New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 3680 for branches/2012/dev_MERGE_2012/DOC/TexFiles/Chapters/Chap_DOM.tex – NEMO

Ignore:
Timestamp:
2012-11-27T15:42:24+01:00 (11 years ago)
Author:
rblod
Message:

First commit of the final branch for 2012 (future nemo_3_5), see ticket #1028

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2012/dev_MERGE_2012/DOC/TexFiles/Chapters/Chap_DOM.tex

    r3294 r3680  
    502502time-variation of the free surface so that the transformation is time dependent:  
    503503$z(i,j,k,t)$ (Fig.~\ref{Fig_z_zps_s_sps}f). This option can be used with full step  
    504 bathymetry or $s$-coordinate (hybride and partial step coordinates have not  
     504bathymetry or $s$-coordinate (hybrid and partial step coordinates have not  
    505505yet been tested in NEMO v2.3).  
    506506 
     
    743743levels are defined from the product of a depth field and either a stretching  
    744744function or its derivative, respectively: 
     745 
    745746\begin{equation} \label{DOM_sco_ana} 
    746747\begin{split} 
     
    749750\end{split} 
    750751\end{equation} 
     752 
    751753where $h$ is the depth of the last $w$-level ($z_0(k)$) defined at the $t$-point  
    752754location in the horizontal and $z_0(k)$ is a function which varies from $0$ at the sea  
    753755surface to $1$ at the ocean bottom. The depth field $h$ is not necessary the ocean  
    754756depth, since a mixed step-like and bottom-following representation of the  
    755 topography can be used (Fig.~\ref{Fig_z_zps_s_sps}d-e). In the example provided  
    756 (\rou{zgr\_sco} routine, see \mdl{domzgr}) $h$ is a smooth envelope bathymetry  
    757 and steps are used to represent sharp bathymetric gradients. 
    758  
    759 A new flexible stretching function, modified from \citet{Song_Haidvogel_JCP94} is provided as an example: 
     757topography can be used (Fig.~\ref{Fig_z_zps_s_sps}d-e) or an envelop bathymetry can be defined (Fig.~\ref{Fig_z_zps_s_sps}f). 
     758The namelist parameter \np{rn\_rmax} determines the slope at which the terrain-following coordinate intersects the sea bed and becomes a pseudo z-coordinate. The coordinate can also be hybridised by specifying \np{rn\_sbot\_min} and \np{rn\_sbot\_max} as the minimum and maximum depths at which the terrain-following vertical coordinate is calculated. 
     759 
     760Options for stretching the coordinate are provided as examples, but care must be taken to ensure that the vertical stretch used is appropriate for the application. 
     761 
     762The original default NEMO s-coordinate stretching is available if neither of the other options are specified as true (\np{ln\_sco\_SH94}~=~false and \np{ln\_sco\_SF12}~=~false.) This uses a depth independent $\tanh$ function for the stretching \citep{Madec_al_JPO96}: 
     763 
     764\begin{equation} 
     765  z = s_{min}+C\left(s\right)\left(H-s_{min}\right) 
     766  \label{eq:SH94_1} 
     767\end{equation} 
     768 
     769where $s_{min}$ is the depth at which the s-coordinate stretching starts and allows a z-coordinate to placed on top of the stretched coordinate, and z is the depth (negative down from the asea surface). 
     770 
     771\begin{equation} 
     772  s = -\frac{k}{n-1} \quad \text{ and } \quad 0 \leq k \leq n-1 
     773  \label{eq:s} 
     774\end{equation} 
     775 
    760776\begin{equation} \label{DOM_sco_function} 
    761777\begin{split} 
    762 z  &= h_c +( h-h_c)\;c s)  \\ 
    763 c(s)  &=  \frac{ \left[   \tanh{ \left( \theta \, (s+b) \right)}  
     778C(s)  &=  \frac{ \left[   \tanh{ \left( \theta \, (s+b) \right)}  
    764779               - \tanh{ \left(  \theta \, b      \right)}  \right]} 
    765780            {2\;\sinh \left( \theta \right)} 
    766781\end{split} 
    767782\end{equation} 
    768 where $h_c$ is the thermocline depth and $\theta$ and $b$ are the surface and  
     783 
     784A stretching function, modified from the commonly used \citet{Song_Haidvogel_JCP94} stretching (\np{ln\_sco\_SH94}~=~true), is also available and is more commonly used for shelf seas modelling: 
     785 
     786\begin{equation} 
     787  C\left(s\right) =   \left(1 - b \right)\frac{ \sinh\left( \theta s\right)}{\sinh\left(\theta\right)} +      \\ 
     788  b\frac{ \tanh \left[ \theta \left(s + \frac{1}{2} \right)\right] - \tanh\left(\frac{\theta}{2}\right)}{ 2\tanh\left (\frac{\theta}{2}\right)} 
     789  \label{eq:SH94_2} 
     790\end{equation} 
     791 
     792%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     793\begin{figure}[!ht]    \begin{center} 
     794\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_sco_function.pdf} 
     795\caption{  \label{Fig_sco_function}    
     796Examples of the stretching function applied to a seamount; from left to right:  
     797surface, surface and bottom, and bottom intensified resolutions} 
     798\end{center}   \end{figure} 
     799%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     800 
     801where $H_c$ is the critical depth (\np{rn\_hc}) at which the coordinate transitions from pure $\sigma$ to the stretched coordinate,  and $\theta$ (\np{rn\_theta}) and $b$ (\np{rn\_bb}) are the surface and  
    769802bottom control parameters such that $0\leqslant \theta \leqslant 20$, and  
    770803$0\leqslant b\leqslant 1$. $b$ has been designed to allow surface and/or bottom  
    771804increase of the vertical resolution (Fig.~\ref{Fig_sco_function}). 
    772805 
    773 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    774 \begin{figure}[!tb]    \begin{center} 
    775 \includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_sco_function.pdf} 
    776 \caption{  \label{Fig_sco_function}    
    777 Examples of the stretching function applied to a sea mont; from left to right:  
    778 surface, surface and bottom, and bottom intensified resolutions} 
    779 \end{center}   \end{figure} 
    780 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     806Another example has been provided at version 3.5 (\np{ln\_sco\_SF12}) that allows a fixed surface resolution in an analytical terrain-following stretching \citet{Siddorn_Furner_OM12}. In this case the a stretching function $\gamma$ is defined such that: 
     807 
     808\begin{equation} 
     809z = -\gamma h \quad \text{ with } \quad 0 \leq \gamma \leq 1 
     810\label{eq:z} 
     811\end{equation} 
     812 
     813The function is defined with respect to $\sigma$, the unstretched terrain-following coordinate: 
     814 
     815\begin{equation} \label{DOM_gamma_deriv} 
     816\gamma= A\left(\sigma-\frac{1}{2}\left(\sigma^{2}+f\left(\sigma\right)\right)\right)+B\left(\sigma^{3}-f\left(\sigma\right)\right)+f\left(\sigma\right) 
     817\end{equation} 
     818 
     819Where: 
     820\begin{equation} \label{DOM_gamma} 
     821f\left(\sigma\right)=\left(\alpha+2\right)\sigma^{\alpha+1}-\left(\alpha+1\right)\sigma^{\alpha+2} \quad \text{ and } \quad \sigma = \frac{k}{n-1}  
     822\end{equation} 
     823 
     824This gives an analytical stretching of $\sigma$ that is solvable in $A$ and $B$ as a function of the user prescribed stretching parameter $\alpha$ (\np{rn\_alpha}) that stretches towards the surface ($\alpha > 1.0$) or the bottom ($\alpha < 1.0$) and user prescribed surface (\np{rn\_zs}) and bottom depths. The bottom cell depth in this example is given as a function of water depth: 
     825 
     826\begin{equation} \label{DOM_zb} 
     827Z_b= h a + b 
     828\end{equation} 
     829 
     830where the namelist parameters \np{rn\_zb\_a} and \np{rn\_zb\_b} are $a$ and $b$ respectively. 
     831 
     832%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     833\begin{figure}[!ht] 
     834   \includegraphics[width=1.0\textwidth]{./TexFiles/Figures/FIG_DOM_compare_coordinates_surface.pdf} 
     835        \caption{A comparison of the \citet{Song_Haidvogel_JCP94} $S$-coordinate (solid lines), a 50 level $Z$-coordinate (contoured surfaces) and the \citet{Siddorn_Furner_OM12} $S$-coordinate (dashed lines) in the surface 100m for a idealised bathymetry that goes from 50m to 5500m depth. For clarity every third coordinate surface is shown.} 
     836    \label{fig_compare_coordinates_surface} 
     837\end{figure} 
     838%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     839 
     840This gives a smooth analytical stretching in computational space that is constrained to given specified surface and bottom grid cell thicknesses in real space. This is not to be confused with the hybrid schemes that superimpose geopotential coordinates on terrain following coordinates thus creating a non-analytical vertical coordinate that therefore may suffer from large gradients in the vertical resolutions. This stretching is less straightforward to implement than the \citet{Song_Haidvogel_JCP94} stretching, but has the advantage of resolving diurnal processes in deep water and has generally flatter slopes. 
     841 
     842As with the \citet{Song_Haidvogel_JCP94} stretching the stretch is only applied at depths greater than the critical depth $h_c$. In this example two options are available in depths shallower than $h_c$, with pure sigma being applied if the \np{ln\_sigcrit} is true and pure z-coordinates if it is false (the z-coordinate being equal to the depths of the stretched coordinate at $h_c$. 
     843 
     844Minimising the horizontal slope of the vertical coordinate is important in terrain-following systems as large slopes lead to hydrostatic consistency. A hydrostatic consistency parameter diagnostic following \citet{Haney1991} has been implemented, and is output as part of the model mesh file at the start of the run. 
    781845 
    782846% ------------------------------------------------------------------------------------------------------------- 
Note: See TracChangeset for help on using the changeset viewer.