New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 4644 for branches/2014/dev_r4642_WavesWG/DOC/TexFiles/Chapters/Chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2014-05-15T15:56:53+02:00 (10 years ago)
Author:
acc
Message:

Branch 2014/dev_r4642_WavesWG #1323. Import of surface wave components from the 2013/dev_ECMWF_waves branch + a few compatability changes and some mislaid documentation

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2014/dev_r4642_WavesWG/DOC/TexFiles/Chapters/Chap_ZDF.tex

    r4147 r4644  
    197197instabilities associated with too weak vertical diffusion. They must be  
    198198specified at least larger than the molecular values, and are set through  
    199 \np{rn\_avm0} and \np{rn\_avt0} (namzdf namelist, see \S\ref{ZDF_cst}). 
     199\np{rn\_avm0} and \np{rn\_avt0} (\ngn{namzdf} namelist, see \S\ref{ZDF_cst}). 
    200200 
    201201\subsubsection{Turbulent length scale} 
     
    262262\end{equation} 
    263263 
    264 At the ocean surface, a non zero length scale is set through the  \np{rn\_lmin0} namelist  
    265 parameter. Usually the surface scale is given by $l_o = \kappa \,z_o$  
    266 where $\kappa = 0.4$ is von Karman's constant and $z_o$ the roughness  
    267 parameter of the surface. Assuming $z_o=0.1$~m \citep{Craig_Banner_JPO94}  
    268 leads to a 0.04~m, the default value of \np{rn\_lsurf}. In the ocean interior  
    269 a minimum length scale is set to recover the molecular viscosity when $\bar{e}$  
    270 reach its minimum value ($1.10^{-6}= C_k\, l_{min} \,\sqrt{\bar{e}_{min}}$ ). 
     264At the ocean surface, a non zero length scale is set through the 
     265\np{rn\_lmin0} namelist parameter. Usually the surface scale is given 
     266by $l_o = \kappa \,z_o$ where $\kappa = 0.4$ is von Karman's constant 
     267and $z_o$ the roughness parameter of the surface. Assuming $z_o=0.1$~m 
     268\citep{Craig_Banner_JPO94} leads to a 0.04~m, the default value of 
     269\np{rn\_lsurf}. In the ocean interior a minimum length scale is set to 
     270recover the molecular viscosity when $\bar{e}$ reach its minimum value 
     271($1\times 10^{-6}= C_k\, l_{min} \,\sqrt{\bar{e}_{min}}$). 
    271272 
    272273 
     
    283284\bar{e}_o = \frac{1}{2}\,\left(  15.8\,\alpha_{CB} \right)^{2/3} \,\frac{|\tau|}{\rho_o} 
    284285\end{equation} 
    285 where $\alpha_{CB}$ is the \citet{Craig_Banner_JPO94} constant of proportionality  
    286 which depends on the ''wave age'', ranging from 57 for mature waves to 146 for  
    287 younger waves \citep{Mellor_Blumberg_JPO04}.  
    288 The boundary condition on the turbulent length scale follows the Charnock's relation: 
     286where $\alpha_{CB}$ is the \citet{Craig_Banner_JPO94} constant of 
     287proportionality which depends on the ''wave age'', ranging from 57 for mature 
     288waves to 146 for younger waves \citep{Mellor_Blumberg_JPO04}.  The boundary 
     289condition on the turbulent length scale follows Charnock's relation: 
    289290\begin{equation} \label{ZDF_Lsbc} 
    290291l_o = \kappa \beta \,\frac{|\tau|}{g\,\rho_o} 
    291292\end{equation} 
    292 where $\kappa=0.40$ is the von Karman constant, and $\beta$ is the Charnock's constant. 
    293 \citet{Mellor_Blumberg_JPO04} suggest $\beta = 2.10^{5}$ the value chosen by \citet{Stacey_JPO99} 
    294 citing observation evidence, and $\alpha_{CB} = 100$ the Craig and Banner's value. 
    295 As the surface boundary condition on TKE is prescribed through $\bar{e}_o = e_{bb} |\tau| / \rho_o$,  
    296 with $e_{bb}$ the \np{rn\_ebb} namelist parameter, setting \np{rn\_ebb}~=~67.83 corresponds  
    297 to $\alpha_{CB} = 100$. further setting  \np{ln\_lsurf} to true applies \eqref{ZDF_Lsbc}  
    298 as surface boundary condition on length scale, with $\beta$ hard coded to the Stacet's value. 
    299 Note that a minimal threshold of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters)  
    300 is applied on surface $\bar{e}$ value. 
     293where $\kappa=0.40$ is the von Karman constant, and $\beta$ is Charnock's 
     294constant.  \citet{Mellor_Blumberg_JPO04} suggest $\beta = 2\times10^{5}$ the value 
     295chosen by \citet{Stacey_JPO99} citing observation evidence, and $\alpha_{CB} 
     296= 100$ the Craig and Banner's value.  As the surface boundary condition 
     297on TKE is prescribed through $\bar{e}_o = e_{bb} |\tau| / \rho_o$, with 
     298$e_{bb}$ the \np{rn\_ebb} namelist parameter, setting \np{rn\_ebb}~=~67.83 
     299corresponds to $\alpha_{CB} = 100$. further setting  \np{ln\_lsurf} to true 
     300applies \eqref{ZDF_Lsbc} as surface boundary condition on length scale, with 
     301$\beta$ hard coded to Stacey's value.  Note that a minimal threshold 
     302of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters) is applied on 
     303surface $\bar{e}$ value. 
     304 
     305\subsubsection{Surface wave breaking flux from a wave model \np{ln\_wavetke}} 
     306%-----------------------------------------------------------------------% 
     307The constant of proportionality $\alpha_{CB}$ in Eq~\eqref{ZDF_Esbc} relates 
     308the water-side friction velocity $w_*$ to the turbulent energy flux as follows, 
     309\begin{equation} 
     310   \Phi_\mathrm{oc} = \rho_\mathrm{w} \alpha_\mathrm{CB} w_*^3. 
     311   \label{Eq_ZDF_alpha} 
     312\end{equation} 
     313The default option in NEMO \eqref{ZDF_Esbc} is to assume $\alpha_{CB} 
     314= 100$ as explained in the previous section. 
     315However, the energy flux can be computed from the dissipation source term 
     316of a wave model \citep{Janssen_AH04,Janssen_JGR12,Janssen_ECMWF13}, 
     317\begin{equation} 
     318   \Phi_\mathrm{oc} = \Phi_\mathrm{in} - \rho_\mathrm{w}g \int_0^{2\pi}  
     319                      \int_0^{\infty} (S_\mathrm{in} + S_\mathrm{ds})\,  
     320                        d\omega d\theta. 
     321   \label{Eq_ZDF_phioc} 
     322\end{equation} 
     323Assuming high-frequency equilibrium and ignoring the direct turbulent energy 
     324flux from the atmosphere to the ocean we get 
     325\begin{equation} 
     326   \Phi_\mathrm{oc} = -\rho_\mathrm{w}g \int_0^{2\pi}  
     327                      \int_0^{\omega_\mathrm{c}} S_\mathrm{ds}\,  
     328                        d\omega d\theta = -\rho_\mathrm{a} m u_*^3. 
     329   \label{Eq_ZDF_m} 
     330\end{equation} 
     331Here, $m \approx -\sqrt{\rho_\mathrm{a}/\rho_\mathrm{w}} \alpha_\mathrm{CB}$ 
     332is the energy flux \emph{from} the waves (thus always negative) normalized by 
     333the air friction velocity $u_*$. It 
     334is archived as PHIOC (GRIB parameter 212, table 140) in ERA-Interim and also 
     335operationally by ECMWF.  The namelist parameter \np{ln\_wavetke} controls 
     336the wave TKE flux.  We assume that the flux has been converted to physical 
     337units following \eqref{Eq_ZDF_m} before ingested by NEMO. 
     338 
     339NEMO computes the upper boundary condition following 
     340\citet{Mellor_Blumberg_JPO04}, see \eqref{ZDF_Esbc}.  Since $e$ varies 
     341rapidly with depth, we want to weight the surface value $\overline{e}_o$ 
     342by the thickness of the uppermost level to attain a value representative 
     343for the turbulence level of the uppermost level, 
     344\begin{equation} 
     345   \overline{e}_1 = \frac{\overline{e}_o}{L} \int_{-L}^{0} e(z) \,dz. 
     346   \label{Eq_ZDF_eavg} 
     347\end{equation} 
     348Here $L = \Delta z_1/2$ is the depth of the $T$-point of the uppermost level. 
     349This adjustment is crucial with model configurations with a thick uppermost 
     350level, e.g. ORCA1L42.  If we assume, as \citet{Mellor_Blumberg_JPO04} do, that in the 
     351wave-affected layer the roughness length can be set to a constant which we 
     352choose to be $z_\mathrm{w} = 0.5H_\mathrm{s}$ and that in this near-surface 
     353region diffusion balances dissipation, the TKE equation attains the simple 
     354exponential solution \citep{Mellor_Blumberg_JPO04} 
     355\begin{equation} 
     356  e(z) = \overline{e}_o \exp(2\lambda z/3). 
     357   \label{Eq_ZDF_phimb} 
     358\end{equation} 
     359Here, the length scale $\lambda^{-1}$ is sea-state dependent, see Eq (10) by 
     360\citet{Mellor_Blumberg_JPO04}, 
     361\begin{equation} 
     362   \lambda = [3/(S_q B_1 \kappa^2)]^{1/2}z_\mathrm{w}^{-1} \approx 
     363   \frac{2.38}{z_\mathrm{w}}. 
     364\end{equation} 
     365We have assumed $S_q=0.2$ and $B=16.6$ \citep{Mellor_Yamada_1982}, as 
     366used in NEMO.  For a wave height of 2.5 m, which is close to the global 
     367mean, $\lambda^{-1} \approx 0.5\, \mathrm{m}$.  Integrating \eqref{Eq_ZDF_phimb} 
     368is straightforward, and the average TKE in \eqref{Eq_ZDF_eavg} becomes 
     369\begin{equation} 
     370  \overline{e}_1 = \overline{e}_o \frac{3}{2\lambda L} \left[1 - 
     371  \exp(-2\lambda L/3)\right]. 
     372\end{equation} 
     373The wave model energy flux is controlled by \np{ln\_wavetke} in namelist 
     374\ngn{namsbc}. 
    301375 
    302376 
     
    318392  
    319393By making an analogy with the characteristic convective velocity scale  
    320 ($e.g.$, \citet{D'Alessio_al_JPO98}), $P_{LC}$ is assumed to be :  
     394($e.g.$, \citet{D'Alessio_al_JPO98}), $P_{LC}$ is assumed to be:  
    321395\begin{equation} 
    322396P_{LC}(z) = \frac{w_{LC}^3(z)}{H_{LC}} 
Note: See TracChangeset for help on using the changeset viewer.