New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 2376 for branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_MISC.tex – NEMO

Ignore:
Timestamp:
2010-11-11T18:01:29+01:00 (13 years ago)
Author:
gm
Message:

v3.3beta: better TKE description, CFG a new Chapter, and correction of Fig references

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_MISC.tex

    r2364 r2376  
    5858 
    5959%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    60 \begin{figure}[!tbp] \label{Fig_MISC_strait_hand} \begin{center} 
     60\begin{figure}[!tbp]     \begin{center} 
    6161\includegraphics[width=0.80\textwidth]{./TexFiles/Figures/Fig_Gibraltar.pdf} 
    6262\includegraphics[width=0.80\textwidth]{./TexFiles/Figures/Fig_Gibraltar2.pdf} 
    63 \caption {Example of the Gibraltar strait defined in a $1\deg \times 1\deg$ mesh.  
     63\caption{   \label{Fig_MISC_strait_hand}  
     64Example of the Gibraltar strait defined in a $1\deg \times 1\deg$ mesh.  
    6465\textit{Top}: using partially open cells. The meridional scale factor at $v$-point  
    6566is reduced on both sides of the strait to account for the real width of the strait  
     
    134135 
    135136%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    136 \begin{figure}[!ht] \label{Fig_LBC_zoom}  \begin{center} 
     137\begin{figure}[!ht]    \begin{center} 
    137138\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_LBC_zoom.pdf} 
    138 \caption {Position of a model domain compared to the data input domain when the zoom functionality is used.} 
     139\caption{   \label{Fig_LBC_zoom} 
     140Position of a model domain compared to the data input domain when the zoom functionality is used.} 
    139141\end{center}   \end{figure} 
    140142%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    141143 
    142  
    143 % ================================================================ 
    144 % 1D model functionality 
    145 % ================================================================ 
    146 \section{Water column model: 1D model (\key{c1d})} 
    147 \label{MISC_1D} 
    148  
    149 The 1D model option simulates a stand alone water column within the 3D \NEMO system.  
    150 It can be applied to the ocean alone or to the ocean-ice system and can include passive tracers  
    151 or a biogeochemical model. It is set up by defining the \key{c1d} CPP key.  
    152 The 1D model is a very useful tool   
    153 \textit{(a)} to learn about the physics and numerical treatment of vertical mixing processes ;  
    154 \textit{(b)} to investigate suitable parameterisations of unresolved turbulence (wind steering,  
    155 langmuir circulation, skin layers) ;  
    156 \textit{(c)} to compare the behaviour of different vertical mixing schemes  ;  
    157 \textit{(d)} to perform sensitivity studies on the vertical diffusion at a particular point of an ocean domain ;  
    158 \textit{(d)} to produce extra diagnostics, without the large memory requirement of the full 3D model. 
    159  
    160 The methodology is based on the use of the zoom functionality over the smallest possible  
    161 domain : a 3 x 3 domain centred on the grid point of interest (see \S\ref{MISC_zoom}),  
    162 with some extra routines. There is no need to define a new mesh, bathymetry,  
    163 initial state or forcing, since the 1D model will use those of the configuration it is a zoom of.  
    164 The chosen grid point is set in par\_oce.F90 module by setting the jpizoom and jpjzoom  
    165 parameters to the indices of the location of the chosen grid point. 
    166144 
    167145% ================================================================ 
     
    260238The "bit comparison" option has been introduced in order to be able to check that  
    261239mono-processor and multi-processor runs give exactly the same results.  
     240%THIS is to be updated with the mpp_sum_glo  introduced in v3.3 
     241% nn_bit_cmp  today only check that the nn_cla = 0 (no cross land advection) 
    262242 
    263243$\bullet$  Benchmark (\np{nn\_bench}). This option defines a benchmark run based on  
    264 a GYRE configuration in which the resolution remains the same whatever the domain  
    265 size. This allows a very large model domain to be used, just by changing the domain  
    266 size (\jp{jpiglo}, \jp{jpjglo}) and without adjusting either the time-step or the physical  
    267 parameterisations.  
     244a GYRE configuration (see \S\ref{CFG_gyre}) in which the resolution remains the same  
     245whatever the domain size. This allows a very large model domain to be used, just by  
     246changing the domain size (\jp{jpiglo}, \jp{jpjglo}) and without adjusting either the time-step  
     247or the physical parameterisations.  
    268248 
    269249 
     
    607587volume ratio of each processing region. 
    608588 
    609 \begin{table}  
    610 \begin{tabular}{lrrr} 
     589%------------------------------------------TABLE---------------------------------------------------- 
     590\begin{table}  \begin{tabular}{lrrr} 
    611591Filename & NetCDF3 & NetCDF4 & Reduction\\ 
    612592         &filesize & filesize & \% \\ 
     
    638618ORCA2\_2d\_grid\_W\_0007.nc & 4416 & 1368 & 70\%\\ 
    639619\end{tabular} 
    640 \caption{\label{Tab_NC4} Filesize comparison between NetCDF3 and NetCDF4  
    641 with chunking and compression} 
     620\caption{   \label{Tab_NC4}  
     621Filesize comparison between NetCDF3 and NetCDF4 with chunking and compression} 
    642622\end{table} 
     623%---------------------------------------------------------------------------------------------------- 
    643624 
    644625Since version 3.2, an I/O server has been added which provides more 
     
    758739%------------------------------------------------------------------------------------------------------------- 
    759740%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    760 \begin{figure}[!t] \label{Fig_mask_subasins}  \begin{center} 
     741\begin{figure}[!t]     \begin{center} 
    761742\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_mask_subasins.pdf} 
    762 \caption {Decomposition of the World Ocean (here ORCA2) into sub-basin used in to compute 
     743\caption{   \label{Fig_mask_subasins} 
     744Decomposition of the World Ocean (here ORCA2) into sub-basin used in to compute 
    763745the heat and salt transports as well as the meridional stream-function: Atlantic basin (red),  
    764746Pacific basin (green), Indian basin (bleue), Indo-Pacific basin (bleue+green).  
     
    931913 
    932914% ================================================================ 
    933 % predefined configurations 
    934 % ================================================================ 
    935 \section{predefined configurations} 
    936 \label{MISC_config} 
    937  
    938 There is several predefined ocean configuration which use is controlled by a specific CPP key.  
    939  
    940 The key set the domain sizes (\jp{jpiglo}, \jp{jpjglo}, \jp{jpk}), the mesh and the bathymetry,  
    941 and, in some cases, add to the model physics some specific treatments. 
    942  
    943 % ------------------------------------------------------------------------------------------------------------- 
    944 %       ORCA family configurations 
    945 % ------------------------------------------------------------------------------------------------------------- 
    946 \subsection{ORCA family: global ocean with tripolar grid} 
    947 \label{MISC_config_orca} 
    948  
    949 The NEMO system is provided with four built-in ORCA configurations which differ in the  
    950 horizontal resolution used: 
    951 \begin{description} 
    952 \item[\key{orca\_r4}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~4 
    953 \item[\key{orca\_r2}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~2 
    954 \item[\key{orca\_r1}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~1 
    955 \item[\key{orca\_r05}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~05 
    956 \item[\key{orca\_r025}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~025 
    957 \end{description} 
    958  
    959 \subsubsection{ORCA mesh} 
    960  
    961 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    962 \begin{figure}[!t] \label{Fig_MISC_ORCA_msh}  \begin{center} 
    963 \includegraphics[width=0.98\textwidth]{./TexFiles/Figures/Fig_ORCA_NH_mesh.pdf} 
    964 \caption {ORCA mesh conception. The departure from an isotropic Mercator grid start poleward of 20\deg N. 
    965 The two "north pole" are the foci of a series of embedded ellipses (blue curves)  
    966 which are determined analytically and form the i-lines of the ORCA mesh (pseudo latitudes).  
    967 Then, following \citet{Madec_Imbard_CD96}, the normal to the series of ellipses (red curves) is computed  
    968 which provide the j-lines of the mesh (pseudo longitudes). 
    969  } 
    970 \end{center}   \end{figure} 
    971 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    972  
    973  
    974 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    975 \begin{figure}[!tbp] \label{Fig_MISC_ORCA_e1e2}  \begin{center} 
    976 \includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_ORCA_NH_msh05_e1_e2.pdf} 
    977 \includegraphics[width=0.80\textwidth]{./TexFiles/Figures/Fig_ORCA_aniso.pdf} 
    978 \caption {\textit{Top}: Horizontal scale factors ($e_1$, $e_2$) and  
    979 \textit{Bottom}: ratio of anisotropy ($e_1 / e_2$) 
    980 for ORCA 0.5\deg ~mesh. South of 20\deg N a Mercator grid is used ($e_1 = e_2$)  
    981 so that the anisotropy ratio is 1. Poleward of 20\deg N, the two "north pole"  
    982 introduce a weak anisotropy over the ocean areas ($< 1.2$) except in vicinity of Victoria Island  
    983 (Canadian Arctic Archipelago). } 
    984 \end{center}   \end{figure} 
    985 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    986  
    987 %--------------------------------------------------TABLE-------------------------------------------------- 
    988 \begin{table}[htbp]  \label{Tab_ORCA} 
    989 \begin{center} 
    990 \begin{tabular}{ccccc} 
    991 key                         & \jp{jp\_cfg} &  \jp{jpiglo} & \jp{jpiglo} &       \\   
    992 \hline  \hline 
    993 \key{orca\_r4}        &        4         &         92     &      76      &       \\ 
    994 \key{orca\_r2}       &        2         &       182     &    149      &        \\ 
    995 %\key{orca\_r1}       &        1         &       362     &     511     &        \\ 
    996 \key{orca\_r05}     &        05       &       722     &     261     &        \\ 
    997 \key{orca\_r025}   &        025     &      1442    &   1021     &        \\ 
    998 %\key{orca\_r8}       &        8         &      2882    &   2042     &        \\ 
    999 %\key{orca\_r12}     &      12         &      4322    &   3062      &       \\ 
    1000 \hline 
    1001 \hline 
    1002 \end{tabular} 
    1003 \caption {Set of predefined ORCA parameters. } 
    1004 \end{center} 
    1005 \end{table} 
    1006 %-------------------------------------------------------------------------------------------------------------- 
    1007  
    1008 The tripolar grid used in ORCA configuration .... 
    1009  
    1010 NB: the two north poles position has been chosen to minimise the anisotropy ratio in  
    1011 the Gulf Stream and kuroshio areas, two highly turbulent regions. 
    1012  
    1013 ORCA~2 : a $2\deg$ zonal resolution, and a meridional resolution varying from $0.5\deg$ at the  
    1014 equator to $2\deg cos\phi$ south of $20\deg$S (Fig. 1). The grid features two points of convergence in the  
    1015 Northern Hemisphere, both situated on continents. Minimum resolution in high latitudes is about  
    1016 65~km in the Arctic and 50~km in the Antarctic. Local mesh refinements are applied to the  
    1017 Mediterranean, Red, Black and Caspian Seas. None of them appears to be of particular  
    1018 importance for the study of high latitude climate, but the fine resolution is needed in order to have  
    1019 their local circulation and their role in the World Ocean's circulation considered correctly.  
    1020  
    1021  
    1022   
    1023 ORCA2-LIM (global ocean sea-ice configuration \citep{Timmermann_al_OM05}.  
    1024 The horizontal mesh is based on a $2\deg \times 2\deg$ Mercator grid ($i.e.$ same zonal and  
    1025 meridional grid spacing) which has been modified poleward   
    1026 of $20\deg$N in order to include two numerical inland poles \citep{Murray_JCP96}.  
    1027 This modification is semi-analytical \citep{Madec_Imbard_CD96}  
    1028 and based on a series of embedded ellipses. It insures that the mesh remains  
    1029 close to isotropy and that the smallest grid cell is along Antarctica.  
    1030 In order to refine the meridional resolution up to $0.5\deg$ at the equator,  
    1031 additional local transformations were applied with in the Tropics.  
    1032 Local mesh refinements are also applied to the Mediterranean, Red, Black  
    1033 and Caspian Seas so that the resolution is $1\deg \time 1\deg$ there.  
    1034 There are 31 levels in the vertical, with the highest resolution (10m)  
    1035 in the upper 150m. The bottom topography and the coastlines are derived  
    1036 from the global atlas of Smith and Sandwell (1997). 
    1037  
    1038 \key{orca\_lev10} 10 time more vertical levels 
    1039  
    1040 \key{agrif}  : ORCA2-LIM plus an AGRIF zoom over the Agulhas current area 
    1041  
    1042 \key{arctic}, \key{antarctic}  (not used in ORCA\_R4) 
    1043  
    1044  
    1045 We thus only provide a brief introduction in this chapter.  
    1046 The global coupled ocean-ice configuration is very similar to that used as part of the climate  
    1047 model developed at GFDL for the 4th IPCC assessment of climate change (Griffies et al., 2005;  
    1048 Gnanadesikan et al., 2006).  
    1049 The ORCA2-LIM configuration is also the basis for the \NEMO contribution to the  
    1050 Coordinate Ocean-ice Reference Experiments (COREs) documented in \citet{Griffies_al_OM09}.  
    1051 These experiments employ the boundary forcing from \citet{Large_Yeager_Rep04} (see \S\ref{SBC_blk_core}),  
    1052 which was developed for the purpose of running global coupled ocean-ice simulations without an  
    1053 interactive atmosphere. This \citet{Large_Yeager_Rep04} dataset is available through the GFDL web  
    1054 site \footnote{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html}.  
    1055 The "normal year" of \citet{Large_Yeager_Rep04} has been chosen of the \NEMO distribution  
    1056 since release v3.3.  
    1057  
    1058 % ------------------------------------------------------------------------------------------------------------- 
    1059 %       GYRE family configuration 
    1060 % ------------------------------------------------------------------------------------------------------------- 
    1061 \subsection{GYRE family: double gyre basin (\key{gyre})} 
    1062 \label{MISC_config_gyre} 
    1063  
    1064 The GYRE configuration \citep{Levy_al_OM10} have been built to simulated  
    1065 the seasonal cycle of a double-gyre box model. It consist in an idealized domain  
    1066 similar to that used in the studies of \citet{Drijfhout_JPO94} and \citet{Hazeleger_Drijfhout_JPO98,  
    1067 Hazeleger_Drijfhout_JPO99, Hazeleger_Drijfhout_JGR00, Hazeleger_Drijfhout_JPO00},  
    1068 over which an analytical seasonal forcing is applied. This allows to investigate the  
    1069 spontaneous generation of a large number of interacting, transient mesoscale eddies  
    1070 and their contribution to the large scale circulation.  
    1071  
    1072 The domain geometry is a closed rectangular basin on the $\beta$-plane centred  
    1073 at $\sim 30\deg$N and rotated by 45\deg, 3180~km long, 2120~km wide  
    1074 and 4~km deep (Fig.~\ref{Fig_MISC_strait_hand}).  
    1075 The domain is bounded by vertical walls and by a ßat bottom. The configuration is  
    1076 meant to represent an idealized North Atlantic or North Pacific basin.  
    1077 The circulation is forced by analytical profiles of wind and buoyancy ßuxes.  
    1078 The applied forcings vary seasonally in a sinusoidal manner between winter  
    1079 and summer extrema \citep{Levy_al_OM10}.  
    1080 The wind stress is zonal and its curl changes sign at 22\deg N and 36\deg N.  
    1081 It forces a subpolar gyre in the north, a subtropical gyre in the wider part of the domain  
    1082 and a small recirculation gyre in the southern corner.  
    1083 The net heat ßux takes the form of a restoring toward a zonal apparent air  
    1084 temperature profile. A portion of the net heat ßux which comes from the solar radiation 
    1085 is allowed to penetrate within the water column.  
    1086 The fresh water ßux is also prescribed and varies zonally.  
    1087 It is determined such as, at each time step, the basin-integrated ßux is zero.  
    1088 The basin is initialised at rest with vertical profiles of temperature and salinity  
    1089 uniformly applied to the whole domain. 
    1090  
    1091 The GYRE configuration is set through the \key{gyre} CPP key. Its horizontal resolution  
    1092 (and thus the size of the domain) is determined by setting \jp{jp\_cfg} in \hf{par\_GYRE} file: \\ 
    1093 \jp{jpiglo} $= 30 \times$ \jp{jp\_cfg} + 2   \\ 
    1094 \jp{jpjglo} $= 20 \times$ \jp{jp\_cfg} + 2   \\ 
    1095 Obviously, the namelist parameters have to be adjusted to the chosen resolution. 
    1096 In the vertical, GYRE uses the default 30 ocean levels (\jp{jpk}=31) (Fig.~\ref{Fig_zgr}). 
    1097  
    1098 The GYRE configuration is also used in benchmark test as it is very simple to increase  
    1099 its resolution and as it does not requires any input file. For example, keeping a same model size  
    1100 on each processor while increasing the number of processor used is very easy, even though the  
    1101 physical integrity of the solution can be compromised. 
    1102  
    1103 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    1104 \begin{figure}[!t] \label{Fig_GYRE}  \begin{center} 
    1105 \includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_GYRE.pdf} 
    1106 \caption {Snapshot of relative vorticity at the surface of the model domain  
    1107 in GYRE R9, R27 and R54. From \citet{Levy_al_OM10}.} 
    1108 \end{center}   \end{figure} 
    1109 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    1110  
    1111 % ------------------------------------------------------------------------------------------------------------- 
    1112 %       EEL family configuration 
    1113 % ------------------------------------------------------------------------------------------------------------- 
    1114 \subsection{EEL family: periodic channel} 
    1115 \label{MISC_config_EEL} 
    1116  
    1117 \begin{description} 
    1118 \item[\key{eel\_r2}]   
    1119 \item[\key{eel\_r5}]   
    1120 \item[\key{eel\_r6}]   
    1121 \end{description} 
    1122  
    1123 % ------------------------------------------------------------------------------------------------------------- 
    1124 %       POMME configuration 
    1125 % ------------------------------------------------------------------------------------------------------------- 
    1126 \subsection{POMME: mid-latitude sub-domain} 
    1127 \label{MISC_config_POMME} 
    1128  
    1129  
    1130 \key{pomme\_r025}  
    1131  
    1132  
    1133  
Note: See TracChangeset for help on using the changeset viewer.