{\vect U} 
    698   \end{multline*} 
     640The equations solved by the ocean model \autoref{eq:MB_PE} in $s$-coordinate can be written as follows 
     641(see \autoref{sec:SCOORD_momentum}): 
     642 
     643\begin{description} 
     644\item [Vector invariant form of the momentum equation] 
     645  \begin{gather*} 
     646    % \label{eq:MB_sco_u_vector} 
     647    \pd[u]{t} = + (\zeta + f) \, v - \frac{1}{2 \, e_1} \pd[]{i} (u^2 + v^2) - \frac{1}{e_3} \omega \pd[u]{k} - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o} \sigma_1 + D_u^{\vect U} + F_u^{\vect U} \\ 
     648    % \label{eq:MB_sco_v_vector} 
     649    \pd[v]{t} = - (\zeta + f) \, u - \frac{1}{2 \, e_2} \pd[]{j} (u^2 + v^2) - \frac{1}{e_3} \omega \pd[v]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o} \sigma_2 + D_v^{\vect U} + F_v^{\vect U} 
     650  \end{gather*} 
     651\item [Flux form of the momentum equation] 
     652  \begin{alignat*}{2} 
     653    % \label{eq:MB_sco_u_flux} 
     654    \frac{1}{e_3} \pd[(e_3 \, u)]{t} = &+ \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[(e_2 \, e_3 \, u \, u)]{i} + \pd[(e_1 \, e_3 \, v \, u)]{j} \rt) - \frac{1}{e_3} \pd[(\omega \, u)]{k} \\ 
     655    &- \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o} \sigma_1 + D_u^{\vect U} + F_u^{\vect U} 
     656  \end{alignat*} 
     657  \begin{alignat*}{2} 
     658  % \label{eq:MB_sco_v_flux} 
     659    \frac{1}{e_3} \pd[(e_3 \, v)]{t} = &- \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[( e_2 \; e_3 \, u \, v)]{i} + \pd[(e_1 \; e_3 \, v \, v)]{j} \rt) - \frac{1}{e_3} \pd[(\omega \, v)]{k} \\ 
     660    &- \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o}\sigma_2 + D_v^{\vect U} + F_v^{\vect U} 
     661  \end{alignat*} 
    699662  where the relative vorticity, $\zeta$, the surface pressure gradient, 
    700663  and the hydrostatic pressure have the same expressions as in $z$-coordinates although 
    701664  they do not represent exactly the same quantities. 
    702   $\omega$ is provided by the continuity equation (see \autoref{apdx:A}): 
     665  $\omega$ is provided by the continuity equation (see \autoref{apdx:SCOORD}): 
    703666  \[ 
    704   % \label{eq:PE_sco_continuity} 
     667  % \label{eq:MB_sco_continuity} 
    705668    \pd[e_3]{t} + e_3 \; \chi + \pd[\omega]{s} = 0 \quad \text{with} \quad 
    706669    \chi = \frac{1}{e_1 e_2 e_3} \lt( \pd[(e_2 e_3 \, u)]{i} + \pd[(e_1 e_3 \, v)]{j} \rt) 
    707670  \] 
    708 \item \textit{tracer equations}: 
    709   \begin{multline*} 
    710   % \label{eq:PE_sco_t} 
    711     \frac{1}{e_3} \pd[(e_3 \, T)]{t} = - \frac{1}{e_1 e_2 e_3} \lt(   \pd[(e_2 e_3 \, u \, T)]{i} 
    712                                                                     + \pd[(e_1 e_3 \, v \, T)]{j} \rt) \\ 
    713                                        - \frac{1}{e_3} \pd[(T \, \omega)]{k} + D^T + F^S 
    714   \end{multline*} 
    715   \begin{multline} 
    716   % \label{eq:PE_sco_s} 
    717     \frac{1}{e_3} \pd[(e_3 \, S)]{t} = - \frac{1}{e_1 e_2 e_3} \lt(   \pd[(e_2 e_3 \, u \, S)]{i} 
    718                                                                     + \pd[(e_1 e_3 \, v \, S)]{j} \rt) \\ 
    719                                        - \frac{1}{e_3} \pd[(S \, \omega)]{k} + D^S + F^S 
    720   \end{multline} 
    721 \end{itemize} 
     671\item [Tracer equations] 
     672  \begin{gather*} 
     673    % \label{eq:MB_sco_t} 
     674    \frac{1}{e_3} \pd[(e_3 \, T)]{t} = - \frac{1}{e_1 e_2 e_3} \lt(   \pd[(e_2 e_3 \, u \, T)]{i} + \pd[(e_1 e_3 \, v \, T)]{j} \rt) - \frac{1}{e_3} \pd[(T \, \omega)]{k} + D^T + F^S \\ 
     675    % \label{eq:MB_sco_s} 
     676    \frac{1}{e_3} \pd[(e_3 \, S)]{t} = - \frac{1}{e_1 e_2 e_3} \lt(   \pd[(e_2 e_3 \, u \, S)]{i} + \pd[(e_1 e_3 \, v \, S)]{j} \rt) - \frac{1}{e_3} \pd[(S \, \omega)]{k} + D^S + F^S 
     677  \end{gather*} 
     678\end{description} 
    722679The equation of state has the same expression as in $z$-coordinate, 
    723680and similar expressions are used for mixing and forcing terms. 
     
    729686} 
    730687 
    731 % ------------------------------------------------------------------------------------------------------------- 
    732 % Curvilinear \zstar-coordinate System 
    733 % ------------------------------------------------------------------------------------------------------------- 
     688%% ================================================================================================= 
    734689\subsection{Curvilinear \zstar-coordinate system} 
    735 \label{subsec:PE_zco_star} 
    736  
    737 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    738 \begin{figure}[!b] 
    739   \begin{center} 
    740     \includegraphics[]{Fig_z_zstar} 
    741     \caption{ 
    742       \protect\label{fig:z_zstar} 
    743       (a) $z$-coordinate in linear free-surface case ; 
    744       (b) $z$-coordinate in non-linear free surface case ; 
    745       (c) re-scaled height coordinate 
     690\label{subsec:MB_zco_star} 
     691 
     692\begin{figure} 
     693  \centering 
     694  \includegraphics[width=0.66\textwidth]{Fig_z_zstar} 
     695  \caption[Curvilinear z-coordinate systems (\{non-\}linear free-surface cases and re-scaled \zstar)]{ 
     696    \begin{enumerate*}[label=(\textit{\alph*})] 
     697    \item $z$-coordinate in linear free-surface case; 
     698    \item $z$-coordinate in non-linear free surface case; 
     699    \item re-scaled height coordinate 
    746700      (become popular as the \zstar-coordinate \citep{adcroft.campin_OM04}). 
    747     } 
    748   \end{center} 
     701    \end{enumerate*} 
     702  } 
     703  \label{fig:MB_z_zstar} 
    749704\end{figure} 
    750 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    751  
    752 In that case, the free surface equation is nonlinear, and the variations of volume are fully taken into account. 
    753 These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO web site. 
    754  
    755 The \zstar coordinate approach is an unapproximated, non-linear free surface implementation which allows one to 
    756 deal with large amplitude free-surface variations relative to the vertical resolution \citep{adcroft.campin_OM04}. 
    757 In the \zstar formulation, 
    758 the variation of the column thickness due to sea-surface undulations is not concentrated in the surface level, 
    759 as in the $z$-coordinate formulation, but is equally distributed over the full water column. 
     705 
     706In this case, the free surface equation is nonlinear, 
     707and the variations of volume are fully taken into account. 
     708These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on 
     709the \NEMO\ web site. 
     710 
     711The \zstar\ coordinate approach is an unapproximated, non-linear free surface implementation which 
     712allows one to deal with large amplitude free-surface variations relative to the vertical resolution 
     713\citep{adcroft.campin_OM04}. 
     714In the \zstar\ formulation, the variation of the column thickness due to sea-surface undulations is 
     715not concentrated in the surface level, as in the $z$-coordinate formulation, 
     716but is equally distributed over the full water column. 
    760717Thus vertical levels naturally follow sea-surface variations, with a linear attenuation with depth, 
    761 as illustrated by \autoref{fig:z_zstar}. 
    762 Note that with a flat bottom, such as in \autoref{fig:z_zstar}, the bottom-following $z$ coordinate and \zstar are equivalent. 
     718as illustrated by \autoref{fig:MB_z_zstar}. 
     719Note that with a flat bottom, such as in \autoref{fig:MB_z_zstar}, 
     720the bottom-following $z$ coordinate and \zstar\ are equivalent. 
    763721The definition and modified oceanic equations for the rescaled vertical coordinate \zstar, 
    764722including the treatment of fresh-water flux at the surface, are detailed in Adcroft and Campin (2004). 
    765723The major points are summarized here. 
    766 The position (\zstar) and vertical discretization (\zstar) are expressed as: 
     724The position (\zstar) and vertical discretization ($\delta \zstar$) are expressed as: 
    767725\[ 
    768   % \label{eq:z-star} 
    769   H + \zstar = (H + z)  / r \quad \text{and}  \quad \delta \zstar 
    770               = \delta z / r \quad \text{with} \quad r 
    771               = \frac{H + \eta}{H} 
     726  % \label{eq:MB_z-star} 
     727  H + \zstar = (H + z)  / r \quad \text{and}  \quad \delta \zstar = \delta z / r \quad \text{with} \quad r = \frac{H + \eta}{H} 
     728\] 
     729Simple re-organisation of the above expressions gives 
     730\[ 
     731  % \label{eq:MB_zstar_2} 
     732  \zstar = H \lt( \frac{z - \eta}{H + \eta} \rt) 
    772733\] 
    773734Since the vertical displacement of the free surface is incorporated in the vertical coordinate \zstar, 
    774 the upper and lower boundaries are at fixed  \zstar position, 
     735the upper and lower boundaries are at fixed \zstar\ position, 
    775736$\zstar = 0$ and $\zstar = -H$ respectively. 
    776737Also the divergence of the flow field is no longer zero as shown by the continuity equation: 
    777738\[ 
    778   \pd[r]{t} = \nabla_{\zstar} \cdot \lt( r \; \vect U_h \rt) (r \; w *) = 0 
     739  \pd[r]{t} = \nabla_{\zstar} \cdot \lt( r \; \vect U_h \rt) + \pd[r \; w^*]{\zstar} = 0 
    779740\] 
    780  
    781 % from MOM4p1 documentation 
    782 To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordinate  
    783 \[ 
    784   % \label{eq:PE_} 
    785   \zstar = H \lt( \frac{z - \eta}{H + \eta} \rt) 
    786 \] 
    787  
    788 This coordinate is closely related to the "eta" coordinate used in many atmospheric models 
    789 (see Black (1994) for a review of eta coordinate atmospheric models). 
     741This \zstar\ coordinate is closely related to the $\eta$ coordinate used in many atmospheric models 
     742(see Black (1994) for a review of $\eta$ coordinate atmospheric models). 
    790743It was originally used in ocean models by Stacey et al. (1995) for studies of tides next to shelves, 
    791744and it has been recently promoted by Adcroft and Campin (2004) for global climate modelling. 
    792745 
    793 The surfaces of constant \zstar are quasi -horizontal. 
    794 Indeed, the \zstar coordinate reduces to $z$ when $\eta$ is zero. 
     746The surfaces of constant \zstar\ are quasi-horizontal. 
     747Indeed, the \zstar\ coordinate reduces to $z$ when $\eta$ is zero. 
    795748In general, when noting the large differences between 
    796749undulations of the bottom topography versus undulations in the surface height, 
    797 it is clear that surfaces constant \zstar are very similar to the depth surfaces. 
     750it is clear that surfaces constant \zstar\ are very similar to the depth surfaces. 
    798751These properties greatly reduce difficulties of computing the horizontal pressure gradient relative to 
    799 terrain following sigma models discussed in \autoref{subsec:PE_sco}. 
    800 Additionally, since \zstar when $\eta = 0$, 
    801 no flow is spontaneously generated in an unforced ocean starting from rest, regardless the bottom topography. 
    802 This behaviour is in contrast to the case with "s"-models, where pressure gradient errors in the presence of 
    803 nontrivial topographic variations can generate nontrivial spontaneous flow from a resting state, 
     752terrain following sigma models discussed in \autoref{subsec:MB_sco}. 
     753Additionally, since $\zstar = z$ when $\eta = 0$, 
     754no flow is spontaneously generated in an unforced ocean starting from rest, 
     755regardless the bottom topography. 
     756This behaviour is in contrast to the case with ``s''-models, 
     757where pressure gradient errors in the presence of nontrivial topographic variations can generate 
     758nontrivial spontaneous flow from a resting state, 
    804759depending on the sophistication of the pressure gradient solver. 
    805 The quasi -horizontal nature of the coordinate surfaces also facilitates the implementation of 
    806 neutral physics parameterizations in \zstar models using the same techniques as in $z$-models 
     760The quasi-horizontal nature of the coordinate surfaces also facilitates the implementation of 
     761neutral physics parameterizations in \zstar\ models using the same techniques as in $z$-models 
    807762(see Chapters 13-16 of \cite{griffies_bk04}) for a discussion of neutral physics in $z$-models, 
    808763as well as \autoref{sec:LDF_slp} in this document for treatment in \NEMO). 
    809764 
    810 The range over which \zstar varies is time independent $-H \leq \zstar \leq 0$. 
    811 Hence, all cells remain nonvanishing, so long as the surface height maintains $\eta > ?H$. 
    812 This is a minor constraint relative to that encountered on the surface height when using $s = z$ or $s = z - \eta$. 
    813  
    814 Because \zstar has a time independent range, all grid cells have static increments ds, 
    815 and the sum of the ver tical increments yields the time independent ocean depth. %k ds = H. 
    816 The \zstar coordinate is therefore invisible to undulations of the free surface, 
     765The range over which \zstar\ varies is time independent $-H \leq \zstar \leq 0$. 
     766Hence, all cells remain nonvanishing, so long as the surface height maintains $\eta > -H$. 
     767This is a minor constraint relative to that encountered on the surface height when 
     768using $s = z$ or $s = z - \eta$. 
     769 
     770Because \zstar\ has a time independent range, all grid cells have static increments ds, 
     771and the sum of the vertical increments yields the time independent ocean depth. %k ds = H. 
     772The \zstar\ coordinate is therefore invisible to undulations of the free surface, 
    817773since it moves along with the free surface. 
    818 This proper ty means that no spurious vertical transport is induced across surfaces of constant \zstar by 
    819 the motion of external gravity waves. 
    820 Such spurious transpor t can be a problem in z-models, especially those with tidal forcing. 
    821 Quite generally, the time independent range for the \zstar coordinate is a very convenient property that 
    822 allows for a nearly arbitrary ver tical resolution even in the presence of large amplitude fluctuations of 
    823 the surface height, again so long as $\eta > -H$. 
     774This property means that no spurious vertical transport is induced across 
     775surfaces of constant \zstar\  by the motion of external gravity waves. 
     776Such spurious transport can be a problem in z-models, especially those with tidal forcing. 
     777Quite generally, 
     778the time independent range for the \zstar\ coordinate is a very convenient property that 
     779allows for a nearly arbitrary vertical resolution even in 
     780the presence of large amplitude fluctuations of the surface height, again so long as $\eta > -H$. 
    824781%end MOM doc %%% 
    825782 
    826 \newpage  
    827  
    828 % ------------------------------------------------------------------------------------------------------------- 
    829 % Terrain following  coordinate System 
    830 % ------------------------------------------------------------------------------------------------------------- 
     783%% ================================================================================================= 
    831784\subsection{Curvilinear terrain-following \textit{s}--coordinate} 
    832 \label{subsec:PE_sco} 
    833  
    834 % ------------------------------------------------------------------------------------------------------------- 
    835 % Introduction 
    836 % ------------------------------------------------------------------------------------------------------------- 
    837 \subsubsection{Introduction} 
     785\label{subsec:MB_sco} 
    838786 
    839787Several important aspects of the ocean circulation are influenced by bottom topography. 
    840 Of course, the most important is that bottom topography determines deep ocean sub-basins, barriers, sills and 
    841 channels that strongly constrain the path of water masses, but more subtle effects exist. 
    842 For example, the topographic $\beta$-effect is usually larger than the planetary one along continental slopes. 
     788Of course, the most important is that bottom topography determines deep ocean sub-basins, barriers, 
     789sills and channels that strongly constrain the path of water masses, but more subtle effects exist. 
     790For example, 
     791the topographic $\beta$-effect is usually larger than the planetary one along continental slopes. 
    843792Topographic Rossby waves can be excited and can interact with the mean current. 
    844 In the $z$-coordinate system presented in the previous section (\autoref{sec:PE_zco}), 
     793In the $z$-coordinate system presented in the previous section (\autoref{sec:MB_zco}), 
    845794$z$-surfaces are geopotential surfaces. 
    846795The bottom topography is discretised by steps. 
     
    848797large localized depth gradients associated with large localized vertical velocities. 
    849798The response to such a velocity field often leads to numerical dispersion effects. 
    850 One solution to strongly reduce this error is to use a partial step representation of bottom topography instead of 
    851 a full step one \cite{pacanowski.gnanadesikan_MWR98}. 
     799One solution to strongly reduce this error is to use a partial step representation of 
     800bottom topography instead of a full step one \cite{pacanowski.gnanadesikan_MWR98}. 
    852801Another solution is to introduce a terrain-following coordinate system (hereafter $s$-coordinate). 
    853802 
    854 The $s$-coordinate avoids the discretisation error in the depth field since the layers of 
    855 computation are gradually adjusted with depth to the ocean bottom. 
    856 Relatively small topographic features as well as  gentle, large-scale slopes of the sea floor in the deep ocean, 
    857 which would be ignored in typical $z$-model applications with the largest grid spacing at greatest depths, 
     803The $s$-coordinate avoids the discretisation error in the depth field since 
     804the layers of computation are gradually adjusted with depth to the ocean bottom. 
     805Relatively small topographic features as well as 
     806gentle, large-scale slopes of the sea floor in the deep ocean, 
     807which would be ignored in typical $z$-model applications with 
     808the largest grid spacing at greatest depths, 
    858809can easily be represented (with relatively low vertical resolution). 
    859 A terrain-following model (hereafter $s$-model) also facilitates the modelling of the boundary layer flows over 
    860 a large depth range, which in the framework of the $z$-model would require high vertical resolution over 
     810A terrain-following model (hereafter $s$-model) also facilitates 
     811the modelling of the boundary layer flows over a large depth range, 
     812which in the framework of the $z$-model would require high vertical resolution over 
    861813the whole depth range. 
    862 Moreover, with a $s$-coordinate it is possible, at least in principle, to have the bottom and the sea surface as 
     814Moreover, 
     815with a $s$-coordinate it is possible, at least in principle, to have the bottom and the sea surface as 
    863816the only boundaries of the domain (no more lateral boundary condition to specify). 
    864 Nevertheless, a $s$-coordinate also has its drawbacks. Perfectly adapted to a homogeneous ocean, 
     817Nevertheless, a $s$-coordinate also has its drawbacks. 
     818Perfectly adapted to a homogeneous ocean, 
    865819it has strong limitations as soon as stratification is introduced. 
    866820The main two problems come from the truncation error in the horizontal pressure gradient and 
    867821a possibly increased diapycnal diffusion. 
    868 The horizontal pressure force in $s$-coordinate consists of two terms (see \autoref{apdx:A}), 
    869  
     822The horizontal pressure force in $s$-coordinate consists of two terms (see \autoref{apdx:SCOORD}), 
    870823\begin{equation} 
    871   \label{eq:PE_p_sco} 
    872   \nabla p |_z = \nabla p |_s - \pd[p]{s} \nabla z |_s 
     824  \label{eq:MB_p_sco} 
     825  \nabla p |_z = \nabla p |_s - \frac{1}{e_3} \pd[p]{s} \nabla z |_s 
    873826\end{equation} 
    874827 
    875 The second term in \autoref{eq:PE_p_sco} depends on the tilt of the coordinate surface and 
    876 introduces a truncation error that is not present in a $z$-model. 
    877 In the special case of a $\sigma$-coordinate (i.e. a depth-normalised coordinate system $\sigma = z/H$), 
    878 \citet{haney_JPO91} and \citet{beckmann.haidvogel_JPO93} have given estimates of the magnitude of this truncation error. 
    879 It depends on topographic slope, stratification, horizontal and vertical resolution, the equation of state, 
    880 and the finite difference scheme. 
     828The second term in \autoref{eq:MB_p_sco} depends on the tilt of the coordinate surface and 
     829leads to a truncation error that is not present in a $z$-model. 
     830In the special case of a $\sigma$-coordinate 
     831(i.e. a depth-normalised coordinate system $\sigma = z/H$), 
     832\citet{haney_JPO91} and \citet{beckmann.haidvogel_JPO93} have given estimates of 
     833the magnitude of this truncation error. 
     834It depends on topographic slope, stratification, horizontal and vertical resolution, 
     835the equation of state, and the finite difference scheme. 
    881836This error limits the possible topographic slopes that a model can handle at 
    882837a given horizontal and vertical resolution. 
    883838This is a severe restriction for large-scale applications using realistic bottom topography. 
    884 The large-scale slopes require high horizontal resolution, and the computational cost becomes prohibitive. 
     839The large-scale slopes require high horizontal resolution, 
     840and the computational cost becomes prohibitive. 
    885841This problem can be at least partially overcome by mixing $s$-coordinate and 
    886 step-like representation of bottom topography \citep{gerdes_JGR93*a,gerdes_JGR93*b,madec.delecluse.ea_JPO96}. 
     842step-like representation of bottom topography 
     843\citep{gerdes_JGR93*a,gerdes_JGR93*b,madec.delecluse.ea_JPO96}. 
    887844However, the definition of the model domain vertical coordinate becomes then a non-trivial thing for 
    888845a realistic bottom topography: 
    889 a envelope topography is defined in $s$-coordinate on which a full or 
    890 partial step bottom topography is then applied in order to adjust the model depth to the observed one 
    891 (see \autoref{sec:DOM_zgr}. 
    892  
    893 For numerical reasons a minimum of diffusion is required along the coordinate surfaces of 
    894 any finite difference model. 
     846an envelope topography is defined in $s$-coordinate on which 
     847a full or partial step bottom topography is then applied in order to 
     848adjust the model depth to the observed one (see \autoref{subsec:DOM_zgr}). 
     849 
     850For numerical reasons a minimum of diffusion is required along 
     851the coordinate surfaces of any finite difference model. 
    895852It causes spurious diapycnal mixing when coordinate surfaces do not coincide with isoneutral surfaces. 
    896853This is the case for a $z$-model as well as for a $s$-model. 
    897 However, density varies more strongly on $s$-surfaces than on horizontal surfaces in regions of 
    898 large topographic slopes, implying larger diapycnal diffusion in a $s$-model than in a $z$-model. 
    899 Whereas such a diapycnal diffusion in a $z$-model tends to weaken horizontal density (pressure) gradients and thus 
    900 the horizontal circulation, it usually reinforces these gradients in a $s$-model, creating spurious circulation. 
    901 For example, imagine an isolated bump of topography in an ocean at rest with a horizontally uniform stratification. 
     854However, density varies more strongly on $s$-surfaces than on horizontal surfaces in 
     855regions of large topographic slopes, 
     856implying larger diapycnal diffusion in a $s$-model than in a $z$-model. 
     857Whereas such a diapycnal diffusion in a $z$-model tends to 
     858weaken horizontal density (pressure) gradients and thus the horizontal circulation, 
     859it usually reinforces these gradients in a $s$-model, creating spurious circulation. 
     860For example, imagine an isolated bump of topography in 
     861an ocean at rest with a horizontally uniform stratification. 
    902862Spurious diffusion along $s$-surfaces will induce a bump of isoneutral surfaces over the topography, 
    903863and thus will generate there a baroclinic eddy. 
    904864In contrast, the ocean will stay at rest in a $z$-model. 
    905 As for the truncation error, the problem can be reduced by introducing the terrain-following coordinate below 
    906 the strongly stratified portion of the water column (\ie the main thermocline) \citep{madec.delecluse.ea_JPO96}. 
    907 An alternate solution consists of rotating the lateral diffusive tensor to geopotential or to isoneutral surfaces 
    908 (see \autoref{subsec:PE_ldf}). 
     865As for the truncation error, the problem can be reduced by 
     866introducing the terrain-following coordinate below the strongly stratified portion of the water column 
     867(\ie\ the main thermocline) \citep{madec.delecluse.ea_JPO96}. 
     868An alternate solution consists of rotating the lateral diffusive tensor to 
     869geopotential or to isoneutral surfaces (see \autoref{subsec:MB_ldf}). 
    909870Unfortunately, the slope of isoneutral surfaces relative to the $s$-surfaces can very large, 
    910 strongly exceeding the stability limit of such a operator when it is discretized (see \autoref{chap:LDF}). 
    911  
    912 The $s$-coordinates introduced here \citep{lott.madec.ea_OM90,madec.delecluse.ea_JPO96} differ mainly in two aspects from 
    913 similar models: 
    914 it allows a representation of bottom topography with mixed full or partial step-like/terrain following topography; 
     871strongly exceeding the stability limit of such a operator when it is discretized 
     872(see \autoref{chap:LDF}). 
     873 
     874The $s$-coordinates introduced here \citep{lott.madec.ea_OM90,madec.delecluse.ea_JPO96} 
     875differ mainly in two aspects from similar models: 
     876it allows a representation of bottom topography with 
     877mixed full or partial step-like/terrain following topography; 
    915878It also offers a completely general transformation, $s=s(i,j,z)$ for the vertical coordinate. 
    916879 
    917 % ------------------------------------------------------------------------------------------------------------- 
    918 % Curvilinear z-tilde coordinate System 
    919 % ------------------------------------------------------------------------------------------------------------- 
    920 \subsection{\texorpdfstring{Curvilinear \ztilde-coordinate}{}} 
    921 \label{subsec:PE_zco_tilde} 
    922  
    923 The \ztilde -coordinate has been developed by \citet{leclair.madec_OM11}. 
    924 It is available in \NEMO since the version 3.4. 
     880%% ================================================================================================= 
     881\subsection{Curvilinear \ztilde-coordinate} 
     882\label{subsec:MB_zco_tilde} 
     883 
     884The \ztilde-coordinate has been developed by \citet{leclair.madec_OM11}. 
     885It is available in \NEMO\ since the version 3.4 and is more robust in version 4.0 than previously. 
    925886Nevertheless, it is currently not robust enough to be used in all possible configurations. 
    926887Its use is therefore not recommended. 
    927888 
    928 \newpage  
    929  
    930 % ================================================================ 
    931 % Subgrid Scale Physics 
    932 % ================================================================ 
     889%% ================================================================================================= 
    933890\section{Subgrid scale physics} 
    934 \label{sec:PE_zdf_ldf} 
    935  
    936 The primitive equations describe the behaviour of a geophysical fluid at space and time scales larger than 
    937 a few kilometres in the horizontal, a few meters in the vertical and a few minutes. 
    938 They are usually solved at larger scales: the specified grid spacing and time step of the numerical model. 
     891\label{sec:MB_zdf_ldf} 
     892 
     893The hydrostatic primitive equations describe the behaviour of a geophysical fluid at 
     894space and time scales larger than a few kilometres in the horizontal, 
     895a few meters in the vertical and a few minutes. 
     896They are usually solved at larger scales: the specified grid spacing and time step of 
     897the numerical model. 
    939898The effects of smaller scale motions (coming from the advective terms in the Navier-Stokes equations) 
    940899must be represented entirely in terms of large-scale patterns to close the equations. 
    941900These effects appear in the equations as the divergence of turbulent fluxes 
    942 (\ie fluxes associated with the mean correlation of small scale perturbations). 
     901(\ie\ fluxes associated with the mean correlation of small scale perturbations). 
    943902Assuming a turbulent closure hypothesis is equivalent to choose a formulation for these fluxes. 
    944903It is usually called the subgrid scale physics. 
     
    947906small scale processes \textit{in fine} balance the surface input of kinetic energy and heat. 
    948907 
    949 The control exerted by gravity on the flow induces a strong anisotropy between the lateral and vertical motions. 
     908The control exerted by gravity on the flow induces a strong anisotropy between 
     909the lateral and vertical motions. 
    950910Therefore subgrid-scale physics \textbf{D}$^{\vect U}$, $D^{S}$ and $D^{T}$  in 
    951 \autoref{eq:PE_dyn}, \autoref{eq:PE_tra_T} and \autoref{eq:PE_tra_S} are divided into 
    952 a lateral part \textbf{D}$^{l \vect U}$, $D^{l S}$ and $D^{l T}$ and 
     911\autoref{eq:MB_PE_dyn}, \autoref{eq:MB_PE_tra_T} and \autoref{eq:MB_PE_tra_S} are divided into 
     912a  lateral part \textbf{D}$^{l \vect U}$, $D^{l S}$ and $D^{l T}$ and 
    953913a vertical part \textbf{D}$^{v \vect U}$, $D^{v S}$ and $D^{v T}$. 
    954 The formulation of these terms and their underlying physics are briefly discussed in the next two subsections. 
    955  
    956 % ------------------------------------------------------------------------------------------------------------- 
    957 % Vertical Subgrid Scale Physics 
    958 % ------------------------------------------------------------------------------------------------------------- 
     914The formulation of these terms and their underlying physics are briefly discussed in 
     915the next two subsections. 
     916 
     917%% ================================================================================================= 
    959918\subsection{Vertical subgrid scale physics} 
    960 \label{subsec:PE_zdf} 
    961  
    962 The model resolution is always larger than the scale at which the major sources of vertical turbulence occur 
    963 (shear instability, internal wave breaking...). 
     919\label{subsec:MB_zdf} 
     920 
     921The model resolution is always larger than the scale at which 
     922the major sources of vertical turbulence occur (shear instability, internal wave breaking...). 
    964923Turbulent motions are thus never explicitly solved, even partially, but always parameterized. 
    965 The vertical turbulent fluxes are assumed to depend linearly on the gradients of large-scale quantities 
    966 (for example, the turbulent heat flux is given by $\overline{T' w'} = -A^{v T} \partial_z \overline T$, 
     924The vertical turbulent fluxes are assumed to depend linearly on 
     925the gradients of large-scale quantities (for example, 
     926the turbulent heat flux is given by $\overline{T' w'} = -A^{v T} \partial_z \overline T$, 
    967927where $A^{v T}$ is an eddy coefficient). 
    968928This formulation is analogous to that of molecular diffusion and dissipation. 
     
    972932The resulting vertical momentum and tracer diffusive operators are of second order: 
    973933\begin{equation} 
    974   \label{eq:PE_zdf} 
     934  \label{eq:MB_zdf} 
    975935  \begin{gathered} 
    976     \vect D^{v \vect U} = \pd[]{z} \lt( A^{vm} \pd[\vect U_h]{z} \rt) \ , \\ 
    977           D^{vT}       = \pd[]{z} \lt( A^{vT} \pd[T]{z}         \rt) \quad \text{and} \quad 
     936    \vect D^{v \vect U} = \pd[]{z} \lt( A^{vm} \pd[\vect U_h]{z} \rt) \text{,} \ 
     937          D^{vT}       = \pd[]{z} \lt( A^{vT} \pd[T]{z}         \rt) \ \text{and} \ 
    978938          D^{vS}       = \pd[]{z} \lt( A^{vT} \pd[S]{z}         \rt) 
    979939  \end{gathered} 
    980940\end{equation} 
    981 where $A^{vm}$ and $A^{vT}$ are the vertical eddy viscosity and diffusivity coefficients, respectively. 
     941where $A^{vm}$ and $A^{vT}$ are the vertical eddy viscosity and diffusivity coefficients, 
     942respectively. 
    982943At the sea surface and at the bottom, turbulent fluxes of momentum, heat and salt must be specified 
    983944(see \autoref{chap:SBC} and \autoref{chap:ZDF} and \autoref{sec:TRA_bbl}). 
    984945All the vertical physics is embedded in the specification of the eddy coefficients. 
    985946They can be assumed to be either constant, or function of the local fluid properties 
    986 (\eg Richardson number, Brunt-Vais\"{a}l\"{a} frequency...), 
     947(\eg\ Richardson number, Brunt-V\"{a}is\"{a}l\"{a} frequency, distance from the boundary ...), 
    987948or computed from a turbulent closure model. 
    988 The choices available in \NEMO are discussed in \autoref{chap:ZDF}). 
    989  
    990 % ------------------------------------------------------------------------------------------------------------- 
    991 % Lateral Diffusive and Viscous Operators Formulation 
    992 % ------------------------------------------------------------------------------------------------------------- 
     949The choices available in \NEMO\ are discussed in \autoref{chap:ZDF}). 
     950 
     951%% ================================================================================================= 
    993952\subsection{Formulation of the lateral diffusive and viscous operators} 
    994 \label{subsec:PE_ldf} 
     953\label{subsec:MB_ldf} 
    995954 
    996955Lateral turbulence can be roughly divided into a mesoscale turbulence associated with eddies 
    997956(which can be solved explicitly if the resolution is sufficient since 
    998957their underlying physics are included in the primitive equations), 
    999 and a sub mesoscale turbulence which is never explicitly solved even partially, but always parameterized. 
    1000 The formulation of lateral eddy fluxes depends on whether the mesoscale is below or above the grid-spacing 
    1001 (\ie the model is eddy-resolving or not). 
     958and a sub mesoscale turbulence which is never explicitly solved even partially, 
     959but always parameterized. 
     960The formulation of lateral eddy fluxes depends on whether 
     961the mesoscale is below or above the grid-spacing (\ie\ the model is eddy-resolving or not). 
    1002962 
    1003963In non-eddy-resolving configurations, the closure is similar to that used for the vertical physics. 
    1004 The lateral turbulent fluxes are assumed to depend linearly on the lateral gradients of large-scale quantities. 
     964The lateral turbulent fluxes are assumed to depend linearly on 
     965the lateral gradients of large-scale quantities. 
    1005966The resulting lateral diffusive and dissipative operators are of second order. 
    1006 Observations show that lateral mixing induced by mesoscale turbulence tends to be along isopycnal surfaces 
     967Observations show that 
     968lateral mixing induced by mesoscale turbulence tends to be along isopycnal surfaces 
    1007969(or more precisely neutral surfaces \cite{mcdougall_JPO87}) rather than across them. 
    1008 As the slope of neutral surfaces is small in the ocean, a common approximation is to assume that 
    1009 the `lateral' direction is the horizontal, \ie the lateral mixing is performed along geopotential surfaces. 
     970As the slope of neutral surfaces is small in the ocean, 
     971a common approximation is to assume that the ``lateral'' direction is the horizontal, 
     972\ie\ the lateral mixing is performed along geopotential surfaces. 
    1010973This leads to a geopotential second order operator for lateral subgrid scale physics. 
    1011 This assumption can be relaxed: the eddy-induced turbulent fluxes can be better approached by assuming that 
     974This assumption can be relaxed: 
     975the eddy-induced turbulent fluxes can be better approached by assuming that 
    1012976they depend linearly on the gradients of large-scale quantities computed along neutral surfaces. 
    1013977In such a case, the diffusive operator is an isoneutral second order operator and 
    1014978it has components in the three space directions. 
    1015 However, 
    1016 both horizontal and isoneutral operators have no effect on mean (\ie large scale) potential energy whereas 
     979However, both horizontal and isoneutral operators have no effect on 
     980mean (\ie\ large scale) potential energy whereas 
    1017981potential energy is a main source of turbulence (through baroclinic instabilities). 
    1018 \citet{gent.mcwilliams_JPO90} have proposed a parameterisation of mesoscale eddy-induced turbulence which 
     982\citet{gent.mcwilliams_JPO90} proposed a parameterisation of mesoscale eddy-induced turbulence which 
    1019983associates an eddy-induced velocity to the isoneutral diffusion. 
    1020984Its mean effect is to reduce the mean potential energy of the ocean. 
    1021 This leads to a formulation of lateral subgrid-scale physics made up of an isoneutral second order operator and 
    1022 an eddy induced advective part. 
     985This leads to a formulation of lateral subgrid-scale physics made up of 
     986an isoneutral second order operator and an eddy induced advective part. 
    1023987In all these lateral diffusive formulations, 
    1024988the specification of the lateral eddy coefficients remains the problematic point as 
    1025 there is no really satisfactory formulation of these coefficients as a function of large-scale features. 
     989there is no really satisfactory formulation of these coefficients as 
     990a function of large-scale features. 
    1026991 
    1027992In eddy-resolving configurations, a second order operator can be used, 
     
    1032997not interfering with the resolved mesoscale activity. 
    1033998Another approach is becoming more and more popular: 
    1034 instead of specifying explicitly a sub-grid scale term in the momentum and tracer time evolution equations, 
    1035 one uses a advective scheme which is diffusive enough to maintain the model stability. 
    1036 It must be emphasised that then, all the sub-grid scale physics is included in the formulation of 
    1037 the advection scheme. 
     999instead of specifying explicitly a sub-grid scale term in 
     1000the momentum and tracer time evolution equations, 
     1001one uses an advective scheme which is diffusive enough to maintain the model stability. 
     1002It must be emphasised that then, 
     1003all the sub-grid scale physics is included in the formulation of the advection scheme. 
    10381004 
    10391005All these parameterisations of subgrid scale physics have advantages and drawbacks. 
    1040 There are not all available in \NEMO. For active tracers (temperature and salinity) the main ones are: 
     1006They are not all available in \NEMO. 
     1007For active tracers (temperature and salinity) the main ones are: 
    10411008Laplacian and bilaplacian operators acting along geopotential or iso-neutral surfaces, 
    10421009\citet{gent.mcwilliams_JPO90} parameterisation, and various slightly diffusive advection schemes. 
    1043 For momentum, the main ones are: Laplacian and bilaplacian operators acting along geopotential surfaces, 
     1010For momentum, the main ones are: 
     1011Laplacian and bilaplacian operators acting along geopotential surfaces, 
    10441012and UBS advection schemes when flux form is chosen for the momentum advection. 
    10451013 
     1014%% ================================================================================================= 
    10461015\subsubsection{Lateral laplacian tracer diffusive operator} 
    10471016 
    1048 The lateral Laplacian tracer diffusive operator is defined by (see \autoref{apdx:B}): 
     1017The lateral Laplacian tracer diffusive operator is defined by (see \autoref{apdx:DIFFOPERS}): 
    10491018\begin{equation} 
    1050   \label{eq:PE_iso_tensor} 
    1051   D^{lT} = \nabla \vect . \lt( A^{lT} \; \Re \; \nabla T \rt) \quad \text{with} \quad 
    1052   \Re = 
    1053     \begin{pmatrix} 
    1054       1    & 0    & -r_1          \\ 
    1055       0    & 1    & -r_2          \\ 
    1056       -r_1 & -r_2 & r_1^2 + r_2^2 \\ 
    1057     \end{pmatrix} 
     1019  \label{eq:MB_iso_tensor} 
     1020  D^{lT} = \nabla \vect . \lt( A^{lT} \; \Re \; \nabla T \rt) \quad \text{with} \quad \Re = 
     1021  \begin{pmatrix} 
     1022    1    & 0    & -r_1          \\ 
     1023    0    & 1    & -r_2          \\ 
     1024    -r_1 & -r_2 & r_1^2 + r_2^2 \\ 
     1025  \end{pmatrix} 
    10581026\end{equation} 
    10591027where $r_1$ and $r_2$ are the slopes between the surface along which the diffusive operator acts and 
    1060 the model level (\eg $z$- or $s$-surfaces). 
    1061 Note that the formulation \autoref{eq:PE_iso_tensor} is exact for 
     1028the model level (\eg\ $z$- or $s$-surfaces). 
     1029Note that the formulation \autoref{eq:MB_iso_tensor} is exact for 
    10621030the rotation between geopotential and $s$-surfaces, 
    10631031while it is only an approximation for the rotation between isoneutral and $z$- or $s$-surfaces. 
    1064 Indeed, in the latter case, two assumptions are made to simplify \autoref{eq:PE_iso_tensor} \citep{cox_OM87}. 
    1065 First, the horizontal contribution of the dianeutral mixing is neglected since the ratio between iso and 
    1066 dia-neutral diffusive coefficients is known to be several orders of magnitude smaller than unity. 
     1032Indeed, in the latter case, two assumptions are made to simplify \autoref{eq:MB_iso_tensor} 
     1033\citep{cox_OM87}. 
     1034First, the horizontal contribution of the dianeutral mixing is neglected since 
     1035the ratio between iso and dia-neutral diffusive coefficients is known to be 
     1036several orders of magnitude smaller than unity. 
    10671037Second, the two isoneutral directions of diffusion are assumed to be independent since 
    1068 the slopes are generally less than $10^{-2}$ in the ocean (see \autoref{apdx:B}). 
     1038the slopes are generally less than $10^{-2}$ in the ocean (see \autoref{apdx:DIFFOPERS}). 
    10691039 
    10701040For \textit{iso-level} diffusion, $r_1$ and $r_2 $ are zero. 
     
    10731043For \textit{geopotential} diffusion, 
    10741044$r_1$ and $r_2 $ are the slopes between the geopotential and computational surfaces: 
    1075 they are equal to $\sigma_1$ and $\sigma_2$, respectively (see \autoref{eq:PE_sco_slope}). 
    1076  
    1077 For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between the isoneutral and computational surfaces. 
     1045they are equal to $\sigma_1$ and $\sigma_2$, respectively (see \autoref{eq:MB_sco_slope}). 
     1046 
     1047For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between 
     1048the isoneutral and computational surfaces. 
    10781049Therefore, they are different quantities, but have similar expressions in $z$- and $s$-coordinates. 
    10791050In $z$-coordinates: 
    10801051\begin{equation} 
    1081   \label{eq:PE_iso_slopes} 
    1082   r_1 = \frac{e_3}{e_1} \lt( \pd[\rho]{i} \rt) \lt( \pd[\rho]{k} \rt)^{-1} \quad 
    1083   r_2 = \frac{e_3}{e_2} \lt( \pd[\rho]{j} \rt) \lt( \pd[\rho]{k} \rt)^{-1} 
     1052  \label{eq:MB_iso_slopes} 
     1053  r_1 = \frac{e_3}{e_1} \lt( \pd[\rho]{i} \rt) \lt( \pd[\rho]{k} \rt)^{-1} \quad 
     1054  r_2 = \frac{e_3}{e_2} \lt( \pd[\rho]{j} \rt) \lt( \pd[\rho]{k} \rt)^{-1} 
    10841055\end{equation} 
    10851056while in $s$-coordinates $\pd[]{k}$ is replaced by $\pd[]{s}$. 
    10861057 
     1058%% ================================================================================================= 
    10871059\subsubsection{Eddy induced velocity} 
    10881060 
     
    10901062an additional tracer advection is introduced in combination with the isoneutral diffusion of tracers: 
    10911063\[ 
    1092   % \label{eq:PE_iso+eiv} 
     1064  % \label{eq:MB_iso+eiv} 
    10931065  D^{lT} = \nabla \cdot \lt( A^{lT} \; \Re \; \nabla T \rt) + \nabla \cdot \lt( \vect U^\ast \, T \rt) 
    10941066\] 
    10951067where $ \vect U^\ast = \lt( u^\ast,v^\ast,w^\ast \rt)$ is a non-divergent, 
    10961068eddy-induced transport velocity. This velocity field is defined by: 
    1097 \begin{gather} 
    1098   % \label{eq:PE_eiv} 
    1099   u^\ast =   \frac{1}{e_3}            \pd[]{k} \lt( A^{eiv} \;        \tilde{r}_1 \rt) \\ 
    1100   v^\ast =   \frac{1}{e_3}            \pd[]{k} \lt( A^{eiv} \;        \tilde{r}_2 \rt) \\ 
     1069\[ 
     1070  % \label{eq:MB_eiv} 
     1071  u^\ast =   \frac{1}{e_3}            \pd[]{k} \lt( A^{eiv} \;        \tilde{r}_1 \rt) \quad 
     1072  v^\ast =   \frac{1}{e_3}            \pd[]{k} \lt( A^{eiv} \;        \tilde{r}_2 \rt) \quad 
    11011073  w^\ast = - \frac{1}{e_1 e_2} \lt[   \pd[]{i} \lt( A^{eiv} \; e_2 \, \tilde{r}_1 \rt) 
    11021074                                     + \pd[]{j} \lt( A^{eiv} \; e_1 \, \tilde{r}_2 \rt) \rt] 
    1103 \end{gather} 
     1075\] 
    11041076where $A^{eiv}$ is the eddy induced velocity coefficient 
    11051077(or equivalently the isoneutral thickness diffusivity coefficient), 
    1106 and $\tilde r_1$ and $\tilde r_2$ are the slopes between isoneutral and \textit{geopotential} surfaces. 
    1107 Their values are thus independent of the vertical coordinate, but their expression depends on the coordinate:  
    1108 \begin{align} 
    1109   \label{eq:PE_slopes_eiv} 
     1078and $\tilde r_1$ and $\tilde r_2$ are the slopes between 
     1079isoneutral and \textit{geopotential} surfaces. 
     1080Their values are thus independent of the vertical coordinate, 
     1081but their expression depends on the coordinate: 
     1082\begin{equation} 
     1083  \label{eq:MB_slopes_eiv} 
    11101084  \tilde{r}_n = 
    11111085    \begin{cases} 
     
    11141088    \end{cases} 
    11151089  \quad \text{where~} n = 1, 2 
    1116 \end{align} 
     1090\end{equation} 
    11171091 
    11181092The normal component of the eddy induced velocity is zero at all the boundaries. 
    1119 This can be achieved in a model by tapering either the eddy coefficient or the slopes to zero in the vicinity of 
    1120 the boundaries. 
    1121 The latter strategy is used in \NEMO (cf. \autoref{chap:LDF}). 
    1122  
     1093This can be achieved in a model by tapering either the eddy coefficient or the slopes to zero in 
     1094the vicinity of the boundaries. 
     1095The latter strategy is used in \NEMO\ (cf. \autoref{chap:LDF}). 
     1096 
     1097%% ================================================================================================= 
    11231098\subsubsection{Lateral bilaplacian tracer diffusive operator} 
    11241099 
    11251100The lateral bilaplacian tracer diffusive operator is defined by: 
    11261101\[ 
    1127   % \label{eq:PE_bilapT} 
     1102  % \label{eq:MB_bilapT} 
    11281103  D^{lT}= - \Delta \; (\Delta T) \quad \text{where} \quad 
    11291104  \Delta \bullet = \nabla \lt( \sqrt{B^{lT}} \; \Re \; \nabla \bullet \rt) 
    11301105\] 
    1131 It is the Laplacian operator given by \autoref{eq:PE_iso_tensor} applied twice with 
     1106It is the Laplacian operator given by \autoref{eq:MB_iso_tensor} applied twice with 
    11321107the harmonic eddy diffusion coefficient set to the square root of the biharmonic one. 
    11331108 
     1109%% ================================================================================================= 
    11341110\subsubsection{Lateral Laplacian momentum diffusive operator} 
    11351111 
    11361112The Laplacian momentum diffusive operator along $z$- or $s$-surfaces is found by 
    1137 applying \autoref{eq:PE_lap_vector} to the horizontal velocity vector (see \autoref{apdx:B}): 
     1113applying \autoref{eq:MB_lap_vector} to the horizontal velocity vector (see \autoref{apdx:DIFFOPERS}): 
    11381114\begin{align*} 
    1139   % \label{eq:PE_lapU} 
     1115  % \label{eq:MB_lapU} 
    11401116  \vect D^{l \vect U} &=   \nabla_h        \big( A^{lm}    \chi             \big) 
    11411117                         - \nabla_h \times \big( A^{lm} \, \zeta \; \vect k \big) \\ 
    11421118                      &= \lt(   \frac{1}{e_1}     \pd[ \lt( A^{lm}    \chi      \rt) ]{i} \rt. 
    1143                               - \frac{1}{e_2 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{j} 
     1119                              - \frac{1}{e_2 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{j} , 
    11441120                                \frac{1}{e_2}     \pd[ \lt( A^{lm}    \chi      \rt) ]{j} 
    11451121                         \lt. + \frac{1}{e_1 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{i} \rt) 
    11461122\end{align*} 
    11471123 
    1148 Such a formulation ensures a complete separation between the vorticity and horizontal divergence fields 
    1149 (see \autoref{apdx:C}). 
     1124Such a formulation ensures a complete separation between 
     1125the vorticity and horizontal divergence fields (see \autoref{apdx:INVARIANTS}). 
    11501126Unfortunately, it is only available in \textit{iso-level} direction. 
    11511127When a rotation is required 
    1152 (\ie geopotential diffusion in $s$-coordinates or isoneutral diffusion in both $z$- and $s$-coordinates), 
    1153 the $u$ and $v$-fields are considered as independent scalar fields, so that the diffusive operator is given by: 
    1154 \begin{gather*} 
    1155   % \label{eq:PE_lapU_iso} 
    1156     D_u^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla u \rt) \\ 
     1128(\ie\ geopotential diffusion in $s$-coordinates or 
     1129isoneutral diffusion in both $z$- and $s$-coordinates), 
     1130the $u$ and $v$-fields are considered as independent scalar fields, 
     1131so that the diffusive operator is given by: 
     1132\[ 
     1133  % \label{eq:MB_lapU_iso} 
     1134    D_u^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla u \rt) \quad 
    11571135    D_v^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla v \rt) 
    1158 \end{gather*} 
    1159 where $\Re$ is given by \autoref{eq:PE_iso_tensor}. 
     1136\] 
     1137where $\Re$ is given by \autoref{eq:MB_iso_tensor}. 
    11601138It is the same expression as those used for diffusive operator on tracers. 
    11611139It must be emphasised that such a formulation is only exact in a Cartesian coordinate system, 
    1162 \ie on a $f$- or $\beta$-plane, not on the sphere. 
     1140\ie\ on a $f$- or $\beta$-plane, not on the sphere. 
    11631141It is also a very good approximation in vicinity of the Equator in 
    11641142a geographical coordinate system \citep{lengaigne.madec.ea_JGR03}. 
    11651143 
    1166 \subsubsection{lateral bilaplacian momentum diffusive operator} 
    1167  
    1168 As for tracers, the bilaplacian order momentum diffusive operator is a re-entering Laplacian operator with 
     1144%% ================================================================================================= 
     1145\subsubsection{Lateral bilaplacian momentum diffusive operator} 
     1146 
     1147As for tracers, 
     1148the bilaplacian order momentum diffusive operator is a re-entering Laplacian operator with 
    11691149the harmonic eddy diffusion coefficient set to the square root of the biharmonic one. 
    11701150Nevertheless it is currently not available in the iso-neutral case. 
    11711151 
    1172 \biblio 
    1173  
    1174 \pindex 
     1152\onlyinsubfile{\input{../../global/epilogue}} 
    11751153 
    11761154\end{document} 
Note: See TracChangeset for help on using the changeset viewer.