New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 1831 for branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2010-04-12T16:59:59+02:00 (14 years ago)
Author:
gm
Message:

cover, namelist, rigid-lid, e3t, appendices, see ticket: #658

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Chap_ZDF.tex

    r1225 r1831  
    77 
    88%gm% Add here a small introduction to ZDF and naming of the different physics (similar to what have been written for TRA and DYN. 
    9 \gmcomment{Steven remark (not taken into account : problem here with turbulent vs turbulence.  I've changed "turbulent closure" to "turbulence closure", "turbulent mixing length" to "turbulence mixing length", but I've left "turbulent kinetic energy" alone - though I think it is an historical abberation! 
    10 Gurvan :  I kept "turbulent closure etc "...} 
     9 
     10 
     11\newpage 
     12$\ $\newline    % force a new ligne 
    1113 
    1214 
     
    7476 
    7577%--------------------------------------------namric--------------------------------------------------------- 
    76 \namdisplay{namric} 
     78\namdisplay{namzdf_ric} 
    7779%-------------------------------------------------------------------------------------------------------------- 
    7880 
     
    8486growth of Kelvin-Helmholtz like instabilities leads to a dependency between the  
    8587vertical eddy coefficients and the local Richardson number ($i.e.$ the  
    86 ratio of stratification to vertical shear). Following \citet{PacPhil1981}, the following  
     88ratio of stratification to vertical shear). Following \citet{Pacanowski_Philander_JPO81}, the following  
    8789formulation has been implemented: 
    8890\begin{equation} \label{Eq_zdfric} 
     
    107109\label{ZDF_tke} 
    108110 
    109 %--------------------------------------------namtke--------------------------------------------------------- 
    110 \namdisplay{namtke} 
     111%--------------------------------------------namzdf_tke-------------------------------------------------- 
     112\namdisplay{namzdf_tke} 
    111113%-------------------------------------------------------------------------------------------------------------- 
    112114 
    113115The vertical eddy viscosity and diffusivity coefficients are computed from a TKE  
    114 turbulent closure model based on a prognostic equation for $\bar {e}$, the turbulent  
     116turbulent closure model based on a prognostic equation for $\bar{e}$, the turbulent  
    115117kinetic energy, and a closure assumption for the turbulent length scales. This  
    116118turbulent closure model has been developed by \citet{Bougeault1989} in the  
    117119atmospheric case, adapted by \citet{Gaspar1990} for the oceanic case, and  
    118 embedded in OPA by \citet{Blanke1993} for equatorial Atlantic simulations. Since  
    119 then, significant modifications have been introduced by \citet{Madec1998} in both  
    120 the implementation and the formulation of the mixing length scale. The time  
    121 evolution of $\bar{e}$ is the result of the production of $\bar{e}$ through vertical  
    122 shear, its destruction through stratification, its vertical diffusion, and its dissipation  
    123 of \citet{Kolmogorov1942} type: 
     120embedded in OPA, the ancestor of NEMO, by \citet{Blanke1993} for equatorial Atlantic  
     121simulations. Since then, significant modifications have been introduced by  
     122\citet{Madec1998} in both the implementation and the formulation of the mixing  
     123length scale. The time evolution of $\bar{e}$ is the result of the production of  
     124$\bar{e}$ through vertical shear, its destruction through stratification, its vertical  
     125diffusion, and its dissipation of \citet{Kolmogorov1942} type: 
    124126\begin{equation} \label{Eq_zdftke_e} 
    125127\frac{\partial \bar{e}}{\partial t} =  
    126 \frac{A^{vm}}{e_3 }\;\left[ {\left( {\frac{\partial u}{\partial k}} \right)^2 
     128\frac{A^{vm}}{{e_3}^2 }\;\left[ {\left( {\frac{\partial u}{\partial k}} \right)^2 
    127129                     +\left( {\frac{\partial v}{\partial k}} \right)^2} \right] 
    128130-A^{vT}\,N^2 
     
    133135\begin{equation} \label{Eq_zdftke_kz} 
    134136   \begin{split} 
    135          A^{vm} &= C_k\  l_k\  \sqrt {\bar{e}}     \\ 
     137         A^{vm} &= C_k\  l_k\  \sqrt {\bar{e}\; }     \\ 
    136138         A^{vT} &= A^{vm} / P_{rt} 
    137139   \end{split} 
     
    139141where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \S\ref{TRA_bn2}),  
    140142$l_{\epsilon }$ and $l_{\kappa }$ are the dissipation and mixing length scales,  
    141 $P_{rt} $ is the Prandtl number. The constants $C_k = \sqrt {2} /2$ and  
    142 $C_\epsilon = 0.1$ are designed to deal with vertical mixing at any depth  
    143 \citep{Gaspar1990}. They are set through namelist parameters \np{ediff}  
    144 and \np{ediss}. $P_{rt} $ can be set to unity or, following \citet{Blanke1993},  
    145 be a function of the local Richardson number, $R_i $: 
     143$P_{rt}$ is the Prandtl number. The constants $C_k =  0.1$ and  
     144$C_\epsilon = \sqrt {2} /2$  $\approx 0.7$ are designed to deal with vertical mixing  
     145at any depth \citep{Gaspar1990}. They are set through namelist parameters  
     146\np{nn\_ediff} and \np{nn\_ediss}. $P_{rt}$ can be set to unity or, following  
     147\citet{Blanke1993}, be a function of the local Richardson number, $R_i$: 
    146148\begin{align*} \label{Eq_prt} 
    147149P_{rt} = \begin{cases} 
     
    151153            \end{cases} 
    152154\end{align*} 
    153 Note that a horizontal Shapiro filter can optionally be applied to $R_i$.  
    154 However it is an obsolescent option that is not recommended.   
    155 The choice of $P_{rt} $ is controlled by the \np{npdl} namelist parameter. 
     155The choice of $P_{rt}$ is controlled by the \np{nn\_pdl} namelist parameter. 
    156156 
    157157For computational efficiency, the original formulation of the turbulent length  
    158158scales proposed by \citet{Gaspar1990} has been simplified. Four formulations  
    159 are proposed, the choice of which is controlled by the \np{nmxl} namelist  
     159are proposed, the choice of which is controlled by the \np{nn\_mxl} namelist  
    160160parameter. The first two are based on the following first order approximation  
    161161\citep{Blanke1993}: 
    162162\begin{equation} \label{Eq_tke_mxl0_1} 
    163 l_k = l_\epsilon = \sqrt {2 \bar e} / N 
    164 \end{equation} 
    165 which is valid in a stable stratified region with constant values of the brunt- 
     163l_k = l_\epsilon = \sqrt {2 \bar{e}\; } / N 
     164\end{equation} 
     165which is valid in a stable stratified region with constant values of the Brunt- 
    166166Vais\"{a}l\"{a} frequency. The resulting length scale is bounded by the distance  
    167 to the surface or to the bottom (\np{nmxl}=0) or by the local vertical scale factor (\np{nmxl}=1). \citet{Blanke1993} notice that this simplification has two major  
     167to the surface or to the bottom (\np{nn\_mxl}=0) or by the local vertical scale factor  
     168(\np{nn\_mxl}=1). \citet{Blanke1993} notice that this simplification has two major  
    168169drawbacks: it makes no sense for locally unstable stratification and the  
    169170computation no longer uses all the information contained in the vertical density  
    170171profile. To overcome these drawbacks, \citet{Madec1998} introduces the  
    171 \np{nmxl}=2 or 3 cases, which add an extra assumption concerning the vertical  
     172\np{nn\_mxl}=2 or 3 cases, which add an extra assumption concerning the vertical  
    172173gradient of the computed length scale. So, the length scales are first evaluated  
    173174as in \eqref{Eq_tke_mxl0_1} and then bounded such that: 
     
    185186constraint, we introduce two additional length scales: $l_{up}$ and $l_{dwn}$,  
    186187the upward and downward length scales, and evaluate the dissipation and  
    187 mixing turbulent length scales as (and note that here we use numerical  
    188 indexing): 
     188mixing length scales as (and note that here we use numerical indexing): 
    189189%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    190190\begin{figure}[!t] \label{Fig_mixing_length}  \begin{center} 
     
    196196\begin{equation} \label{Eq_tke_mxl2} 
    197197\begin{aligned} 
    198  l_{up\ \ }^{(k)} &= \min \left(  l^{(k)} \ , \ l_{up}^{(k+1)} + e_{3T}^{(k)}\ \ \ \;  \right) 
     198 l_{up\ \ }^{(k)} &= \min \left(  l^{(k)} \ , \ l_{up}^{(k+1)} + e_{3t}^{(k)}\ \ \ \;  \right) 
    199199    \quad &\text{ from $k=1$ to $jpk$ }\ \\ 
    200  l_{dwn}^{(k)} &= \min \left(  l^{(k)} \ , \ l_{dwn}^{(k-1)} + e_{3T}^{(k-1)}  \right)    
     200 l_{dwn}^{(k)} &= \min \left(  l^{(k)} \ , \ l_{dwn}^{(k-1)} + e_{3t}^{(k-1)}  \right)    
    201201    \quad &\text{ from $k=jpk$ to $1$ }\ \\ 
    202202\end{aligned} 
    203203\end{equation} 
    204204where $l^{(k)}$ is computed using \eqref{Eq_tke_mxl0_1},  
    205 $i.e.$ $l^{(k)} = \sqrt {2 \bar e^{(k)} / N^{(k)} }$. 
     205$i.e.$ $l^{(k)} = \sqrt {2 {\bar e}^{(k)} / {N^2}^{(k)} }$. 
    206206 
    207207In the \np{nmxl}=2 case, the dissipation and mixing length scales take the same  
    208208value: $ l_k=  l_\epsilon = \min \left(\ l_{up} \;,\;  l_{dwn}\ \right)$, while in the  
    209 \np{nmxl}=2 case, the dissipation and mixing length scales are give  
     209\np{nmxl}=2 case, the dissipation and mixing turbulent length scales are give  
    210210as in \citet{Gaspar1990}: 
    211211\begin{equation} \label{Eq_tke_mxl_gaspar} 
     
    217217 
    218218At the sea surface the value of $\bar{e}$ is prescribed from the wind  
    219 stress field: $\bar{e}=ebb\;\left| \tau \right|$ ($ebb=60$ by default)  
    220 with a minimal threshold of $emin0=10^{-4}~m^2.s^{-2}$ (namelist 
     219stress field: $\bar{e}=rn\_ebb\;\left| \tau \right|$ (\np{rn\_ebb}=60 by default)  
     220with a minimal threshold of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist 
    221221parameters). Its value at the bottom of the ocean is assumed to be  
    222222equal to the value of the level just above. The time integration of the  
    223223$\bar{e}$ equation may formally lead to negative values because the  
    224224numerical scheme does not ensure its positivity. To overcome this  
    225 problem, a cut-off in the minimum value of $\bar{e}$ is used. Following  
    226 \citet{Gaspar1990}, the cut-off value is set to $\sqrt{2}/2~10^{-6}~m^2.s^{-2}$.  
    227 This allows the subsequent formulations to match that of\citet{Gargett1984}  
    228 for the diffusion in the thermocline and deep ocean :  $(A^{vT} = 10^{-3} / N)$.  
     225problem, a cut-off in the minimum value of $\bar{e}$ is used (\np{rn\_emin}  
     226namelist parameter). Following \citet{Gaspar1990}, the cut-off value is set  
     227to $\sqrt{2}/2~10^{-6}~m^2.s^{-2}$. This allows the subsequent formulations  
     228to match that of \citet{Gargett1984} for the diffusion in the thermocline and  
     229deep ocean :  $(A^{vT} = 10^{-3} / N)$.  
    229230In addition, a cut-off is applied on $A^{vm}$ and $A^{vT}$ to avoid numerical  
    230231instabilities associated with too weak vertical diffusion. They must be  
    231232specified at least larger than the molecular values, and are set through  
    232 \textit{avm0} and \textit{avt0} (\textbf{namelist} parameters). 
     233\np{avm0} and \np{avt0} (namelist parameters). 
     234 
     235% ------------------------------------------------------------------------------------------------------------- 
     236%        TKE Turbulent Closure Scheme : new organization to energetic considerations 
     237% ------------------------------------------------------------------------------------------------------------- 
     238\subsection{TKE Turbulent Closure Scheme - time integration (\key{zdftke} and (\key{zdftke2})} 
     239\label{ZDF_tke2} 
     240 
     241%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     242\begin{figure}[!t] \label{Fig_TKE_time_scheme}  \begin{center} 
     243\includegraphics[width=1.00\textwidth]{./TexFiles/Figures/Fig_ZDF_TKE_time_scheme.pdf} 
     244\caption {Illustration of the TKE time integration and its links to the momentum and tracer time integration. } 
     245\end{center}   
     246\end{figure} 
     247%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     248 
     249The production of turbulence by vertical shear (the first term of the right hand side  
     250of \eqref{Eq_zdftke_e}) should balance the loss of kinetic energy associated with 
     251the vertical momentum diffusion (first line in \eqref{Eq_PE_zdf}).  
     252The total loss of kinetic energy (in 1D for the demonstration)  
     253due to this term is obtained by multiply this quantity by $u^n$ and verticaly integrating:    
     254 
     255\begin{equation} \label{Eq_energ1} 
     256\int_{k_b}^{k_s} {u^t \frac{1}{e_3} 
     257                                 \frac{\partial   }  
     258                                        {\partial k} \left( \frac{A^{vm}}{e_3}  
     259                                                                 \frac{\partial{u^{t+1}}} 
     260                                                                        {\partial k           }     \right) \; e_3 \; dk } 
     261= \left[  \frac{u^t}{e_3}   A^{vm} \frac{\partial{u^{t+1}}}{\partial k} \right]_{k_b}^{k_s} 
     262 - \int_{k_b}^{k_s}{\frac{A^{vm}}{{e_3}}\frac{\partial{u^t}}{\partial k}\frac{\partial{u^{t+1}}}{\partial k}} \ dk 
     263\end{equation} 
     264 
     265The first term of the right hand side of \eqref{Eq_energ1} represents the kinetic  
     266energy transfer at the surface (atmospheric forcing) and at the bottom (friction effect).  
     267The second term is always negative and have to balance the term of \eqref{Eq_zdftke_e}  
     268previously identified. 
     269 
     270The sink term (possibly a source term in statically unstable situations) of turbulence  
     271by buoyancy (second term of the right hand side of \eqref{Eq_zdftke_e}) must balance 
     272the source of potential energy associated with the vertical diffusion  
     273in the density equation (second line in \eqref{Eq_PE_zdf}). The source of potential  
     274energy (in 1D for the demonstration) due to this term is obtained by multiply this quantity  
     275by $gz{\rho_r}^{-1}$ and verticaly integrating: 
     276 
     277\begin{equation} \label{Eq_energ2} 
     278\begin{aligned} 
     279\int_{k_b}^{k_s}{\frac{g\;z}{e_3} \frac{\partial }{\partial k} 
     280                        \left( \frac{A^{vT}}{e_3}  
     281                        \frac{\partial{\rho^{t+1}}}{\partial k}   \right)} \; e_3 \; dk 
     282=\left[  g\;z \frac{A^{vT}}{e_3} 
     283                 \frac{\partial{\rho^{t+1}}}{\partial k} \right]_{k_b}^{k_s}   
     284- \int_{k_b}^{k_s}{  \frac{A^{vT}}{e_3} g \frac{\partial{\rho^{t+1}}}{\partial k}} \; dk\\ 
     285\\ 
     286= - \left[  z\,A^{vT} {N_{t+1}}^2 \right]_{k_b}^{k_s} 
     287+ \int_{k_b}^{k_s}{  \rho^{t+1} \; A^{vT}{N_{t+1}}^2 \; e_3 \; dk  }\\ 
     288\end{aligned} 
     289\end{equation} 
     290where $N^2_{t+1}$ is  the Brunt-Vaissala frequency at $t+1$  
     291and noting that $\frac{\partial z}{\partial k} = e_3$. 
     292 
     293The first term is always zero because the Brunt Vaissala frequency is set to zero at the  
     294surface and the bottom. The second term is of opposite sign than the buoyancy term 
     295identified previously. 
     296 
     297Under these energetic considerations, \eqref{Eq_zdftke_e} have to be written like this  
     298to be consistant:  
     299 
     300\begin{equation} \label{Eq_zdftke_ene} 
     301\frac{\partial \bar{e}}{\partial t} = 
     302\frac{A^{vm}}{{e_3}^2 }\;\left[ {\left( {\frac{\partial u^a}{\partial k}} \right)\left( {\frac{\partial u^n}{\partial k}} \right) 
     303                                                        +\left( {\frac{\partial v^a}{\partial k}} \right)\left( {\frac{\partial v^n}{\partial k}} \right) 
     304} \right]-A^{vT}\,{N_n}^2+... 
     305\end{equation} 
     306 
     307Note that during a time step, the equation \eqref{Eq_zdftke_e} is resolved before those  
     308of momentum and density. So, the indice "a" (after) become "n" (now) and the indice "n"  
     309(now) become "b" (before). 
     310 
     311Moreover, the vertical shear have to be multiply by the appropriate viscosity for numerical  
     312stability. Thus, the vertical shear at U-point have to be multiply by the viscosity avmu and  
     313the vertical shear at V-point have to be multiply by the viscosity avmv. Next, these two  
     314quantities are averaged to obtain a production term by vertical shear at W-point :  
     315 
     316\begin{equation} \label{Eq_zdftke_ene2} 
     317\frac{\partial \bar{e}}{\partial t} = 
     318\frac{1}{{e_3}^2 }\;\left[ {   
     319    A^{vmu}\left({\frac{\partial u^a}{\partial k}} \right)\left( {\frac{\partial u^n}{\partial k}} \right) 
     320   +A^{vmv}\left({\frac{\partial v^a}{\partial k}} \right)\left( {\frac{\partial v^n}{\partial k}} \right) 
     321                           } \right]-A^{vT}\,{N_n}^2+... 
     322\end{equation}  
     323 
     324The TKE equation is resolved before the mixing length, the viscosity and diffusivity. Two tabs  
     325are then declared : dissl (dissipation length) (Remark : it's not only the dissipation lenght,  
     326it's the root of the TKE divided by the dissipation lenght) and avmt (viscosity at the points T)  
     327used for the vertical diffusion of the TKE.  
     328 
     329This new organization needs also a reorganization of the routine step.F90 (controled by  
     330the key \key{ene\_cons}). The bigger change is the estimation of the Brunt-Vaissala  
     331frequency at "n" instead of "b". Moreover for energetic considerations, the call of tranxt.F90  
     332is done after the density update. On the contrary, the density is updated with scalars fields  
     333filtered by the Asselin filter.  
     334 
     335This new organisation of the routine zdftke force to save five three dimensionnal tabs in  
     336the restart : avmu, avmv, avt, avmt and dissl are needed to calculate $e_n$. At the end  
     337of the run (time step = nitend), the alternative is to save only $e_n$ estimated at the  
     338following time step (nitend+1). The next run using this restart file, the mixing length  
     339and turbulents coefficients are directly calculated using $e_n$. It is the same thing  
     340for the intermediate restart. 
     341 
     342 
     343%%GM for figure of the time scheme: 
     344\begin{equation}  
     345  \rho^{t+1} \; A^{vT}{N_{t+1}}^2 \; dk  \\ 
     346\end{equation} 
     347 
     348%%end GM  
     349 
    233350 
    234351% ------------------------------------------------------------------------------------------------------------- 
     
    239356 
    240357%--------------------------------------------namkpp-------------------------------------------------------- 
    241 \namdisplay{namkpp} 
    242 %-------------------------------------------------------------------------------------------------------------- 
    243  
    244 The K-Profile Parametrization (KKP) developed by \cite{Large_al_RG94} has been  
    245 implemented in \NEMO by J. Chanut (PhD reference to be added here!). 
     358\namdisplay{namzdf_kpp} 
     359%-------------------------------------------------------------------------------------------------------------- 
     360 
     361The KKP scheme has been implemented by J. Chanut ... 
    246362 
    247363\colorbox{yellow}{Add a description of KPP here.} 
     
    274390\label{ZDF_npc} 
    275391 
    276 %--------------------------------------------namnpc-------------------------------------------------------- 
    277 \namdisplay{namnpc} 
     392%--------------------------------------------namzdf-------------------------------------------------------- 
     393\namdisplay{namzdf} 
    278394%-------------------------------------------------------------------------------------------------------------- 
    279395 
     
    298414the statically unstable portion of the water column, but only until the density  
    299415structure becomes neutrally stable ($i.e.$ until the mixed portion of the water  
    300 column has \textit{exactly} the density of the water just below) \citep{Madec1991a}.  
     416column has \textit{exactly} the density of the water just below) \citep{Madec_al_JPO91}.  
    301417The associated algorithm is an iterative process used in the following way  
    302418(Fig. \ref{Fig_npc}): starting from the top of the ocean, the first instability is  
     
    320436convective algorithm has been proved successful in studies of the deep  
    321437water formation in the north-western Mediterranean Sea  
    322 \citep{Madec1991a, Madec1991b, Madec1991c}. 
     438\citep{Madec_al_JPO91, Madec_al_DAO91, Madec_Crepon_Bk91}. 
    323439 
    324440Note that in the current implementation of this algorithm presents several  
     
    341457after a static adjustment. In that case, we recommend the addition of momentum  
    342458mixing in a manner that mimics the mixing in temperature and salinity  
    343 \citep{Speich1992, Speich1996}. 
     459\citep{Speich_PhD92, Speich_al_JPO96}. 
    344460 
    345461% ------------------------------------------------------------------------------------------------------------- 
     
    357473In this case, the vertical eddy mixing coefficients are assigned very large values  
    358474(a typical value is $10\;m^2s^{-1})$ in regions where the stratification is unstable  
    359 ($i.e.$ when the Brunt-Vais\"{a}l\"{a} frequency is negative) \citep{Lazar1997, Lazar1999}.  
     475($i.e.$ when the Brunt-Vais\"{a}l\"{a} frequency is negative) \citep{Lazar_PhD97, Lazar_al_JPO99}.  
    360476This is done either on tracers only (\np{n\_evdm}=0) or on both momentum and  
    361477tracers (\np{n\_evdm}=1). 
     
    405521 
    406522%-------------------------------------------namddm-------------------------------------------------------- 
    407 \namdisplay{namddm} 
     523\namdisplay{namzdf_ddm} 
    408524%-------------------------------------------------------------------------------------------------------------- 
    409525 
     
    422538\end{align*} 
    423539where subscript $f$ represents mixing by salt fingering, $d$ by diffusive convection,  
    424 and $o$ by processes other than double diffusion. The rates of double-diffusive mixing  
    425 depend on the buoyancy ratio $R_\rho = \alpha \partial_z T / \beta \partial_z S$,  
     540and $o$ by processes other than double diffusion. The rates of double-diffusive mixing depend on the buoyancy ratio $R_\rho = \alpha \partial_z T / \beta \partial_z S$,  
    426541where $\alpha$ and $\beta$ are coefficients of thermal expansion and saline  
    427542contraction (see \S\ref{TRA_eos}). To represent mixing of $S$ and $T$ by salt  
     
    454569we adopt $R_c = 1.6$, $n = 6$, and $A^{\ast v} = 10^{-4}~m^2.s^{-1}$. 
    455570 
    456 To represent mixing of S and T by diffusive layering,  the diapycnal diffusivities suggested  
    457 by Federov (1988) is used:  
     571To represent mixing of S and T by diffusive layering,  the diapycnal diffusivities suggested by Federov (1988) is used:  
    458572\begin{align}  \label{Eq_zdfddm_d} 
    459573A_d^{vT} &=    \begin{cases} 
     
    486600 
    487601%--------------------------------------------nambfr-------------------------------------------------------- 
    488 \namdisplay{nambfr} 
     602\namdisplay{namzdf_bfr} 
    489603%-------------------------------------------------------------------------------------------------------------- 
    490604 
     
    536650is generally estimated by setting a typical decay time $\tau$ in the deep ocean,  
    537651and setting $r = H / \tau$, where $H$ is the ocean depth. Commonly accepted  
    538 values of $\tau$ are of the order of 100 to 200 days \citep{Weatherly1984}.  
     652values of $\tau$ are of the order of 100 to 200 days \citep{Weatherly_JMR84}.  
    539653A value $\tau^{-1} = 10^{-7}$~s$^{-1}$ equivalent to 115 days, is usually used  
    540654in quasi-geostrophic models. One may consider the linear friction as an  
     
    585699breaking and other short time scale currents. A typical value of the drag  
    586700coefficient is $C_D = 10^{-3} $. As an example, the CME experiment  
    587 \citep{Treguier1992} uses $C_D = 10^{-3}$ and $e_b = 2.5\;10^{-3}$m$^2$.s$^{-2}$,  
     701\citep{Treguier_JGR92} uses $C_D = 10^{-3}$ and $e_b = 2.5\;10^{-3}$m$^2$.s$^{-2}$,  
    588702while the FRAM experiment \citep{Killworth1992} uses $e_b =0$  
    589703and $e_b =2.5\;\;10^{-3}$m$^2$.s$^{-2}$. The FRAM choices have been  
Note: See TracChangeset for help on using the changeset viewer.