New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 1831 for branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Chap_LDF.tex – NEMO

Ignore:
Timestamp:
2010-04-12T16:59:59+02:00 (14 years ago)
Author:
gm
Message:

cover, namelist, rigid-lid, e3t, appendices, see ticket: #658

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Chap_LDF.tex

    r1224 r1831  
    77\minitoc 
    88 
     9 
     10\newpage 
    911$\ $\newline    % force a new ligne 
     12 
    1013 
    1114The lateral physics terms in the momentum and tracer equations have been  
     
    2124 
    2225%-----------------------------------nam_traldf - nam_dynldf-------------------------------------------- 
    23 \namdisplay{nam_traldf}  
    24 \namdisplay{nam_dynldf}  
     26\namdisplay{namtra_ldf}  
     27\namdisplay{namdyn_ldf}  
    2528%-------------------------------------------------------------------------------------------------------------- 
    2629 
     
    8992namelist parameter. This variation is intended to reflect the lesser need for subgrid  
    9093scale eddy mixing where the grid size is smaller in the domain. It was introduced in  
    91 the context of the DYNAMO modelling project \citep{Willebrand2001}.  
     94the context of the DYNAMO modelling project \citep{Willebrand_al_PO01}.  
    9295%%% 
    9396\gmcomment { not only that! stability reasons: with non uniform grid size, it is common  
     
    99102viscosity operator uses \np{ahm0}~=~$4.10^4 m^2/s$ poleward of 20$^{\circ}$  
    100103north and south and decreases linearly to \np{aht0}~=~$2.10^3 m^2/s$  
    101 at the equator \citep{Madec1996, Delecluse_Madec_Bk00}. This modification  
     104at the equator \citep{Madec_al_JPO96, Delecluse_Madec_Bk00}. This modification  
    102105can be found in routine \rou{ldf\_dyn\_c2d\_orca} defined in \mdl{ldfdyn\_c2d}.  
    103106Similar modified horizontal variations can be found with the Antarctic or Arctic  
     
    158161%%% 
    159162\gmcomment{  we should emphasize here that the implementation is a rather old one.  
    160 Better work can be achieved by using \citet{Griffies1998, Griffies2004} iso-neutral scheme. } 
     163Better work can be achieved by using \citet{Griffies_al_JPO98, Griffies_Bk04} iso-neutral scheme. } 
    161164 
    162165A direction for lateral mixing has to be defined when the desired operator does  
     
    168171quantity to be diffused. For a tracer, this leads to the following four slopes :  
    169172$r_{1u}$, $r_{1w}$, $r_{2v}$, $r_{2w}$ (see \eqref{Eq_tra_ldf_iso}), while  
    170 for momentum the slopes are  $r_{1T}$, $r_{1uw}$, $r_{2f}$, $r_{2uw}$ for  
    171 $u$ and  $r_{1f}$, $r_{1vw}$, $r_{2T}$, $r_{2vw}$ for $v$.  
     173for momentum the slopes are  $r_{1t}$, $r_{1uw}$, $r_{2f}$, $r_{2uw}$ for  
     174$u$ and  $r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$.  
    172175 
    173176%gm% add here afigure of the slope in i-direction 
     
    186189\begin{aligned} 
    187190 r_{1u} &= \frac{e_{3u}}{ \left( e_{1u}\;\overline{\overline{e_{3w}}}^{\,i+1/2,\,k} \right)} 
    188            \;\delta_{i+1/2}[z_T]  
    189       &\approx \frac{1}{e_{1u}}\; \delta_{i+1/2}[z_T]  
     191           \;\delta_{i+1/2}[z_t]  
     192      &\approx \frac{1}{e_{1u}}\; \delta_{i+1/2}[z_t]  
    190193\\ 
    191194 r_{2v} &= \frac{e_{3v}}{\left( e_{2v}\;\overline{\overline{e_{3w}}}^{\,j+1/2,\,k} \right)}  
    192            \;\delta_{j+1/2} [z_T]  
    193       &\approx \frac{1}{e_{2v}}\; \delta_{j+1/2}[z_T]  
    194 \\ 
    195  r_{1w} &= \frac{1}{e_{1w}}\;\overline{\overline{\delta_{i+1/2}[z_T]}}^{\,i,\,k+1/2} 
     195           \;\delta_{j+1/2} [z_t]  
     196      &\approx \frac{1}{e_{2v}}\; \delta_{j+1/2}[z_t]  
     197\\ 
     198 r_{1w} &= \frac{1}{e_{1w}}\;\overline{\overline{\delta_{i+1/2}[z_t]}}^{\,i,\,k+1/2} 
    196199      &\approx \frac{1}{e_{1w}}\; \delta_{i+1/2}[z_{uw}]  
    197200 \\ 
    198  r_{2w} &= \frac{1}{e_{2w}}\;\overline{\overline{\delta_{j+1/2}[z_T]}}^{\,j,\,k+1/2} 
     201 r_{2w} &= \frac{1}{e_{2w}}\;\overline{\overline{\delta_{j+1/2}[z_t]}}^{\,j,\,k+1/2} 
    199202      &\approx \frac{1}{e_{2w}}\; \delta_{j+1/2}[z_{vw}]  
    200203 \\ 
     
    272275Note: The solution for $s$-coordinate passes trough the use of different  
    273276(and better) expression for the constraint on iso-neutral fluxes. Following  
    274 \citet{Griffies2004}, instead of specifying directly that there is a zero neutral  
     277\citet{Griffies_Bk04}, instead of specifying directly that there is a zero neutral  
    275278diffusive flux of locally referenced potential density, we stay in the $T$-$S$  
    276279plane and consider the balance between the neutral direction diffusive fluxes  
     
    324327a minimum background horizontal diffusion for numerical stability reasons.  
    325328To overcome this problem, several techniques have been proposed in which  
    326 the numerical schemes of the ocean model are modified \citep{Weaver1997,  
    327 Griffies1998}. Here, another strategy has been chosen \citep{Lazar1997}:  
     329the numerical schemes of the ocean model are modified \citep{Weaver_Eby_JPO97,  
     330Griffies_al_JPO98}. Here, another strategy has been chosen \citep{Lazar_PhD97}:  
    328331a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents  
    329332the development of grid point noise generated by the iso-neutral diffusion  
     
    337340 
    338341Nevertheless, this iso-neutral operator does not ensure that variance cannot increase,  
    339 contrary to the \citet{Griffies1998} operator which has that property.  
     342contrary to the \citet{Griffies_al_JPO98} operator which has that property.  
    340343 
    341344%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    355358 
    356359 
    357 In addition and also for numerical stability reasons \citep{Cox1987, Griffies2004},  
     360In addition and also for numerical stability reasons \citep{Cox1987, Griffies_Bk04},  
    358361the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly  
    359362to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the  
    360363surface motivates this flattening of isopycnals near the surface). 
    361364 
    362 For numerical stability reasons \citep{Cox1987, Griffies2004}, the slopes must also  
     365For numerical stability reasons \citep{Cox1987, Griffies_Bk04}, the slopes must also  
    363366be bounded by $1/100$ everywhere. This constraint is applied in a piecewise linear  
    364367fashion, increasing from zero at the surface to $1/100$ at $70$ metres and thereafter  
     
    398401\begin{equation} \label{Eq_ldfslp_dyn} 
    399402\begin{aligned} 
    400 &r_{1T}\ \ = \overline{r_{1u}}^{\,i}       &&&    r_{1f}\ \ &= \overline{r_{1u}}^{\,i+1/2} \\ 
    401 &r_{2f} \ \ = \overline{r_{2v}}^{\,j+1/2} &&&   r_{2T}\ &= \overline{r_{2v}}^{\,j} \\ 
     403&r_{1t}\ \ = \overline{r_{1u}}^{\,i}       &&&    r_{1f}\ \ &= \overline{r_{1u}}^{\,i+1/2} \\ 
     404&r_{2f} \ \ = \overline{r_{2v}}^{\,j+1/2} &&&   r_{2t}\ &= \overline{r_{2v}}^{\,j} \\ 
    402405&r_{1uw}  = \overline{r_{1w}}^{\,i+1/2} &&\ \ \text{and} \ \ &   r_{1vw}&= \overline{r_{1w}}^{\,j+1/2} \\ 
    403406&r_{2uw}= \overline{r_{2w}}^{\,j+1/2} &&&         r_{2vw}&= \overline{r_{2w}}^{\,j+1/2}\\ 
Note: See TracChangeset for help on using the changeset viewer.