New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 14525 – NEMO

Changeset 14525


Ignore:
Timestamp:
2021-02-22T17:18:04+01:00 (3 years ago)
Author:
nicolasmartin
Message:

Fix manual compilation...
I guess the last ones who recently modified the file had tested their changes before committing

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex

    r14375 r14525  
    975975M2, S2, N2, K2, nu2, mu2, 2N2, L2, T2, eps2, lam2, R2, M3, MKS2, MN4, MS4, M4, 
    976976N4, S4, M6, and M8; see file \textit{tide.h90} and \mdl{tide\_mod} for further 
    977 information and references\footnote{As a legacy option \np{ln_tide_var} can be 
     977information and references\footnote{As a legacy option \np{ln_tide_var}{ln\_tide\_var} can be 
    978978  set to \forcode{0}, in which case the 19 tidal constituents (M2, N2, 2N2, S2, 
    979979  K2, K1, O1, Q1, P1, M4, Mf, Mm, Msqm, Mtm, S1, MU2, NU2, L2, and T2; see file 
     
    11971197 
    11981198     \np{ln_isfcav_mlt}{ln\_isfcav\_mlt}\forcode{ = .true.} activates the ocean/ice shelf thermodynamics interactions at the ice shelf/ocean interface.  
    1199      If \np{ln_isfcav_mlt}\forcode{ = .false.}, thermodynamics interactions are desctivated but the ocean dynamics inside the cavity is still active. 
     1199     If \np{ln_isfcav_mlt}{ln\_isfcav\_mlt}\forcode{ = .false.}, thermodynamics interactions are desctivated but the ocean dynamics inside the cavity is still active. 
    12001200     The logical flag \np{ln_isfcav}{ln\_isfcav} control whether or not the ice shelf cavities are closed. \np{ln_isfcav}{ln\_isfcav} is not defined in the namelist but in the domcfg.nc input file.\\ 
    12011201 
    12021202     3 options are available to represent to ice-shelf/ocean fluxes at the interface: 
    12031203     \begin{description} 
    1204         \item[\np{cn_isfcav_mlt}\forcode{ = 'spe'}]: 
     1204        \item[\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = 'spe'}]: 
    12051205        The fresh water flux is specified by a forcing fields \np{sn_isfcav_fwf}{sn\_isfcav\_fwf}. Convention of the input file is: positive toward the ocean (i.e. positive for melting and negative for freezing). 
    12061206        The latent heat fluxes is derived from the fresh water flux.  
    12071207        The heat content flux is derived from the fwf flux assuming a temperature set to the freezing point in the top boundary layer (\np{rn_htbl}{rn\_htbl}) 
    12081208 
    1209         \item[\np{cn_isfcav_mlt}\forcode{ = 'oasis'}]: 
     1209        \item[\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = 'oasis'}]: 
    12101210        The \forcode{'oasis'} is a prototype of what could be a method to spread precipitation on Antarctic ice sheet as ice shelf melt inside the cavity when a coupled model Atmosphere/Ocean is used.  
    12111211        It has not been tested and therefore the model will stop if you try to use it.  
    12121212        Actions will be undertake in 2020 to build a comprehensive interface to do so for Greenland, Antarctic and ice shelf (cav), ice shelf (par), icebergs, subglacial runoff and runoff. 
    12131213 
    1214         \item[\np{cn_isfcav_mlt}\forcode{ = '2eq'}]: 
     1214        \item[\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '2eq'}]: 
    12151215        The heat flux and the fresh water flux (negative for melting) resulting from ice shelf melting/freezing are parameterized following \citet{Grosfeld1997}.  
    12161216        This formulation is based on a balance between the vertical diffusive heat flux across the ocean top boundary layer (\autoref{eq:ISOMIP1})  
     
    12311231        and $\gamma$ the thermal exchange coefficient. 
    12321232 
    1233         \item[\np{cn_isfcav_mlt}\forcode{ = '3eq'}]: 
     1233        \item[\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '3eq'}]: 
    12341234        For realistic studies, the heat and freshwater fluxes are parameterized following \citep{Jenkins2001}. This formulation is based on three equations:  
    12351235        a balance between the vertical diffusive heat flux across the boundary layer  
     
    12871287     If \np{rn_htbl}{rn\_htbl} smaller than top $e_{3}t$, the top boundary layer thickness is set to the top cell thickness.\\ 
    12881288 
    1289      Each melt formula (\np{cn_isfcav_mlt}\forcode{ = '3eq'} or \np{cn_isfcav_mlt}\forcode{ = '2eq'}) depends on an exchange coeficient ($\Gamma^{T,S}$) between the ocean and the ice. 
     1289     Each melt formula (\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '3eq'} or \np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '2eq'}) depends on an exchange coeficient ($\Gamma^{T,S}$) between the ocean and the ice. 
    12901290     Below, the exchange coeficient $\Gamma^{T}$ and $\Gamma^{S}$ are respectively defined by \np{rn_gammat0}{rn\_gammat0} and \np{rn_gammas0}{rn\_gammas0}.  
    12911291     There are 3 different ways to compute the exchange velocity: 
    12921292 
    12931293     \begin{description} 
    1294         \item[\np{cn_gammablk}\forcode{='spe'}]: 
     1294        \item[\np{cn_gammablk}{cn\_gammablk}\forcode{='spe'}]: 
    12951295        The salt and heat exchange coefficients are constant and defined by: 
    12961296\[ 
     
    13021302        This is the recommended formulation for ISOMIP. 
    13031303 
    1304    \item[\np{cn_gammablk}\forcode{='vel'}]: 
     1304   \item[\np{cn_gammablk}{cn\_gammablk}\forcode{='vel'}]: 
    13051305        The salt and heat exchange coefficients are velocity dependent and defined as 
    13061306\[ 
     
    13131313        See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application and ISOMIP+/MISOMIP configuration. 
    13141314 
    1315    \item[\np{cn_gammablk}\forcode{'vel\_stab'}]: 
     1315   \item[\np{cn_gammablk}{cn\_gammablk}\forcode{'vel\_stab'}]: 
    13161316        The salt and heat exchange coefficients are velocity and stability dependent and defined as: 
    13171317\[ 
     
    13291329  \begin{description} 
    13301330 
    1331      \item[\np{cn_isfpar_mlt}\forcode{ = 'bg03'}]: 
     1331     \item[\np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'bg03'}]: 
    13321332     The ice shelf cavities are not represented. 
    13331333     The fwf and heat flux are computed using the \citet{beckmann.goosse_OM03} parameterisation of isf melting. 
    13341334     The fluxes are distributed along the ice shelf edge between the depth of the average grounding line (GL) 
    13351335     (\np{sn_isfpar_zmax}{sn\_isfpar\_zmax}) and the base of the ice shelf along the calving front 
    1336      (\np{sn_isfpar_zmin}{sn\_isfpar\_zmin}) as in (\np{cn_isfpar_mlt}\forcode{ = 'spe'}). 
     1336     (\np{sn_isfpar_zmin}{sn\_isfpar\_zmin}) as in (\np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'spe'}). 
    13371337     The effective melting length (\np{sn_isfpar_Leff}{sn\_isfpar\_Leff}) is read from a file. 
    13381338     This parametrisation has not been tested since a while and based on \citet{Favier2019},  
    13391339     this parametrisation should probably not be used. 
    13401340 
    1341      \item[\np{cn_isfpar_mlt}\forcode{ = 'spe'}]: 
     1341     \item[\np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'spe'}]: 
    13421342     The ice shelf cavity is not represented. 
    13431343     The fwf (\np{sn_isfpar_fwf}{sn\_isfpar\_fwf}) is prescribed and distributed along the ice shelf edge between 
     
    13461346     The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 
    13471347 
    1348      \item[\np{cn_isfpar_mlt}\forcode{ = 'oasis'}]: 
     1348     \item[\np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'oasis'}]: 
    13491349     The \forcode{'oasis'} is a prototype of what could be a method to spread precipitation on Antarctic ice sheet as ice shelf melt inside the cavity when a coupled model Atmosphere/Ocean is used.  
    13501350     It has not been tested and therefore the model will stop if you try to use it.  
     
    13531353  \end{description} 
    13541354 
    1355 \np{cn_isfcav_mlt}\forcode{ = '2eq'}, \np{cn_isfcav_mlt}\forcode{ = '3eq'} and \np{cn_isfpar_mlt}\forcode{ = 'bg03'} compute a melt rate based on 
     1355\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '2eq'}, \np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '3eq'} and \np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'bg03'} compute a melt rate based on 
    13561356the water mass properties, ocean velocities and depth. 
    13571357The resulting fluxes are thus highly dependent of the model resolution (horizontal and vertical) and  
    13581358realism of the water masses onto the shelf.\\ 
    13591359 
    1360 \np{cn_isfcav_mlt}\forcode{ = 'spe'} and \np{cn_isfpar_mlt}\forcode{ = 'spe'} read the melt rate from a file. 
     1360\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = 'spe'} and \np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'spe'} read the melt rate from a file. 
    13611361You have total control of the fwf forcing. 
    13621362This can be useful if the water masses on the shelf are not realistic or 
     
    14371437\end{description} 
    14381438 
    1439 If \np{ln_iscpl}\forcode{ = .true.}, the isf draft is assume to be different at each restart step with 
     1439If \np{ln_iscpl}{ln\_iscpl}\forcode{ = .true.}, the isf draft is assume to be different at each restart step with 
    14401440potentially some new wet/dry cells due to the ice sheet dynamics/thermodynamics. 
    14411441The wetting and drying scheme, applied on the restart, is very simple. The 6 different possible cases for the tracer and ssh are: 
     
    14821482 
    14831483In order to remove the trend and keep the conservation level as close to 0 as possible, 
    1484 a simple conservation scheme is available with \np{ln_isfcpl_cons}\forcode{ = .true.}. 
     1484a simple conservation scheme is available with \np{ln_isfcpl_cons}{ln\_isfcpl\_cons}\forcode{ = .true.}. 
    14851485The heat/salt/vol. gain/loss are diagnosed, as well as the location. 
    14861486A correction increment is computed and applied each time step during the model run. 
Note: See TracChangeset for help on using the changeset viewer.