New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 9393 for branches/2017/dev_merge_2017/DOC/tex_sub/annex_iso.tex – NEMO

Ignore:
Timestamp:
2018-03-13T15:00:56+01:00 (6 years ago)
Author:
nicolasmartin
Message:

Cleaning of section headings, reinstating the index by mixing \np and \forcode macros, continued conversion of source code inclusions

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2017/dev_merge_2017/DOC/tex_sub/annex_iso.tex

    r9392 r9393  
    44% Iso-neutral diffusion : 
    55% ================================================================ 
    6 \chapter[Iso-neutral diffusion and eddy advection using 
    7 triads]{Iso-neutral diffusion and eddy advection using triads} 
     6\chapter{Iso-neutral diffusion and eddy advection using triads} 
    87\label{sec:triad} 
    98\minitoc 
     
    1514 
    1615Two scheme are available to perform the iso-neutral diffusion.  
    17 If the namelist logical \np{ln_traldf_triad} is set true,  
     16If the namelist logical \np{ln\_traldf\_triad} is set true,  
    1817\NEMO updates both active and passive tracers using the Griffies triad representation  
    1918of iso-neutral diffusion and the eddy-induced advective skew (GM) fluxes.  
    20 If the namelist logical \np{ln_traldf_iso} is set true,  
     19If the namelist logical \np{ln\_traldf\_iso} is set true,  
    2120the filtered version of Cox's original scheme (the Standard scheme) is employed (\S\ref{LDF_slp}).  
    2221In the present implementation of the Griffies scheme,  
    23 the advective skew fluxes are implemented even if \np{ln_traldf_eiv} is false. 
     22the advective skew fluxes are implemented even if \np{ln\_traldf\_eiv} is false. 
    2423 
    2524Values of iso-neutral diffusivity and GM coefficient are set as 
     
    3130The options specific to the Griffies scheme include: 
    3231\begin{description}[font=\normalfont] 
    33 \item[\np{ln_triad_iso}] See \S\ref{sec:triad:taper}. If this is set false (the default), then 
     32\item[\np{ln\_triad\_iso}] See \S\ref{sec:triad:taper}. If this is set false (the default), then 
    3433  `iso-neutral' mixing is accomplished within the surface mixed-layer 
    3534  along slopes linearly decreasing with depth from the value immediately below 
    3635  the mixed-layer to zero (flat) at the surface (\S\ref{sec:triad:lintaper}).  
    3736  This is the same treatment as used in the default implementation \S\ref{LDF_slp_iso}; Fig.~\ref{Fig_eiv_slp}.   
    38   Where \np{ln_triad_iso} is set true, the vertical skew flux is further reduced  
     37  Where \np{ln\_triad\_iso} is set true, the vertical skew flux is further reduced  
    3938  to ensure no vertical buoyancy flux, giving an almost pure 
    4039  horizontal diffusive tracer flux within the mixed layer. This is similar to 
    4140  the tapering suggested by \citet{Gerdes1991}. See \S\ref{sec:triad:Gerdes-taper} 
    42 \item[\np{ln_botmix_triad}] See \S\ref{sec:triad:iso_bdry}.  
     41\item[\np{ln\_botmix\_triad}] See \S\ref{sec:triad:iso_bdry}.  
    4342  If this is set false (the default) then the lateral diffusive fluxes 
    4443  associated with triads partly masked by topography are neglected.  
    4544  If it is set true, however, then these lateral diffusive fluxes are applied,  
    4645  giving smoother bottom tracer fields at the cost of introducing diapycnal mixing. 
    47 \item[\np{rn_sw_triad}]  blah blah to be added.... 
     46\item[\np{rn\_sw\_triad}]  blah blah to be added.... 
    4847\end{description} 
    4948The options shared with the Standard scheme include: 
    5049\begin{description}[font=\normalfont] 
    51 \item[\np{ln_traldf_msc}]   blah blah to be added 
    52 \item[\np{rn_slpmax}]  blah blah to be added 
     50\item[\np{ln\_traldf\_msc}]   blah blah to be added 
     51\item[\np{rn\_slpmax}]  blah blah to be added 
    5352\end{description} 
     53 
    5454\section{Triad formulation of iso-neutral diffusion} 
    5555\label{sec:triad:iso} 
     
    5757but formulated within the \NEMO framework, using scale factors rather than grid-sizes. 
    5858 
    59 \subsection{The iso-neutral diffusion operator} 
     59\subsection{Iso-neutral diffusion operator} 
    6060The iso-neutral second order tracer diffusive operator for small 
    6161angles between iso-neutral surfaces and geopotentials is given by 
     
    147147$w$-points but involves horizontal gradients defined at $u$-points. 
    148148 
    149 \subsection{The standard discretization} 
     149\subsection{Standard discretization} 
    150150The straightforward approach to discretize the lateral skew flux 
    151151\eqref{eq:triad:i13c} from tracer cell $i,k$ to $i+1,k$, introduced in 1995 
     
    185185($i.e.$ they enter the computation of density), but it does not work 
    186186for a passive tracer. 
     187 
    187188\subsection{Expression of the skew-flux in terms of triad slopes} 
    188189\citep{Griffies_al_JPO98} introduce a different discretization of the 
     
    278279and in \eqref{eq:triad:i31} $a'_{1}={\:}_i^k{\mathbb{A}_w}_{1/2}^{1/2}$. 
    279280 
    280 \subsection{The full triad fluxes} 
     281\subsection{Full triad fluxes} 
    281282A key property of iso-neutral diffusion is that it should not affect 
    282283the (locally referenced) density. In particular there should be no 
     
    368369  \end{pmatrix}. 
    369370\end{flalign} 
     371 
    370372\subsection{Ensuring the scheme does not increase tracer variance} 
    371373\label{sec:triad:variance} 
     
    471473\right) 
    472474\] 
     475 
    473476\subsection{Triad volumes in Griffes's scheme and in \NEMO} 
    474477To complete the discretization we now need only specify the triad 
     
    633636RHS of \eqref{eq:triad:iso_property3}. 
    634637\end{description} 
     638 
    635639\subsection{Treatment of the triads at the boundaries}\label{sec:triad:iso_bdry} 
    636640The triad slope can only be defined where both the grid boxes centred at 
     
    651655or $i+1,k+1$ tracer points is masked, i.e.\ the $i,k+1$ $u$-point is 
    652656masked. The associated lateral fluxes (grey-black dashed line) are 
    653 masked if \forcode{ln_botmix_triad = .false.}, but left unmasked, 
    654 giving bottom mixing, if \forcode{ln_botmix_triad = .true.}. 
    655  
    656 The default option \forcode{ln_botmix_triad = .false.} is suitable when the 
    657 bbl mixing option is enabled (\key{trabbl}, with \forcode{nn_bbl_ldf = 1}), 
     657masked if \np{ln\_botmix\_triad}\forcode{ = .false.}, but left unmasked, 
     658giving bottom mixing, if \np{ln\_botmix\_triad}\forcode{ = .true.}. 
     659 
     660The default option \np{ln\_botmix\_triad}\forcode{ = .false.} is suitable when the 
     661bbl mixing option is enabled (\key{trabbl}, with \np{nn\_bbl\_ldf}\forcode{ = 1}), 
    658662or  for simple idealized  problems. For setups with topography without 
    659 bbl mixing, \forcode{ln_botmix_triad = .true.} may be necessary. 
     663bbl mixing, \np{ln\_botmix\_triad}\forcode{ = .true.} may be necessary. 
    660664% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    661665\begin{figure}[h] \begin{center} 
     
    674678      or $i+1,k+1$ tracer points is masked, i.e.\ the $i,k+1$ $u$-point 
    675679      is masked. The associated lateral fluxes (grey-black dashed 
    676       line) are masked if \protect\np{botmix_triad}=.false., but left 
    677       unmasked, giving bottom mixing, if \protect\np{botmix_triad}=.true.} 
     680      line) are masked if \np{botmix\_triad}\forcode{ = .false.}, but left 
     681      unmasked, giving bottom mixing, if \np{botmix\_triad}\forcode{ = .true.}} 
    678682 \end{center} \end{figure} 
    679683% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     684 
    680685\subsection{ Limiting of the slopes within the interior}\label{sec:triad:limit} 
    681686As discussed in \S\ref{LDF_slp_iso}, iso-neutral slopes relative to 
     
    703708iso-neutral density flux that drives dianeutral mixing.  In particular this iso-neutral density flux 
    704709is always downwards, and so acts to reduce gravitational potential energy. 
     710 
    705711\subsection{Tapering within the surface mixed layer}\label{sec:triad:taper} 
    706  
    707712Additional tapering of the iso-neutral fluxes is necessary within the 
    708713surface mixed layer. When the Griffies triads are used, we offer two 
    709714options for this. 
     715 
    710716\subsubsection{Linear slope tapering within the surface mixed layer}\label{sec:triad:lintaper} 
    711717This is the option activated by the default choice 
    712 \forcode{ln_triad_iso = .false.}. Slopes $\tilde{r}_i$ relative to 
     718\np{ln\_triad\_iso}\forcode{ = .false.}. Slopes $\tilde{r}_i$ relative to 
    713719geopotentials are tapered linearly from their value immediately below the mixed layer to zero at the 
    714720surface, as described in option (c) of Fig.~\ref{Fig_eiv_slp}, to values 
     
    839845% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    840846 
    841 \subsubsection{Additional truncation of skew iso-neutral flux 
    842   components} 
     847\subsubsection{Additional truncation of skew iso-neutral flux components} 
    843848\label{sec:triad:Gerdes-taper} 
    844 The alternative option is activated by setting \np{ln_triad_iso} = 
     849The alternative option is activated by setting \np{ln\_triad\_iso} = 
    845850  true. This retains the same tapered slope $\rML$  described above for the 
    846851calculation of the $_{33}$ term of the iso-neutral diffusion tensor (the 
     
    884889\section{Eddy induced advection formulated as a skew flux}\label{sec:triad:skew-flux} 
    885890 
    886 \subsection{The continuous skew flux formulation}\label{sec:triad:continuous-skew-flux} 
     891\subsection{Continuous skew flux formulation}\label{sec:triad:continuous-skew-flux} 
    887892 
    888893 When Gent and McWilliams's [1990] diffusion is used, 
     
    917922it to the Eulerian velocity prior to computing the tracer 
    918923advection. This is implemented if \key{traldf\_eiv} is set in the 
    919 default implementation, where \np{ln_traldf_triad} is set 
     924default implementation, where \np{ln\_traldf\_triad} is set 
    920925false. This allows us to take advantage of all the advection schemes 
    921926offered for the tracers (see \S\ref{TRA_adv}) and not just a $2^{nd}$ 
     
    924929paramount importance. 
    925930 
    926 However, when \np{ln_traldf_triad} is set true, \NEMO instead 
     931However, when \np{ln\_traldf\_triad} is set true, \NEMO instead 
    927932implements eddy induced advection according to the so-called skew form 
    928933\citep{Griffies_JPO98}. It is based on a transformation of the advective fluxes 
     
    989994 preserves the tracer variance. 
    990995 
    991 \subsection{The discrete skew flux formulation} 
     996\subsection{Discrete skew flux formulation} 
    992997The skew fluxes in (\ref{eq:triad:eiv_skew_physical}, \ref{eq:triad:eiv_skew_ijk}), like the off-diagonal terms 
    993998(\ref{eq:triad:i13c}, \ref{eq:triad:i31c}) of the small angle diffusion tensor, are best 
     
    10301035operator as it uses the same definition for the slopes.  It also 
    10311036ensures the following two key properties. 
     1037 
    10321038\subsubsection{No change in tracer variance} 
    10331039The discretization conserves tracer variance, $i.e.$ it does not 
     
    11231129and $\triadt{i+1}{k}{R}{-1/2}{1/2}$ are masked when either of the 
    11241130$i,k+1$ or $i+1,k+1$ tracer points is masked, i.e.\ the $i,k+1$ 
    1125 $u$-point is masked. The namelist parameter \np{ln_botmix_triad} has 
     1131$u$-point is masked. The namelist parameter \np{ln\_botmix\_triad} has 
    11261132no effect on the eddy-induced skew-fluxes. 
    11271133 
    1128 \subsection{ Limiting of the slopes within the interior}\label{sec:triad:limitskew} 
     1134\subsection{Limiting of the slopes within the interior}\label{sec:triad:limitskew} 
    11291135Presently, the iso-neutral slopes $\tilde{r}_i$ relative 
    11301136to geopotentials are limited to be less than $1/100$, exactly as in 
     
    11381144option (c) of Fig.~\ref{Fig_eiv_slp}. This linear tapering for the 
    11391145slopes used to calculate the eddy-induced fluxes is 
    1140 unaffected by the value of \np{ln_triad_iso}. 
     1146unaffected by the value of \np{ln\_triad\_iso}. 
    11411147 
    11421148The justification for this linear slope tapering is that, for $A_e$ 
     
    11531159 
    11541160\subsection{Streamfunction diagnostics}\label{sec:triad:sfdiag} 
    1155 Where the namelist parameter \forcode{ln_traldf_gdia = .true.}, diagnosed 
     1161Where the namelist parameter \np{ln\_traldf\_gdia}\forcode{ = .true.}, diagnosed 
    11561162mean eddy-induced velocities are output. Each time step, 
    11571163streamfunctions are calculated in the $i$-$k$ and $j$-$k$ planes at 
Note: See TracChangeset for help on using the changeset viewer.