New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6391 – NEMO

Changeset 6391


Ignore:
Timestamp:
2016-03-15T16:14:04+01:00 (8 years ago)
Author:
acc
Message:

Branch 2016/dev_r6325_SIMPLIF_1. Documentation changes for the Smagorinsky reimplementation (#1689. 2016WP-SIMPLIF-5). Note this documentation has been purposely submitted to the 2016WP-SIMPLIF-1 development branch at gm's request to avoid complications or loss when Chap_LDF.tex is rewritten on that branch. This submission affects Chapters/Chap_LDF.tex and Namelist/namdyn_ldf only.

Location:
branches/2016/dev_r6325_SIMPLIF_1/DOC/TexFiles
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • branches/2016/dev_r6325_SIMPLIF_1/DOC/TexFiles/Chapters/Chap_LDF.tex

    r6347 r6391  
    404404and both \key{traldf\_eiv} and \key{traldf\_c2d} are defined. 
    405405 
    406 \subsubsection{Smagorinsky viscosity (\key{dynldf\_c3d} and \key{dynldf\_smag})} 
    407  
    408 The \key{dynldf\_smag} key activates a 3D, time-varying viscosity that depends on the 
    409 resolved motions. Following \citep{Smagorinsky_93} the viscosity coefficient is set 
    410 proportional to a local deformation rate based on the horizontal shear and tension, 
    411 namely: 
    412  
    413 \begin{equation} 
    414 A_{m_{Smag}} = \left(\frac{{\sf CM_{Smag}}}{\pi}\right)^2L^2\vert{D}\vert 
    415 \end{equation} 
    416  
    417 \noindent where the deformation rate $\vert{D}\vert$ is given by  
    418  
    419 \begin{equation} 
    420 \vert{D}\vert=\sqrt{\left({\frac{\partial{u}} {\partial{x}}} 
    421                          -{\frac{\partial{v}} {\partial{y}}}\right)^2 
    422                  +  \left({\frac{\partial{u}} {\partial{y}}} 
    423                          +{\frac{\partial{v}} {\partial{x}}}\right)^2}  
    424 \end{equation} 
    425  
    426 \noindent and $L$ is the local gridscale given by: 
    427  
    428 \begin{equation} 
    429 L^2 = \frac{2{e_1}^2 {e_2}^2}{\left ( {e_1}^2 + {e_2}^2 \right )} 
    430 \end{equation} 
     406\subsubsection{Smagorinsky viscosity (\np{nn\_ahm\_ijk\_t}=32)} 
     407 
     408Setting \np{nn\_ahm\_ijk\_t}=32 activates a 3D, time-varying viscosity that depends on the 
     409resolved motions. Three control parameters are described in the following sections which 
     410may be set in \textit{\ngn{namdyn\_ldf}}. Following \citep{Smagorinsky_93} and 
     411\citep{Griffies_Hallberg_MWR00} the viscosity coefficient is set proportional to a local 
     412deformation rate based on the horizontal shear and tension, namely: 
     413 
     414\begin{equation} 
     415A_{hm} = \left(\frac{{\sf C_{Smag}}}{\pi}\right)^2L^2\vert{D}\vert 
     416\end{equation} 
     417where $D$ is the deformation rate and $L$ is the local gridscale given by: 
     418\begin{equation} 
     419L = \frac{2{e_1} {e_2}}{\left ( {e_1} + {e_2} \right )} 
     420\end{equation} 
     421In orthogonal curvilinear coordinate, we have the tension and shearing strains ($D_T$ and $D_S$) given by 
     422\begin{equation}        
     423\begin{split}   \label{EVP_strain} 
     424D_T &= \frac{e_2}{e_1} \,\frac{\partial}{\partial i} \left( \frac{u} {e_2} \right)  
     425     - \frac{e_1}{e_2} \,\frac{\partial}{\partial j} \left( \frac{v} {e_1} \right) \\ 
     426D_S &= \frac{e_1}{e_2} \,\frac{\partial}{\partial j} \left( \frac{u} {e_1} \right)  
     427     + \frac{e_2}{e_1} \,\frac{\partial}{\partial i} \left( \frac{v} {e_2} \right) \\ 
     428\end{split}   \end{equation} 
     429and the deformation rate, $D$, is given by: 
     430\begin{equation}        
     431D = \sqrt{  {D_T}^2 + {D_S}^2 } 
     432\end{equation} 
     433On an Arakawa C-grid, $D_T$ is naturally defined at $t$-points and $D_S$ at $f$-points. 
     434Their discretizations are: 
     435\begin{equation} \label{VP_strain_discrete} \begin{split} 
     436% 
     437{D_T} &\equiv \frac{1}{e_{1t} e_{2t}} \left(  e_{2t}^2 \,\delta_i  
     438                                          \left[ \frac{u}{e_{2u}} \right]   
     439                    - e_{1t}^2 \,\delta_j \left[ \frac{v}{e_{1v}} \right]   \right)  \\ 
     440% 
     441{D_S} &\equiv \frac{1}{e_{1f} e_{2f}} \left(  e_{1f}^2 \,\delta_{j+1/2}  
     442                                         \left[ \frac{u}{e_{1u}} \right]   
     443                    - e_{2f}^2 \,\delta_{i+1/2} \left[ \frac{v}{e_{2v}} \right] \right)   
     444\end{split} \end{equation} 
     445The deformation rate, $D$ needs to be defined at both $t$-points and $f$-points: 
     446\begin{equation} \begin{split} 
     447D_t &= \sqrt{  {D_T}^2  +   \overline{ \overline{ {D_S}^2 }}^{\,i,\,j} \,  }   \\ 
     448D_f &= \sqrt{               \overline{ \overline{ {D_T}^2 }}^{\,i,\,j} + {D_S}^2   \, } 
     449\end{split} \end{equation} 
    431450 
    432451\citep{Griffies_Hallberg_MWR00} suggest values in the range 2.2 to 4.0 of the coefficient 
    433 $\sf CM_{Smag}$ for oceanic flows. This value is set via the \np{rn\_cmsmag\_1} namelist 
    434 parameter. An additional parameter: \np{rn\_cmsh} is included in NEMO for experimenting 
    435 with the contribution of the shear term. A value of 1.0 (the default) calculates the 
    436 deformation rate as above; a value of 0.0 will discard the shear term entirely. 
    437  
    438 For numerical stability, the calculated viscosity is bounded according to the following: 
    439  
    440 \begin{equation} 
    441 {\rm MIN}\left ({ L^2\over {8\Delta{t}}}, rn\_ahm\_m\_lap\right ) \geq A_{m_{Smag}}  
    442                                                                   \geq rn\_ahm\_0\_lap 
    443 \end{equation} 
    444  
    445 \noindent with both parameters for the upper and lower bounds being provided via the 
    446 indicated namelist parameters. 
    447  
    448 \bigskip When $ln\_dynldf\_bilap = .true.$, a biharmonic version of the Smagorinsky 
    449 viscosity is also available which sets a coefficient for the biharmonic viscosity as: 
    450  
    451 \begin{equation} 
    452 B_{m_{Smag}} = - \left(\frac{{\sf CM_{bSmag}}}{\pi}\right)^2 {L^4\over 8}\vert{D}\vert 
    453 \end{equation} 
    454  
    455 \noindent which is bounded according to: 
    456  
    457 \begin{equation} 
    458 {\rm MAX}\left (-{ L^4\over {64\Delta{t}}}, rn\_ahm\_m\_blp\right ) \leq B_{m_{Smag}}  
    459                                                                     \leq rn\_ahm\_0\_blp 
    460 \end{equation} 
    461  
    462 \noindent Note the reversal of the inequalities here because NEMO requires the biharmonic 
    463 coefficients as negative numbers. $\sf CM_{bSmag}$ is set via the \np{rn\_cmsmag\_2} 
    464 namelist parameter and the bounding values have corresponding entries in the namelist too. 
    465  
    466 \bigskip The current implementation in NEMO also allows for 3D, time-varying diffusivities 
    467 to be set using the Smagorinsky approach. Users should note that this option is not 
    468 recommended for many applications since diffusivities will tend to be largest near 
    469 boundaries (where shears are greatest) leading to spurious upwellings 
    470 (\citep{Griffies_Bk04}, chapter 18.3.4). Nevertheless the option is there for those 
    471 wishing to experiment. This choice requires both \key{traldf\_c3d} and \key{traldf\_smag} 
    472 and uses the \np{rn\_chsmag} (${\sf CH_{Smag}}$), \np{rn\_smsh} and \np{rn\_aht\_m} 
    473 namelist parameters in an analogous way to \np{rn\_cmsmag\_1}, \np{rn\_cmsh} and 
    474 \np{rn\_ahm\_m\_lap} (see above) to set the diffusion coefficient: 
    475  
    476 \begin{equation} 
    477 A_{h_{Smag}} = \left(\frac{{\sf CH_{Smag}}}{\pi}\right)^2L^2\vert{D}\vert 
    478 \end{equation} 
    479  
    480   
    481 For numerical stability, the calculated diffusivity is bounded according to the following: 
    482  
    483 \begin{equation} 
    484 {\rm MIN}\left ({ L^2\over {8\Delta{t}}}, rn\_aht\_m\right ) \geq A_{h_{Smag}}  
    485                                                              \geq rn\_aht\_0 
    486 \end{equation} 
    487  
     452$\sf C_{Smag}$ for oceanic flows. This value is set via the \np{rn\_csmc} namelist 
     453parameter.  The same reference also derives the numerical stability criteria that suggest 
     454the calculated viscosity should be bounded according to the following: 
     455 
     456\begin{equation} 
     457{ \vert U \vert L\over 2} \leq A_{hm} \leq {L^2 \over 4 (2\Delta t)} 
     458\end{equation} 
     459which differ from \citep{Griffies_Hallberg_MWR00} only in the explicit acknowledgement of 
     460the time interval as $2\Delta t$ to reflect the LeapFrog scheme used in NEMO.  These 
     461bounds are imposed on the coefficients calculated at T and F points with the speed 
     462calculated using the appropriate average of the squares of the surrounding velocities. 
     463 
     464Some flexibility in these bounds may be appropriate in certain situations. For example, 
     465when modelling the equatorial region the presence of a strong equatorial current may 
     466impose a higher lower bound than is desirable or strictly necessary. Flexability is 
     467provided via two extra namelist parameters which can be used to adjust either or both 
     468bounds by constant factors.  These parameters are: \np{rn\_minfac} and \np{rn\_maxfac}. 
     469Their default values are 1.0 which provide the exact bounds specified above but values 
     470other than 1.0 will adjust the bounds according to: 
     471 
     472\begin{equation} 
     473\np{rn\_minfac} \times { \vert U \vert L\over 2} \leq A_{hm} \leq  
     474                                   {L^2 \over 8 \Delta t} \times \np{rn\_maxfac} 
     475\end{equation} 
     476 
     477\bigskip  
     478 
     479When $ln\_dynldf\_bilap = .true.$, a biharmonic version of the Smagorinsky viscosity is 
     480also available which sets a coefficient for the biharmonic viscosity ( following 
     481\citep{Griffies_Hallberg_MWR00}) as: 
     482 
     483\begin{equation}\begin{split} 
     484B_{hm} &= \left(\frac{{\sf C_{Smag}}}{\pi}\right)^2 {L^4\over 8}\vert{D}\vert \\ 
     485             &= A_{hm} {L^2\over 8} 
     486\end{split}\end{equation} 
     487where $A_{hm}$ is the laplacian form of the Smagorinsky viscosity.  This coefficient is 
     488computed from the laplacian values with bounds already applied so the effective bounds on 
     489$B_{hm}$ would be: 
     490\begin{equation} 
     491\np{rn\_minfac} \times { \vert U \vert L^3\over 16} \leq B_{hm} \leq  
     492                                   {L^4 \over 32 \Delta t} \times \np{rn\_maxfac} 
     493\end{equation} 
     494but this lower limit does not reflect the behaviour of the 4th order advection schemes 
     495available in NEMO that have a diffusive component with a biharmonic operator whose eddy 
     496coefficient is equivalent to: 
     497\begin{equation} 
     498{ \vert U \vert L^3\over 12}  
     499\end{equation} 
     500(see equation \eqref{Eq_traadv_ubs2} and surrounding discussion). A safer lower bound for 
     501the biharmonic Smagorinsky eddy coefficient in NEMO is therefore implemented by 
     502introducing a hard-coded multiplier of $4/3$ to the lower bound such that the bounds on 
     503the biharmonic coefficient are: 
     504\begin{equation} 
     505\np{rn\_minfac} \times { \vert U \vert L^3\over 12} \leq B_{hm} \leq  
     506                                   {L^4 \over 32 \Delta t} \times \np{rn\_maxfac} 
     507\end{equation}  
     508Note that the bilaplacian operator is implemented as a re-entrant laplacian 
     509which means the actual values of the coefficient returned by \np{ldf\_dyn} in the 
     510biharmonic case are $\sqrt{B_{hm}}$. 
    488511 
    489512$\ $\newline    % force a new ligne 
     
    516539(5) the eddy coefficient associated with a biharmonic operator must be set to a \emph{negative} value. 
    517540 
    518 (6) it is possible to use both the laplacian and biharmonic operators concurrently. 
     541(6) it is not possible to use both the laplacian and biharmonic operators concurrently. 
    519542 
    520543(7) it is possible to run without explicit lateral diffusion on momentum (\np{ln\_dynldf\_lap} =  
  • branches/2016/dev_r6325_SIMPLIF_1/DOC/TexFiles/Namelist/namdyn_ldf

    r6140 r6391  
    1919   !                                !  = 30  F(i,j,k)=c2d*c1d 
    2020   !                                !  = 31  F(i,j,k)=F(grid spacing and local velocity) 
     21   !                                !  = 32  F(i,j,k)=F(local gridscale and deformation rate) 
     22   ! Caution in 20 and 30 cases the coefficient have to be given for a 1 degree grid (~111km) 
    2123   rn_ahm_0      =  40000.     !  horizontal laplacian eddy viscosity   [m2/s] 
    2224   rn_ahm_b      =      0.     !  background eddy viscosity for ldf_iso [m2/s] 
    2325   rn_bhm_0      = 1.e+12      !  horizontal bilaplacian eddy viscosity [m4/s] 
    24    ! 
    25    ! Caution in 20 and 30 cases the coefficient have to be given for a 1 degree grid (~111km) 
     26   !                       !  Smagorinsky settings (nn_ahm_ijk_t  = 32) : 
     27   rn_csmc       = 3.5         !  Smagorinsky constant of proportionality 
     28   rn_minfac     = 1.0         !  multiplier of theorectical lower limit 
     29   rn_maxfac     = 1.0         !  multiplier of theorectical upper limit 
    2630/ 
Note: See TracChangeset for help on using the changeset viewer.