New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 4644 for branches/2014/dev_r4642_WavesWG/DOC/TexFiles/Chapters/Chap_DYN.tex – NEMO

Ignore:
Timestamp:
2014-05-15T15:56:53+02:00 (10 years ago)
Author:
acc
Message:

Branch 2014/dev_r4642_WavesWG #1323. Import of surface wave components from the 2013/dev_ECMWF_waves branch + a few compatability changes and some mislaid documentation

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2014/dev_r4642_WavesWG/DOC/TexFiles/Chapters/Chap_DYN.tex

    r4560 r4644  
    11% ================================================================ 
    2 % Chapter Ocean Dynamics (DYN) 
     2% Chapter Ocean Dynamics (DYN) 
    33% ================================================================ 
    44\chapter{Ocean Dynamics (DYN)} 
     
    795795%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   > 
    796796\begin{figure}[!t]    \begin{center} 
    797 \includegraphics[width=0.7\textwidth]{./TexFiles/Figures/Fig_time_split.pdf} 
     797\includegraphics[width=0.7\textwidth]{./TexFiles/Figures/Fig_DYN_dynspg_ts.pdf} 
    798798\caption{  \label{Fig_DYN_dynspg_ts} 
    799799Schematic of the split-explicit time stepping scheme for the external  
     
    12931293 
    12941294% ================================================================ 
     1295% Coriolis-Stokes force 
     1296% ================================================================ 
     1297\section  [Coriolis-Stokes Force (\textit{dynstcor})] 
     1298                {Coriolis-Stokes Force (\mdl{dynstcor})} 
     1299\label{DYN_stcor} 
     1300Waves set up a Lagrangian drift in the down-wave direction known 
     1301as the Stokes drift \citep{Stokes_TCPS47}. Although its drift speed 
     1302$\mathbf{v}_\mathrm{s}$ decays rapidly with depth, it can be substantial 
     1303near the surface ($v_\mathrm{s} {\sim}0.7\, \mathrm{m/s}$). In combination 
     1304with the earth's rotation it adds an additional veering to the upper-ocean 
     1305currents known as the Coriolis-Stokes force \citep{Hasselmann_GAFD70}, 
     1306\begin{equation} 
     1307   \frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho} \nabla p  
     1308  + (\mathbf{u} + \mathbf{v}_\mathrm{s}) \times f\hat{\mathbf{z}} 
     1309  + \frac{1}{\rho} \frac{\partial \tau}{\partial z}. 
     1310  \label{Eq_dynstcor_stcor} 
     1311\end{equation} 
     1312It requires integration of the full two-dimensional spectrum to get the 
     1313Stokes profile \citep{Janssen_AH04,Janssen_JGR12}, 
     1314\begin{equation} 
     1315   \mathbf{v}_\mathrm{s}(z) = 4\pi \int_0^{2\pi} \int_0^{\infty}  
     1316                              f \mathbf{k} e^{2kz} F(f,\theta) \, df\, d\theta, 
     1317   \label{Eq_dynstcor_uvfth} 
     1318\end{equation} 
     1319This is computationally demanding and requires access to the full 
     1320two-dimensional wave spectra from a numerical wave model (see e.g. the 
     1321ECMWF WAM implementation, ECWAM, \citealt{wam38r1}), so 
     1322we introduce a parameterized Stokes drift velocity profile 
     1323\citep{Janssen_ECMWF13,Breivik_ECMWF13}, 
     1324\begin{equation} 
     1325   \mathbf{v}_\mathrm{e} = \mathbf{v}_0  
     1326   \frac{e^{2k_\mathrm{e}z}}{1-8k_\mathrm{e}z}. 
     1327   \label{Eq_dynstcor_uve1} 
     1328\end{equation} 
     1329The surface velocity vector $\mathbf{v}_0$ is computed by ECWAM and is 
     1330available both in ERA-Interim \citep{Dee_QJRMS11} and operationally. 
     1331 
     1332The transport under such a profile involves the exponential integral $E_1$ and  
     1333can be solved analytically \citep{Breivik_ECMWF13} to yield 
     1334\begin{equation} 
     1335   {T}_\mathrm{s} = \frac{{v}_0 e^{1/4} E_1(1/4)}{8 k_\mathrm{e}}. 
     1336   \label{Eq_dynstcor_UVe}  
     1337\end{equation} 
     1338This imposes the following constraint on the wavenumber, 
     1339\begin{equation} 
     1340   k_\mathrm{e} = \frac{{v}_0 e^{1/4} E_1(1/4)}{8 
     1341   {T}_\mathrm{s}}. 
     1342   \label{Eq_dynstcor_ke}  
     1343\end{equation} 
     1344Here $E_1(1/4) \approx 1.34$, thus 
     1345\begin{equation} 
     1346   k_\mathrm{e} \approx \frac{{v}_0}{5.97{T}_\mathrm{s}}. 
     1347   \label{Eq_dynstcor_keapprox}  
     1348\end{equation} 
     1349The $n$-th order spectral moment is defined as 
     1350\begin{equation} 
     1351   m_{n} = \int_0^{2\pi} \int_0^{\infty}  
     1352           f^{n} F(f,\theta) \, df\, d\theta. 
     1353   \label{Eq_dynstcor_moment} 
     1354\end{equation} 
     1355The mean frequency is defined as $\overline{f} = m_1/m_0$ 
     1356\citep{wmo98,Holthuijsen07} and the significant wave height $H_{m_0} = 
     13574\sqrt{m_0}$.  We can derive the first moment from the integrated parameters 
     1358of a wave model or from wave observations and find an estimate for the 
     1359Stokes transport, 
     1360\begin{equation} 
     1361  \mathbf{T}_\mathrm{s} \approx \frac{2\pi}{16} \overline{f} H_{m_0}^2 
     1362  \hat{\mathbf{k}}_\mathrm{s}. 
     1363  \label{Eq_dynstcor_UVHsf} 
     1364\end{equation} 
     1365Here $\hat{\mathbf{k}}_\mathrm{s} = (\sin \theta_\mathrm{s}, 
     1366\cos \theta_\mathrm{s})$ is the unit vector in the 
     1367direction $\theta_\mathrm{s}$ of the Stokes transport.  From 
     1368Eqs~(\ref{Eq_dynstcor_keapprox})-(\ref{Eq_dynstcor_UVHsf}) it is clear that 
     1369in order to compute the Stokes drift velocity profile at the desired vertical 
     1370levels we need $H_\mathrm{s}$, $\overline{f}$ and $\mathbf{v}_0$. 
     1371 
     1372The Coriolis-Stokes effect is enabled when \np{ln\_stcor} = true (default = 
     1373false). All wave-related switches are found in \ngn{namsbc}. 
     1374The surface Stokes drift velocity vectors (east and north components) are 
     1375archived in ERA-Interim as GRIB parameters 215 and 216 respectively (table 
     1376140). 
     1377%\smallskip 
     1378%%----------------------------------------------namsbc---------------------------------------------------- 
     1379%\namdisplay{namsbc} 
     1380%%-------------------------------------------------------------------------------------------------------- 
     1381%\smallskip 
     1382% 
     1383% ================================================================ 
Note: See TracChangeset for help on using the changeset viewer.