New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 9393 for branches/2017/dev_merge_2017/DOC/tex_sub/chap_LDF.tex – NEMO

Ignore:
Timestamp:
2018-03-13T15:00:56+01:00 (6 years ago)
Author:
nicolasmartin
Message:

Cleaning of section headings, reinstating the index by mixing \np and \forcode macros, continued conversion of source code inclusions

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2017/dev_merge_2017/DOC/tex_sub/chap_LDF.tex

    r9392 r9393  
    2525Note that this chapter describes the standard implementation of iso-neutral 
    2626tracer mixing, and Griffies's implementation, which is used if 
    27 \forcode{traldf_grif = .true.}, is described in Appdx\ref{sec:triad} 
     27\np{traldf\_grif}\forcode{ = .true.}, is described in Appdx\ref{sec:triad} 
    2828 
    2929%-----------------------------------nam_traldf - nam_dynldf-------------------------------------------- 
     
    3636% Direction of lateral Mixing 
    3737% ================================================================ 
    38 \section  [Direction of Lateral Mixing (\textit{ldfslp})] 
    39       {Direction of Lateral Mixing (\protect\mdl{ldfslp})} 
     38\section{Direction of lateral mixing (\protect\mdl{ldfslp})} 
    4039\label{LDF_slp} 
    4140 
     
    4645A direction for lateral mixing has to be defined when the desired operator does  
    4746not act along the model levels. This occurs when $(a)$ horizontal mixing is  
    48 required on tracer or momentum (\np{ln_traldf_hor} or \np{ln_dynldf_hor})  
     47required on tracer or momentum (\np{ln\_traldf\_hor} or \np{ln\_dynldf\_hor})  
    4948in $s$- or mixed $s$-$z$- coordinates, and $(b)$ isoneutral mixing is required  
    5049whatever the vertical coordinate is. This direction of mixing is defined by its  
     
    5756%gm% add here afigure of the slope in i-direction 
    5857 
    59 \subsection{slopes for tracer geopotential mixing in the $s$-coordinate} 
     58\subsection{Slopes for tracer geopotential mixing in the $s$-coordinate} 
    6059 
    6160In $s$-coordinates, geopotential mixing ($i.e.$ horizontal mixing) $r_1$ and  
     
    8887%gm%  caution I'm not sure the simplification was a good idea!  
    8988 
    90 These slopes are computed once in \rou{ldfslp\_init} when \forcode{ln_sco = .true.}rue,  
    91 and either \forcode{ln_traldf_hor = .true.}rue or \forcode{ln_dynldf_hor = .true.}rue.  
    92  
    93 \subsection{Slopes for tracer iso-neutral mixing}\label{LDF_slp_iso} 
     89These slopes are computed once in \rou{ldfslp\_init} when \np{ln\_sco}\forcode{ = .true.}rue,  
     90and either \np{ln\_traldf\_hor}\forcode{ = .true.}rue or \np{ln\_dynldf\_hor}\forcode{ = .true.}rue.  
     91 
     92\subsection{Slopes for tracer iso-neutral mixing} 
     93\label{LDF_slp_iso} 
    9494In iso-neutral mixing  $r_1$ and $r_2$ are the slopes between the iso-neutral  
    9595and computational surfaces. Their formulation does not depend on the vertical  
     
    147147\item[$s$- or hybrid $s$-$z$- coordinate : ] in the current release of \NEMO,  
    148148iso-neutral mixing is only employed for $s$-coordinates if the 
    149 Griffies scheme is used (\forcode{traldf_grif = .true.}; see Appdx \ref{sec:triad}).  
     149Griffies scheme is used (\np{traldf\_grif}\forcode{ = .true.}; see Appdx \ref{sec:triad}).  
    150150In other words, iso-neutral mixing will only be accurately represented with a  
    151 linear equation of state (\forcode{nn_eos = 1} or 2). In the case of a "true" equation  
     151linear equation of state (\np{nn\_eos}\forcode{ = 1..2}). In the case of a "true" equation  
    152152of state, the evaluation of $i$ and $j$ derivatives in \eqref{Eq_ldfslp_iso}  
    153153will include a pressure dependent part, leading to the wrong evaluation of  
     
    212212ocean model are modified \citep{Weaver_Eby_JPO97, 
    213213  Griffies_al_JPO98}. Griffies's scheme is now available in \NEMO if 
    214 \np{traldf_grif_iso} is set true; see Appdx \ref{sec:triad}. Here, 
     214\np{traldf\_grif\_iso} is set true; see Appdx \ref{sec:triad}. Here, 
    215215another strategy is presented \citep{Lazar_PhD97}: a local 
    216216filtering of the iso-neutral slopes (made on 9 grid-points) prevents 
     
    276276\colorbox{yellow}{add here a discussion about the flattening of the slopes, vs  tapering the coefficient.} 
    277277 
    278 \subsection{slopes for momentum iso-neutral mixing} 
     278\subsection{Slopes for momentum iso-neutral mixing} 
    279279 
    280280The iso-neutral diffusion operator on momentum is the same as the one used on  
     
    306306% Lateral Mixing Operator 
    307307% ================================================================ 
    308 \section [Lateral Mixing Operators (\textit{ldftra}, \textit{ldfdyn})]  
    309         {Lateral Mixing Operators (\protect\mdl{traldf}, \protect\mdl{traldf}) } 
     308\section{Lateral mixing operators (\protect\mdl{traldf}, \protect\mdl{traldf}) } 
    310309\label{LDF_op} 
    311310 
     
    315314% Lateral Mixing Coefficients 
    316315% ================================================================ 
    317 \section [Lateral Mixing Coefficient (\textit{ldftra}, \textit{ldfdyn})]  
    318         {Lateral Mixing Coefficient (\protect\mdl{ldftra}, \protect\mdl{ldfdyn}) } 
     316\section{Lateral mixing coefficient (\protect\mdl{ldftra}, \protect\mdl{ldfdyn}) } 
    319317\label{LDF_coef} 
    320318 
     
    344342as follows: 
    345343 
    346 \subsubsection{Constant Mixing Coefficients (default option)} 
     344\subsubsection{Constant mixing coefficients (default option)} 
    347345When none of the \textbf{key\_dynldf\_...} and \textbf{key\_traldf\_...} keys are  
    348346defined, a constant value is used over the whole ocean for momentum and  
    349 tracers, which is specified through the \np{rn_ahm0} and \np{rn_aht0} namelist  
     347tracers, which is specified through the \np{rn\_ahm0} and \np{rn\_aht0} namelist  
    350348parameters. 
    351349 
    352 \subsubsection{Vertically varying Mixing Coefficients (\protect\key{traldf\_c1d} and \key{dynldf\_c1d})}  
     350\subsubsection{Vertically varying mixing coefficients (\protect\key{traldf\_c1d} and \key{dynldf\_c1d})}  
    353351The 1D option is only available when using the $z$-coordinate with full step.  
    354352Indeed in all the other types of vertical coordinate, the depth is a 3D function  
     
    356354mixing coefficients will require 3D arrays. In the 1D option, a hyperbolic variation  
    357355of the lateral mixing coefficient is introduced in which the surface value is  
    358 \np{rn_aht0} (\np{rn_ahm0}), the bottom value is 1/4 of the surface value,  
     356\np{rn\_aht0} (\np{rn\_ahm0}), the bottom value is 1/4 of the surface value,  
    359357and the transition takes place around z=300~m with a width of 300~m  
    360358($i.e.$ both the depth and the width of the inflection point are set to 300~m).  
    361359This profile is hard coded in file \hf{traldf\_c1d}, but can be easily modified by users. 
    362360 
    363 \subsubsection{Horizontally Varying Mixing Coefficients (\protect\key{traldf\_c2d} and \protect\key{dynldf\_c2d})} 
     361\subsubsection{Horizontally varying mixing coefficients (\protect\key{traldf\_c2d} and \protect\key{dynldf\_c2d})} 
    364362By default the horizontal variation of the eddy coefficient depends on the local mesh  
    365363size and the type of operator used: 
     
    372370\end{equation} 
    373371where $e_{max}$ is the maximum of $e_1$ and $e_2$ taken over the whole masked  
    374 ocean domain, and $A_o^l$ is the \np{rn_ahm0} (momentum) or \np{rn_aht0} (tracer)  
     372ocean domain, and $A_o^l$ is the \np{rn\_ahm0} (momentum) or \np{rn\_aht0} (tracer)  
    375373namelist parameter. This variation is intended to reflect the lesser need for subgrid  
    376374scale eddy mixing where the grid size is smaller in the domain. It was introduced in  
     
    384382Other formulations can be introduced by the user for a given configuration.  
    385383For example, in the ORCA2 global ocean model (see Configurations), the laplacian  
    386 viscosity operator uses \np{rn_ahm0}~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$  
    387 north and south and decreases linearly to \np{rn_aht0}~= 2.10$^3$ m$^2$/s  
     384viscosity operator uses \np{rn\_ahm0}~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$  
     385north and south and decreases linearly to \np{rn\_aht0}~= 2.10$^3$ m$^2$/s  
    388386at the equator \citep{Madec_al_JPO96, Delecluse_Madec_Bk00}. This modification  
    389387can be found in routine \rou{ldf\_dyn\_c2d\_orca} defined in \mdl{ldfdyn\_c2d}.  
     
    391389sub-domain options of ORCA2 and ORCA05 (see \&namcfg namelist). 
    392390 
    393 \subsubsection{Space Varying Mixing Coefficients (\protect\key{traldf\_c3d} and \key{dynldf\_c3d})} 
     391\subsubsection{Space varying mixing coefficients (\protect\key{traldf\_c3d} and \key{dynldf\_c3d})} 
    394392 
    395393The 3D space variation of the mixing coefficient is simply the combination of the  
     
    397395a grid size dependence of the magnitude of the coefficient.  
    398396 
    399 \subsubsection{Space and Time Varying Mixing Coefficients} 
     397\subsubsection{Space and time varying mixing coefficients} 
    400398 
    401399There is no default specification of space and time varying mixing coefficient.  
     
    423421(3) for isopycnal diffusion on momentum or tracers, an additional purely  
    424422horizontal background diffusion with uniform coefficient can be added by  
    425 setting a non zero value of \np{rn_ahmb0} or \np{rn_ahtb0}, a background horizontal  
     423setting a non zero value of \np{rn\_ahmb0} or \np{rn\_ahtb0}, a background horizontal  
    426424eddy viscosity or diffusivity coefficient (namelist parameters whose default  
    427425values are $0$). However, the technique used to compute the isopycnal  
     
    438436(6) it is possible to use both the laplacian and biharmonic operators concurrently. 
    439437 
    440 (7) it is possible to run without explicit lateral diffusion on momentum (\np{ln_dynldf_lap} =  
    441 \np{ln_dynldf_bilap} = false). This is recommended when using the UBS advection  
    442 scheme on momentum (\np{ln_dynadv_ubs} = true, see \ref{DYN_adv_ubs})  
     438(7) it is possible to run without explicit lateral diffusion on momentum (\np{ln\_dynldf\_lap}\forcode{ =  
     439}\np{ln\_dynldf\_bilap}\forcode{ = .false.}). This is recommended when using the UBS advection  
     440scheme on momentum (\np{ln\_dynadv\_ubs}\forcode{ = .true.}, see \ref{DYN_adv_ubs})  
    443441and can be useful for testing purposes. 
    444442 
     
    446444% Eddy Induced Mixing 
    447445% ================================================================ 
    448 \section  [Eddy Induced Velocity (\textit{traadv\_eiv}, \textit{ldfeiv})] 
    449       {Eddy Induced Velocity (\protect\mdl{traadv\_eiv}, \protect\mdl{ldfeiv})} 
     446\section{Eddy induced velocity (\protect\mdl{traadv\_eiv}, \protect\mdl{ldfeiv})} 
    450447\label{LDF_eiv} 
    451448 
     
    455452described in \S\ref{LDF_coef}. If none of the keys \key{traldf\_cNd}, 
    456453N=1,2,3 is set (the default), spatially constant iso-neutral $A_l$ and 
    457 GM diffusivity $A_e$ are directly set by \np{rn_aeih_0} and 
    458 \np{rn_aeiv_0}. If 2D-varying coefficients are set with 
     454GM diffusivity $A_e$ are directly set by \np{rn\_aeih\_0} and 
     455\np{rn\_aeiv\_0}. If 2D-varying coefficients are set with 
    459456\key{traldf\_c2d} then $A_l$ is reduced in proportion with horizontal 
    460457scale factor according to \eqref{Eq_title} \footnote{Except in global ORCA 
     
    467464  case, $A_e$ at low latitudes $|\theta|<20^{\circ}$ is further 
    468465  reduced by a factor $|f/f_{20}|$, where $f_{20}$ is the value of $f$ 
    469   at $20^{\circ}$~N} (\mdl{ldfeiv}) and \np{rn_aeiv_0} is ignored 
     466  at $20^{\circ}$~N} (\mdl{ldfeiv}) and \np{rn\_aeiv\_0} is ignored 
    470467unless it is zero. 
    471468} 
     
    485482\end{equation} 
    486483where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set  
    487 through \np{rn_aeiv}, a \textit{nam\_traldf} namelist parameter.  
     484through \np{rn\_aeiv}, a \textit{nam\_traldf} namelist parameter.  
    488485The three components of the eddy induced velocity are computed and add  
    489486to the eulerian velocity in \mdl{traadv\_eiv}. This has been preferred to a  
Note: See TracChangeset for help on using the changeset viewer.