New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6225 for branches/2014/dev_r4704_NOC5_MPP_BDY_UPDATE/DOC/TexFiles/Chapters/Chap_Model_Basics.tex – NEMO

Ignore:
Timestamp:
2016-01-08T10:35:19+01:00 (8 years ago)
Author:
jamesharle
Message:

Update MPP_BDY_UPDATE branch to be consistent with head of trunk

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2014/dev_r4704_NOC5_MPP_BDY_UPDATE/DOC/TexFiles/Chapters/Chap_Model_Basics.tex

    r3294 r6225  
    247247sufficient to solve a linearized version of (\ref{Eq_PE_ssh}), which still allows  
    248248to take into account freshwater fluxes applied at the ocean surface \citep{Roullet_Madec_JGR00}. 
     249Nevertheless, with the linearization, an exact conservation of heat and salt contents is lost. 
    249250 
    250251The filtering of EGWs in models with a free surface is usually a matter of discretisation  
    251 of the temporal derivatives, using the time splitting method \citep{Killworth_al_JPO91, Zhang_Endoh_JGR92}  
    252 or the implicit scheme \citep{Dukowicz1994}. In \NEMO, we use a slightly different approach  
    253 developed by \citet{Roullet_Madec_JGR00}: the damping of EGWs is ensured by introducing an  
    254 additional force in the momentum equation. \eqref{Eq_PE_dyn} becomes:  
    255 \begin{equation} \label{Eq_PE_flt} 
    256 \frac{\partial {\rm {\bf U}}_h }{\partial t}= {\rm {\bf M}} 
    257 - g \nabla \left( \tilde{\rho} \ \eta \right)  
    258 - g \ T_c \nabla \left( \widetilde{\rho} \ \partial_t \eta \right)  
    259 \end{equation} 
    260 where $T_c$, is a parameter with dimensions of time which characterizes the force,  
    261 $\widetilde{\rho} = \rho / \rho_o$ is the dimensionless density, and $\rm {\bf M}$  
    262 represents the collected contributions of the Coriolis, hydrostatic pressure gradient,  
    263 non-linear and viscous terms in \eqref{Eq_PE_dyn}. 
    264  
    265 The new force can be interpreted as a diffusion of vertically integrated volume flux divergence.  
    266 The time evolution of $D$ is thus governed by a balance of two terms, $-g$ \textbf{A} $\eta$  
    267 and $g \, T_c \,$ \textbf{A} $D$, associated with a propagative regime and a diffusive regime  
    268 in the temporal spectrum, respectively. In the diffusive regime, the EGWs no longer propagate,  
    269 $i.e.$ they are stationary and damped. The diffusion regime applies to the modes shorter than  
    270 $T_c$. For longer ones, the diffusion term vanishes. Hence, the temporally unresolved EGWs  
    271 can be damped by choosing $T_c > \rdt$. \citet{Roullet_Madec_JGR00} demonstrate that  
    272 (\ref{Eq_PE_flt}) can be integrated with a leap frog scheme except the additional term which  
    273 has to be computed implicitly. This is not surprising since the use of a large time step has a  
    274 necessarily numerical cost. Two gains arise in comparison with the previous formulations.  
    275 Firstly, the damping of EGWs can be quantified through the magnitude of the additional term.  
    276 Secondly, the numerical scheme does not need any tuning. Numerical stability is ensured as  
    277 soon as $T_c > \rdt$. 
    278  
    279 When the variations of free surface elevation are small compared to the thickness of the first  
    280 model layer, the free surface equation (\ref{Eq_PE_ssh}) can be linearized. As emphasized  
    281 by \citet{Roullet_Madec_JGR00} the linearization of (\ref{Eq_PE_ssh}) has consequences on the  
    282 conservation of salt in the model. With the nonlinear free surface equation, the time evolution  
    283 of the total salt content is  
    284 \begin{equation} \label{Eq_PE_salt_content} 
    285     \frac{\partial }{\partial t}\int\limits_{D\eta } {S\;dv}  
    286                         =\int\limits_S {S\;(-\frac{\partial \eta }{\partial t}-D+P-E)\;ds} 
    287 \end{equation} 
    288 where $S$ is the salinity, and the total salt is integrated over the whole ocean volume  
    289 $D_\eta$ bounded by the time-dependent free surface. The right hand side (which is an  
    290 integral over the free surface) vanishes when the nonlinear equation (\ref{Eq_PE_ssh})  
    291 is satisfied, so that the salt is perfectly conserved. When the free surface equation is  
    292 linearized, \citet{Roullet_Madec_JGR00} show that the total salt content integrated in the fixed  
    293 volume $D$ (bounded by the surface $z=0$) is no longer conserved: 
    294 \begin{equation} \label{Eq_PE_salt_content_linear} 
    295          \frac{\partial }{\partial t}\int\limits_D {S\;dv}  
    296                = - \int\limits_S {S\;\frac{\partial \eta }{\partial t}ds}  
    297 \end{equation} 
    298  
    299 The right hand side of (\ref{Eq_PE_salt_content_linear}) is small in equilibrium solutions  
    300 \citep{Roullet_Madec_JGR00}. It can be significant when the freshwater forcing is not balanced and  
    301 the globally averaged free surface is drifting. An increase in sea surface height \textit{$\eta $}  
    302 results in a decrease of the salinity in the fixed volume $D$. Even in that case though,  
    303 the total salt integrated in the variable volume $D_{\eta}$ varies much less, since  
    304 (\ref{Eq_PE_salt_content_linear}) can be rewritten as  
    305 \begin{equation} \label{Eq_PE_salt_content_corrected} 
    306 \frac{\partial }{\partial t}\int\limits_{D\eta } {S\;dv}  
    307 =\frac{\partial}{\partial t} \left[ \;{\int\limits_D {S\;dv} +\int\limits_S {S\eta \;ds} } \right] 
    308 =\int\limits_S {\eta \;\frac{\partial S}{\partial t}ds} 
    309 \end{equation} 
    310  
    311 Although the total salt content is not exactly conserved with the linearized free surface,  
    312 its variations are driven by correlations of the time variation of surface salinity with the  
    313 sea surface height, which is a negligible term. This situation contrasts with the case of  
    314 the rigid lid approximation in which case freshwater forcing is represented by a virtual  
    315 salt flux, leading to a spurious source of salt at the ocean surface  
    316 \citep{Huang_JPO93, Roullet_Madec_JGR00}. 
    317  
    318 \newpage 
    319 $\ $\newline    % force a new ligne 
     252of the temporal derivatives, using a split-explicit method \citep{Killworth_al_JPO91, Zhang_Endoh_JGR92}  
     253or the implicit scheme \citep{Dukowicz1994} or the addition of a filtering force in the momentum equation  
     254\citep{Roullet_Madec_JGR00}. With the present release, \NEMO offers the choice between  
     255an explicit free surface (see \S\ref{DYN_spg_exp}) or a split-explicit scheme strongly  
     256inspired the one proposed by \citet{Shchepetkin_McWilliams_OM05} (see \S\ref{DYN_spg_ts}). 
     257 
     258%\newpage 
     259%$\ $\newline    % force a new ligne 
    320260 
    321261% ================================================================ 
     
    655595the surface pressure, is given by: 
    656596\begin{equation} \label{Eq_PE_spg} 
    657 p_s = \left\{ \begin{split}  
    658 \rho \,g \,\eta &                                 \qquad  \qquad  \;   \qquad \text{ standard free surface} \\  
    659 \rho \,g \,\eta &+ \rho_o \,\mu \,\frac{\partial \eta }{\partial t}      \qquad \text{ filtered     free surface}     
    660 \end{split}  
    661 \right. 
     597p_s =  \rho \,g \,\eta  
    662598\end{equation} 
    663599with $\eta$ is solution of \eqref{Eq_PE_ssh} 
     
    773709\end{equation} 
    774710 
    775 The equations solved by the ocean model \eqref{Eq_PE} in $s-$coordinate can be written as follows: 
     711The equations solved by the ocean model \eqref{Eq_PE} in $s-$coordinate can be written as follows (see Appendix~\ref{Apdx_A_momentum}): 
    776712 
    777713 \vspace{0.5cm} 
    778 * momentum equation: 
     714$\bullet$ Vector invariant form of the momentum equation : 
    779715\begin{multline} \label{Eq_PE_sco_u} 
    780 \frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t}= 
     716\frac{\partial  u  }{\partial t}= 
    781717   +   \left( {\zeta +f} \right)\,v                                     
    782718   -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)  
     
    787723\end{multline} 
    788724\begin{multline} \label{Eq_PE_sco_v} 
    789 \frac{1}{e_3} \frac{\partial \left(  e_3\,v  \right) }{\partial t}= 
     725\frac{\partial v }{\partial t}= 
    790726   -   \left( {\zeta +f} \right)\,u    
    791727   -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^2  \right)         
     
    795731   +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
    796732\end{multline} 
     733 
     734 \vspace{0.5cm} 
     735$\bullet$ Vector invariant form of the momentum equation : 
     736\begin{multline} \label{Eq_PE_sco_u} 
     737\frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t}= 
     738   +   \left( { f + \frac{1}{e_1 \; e_2 } 
     739               \left(    v \frac{\partial e_2}{\partial i} 
     740                  -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, v    \\ 
     741   - \frac{1}{e_1 \; e_2 \; e_3 }   \left(  
     742               \frac{\partial \left( {e_2 \, e_3 \, u\,u} \right)}{\partial i} 
     743      +        \frac{\partial \left( {e_1 \, e_3 \, v\,u} \right)}{\partial j}   \right) 
     744   - \frac{1}{e_3 }\frac{\partial \left( { \omega\,u} \right)}{\partial k}    \\ 
     745   - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho _o}    \right)     
     746   +  g\frac{\rho }{\rho _o}\sigma _1  
     747   +   D_u^{\vect{U}}  +   F_u^{\vect{U}} \quad 
     748\end{multline} 
     749\begin{multline} \label{Eq_PE_sco_v} 
     750\frac{1}{e_3} \frac{\partial \left(  e_3\,v  \right) }{\partial t}= 
     751   -   \left( { f + \frac{1}{e_1 \; e_2} 
     752               \left(    v \frac{\partial e_2}{\partial i} 
     753                  -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, u   \\ 
     754   - \frac{1}{e_1 \; e_2 \; e_3 }   \left(  
     755               \frac{\partial \left( {e_2 \; e_3  \,u\,v} \right)}{\partial i} 
     756      +        \frac{\partial \left( {e_1 \; e_3  \,v\,v} \right)}{\partial j}   \right) 
     757                 - \frac{1}{e_3 } \frac{\partial \left( { \omega\,v} \right)}{\partial k}    \\ 
     758   -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho _o}  \right)  
     759    +  g\frac{\rho }{\rho _o }\sigma _2    
     760   +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
     761\end{multline} 
     762 
    797763where the relative vorticity, \textit{$\zeta $}, the surface pressure gradient, and the hydrostatic  
    798764pressure have the same expressions as in $z$-coordinates although they do not represent  
    799765exactly the same quantities. $\omega$ is provided by the continuity equation  
    800766(see Appendix~\ref{Apdx_A}): 
    801  
    802767\begin{equation} \label{Eq_PE_sco_continuity} 
    803768\frac{\partial e_3}{\partial t} + e_3 \; \chi + \frac{\partial \omega }{\partial s} = 0    
     
    809774 
    810775 \vspace{0.5cm} 
    811 * tracer equations: 
     776$\bullet$ tracer equations: 
    812777\begin{multline} \label{Eq_PE_sco_t} 
    813778\frac{1}{e_3} \frac{\partial \left(  e_3\,T  \right) }{\partial t}= 
     
    1024989 
    1025990The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM10s}. 
    1026 It is not available in the current version of \NEMO. 
     991It is available in \NEMO since the version 3.4. Nevertheless, it is currently not robust enough  
     992to be used in all possible configurations. Its use is therefore not recommended. 
     993We  
    1027994 
    1028995\newpage  
     
    11801147ocean (see Appendix~\ref{Apdx_B}). 
    11811148 
     1149For \textit{iso-level} diffusion, $r_1$ and $r_2 $ are zero. $\Re $ reduces to the identity  
     1150in the horizontal direction, no rotation is applied.  
     1151 
    11821152For \textit{geopotential} diffusion, $r_1$ and $r_2 $ are the slopes between the  
    1183 geopotential and computational surfaces: in $z$-coordinates they are zero  
    1184 ($r_1 = r_2 = 0$) while in $s$-coordinate (including $\textit{z*}$ case) they are  
    1185 equal to $\sigma _1$ and $\sigma _2$, respectively (see \eqref{Eq_PE_sco_slope} ). 
     1153geopotential and computational surfaces: they are equal to $\sigma _1$ and $\sigma _2$,  
     1154respectively (see \eqref{Eq_PE_sco_slope} ). 
    11861155 
    11871156For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between the isoneutral  
     
    12351204The lateral fourth order tracer diffusive operator is defined by: 
    12361205\begin{equation} \label{Eq_PE_bilapT} 
    1237 D^{lT}=\Delta \left( {A^{lT}\;\Delta T} \right)  
    1238 \qquad \text{where} \  D^{lT}=\Delta \left( {A^{lT}\;\Delta T} \right) 
     1206D^{lT}=\Delta \left( \;\Delta T \right)  
     1207\qquad \text{where} \;\; \Delta \bullet = \nabla \left( {\sqrt{B^{lT}\,}\;\Re \;\nabla \bullet} \right) 
    12391208 \end{equation} 
    1240  
    12411209It is the second order operator given by \eqref{Eq_PE_iso_tensor} applied twice with  
    1242 the eddy diffusion coefficient correctly placed.  
     1210the harmonic eddy diffusion coefficient set to the square root of the biharmonic one.  
    12431211 
    12441212 
     
    12621230 
    12631231Such a formulation ensures a complete separation between the vorticity and  
    1264 horizontal divergence fields (see Appendix~\ref{Apdx_C}). Unfortunately, it is not  
    1265 available for geopotential diffusion in $s-$coordinates and for isoneutral  
    1266 diffusion in both $z$- and $s$-coordinates ($i.e.$ when a rotation is required).  
    1267 In these two cases, the $u$ and $v-$fields are considered as independent scalar  
    1268 fields, so that the diffusive operator is given by: 
     1232horizontal divergence fields (see Appendix~\ref{Apdx_C}).  
     1233Unfortunately, it is only available in \textit{iso-level} direction.  
     1234When a rotation is required ($i.e.$ geopotential diffusion in $s-$coordinates  
     1235or isoneutral diffusion in both $z$- and $s$-coordinates), the $u$ and $v-$fields  
     1236are considered as independent scalar fields, so that the diffusive operator is given by: 
    12691237\begin{equation} \label{Eq_PE_lapU_iso} 
    12701238\begin{split} 
    1271  D_u^{l{\rm {\bf U}}} &= \nabla .\left( {\Re \;\nabla u} \right) \\  
    1272  D_v^{l{\rm {\bf U}}} &= \nabla .\left( {\Re \;\nabla v} \right) 
     1239 D_u^{l{\rm {\bf U}}} &= \nabla .\left( {A^{lm} \;\Re \;\nabla u} \right) \\  
     1240 D_v^{l{\rm {\bf U}}} &= \nabla .\left( {A^{lm} \;\Re \;\nabla v} \right) 
    12731241 \end{split} 
    12741242 \end{equation} 
     
    12821250 
    12831251As for tracers, the fourth order momentum diffusive operator along $z$ or $s$-surfaces  
    1284 is a re-entering second order operator \eqref{Eq_PE_lapU} or \eqref{Eq_PE_lapU}  
    1285 with the eddy viscosity coefficient correctly placed: 
    1286  
    1287 geopotential diffusion in $z$-coordinate: 
    1288 \begin{equation} \label{Eq_PE_bilapU} 
    1289 \begin{split} 
    1290 {\rm {\bf D}}^{l{\rm {\bf U}}} &=\nabla _h \left\{ {\;\nabla _h {\rm {\bf  
    1291 .}}\left[ {A^{lm}\,\nabla _h \left( \chi \right)} \right]\;}  
    1292 \right\}\;   \\ 
    1293 &+\nabla _h \times \left\{ {\;{\rm {\bf k}}\cdot \nabla \times  
    1294 \left[ {A^{lm}\,\nabla _h \times \left( {\zeta \;{\rm {\bf k}}} \right)}  
    1295 \right]\;} \right\} 
    1296 \end{split} 
    1297 \end{equation} 
    1298  
    1299 \gmcomment{  change the position of the coefficient, both here and in the code} 
    1300  
    1301 geopotential diffusion in $s$-coordinate: 
    1302 \begin{equation} \label{Eq_bilapU_iso} 
    1303    \left\{   \begin{aligned} 
    1304          D_u^{l{\rm {\bf U}}} =\Delta \left( {A^{lm}\;\Delta u} \right) \\  
    1305          D_v^{l{\rm {\bf U}}} =\Delta \left( {A^{lm}\;\Delta v} \right) 
    1306    \end{aligned}    \right. 
    1307    \quad \text{where} \quad  
    1308    \Delta \left( \bullet \right) = \nabla \cdot \left( \Re \nabla(\bullet) \right)  
    1309 \end{equation} 
    1310  
     1252is a re-entering second order operator \eqref{Eq_PE_lapU} or \eqref{Eq_PE_lapU_iso}  
     1253with the harmonic eddy diffusion coefficient set to the square root of the biharmonic one. 
     1254 
Note: See TracChangeset for help on using the changeset viewer.