New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 3085 for branches/2011/dev_MERCATOR_INGV_2011_MERGE/DOC/TexFiles/Chapters/Chap_SBC.tex – NEMO

Ignore:
Timestamp:
2011-11-14T14:13:32+01:00 (12 years ago)
Author:
cbricaud
Message:

commit changes from dev_INGV_2011

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2011/dev_MERCATOR_INGV_2011_MERGE/DOC/TexFiles/Chapters/Chap_SBC.tex

    r3047 r3085  
    2424\end{itemize} 
    2525 
    26 Four different ways to provide the first six fields to the ocean are available which  
     26Five different ways to provide the first six fields to the ocean are available which  
    2727are controlled by namelist variables: an analytical formulation (\np{ln\_ana}~=~true),  
    2828a flux formulation (\np{ln\_flx}~=~true), a bulk formulae formulation (CORE  
    29 (\np{ln\_core}~=~true) or CLIO (\np{ln\_clio}~=~true) bulk formulae) and a coupled  
     29(\np{ln\_core}~=~true), CLIO (\np{ln\_clio}~=~true) or MFS 
     30\footnote { Note that MFS bulk formulae compute fluxes only for the ocean component} 
     31(\np{ln\_ecmwf}~=~true) bulk formulae) and a coupled  
    3032formulation (exchanges with a atmospheric model via the OASIS coupler)  
    3133(\np{ln\_cpl}~=~true). When used, the atmospheric pressure forces both  
    32 ocean and ice dynamics (\np{ln\_apr\_dyn}~=~true) 
    33 \footnote{The surface pressure field could be use in bulk formulae, nevertheless  
    34 none of the current bulk formulea (CLIO and CORE) uses the it.}.  
     34ocean and ice dynamics (\np{ln\_apr\_dyn}~=~true). 
    3535The frequency at which the six or seven fields have to be updated is the \np{nn\_fsbc}  
    3636namelist parameter.  
     
    4646(\np{nn\_ice}~=~0,1, 2 or 3); the addition of river runoffs as surface freshwater  
    4747fluxes or lateral inflow (\np{ln\_rnf}~=~true); the addition of a freshwater flux adjustment  
    48 in order to avoid a mean sea-level drift (\np{nn\_fwb}~=~0,~1~or~2); and the  
     48in order to avoid a mean sea-level drift (\np{nn\_fwb}~=~0,~1~or~2); the  
    4949transformation of the solar radiation (if provided as daily mean) into a diurnal  
    50 cycle (\np{ln\_dm2dc}~=~true). 
     50cycle (\np{ln\_dm2dc}~=~true); and a neutral drag coefficient can be read from an external wave  
     51model (\np{ln\_cdgw}~=~true). The latter option is possible only in case core or ecmwf bulk formulas are selected. 
    5152 
    5253In this chapter, we first discuss where the surface boundary condition appears in the 
    53 model equations. Then we present the four ways of providing the surface boundary condition,  
     54model equations. Then we present the five ways of providing the surface boundary condition,  
    5455followed by the description of the atmospheric pressure and the river runoff.  
    5556Next the scheme for interpolation on the fly is described. 
     
    480481% Bulk formulation 
    481482% ================================================================ 
    482 \section  [Bulk formulation (\textit{sbcblk\_core} or \textit{sbcblk\_clio}) ] 
    483       {Bulk formulation \small{(\mdl{sbcblk\_core} or \mdl{sbcblk\_clio} module)} } 
     483\section  [Bulk formulation (\textit{sbcblk\_core}, \textit{sbcblk\_clio} or \textit{sbcblk\_ecmwf}) ] 
     484      {Bulk formulation \small{(\mdl{sbcblk\_core} \mdl{sbcblk\_clio} \mdl{sbcblk\_ecmwf} modules)} } 
    484485\label{SBC_blk} 
    485486 
     
    487488using bulk formulae and atmospheric fields and ocean (and ice) variables.  
    488489 
    489 The atmospheric fields used depend on the bulk formulae used. Two bulk formulations  
    490 are available : the CORE and CLIO bulk formulea. The choice is made by setting to true 
    491 one of the following namelist variable : \np{ln\_core} and \np{ln\_clio}. 
    492  
    493 Note : in forced mode, when a sea-ice model is used, a bulk formulation have to be used.  
    494 Therefore the two bulk formulea provided include the computation of the fluxes over both  
     490The atmospheric fields used depend on the bulk formulae used. Three bulk formulations  
     491are available : the CORE, the CLIO and the MFS bulk formulea. The choice is made by setting to true 
     492one of the following namelist variable : \np{ln\_core} ; \np{ln\_clio} or  \np{ln\_ecmwf}. 
     493 
     494Note : in forced mode, when a sea-ice model is used, a bulk formulation (CLIO or CORE) have to be used.  
     495Therefore the two bulk (CLIO and CORE) formulea include the computation of the fluxes over both  
    495496an ocean and an ice surface.  
    496497 
     
    583584namelist (see \S\ref{SBC_fldread}).  
    584585 
     586% ------------------------------------------------------------------------------------------------------------- 
     587%        ECMWF Bulk formulea 
     588% ------------------------------------------------------------------------------------------------------------- 
     589\subsection    [MFS Bulk formulea (\np{ln\_ecmwf}=true)] 
     590            {MFS Bulk formulea (\np{ln\_ecmwf}=true, \mdl{sbcblk\_ecmwf})} 
     591\label{SBC_blk_ecmwf} 
     592%------------------------------------------namsbc_ecmwf---------------------------------------------------- 
     593\namdisplay{namsbc_ecmwf}  
     594%---------------------------------------------------------------------------------------------------------- 
     595 
     596The MFS (Mediterranean Forecasting System) bulk formulae have been developed by 
     597 \citet{Castellari_al_JMS1998}.  
     598They have been designed to handle the ECMWF operational data and are currently  
     599in use in the MFS operational system \citep{Tonani_al_OS08}, \citep{Oddo_al_OS09}. 
     600The wind stress computation uses a drag coefficient computed according to \citet{Hellerman_Rosenstein_JPO83}. 
     601The surface boundary condition for temperature involves the balance between surface solar radiation, 
     602net long-wave radiation, the latent and sensible heat fluxes. 
     603Solar radiation is dependent on cloud cover and is computed by means of 
     604an astronomical formula \citep{Reed_JPO77}. Albedo monthly values are from \citet{Payne_JAS72}  
     605as means of the values at $40^{o}N$ and $30^{o}N$ for the Atlantic Ocean (hence the same latitudinal 
     606band of the Mediterranean Sea). The net long-wave radiation flux 
     607\citep{Bignami_al_JGR95} is a function of 
     608air temperature, sea-surface temperature, cloud cover and relative humidity. 
     609Sensible heat and latent heat fluxes are computed by classical 
     610bulk formulae parameterized according to \citet{Kondo1975}. 
     611Details on the bulk formulae used can be found in \citet{Maggiore_al_PCE98} and \citet{Castellari_al_JMS1998}. 
     612 
     613The required 7 input fields must be provided on the model Grid-T and  are: 
     614\begin{itemize} 
     615\item          Zonal Component of the 10m wind ($ms^{-1}$)  (\np{sn\_windi}) 
     616\item          Meridional Component of the 10m wind ($ms^{-1}$)  (\np{sn\_windj}) 
     617\item          Total Claud Cover (\%)  (\np{sn\_clc}) 
     618\item          2m Air Temperature ($K$) (\np{sn\_tair}) 
     619\item          2m Dew Point Temperature ($K$)  (\np{sn\_rhm}) 
     620\item          Total Precipitation ${Kg} m^{-2} s^{-1}$ (\np{sn\_prec}) 
     621\item          Mean Sea Level Pressure (${Pa}) (\np{sn\_msl}) 
     622\end{itemize} 
     623% ------------------------------------------------------------------------------------------------------------- 
    585624% ================================================================ 
    586625% Coupled formulation 
     
    9911030\end{description} 
    9921031 
     1032% ------------------------------------------------------------------------------------------------------------- 
     1033%        Neutral Drag Coefficient from external wave model 
     1034% ------------------------------------------------------------------------------------------------------------- 
     1035\subsection   [Neutral drag coefficient from external wave model (\textit{sbcwave})] 
     1036                        {Neutral drag coefficient from external wave model (\mdl{sbcwave})} 
     1037\label{SBC_wave} 
     1038%------------------------------------------namwave---------------------------------------------------- 
     1039\namdisplay{namsbc_wave} 
     1040%------------------------------------------------------------------------------------------------------------- 
     1041\begin{description} 
     1042 
     1043In order to read a neutral drag coeff, from an external data source (i.e. a wave model), the  
     1044logical variable \np{ln\_cdgw} 
     1045 in $namsbc$ namelist must be defined ${.true.}$.  
     1046The \mdl{sbcwave} module containing the routine \np{sbc\_wave} reads the 
     1047namelist ${namsbc\_wave}$ (for external data names, locations, frequency, interpolation and all  
     1048the miscellanous options allowed by Input Data generic Interface see \S\ref{SBC_input})  
     1049and a 2D field of neutral drag coefficient. Then using the routine  
     1050TURB\_CORE\_1Z or TURB\_CORE\_2Z, and starting from the neutral drag coefficent provided, the drag coefficient is computed according  
     1051to stable/unstable conditions of the air-sea interface following \citet{Large_Yeager_Rep04}. 
     1052 
     1053\end{description} 
     1054 
    9931055% Griffies doc: 
    9941056% When running ocean-ice simulations, we are not explicitly representing land processes, such as rivers, catchment areas, snow accumulation, etc. However, to reduce model drift, it is important to balance the hydrological cycle in ocean-ice models. We thus need to prescribe some form of global normalization to the precipitation minus evaporation plus river runoff. The result of the normalization should be a global integrated zero net water input to the ocean-ice system over a chosen time scale.  
     
    9971059 
    9981060 
    999  
Note: See TracChangeset for help on using the changeset viewer.