MODULE domvvl !!====================================================================== !! *** MODULE domvvl *** !! Ocean : !!====================================================================== !! History : 2.0 ! 2006-06 (B. Levier, L. Marie) original code !! 3.1 ! 2009-02 (G. Madec, M. Leclair, R. Benshila) pure z* coordinate !! 3.3 ! 2011-10 (M. Leclair) totally rewrote domvvl: vvl option includes z_star and z_tilde coordinates !! 3.6 ! 2014-11 (P. Mathiot) add ice shelf capability !! 4.0 ! 2018-09 (J. Chanut) improve z_tilde robustness !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dom_vvl_init : define initial vertical scale factors, depths and column thickness !! dom_vvl_sf_nxt : Compute next vertical scale factors !! dom_vvl_sf_swp : Swap vertical scale factors and update the vertical grid !! dom_vvl_interpol : Interpolate vertical scale factors from one grid point to another !! dom_vvl_rst : read/write restart file !! dom_vvl_ctl : Check the vvl options !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE phycst ! physical constant USE dom_oce ! ocean space and time domain USE sbc_oce ! ocean surface boundary condition USE wet_dry ! wetting and drying USE usrdef_istate ! user defined initial state (wad only) USE restart ! ocean restart ! USE in_out_manager ! I/O manager USE iom ! I/O manager library USE lib_mpp ! distributed memory computing library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE timing ! Timing USE bdy_oce ! ocean open boundary conditions USE sbcrnf ! river runoff USE dynspg_ts, ONLY: un_adv, vn_adv IMPLICIT NONE PRIVATE PUBLIC dom_vvl_init ! called by domain.F90 PUBLIC dom_vvl_sf_nxt ! called by step.F90 PUBLIC dom_vvl_sf_swp ! called by step.F90 PUBLIC dom_vvl_interpol ! called by dynnxt.F90 ! !!* Namelist nam_vvl LOGICAL , PUBLIC :: ln_vvl_zstar = .FALSE. ! zstar vertical coordinate LOGICAL , PUBLIC :: ln_vvl_ztilde = .FALSE. ! ztilde vertical coordinate LOGICAL , PUBLIC :: ln_vvl_layer = .FALSE. ! level vertical coordinate LOGICAL :: ln_vvl_ztilde_as_zstar = .FALSE. ! ztilde vertical coordinate LOGICAL :: ln_vvl_zstar_at_eqtor = .FALSE. ! ztilde vertical coordinate LOGICAL :: ln_vvl_zstar_on_shelf = .FALSE. ! revert to zstar on shelves LOGICAL :: ln_vvl_adv_fct = .FALSE. ! Centred thickness advection LOGICAL :: ln_vvl_adv_cn2 = .TRUE. ! FCT thickness advection LOGICAL :: ln_vvl_dbg = .FALSE. ! debug control prints LOGICAL :: ln_vvl_ramp = .FALSE. ! Ramp on interfaces displacement LOGICAL :: ln_vvl_lap = .FALSE. ! Laplacian thickness diffusion LOGICAL :: ln_vvl_blp = .FALSE. ! Bilaplacian thickness diffusion LOGICAL :: ln_vvl_regrid = .FALSE. ! ensure layer separation LOGICAL :: ll_shorizd = .FALSE. ! Use "shelf horizon depths" LOGICAL :: ln_vvl_kepe = .FALSE. ! kinetic/potential energy transfer ! ! conservation: not used yet INTEGER :: nn_filt_order=1 REAL(wp) :: rn_ahe3_lap ! thickness diffusion coefficient (Laplacian) REAL(wp) :: rn_ahe3_blp ! thickness diffusion coefficient (Bilaplacian) REAL(wp) :: rn_rst_e3t ! ztilde to zstar restoration timescale [days] REAL(wp) :: rn_lf_cutoff ! cutoff frequency for low-pass filter [days] REAL(wp) :: rn_day_ramp ! Duration of linear ramp [days] REAL(wp) :: hsmall=0.01_wp ! small thickness [m] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: un_td, vn_td ! thickness diffusion transport REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: un_lf, vn_lf, hdivn_lf ! low frequency fluxes and divergence REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: tilde_e3t_b, tilde_e3t_n ! baroclinic scale factors REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: tilde_e3t_a ! baroclinic scale factors REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:) :: tildemask ! mask tilde tendency REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:) :: frq_rst_e3t ! restoring period for scale factors REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:) :: frq_rst_hdv ! restoring period for low freq. divergence REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:) :: hsm, dsm ! INTEGER , ALLOCATABLE, SAVE, DIMENSION(:,:) :: i_int_bot !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION dom_vvl_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION dom_vvl_alloc *** !!---------------------------------------------------------------------- IF( ln_vvl_zstar ) dom_vvl_alloc = 0 IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN ALLOCATE( tilde_e3t_b(jpi,jpj,jpk) , tilde_e3t_n(jpi,jpj,jpk) , tilde_e3t_a(jpi,jpj,jpk) , & & un_td (jpi,jpj,jpk) , vn_td (jpi,jpj,jpk) , & & tildemask(jpi,jpj) , hsm(jpi,jpj) , dsm(jpi,jpj) , i_int_bot(jpi,jpj), STAT = dom_vvl_alloc ) IF( lk_mpp ) CALL mpp_sum ( dom_vvl_alloc ) IF( dom_vvl_alloc /= 0 ) CALL ctl_warn('dom_vvl_alloc: failed to allocate arrays') un_td = 0._wp vn_td = 0._wp ENDIF IF( ln_vvl_ztilde ) THEN ALLOCATE( frq_rst_e3t(jpi,jpj) , frq_rst_hdv(jpi,jpj) , hdivn_lf(jpi,jpj,jpk,nn_filt_order), & & un_lf(jpi,jpj,jpk,nn_filt_order), vn_lf(jpi,jpj,jpk,nn_filt_order), STAT= dom_vvl_alloc ) IF( lk_mpp ) CALL mpp_sum ( dom_vvl_alloc ) IF( dom_vvl_alloc /= 0 ) CALL ctl_warn('dom_vvl_alloc: failed to allocate arrays') ENDIF ! END FUNCTION dom_vvl_alloc SUBROUTINE dom_vvl_init !!---------------------------------------------------------------------- !! *** ROUTINE dom_vvl_init *** !! !! ** Purpose : Initialization of all scale factors, depths !! and water column heights !! !! ** Method : - use restart file and/or initialize !! - interpolate scale factors !! !! ** Action : - e3t_(n/b) and tilde_e3t_(n/b) !! - Regrid: e3(u/v)_n !! e3(u/v)_b !! e3w_n !! e3(u/v)w_b !! e3(u/v)w_n !! gdept_n, gdepw_n and gde3w_n !! - h(t/u/v)_0 !! - frq_rst_e3t and frq_rst_hdv !! !! Reference : Leclair, M., and G. Madec, 2011, Ocean Modelling. !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk INTEGER :: ii0, ii1, ij0, ij1 REAL(wp):: zcoef, zwgt, ztmp, zhmin, zhmax !!---------------------------------------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dom_vvl_init : Variable volume activated' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' ! CALL dom_vvl_ctl ! choose vertical coordinate (z_star, z_tilde or layer) ! ! ! Allocate module arrays IF( dom_vvl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'dom_vvl_init : unable to allocate arrays' ) ! ! ! Read or initialize e3t_(b/n), tilde_e3t_(b/n) and hdivn_lf CALL dom_vvl_rst( nit000, 'READ' ) e3t_a(:,:,jpk) = e3t_0(:,:,jpk) ! last level always inside the sea floor set one for all ! ! !== Set of all other vertical scale factors ==! (now and before) ! ! Horizontal interpolation of e3t CALL dom_vvl_interpol( e3t_b(:,:,:), e3u_b(:,:,:), 'U' ) ! from T to U CALL dom_vvl_interpol( e3t_n(:,:,:), e3u_n(:,:,:), 'U' ) CALL dom_vvl_interpol( e3t_b(:,:,:), e3v_b(:,:,:), 'V' ) ! from T to V CALL dom_vvl_interpol( e3t_n(:,:,:), e3v_n(:,:,:), 'V' ) CALL dom_vvl_interpol( e3t_n(:,:,:), e3f_n(:,:,:), 'F' ) ! from U to F ! ! Vertical interpolation of e3t,u,v CALL dom_vvl_interpol( e3t_n(:,:,:), e3w_n (:,:,:), 'W' ) ! from T to W CALL dom_vvl_interpol( e3t_b(:,:,:), e3w_b (:,:,:), 'W' ) CALL dom_vvl_interpol( e3u_n(:,:,:), e3uw_n(:,:,:), 'UW' ) ! from U to UW CALL dom_vvl_interpol( e3u_b(:,:,:), e3uw_b(:,:,:), 'UW' ) CALL dom_vvl_interpol( e3v_n(:,:,:), e3vw_n(:,:,:), 'VW' ) ! from V to UW CALL dom_vvl_interpol( e3v_b(:,:,:), e3vw_b(:,:,:), 'VW' ) ! We need to define e3[tuv]_a for AGRIF initialisation (should not be a problem for the restartability...) e3t_a(:,:,:) = e3t_n(:,:,:) e3u_a(:,:,:) = e3u_n(:,:,:) e3v_a(:,:,:) = e3v_n(:,:,:) ! ! !== depth of t and w-point ==! (set the isf depth as it is in the initial timestep) gdept_n(:,:,1) = 0.5_wp * e3w_n(:,:,1) ! reference to the ocean surface (used for MLD and light penetration) gdepw_n(:,:,1) = 0.0_wp gde3w_n(:,:,1) = gdept_n(:,:,1) - sshn(:,:) ! reference to a common level z=0 for hpg gdept_b(:,:,1) = 0.5_wp * e3w_b(:,:,1) gdepw_b(:,:,1) = 0.0_wp DO jk = 2, jpk ! vertical sum DO jj = 1,jpj DO ji = 1,jpi ! zcoef = tmask - wmask ! 0 everywhere tmask = wmask, ie everywhere expect at jk = mikt ! ! 1 everywhere from mbkt to mikt + 1 or 1 (if no isf) ! ! 0.5 where jk = mikt !!gm ??????? BUG ? gdept_n as well as gde3w_n does not include the thickness of ISF ?? zcoef = ( tmask(ji,jj,jk) - wmask(ji,jj,jk) ) gdepw_n(ji,jj,jk) = gdepw_n(ji,jj,jk-1) + e3t_n(ji,jj,jk-1) gdept_n(ji,jj,jk) = zcoef * ( gdepw_n(ji,jj,jk ) + 0.5 * e3w_n(ji,jj,jk)) & & + (1-zcoef) * ( gdept_n(ji,jj,jk-1) + e3w_n(ji,jj,jk)) gde3w_n(ji,jj,jk) = gdept_n(ji,jj,jk) - sshn(ji,jj) gdepw_b(ji,jj,jk) = gdepw_b(ji,jj,jk-1) + e3t_b(ji,jj,jk-1) gdept_b(ji,jj,jk) = zcoef * ( gdepw_b(ji,jj,jk ) + 0.5 * e3w_b(ji,jj,jk)) & & + (1-zcoef) * ( gdept_b(ji,jj,jk-1) + e3w_b(ji,jj,jk)) END DO END DO END DO ! ! !== thickness of the water column !! (ocean portion only) ht_n(:,:) = e3t_n(:,:,1) * tmask(:,:,1) !!gm BUG : this should be 1/2 * e3w(k=1) .... hu_b(:,:) = e3u_b(:,:,1) * umask(:,:,1) hu_n(:,:) = e3u_n(:,:,1) * umask(:,:,1) hv_b(:,:) = e3v_b(:,:,1) * vmask(:,:,1) hv_n(:,:) = e3v_n(:,:,1) * vmask(:,:,1) DO jk = 2, jpkm1 ht_n(:,:) = ht_n(:,:) + e3t_n(:,:,jk) * tmask(:,:,jk) hu_b(:,:) = hu_b(:,:) + e3u_b(:,:,jk) * umask(:,:,jk) hu_n(:,:) = hu_n(:,:) + e3u_n(:,:,jk) * umask(:,:,jk) hv_b(:,:) = hv_b(:,:) + e3v_b(:,:,jk) * vmask(:,:,jk) hv_n(:,:) = hv_n(:,:) + e3v_n(:,:,jk) * vmask(:,:,jk) END DO ! ! !== inverse of water column thickness ==! (u- and v- points) r1_hu_b(:,:) = ssumask(:,:) / ( hu_b(:,:) + 1._wp - ssumask(:,:) ) ! _i mask due to ISF r1_hu_n(:,:) = ssumask(:,:) / ( hu_n(:,:) + 1._wp - ssumask(:,:) ) r1_hv_b(:,:) = ssvmask(:,:) / ( hv_b(:,:) + 1._wp - ssvmask(:,:) ) r1_hv_n(:,:) = ssvmask(:,:) / ( hv_n(:,:) + 1._wp - ssvmask(:,:) ) ! !== z_tilde coordinate case ==! (Restoring frequencies) tildemask(:,:) = 1._wp IF( ln_vvl_ztilde ) THEN !!gm : idea: add here a READ in a file of custumized restoring frequency ! Values in days provided via the namelist; use rsmall to avoid possible division by zero errors with faulty settings frq_rst_e3t(:,:) = 2.0_wp * rpi / ( MAX( rn_rst_e3t , rsmall ) * 86400.0_wp ) frq_rst_hdv(:,:) = 2.0_wp * rpi / ( MAX( rn_lf_cutoff, rsmall ) * 86400.0_wp ) ! IF( ln_vvl_ztilde_as_zstar ) THEN ! Ignore namelist settings and use these next two to emulate z-star using z-tilde frq_rst_e3t(:,:) = 0.0_wp frq_rst_hdv(:,:) = 1.0_wp / rdt tildemask(:,:) = 0._wp ENDIF IF ( ln_vvl_zstar_at_eqtor ) THEN DO jj = 1, jpj DO ji = 1, jpi !!gm case |gphi| >= 6 degrees is useless initialized just above by default IF( ABS(gphit(ji,jj)) >= 6.) THEN ! values outside the equatorial band and transition zone (ztilde) frq_rst_e3t(ji,jj) = 2.0_wp * rpi / ( MAX( rn_rst_e3t , rsmall ) * 86400.e0_wp ) ! frq_rst_hdv(ji,jj) = 2.0_wp * rpi / ( MAX( rn_lf_cutoff, rsmall ) * 86400.e0_wp ) ELSEIF( ABS(gphit(ji,jj)) <= 2.5) THEN ! values inside the equatorial band (ztilde as zstar) frq_rst_e3t(ji,jj) = 0.0_wp ! frq_rst_hdv(ji,jj) = 1.0_wp / rdt tildemask(ji,jj) = 0._wp ELSE ! values in the transition band (linearly vary from ztilde to ztilde as zstar values) frq_rst_e3t(ji,jj) = 0.0_wp + (frq_rst_e3t(ji,jj)-0.0_wp)*0.5_wp & & * ( 1.0_wp - COS( rad*(ABS(gphit(ji,jj))-2.5_wp) & & * 180._wp / 3.5_wp ) ) ! frq_rst_hdv(ji,jj) = (1.0_wp / rdt) & ! & + ( frq_rst_hdv(ji,jj)-(1.e0_wp / rdt) )*0.5_wp & ! & * ( 1._wp - COS( rad*(ABS(gphit(ji,jj))-2.5_wp) & ! & * 180._wp / 3.5_wp ) ) tildemask(ji,jj) = 0.5_wp * ( 1._wp - COS( rad*(ABS(gphit(ji,jj))-2.5_wp) & & * 180._wp / 3.5_wp ) ) ENDIF END DO END DO ENDIF ! IF ( ln_vvl_zstar_on_shelf ) THEN zhmin = 50._wp zhmax = 100._wp DO jj = 1, jpj DO ji = 1, jpi zwgt = 1._wp IF(( ht_0(ji,jj)>zhmin).AND.(ht_0(ji,jj) <=zhmax)) THEN zwgt = (ht_0(ji,jj)-zhmin)/(zhmax-zhmin) ELSEIF ( ht_0(ji,jj)<=zhmin) THEN zwgt = 0._wp ENDIF frq_rst_e3t(ji,jj) = MIN(frq_rst_e3t(ji,jj), frq_rst_e3t(ji,jj)*zwgt) tildemask(ji,jj) = MIN(tildemask(ji,jj), zwgt) END DO END DO ENDIF ! ztmp = MAXVAL( frq_rst_hdv(:,:) ) IF( lk_mpp ) CALL mpp_max( ztmp ) ! max over the global domain ! IF ( (ztmp*rdt) > 1._wp) CALL ctl_stop( 'dom_vvl_init: rn_lf_cuttoff is too small' ) ! ENDIF IF( ln_vvl_layer ) THEN IF ( ln_vvl_zstar_on_shelf ) THEN zhmin = 100._wp zhmax = 150._wp DO jj = 1, jpj DO ji = 1, jpi zwgt = 1._wp IF(( ht_0(ji,jj)>zhmin).AND.(ht_0(ji,jj) <=zhmax)) THEN zwgt = (ht_0(ji,jj)-zhmin)/(zhmax-zhmin) ELSEIF ( ht_0(ji,jj)<=zhmin) THEN zwgt = 0._wp ENDIF tildemask(ji,jj) = MIN(tildemask(ji,jj), zwgt) END DO END DO ENDIF IF ( ln_vvl_zstar_at_eqtor ) THEN DO jj = 1, jpj DO ji = 1, jpi !!gm case |gphi| >= 6 degrees is useless initialized just above by default IF( ABS(gphit(ji,jj)) >= 6.) THEN ! values outside the equatorial band and transition zone (ztilde) ELSEIF( ABS(gphit(ji,jj)) <= 2.5) THEN ! values inside the equatorial band (ztilde as zstar) tildemask(ji,jj) = 0._wp ELSE tildemask(ji,jj) = 0.5_wp * ( 1._wp - COS( rad*(ABS(gphit(ji,jj))-2.5_wp) & & * 180._wp / 3.5_wp ) ) ENDIF END DO END DO ENDIF ENDIF ! IF(lwxios) THEN ! define variables in restart file when writing with XIOS CALL iom_set_rstw_var_active('e3t_b') CALL iom_set_rstw_var_active('e3t_n') ! ! ----------------------- ! IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN ! z_tilde and layer cases ! ! ! ----------------------- ! CALL iom_set_rstw_var_active('tilde_e3t_b') CALL iom_set_rstw_var_active('tilde_e3t_n') END IF ! ! -------------! IF( ln_vvl_ztilde ) THEN ! z_tilde case ! ! ! ------------ ! CALL iom_set_rstw_var_active('un_lf') CALL iom_set_rstw_var_active('vn_lf') CALL iom_set_rstw_var_active('hdivn_lf') ENDIF ! ENDIF ! END SUBROUTINE dom_vvl_init SUBROUTINE dom_vvl_sf_nxt( kt, kcall ) !!---------------------------------------------------------------------- !! *** ROUTINE dom_vvl_sf_nxt *** !! !! ** Purpose : - compute the after scale factors used in tra_zdf, dynnxt, !! tranxt and dynspg routines !! !! ** Method : - z_star case: Repartition of ssh INCREMENT proportionnaly to the level thickness. !! - z_tilde_case: after scale factor increment = !! high frequency part of horizontal divergence !! + retsoring towards the background grid !! + thickness difusion !! Then repartition of ssh INCREMENT proportionnaly !! to the "baroclinic" level thickness. !! !! ** Action : - hdivn_lf : restoring towards full baroclinic divergence in z_tilde case !! - tilde_e3t_a: after increment of vertical scale factor !! in z_tilde case !! - e3(t/u/v)_a !! !! Reference : Leclair, M., and Madec, G. 2011, Ocean Modelling. !!---------------------------------------------------------------------- INTEGER, INTENT( in ) :: kt ! time step INTEGER, INTENT( in ), OPTIONAL :: kcall ! optional argument indicating call sequence ! LOGICAL :: ll_do_bclinic ! local logical INTEGER :: ji, jj, jk, jo ! dummy loop indices INTEGER :: ib, ib_bdy, ip, jp ! " " " INTEGER , DIMENSION(3) :: ijk_max, ijk_min ! temporary integers INTEGER :: ncall REAL(wp) :: z2dt , z_tmin, z_tmax! local scalars REAL(wp) :: zalpha, zwgt ! temporary scalars REAL(wp) :: zdu, zdv, zramp, zmet REAL(wp) :: ztra, zbtr, ztout, ztin, zfac, zmsku, zmskv REAL(wp), DIMENSION(jpi,jpj) :: zht, z_scale, zwu, zwv, zhdiv REAL(wp), DIMENSION(jpi,jpj,jpk) :: ze3t, ztu, ztv !!---------------------------------------------------------------------- ! IF( ln_linssh ) RETURN ! No calculation in linear free surface ! IF( ln_timing ) CALL timing_start('dom_vvl_sf_nxt') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dom_vvl_sf_nxt : compute after scale factors' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~' ENDIF zmet = 1._wp ll_do_bclinic = .TRUE. ncall = 1 IF( PRESENT(kcall) ) THEN ! comment line below if tilda coordinate has to be computed at each call IF (kcall == 2 .AND. (ln_vvl_ztilde.OR.ln_vvl_layer) ) ll_do_bclinic = .FALSE. ncall = kcall ENDIF IF( neuler == 0 .AND. kt == nit000 ) THEN z2dt = rdt ELSE z2dt = 2.0_wp * rdt ENDIF ! ******************************* ! ! After scale factors at t-points ! ! ******************************* ! ! ! --------------------------------------------- ! ! ! z_star coordinate and barotropic z-tilde part ! ! ! --------------------------------------------- ! ! z_scale(:,:) = ( ssha(:,:) - sshb(:,:) ) * ssmask(:,:) / ( ht_0(:,:) + sshn(:,:) + 1. - ssmask(:,:) ) DO jk = 1, jpkm1 ! formally this is the same as e3t_a = e3t_0*(1+ssha/ht_0) e3t_a(:,:,jk) = e3t_b(:,:,jk) + e3t_n(:,:,jk) * z_scale(:,:) * tmask(:,:,jk) END DO ! IF ((ln_vvl_ztilde.OR.ln_vvl_layer).AND.(zmet==1._wp)) THEN DO jk = 1, jpkm1 e3t_a(:,:,jk) = e3t_a(:,:,jk) - tilde_e3t_n(:,:,jk) * z_scale(:,:) * tmask(:,:,jk) END DO ENDIF IF( (ln_vvl_ztilde.OR.ln_vvl_layer) .AND. ll_do_bclinic ) THEN ! z_tilde or layer coordinate ! ! ! ------baroclinic part------ ! tilde_e3t_a(:,:,:) = 0.0_wp ! tilde_e3t_a used to store tendency terms un_td(:,:,:) = 0.0_wp ! Transport corrections vn_td(:,:,:) = 0.0_wp zhdiv(:,:) = 0. DO jk = 1, jpkm1 zhdiv(:,:) = zhdiv(:,:) + e3t_n(:,:,jk) * hdivn(:,:,jk) END DO zhdiv(:,:) = zhdiv(:,:) / ( ht_0(:,:) + sshn(:,:) + 1._wp - tmask_i(:,:) ) ze3t(:,:,:) = 0._wp IF( ln_rnf ) THEN CALL sbc_rnf_div( ze3t ) ! runoffs DO jk=1,jpkm1 tilde_e3t_a(:,:,jk) = tilde_e3t_a(:,:,jk) - ze3t(:,:,jk) * e3t_n(:,:,jk) END DO ENDIF ! Thickness advection: ! -------------------- ! Set advection velocities and source term IF ( ln_vvl_ztilde ) THEN IF ( ncall==1 ) THEN zalpha = rdt * 2.0_wp * rpi / ( MAX( rn_lf_cutoff, rsmall ) * 86400.0_wp ) DO jk = 1, jpkm1 ztu(:,:,jk) = un(:,:,jk) * e3u_n(:,:,jk) * e2u(:,:) ztv(:,:,jk) = vn(:,:,jk) * e3v_n(:,:,jk) * e1v(:,:) ze3t(:,:,jk) = -tilde_e3t_a(:,:,jk) - (e3t_n(:,:,jk)-zmet*tilde_e3t_n(:,:,jk)) * zhdiv(:,:) END DO ! un_lf(:,:,:,nn_filt_order) = un_lf(:,:,:,nn_filt_order) * (1._wp - zalpha) + zalpha * ztu(:,:,:) vn_lf(:,:,:,nn_filt_order) = vn_lf(:,:,:,nn_filt_order) * (1._wp - zalpha) + zalpha * ztv(:,:,:) hdivn_lf(:,:,:,nn_filt_order) = hdivn_lf(:,:,:,nn_filt_order) * (1._wp - zalpha) + zalpha * ze3t(:,:,:) DO jo = nn_filt_order-1,1,-1 un_lf(:,:,:,jo) = un_lf(:,:,:,jo) * (1._wp - zalpha) + zalpha * un_lf(:,:,:,jo+1) vn_lf(:,:,:,jo) = vn_lf(:,:,:,jo) * (1._wp - zalpha) + zalpha * vn_lf(:,:,:,jo+1) hdivn_lf(:,:,:,jo) = hdivn_lf(:,:,:,jo) * (1._wp - zalpha) + zalpha * hdivn_lf(:,:,:,jo+1) END DO ENDIF ! DO jk = 1, jpkm1 ztu(:,:,jk) = (un(:,:,jk)-un_lf(:,:,jk,1)/e3u_n(:,:,jk)*r1_e2u(:,:))*umask(:,:,jk) ztv(:,:,jk) = (vn(:,:,jk)-vn_lf(:,:,jk,1)/e3v_n(:,:,jk)*r1_e1v(:,:))*vmask(:,:,jk) tilde_e3t_a(:,:,jk) = tilde_e3t_a(:,:,jk) + hdivn_lf(:,:,jk,1) - frq_rst_e3t(:,:) * tilde_e3t_b(:,:,jk) END DO ! ELSEIF ( ln_vvl_layer ) THEN ! DO jk = 1, jpkm1 ztu(:,:,jk) = un(:,:,jk) ztv(:,:,jk) = vn(:,:,jk) END DO ! ENDIF ! ! Block fluxes through small layers: ! DO jk=1,jpkm1 ! DO ji = 1, jpi ! DO jj= 1, jpj ! zmsku = 0.5_wp * ( 1._wp + SIGN(1._wp, e3u_n(ji,jj,jk) - hsmall) ) ! un_td(ji,jj,jk) = un_td(ji,jj,jk) - (1. - zmsku) * un(ji,jj,jk) * e3u_n(ji,jj,jk) * e2u(ji,jj) ! ztu(ji,jj,jk) = zmsku * ztu(ji,jj,jk) ! IF ( ln_vvl_ztilde ) un_lf(ji,jj,jk) = zmsku * un_lf(ji,jj,jk) ! ! ! zmskv = 0.5_wp * ( 1._wp + SIGN(1._wp, e3v_n(ji,jj,jk) - hsmall) ) ! vn_td(ji,jj,jk) = vn_td(ji,jj,jk) - (1. - zmskv) * vn(ji,jj,jk) * e3v_n(ji,jj,jk) * e1v(ji,jj) ! ztv(ji,jj,jk) = zmskv * ztv(ji,jj,jk) ! IF ( ln_vvl_ztilde ) vn_lf(ji,jj,jk) = zmskv * vn_lf(ji,jj,jk) ! END DO ! END DO ! END DO ! ! Do advection IF (ln_vvl_adv_fct) THEN CALL dom_vvl_adv_fct( kt, tilde_e3t_a, ztu, ztv ) ! ELSEIF (ln_vvl_adv_cn2) THEN DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. tilde_e3t_a(ji,jj,jk) = tilde_e3t_a(ji,jj,jk) & & -( e2u(ji,jj)*e3u_n(ji,jj,jk) * ztu(ji,jj,jk) - e2u(ji-1,jj )*e3u_n(ji-1,jj ,jk) * ztu(ji-1,jj ,jk) & & + e1v(ji,jj)*e3v_n(ji,jj,jk) * ztv(ji,jj,jk) - e1v(ji ,jj-1)*e3v_n(ji ,jj-1,jk) * ztv(ji ,jj-1,jk) ) & & / ( e1t(ji,jj) * e2t(ji,jj) ) END DO END DO END DO ENDIF ! ! Thickness anomaly diffusion: ! ---------------------------- ztu(:,:,:) = 0.0_wp ztv(:,:,:) = 0.0_wp ze3t(:,:,1) = 0.e0 DO jj = 1, jpj DO ji = 1, jpi DO jk = 2, jpk ze3t(ji,jj,jk) = ze3t(ji,jj,jk-1) + tilde_e3t_b(ji,jj,jk-1) * tmask(ji,jj,jk-1) END DO END DO END DO IF ( ln_vvl_blp ) THEN ! Bilaplacian DO jk = 1, jpkm1 DO jj = 1, jpjm1 ! First derivative (gradient) DO ji = 1, fs_jpim1 ! vector opt. ztu(ji,jj,jk) = umask(ji,jj,jk) * e2_e1u(ji,jj) & & * ( ze3t(ji,jj,jk) - ze3t(ji+1,jj ,jk) ) ztv(ji,jj,jk) = vmask(ji,jj,jk) * e1_e2v(ji,jj) & & * ( ze3t(ji,jj,jk) - ze3t(ji ,jj+1,jk) ) END DO END DO DO jj = 2, jpjm1 ! Second derivative (divergence) time the eddy diffusivity coefficient DO ji = fs_2, fs_jpim1 ! vector opt. zht(ji,jj) = rn_ahe3_blp * r1_e1e2t(ji,jj) * ( ztu(ji,jj,jk) - ztu(ji-1,jj,jk) & & + ztv(ji,jj,jk) - ztv(ji,jj-1,jk) ) END DO END DO ! Open boundary conditions: IF ( ln_bdy ) THEN DO ib_bdy=1, nb_bdy DO ib = 1, idx_bdy(ib_bdy)%nblenrim(1) ji = idx_bdy(ib_bdy)%nbi(ib,1) jj = idx_bdy(ib_bdy)%nbj(ib,1) zht(ji,jj) = 0._wp END DO END DO END IF CALL lbc_lnk( zht, 'T', 1. ) ! Lateral boundary conditions (unchanged sgn) DO jj = 1, jpjm1 ! third derivative (gradient) DO ji = 1, fs_jpim1 ! vector opt. ztu(ji,jj,jk) = umask(ji,jj,jk) * e2_e1u(ji,jj) * ( zht(ji+1,jj ) - zht(ji,jj) ) ztv(ji,jj,jk) = vmask(ji,jj,jk) * e1_e2v(ji,jj) * ( zht(ji ,jj+1) - zht(ji,jj) ) END DO END DO END DO ENDIF IF ( ln_vvl_lap ) THEN ! Laplacian DO jk = 1, jpkm1 ! First derivative (gradient) DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zdu = rn_ahe3_lap * umask(ji,jj,jk) * e2_e1u(ji,jj) & & * ( ze3t(ji,jj,jk) - ze3t(ji+1,jj ,jk) ) zdv = rn_ahe3_lap * vmask(ji,jj,jk) * e1_e2v(ji,jj) & & * ( ze3t(ji,jj,jk) - ze3t(ji ,jj+1,jk) ) ztu(ji,jj,jk) = ztu(ji,jj,jk) + zdu ztv(ji,jj,jk) = ztv(ji,jj,jk) + zdv END DO END DO END DO ENDIF ! divergence of diffusive fluxes DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. un_td(ji,jj,jk) = un_td(ji,jj,jk) + ztu(ji,jj,jk+1) - ztu(ji,jj,jk ) vn_td(ji,jj,jk) = vn_td(ji,jj,jk) + ztv(ji,jj,jk+1) - ztv(ji,jj,jk ) tilde_e3t_a(ji,jj,jk) = tilde_e3t_a(ji,jj,jk) + ( ztu(ji-1,jj ,jk+1) - ztu(ji,jj,jk+1) & & +ztv(ji ,jj-1,jk+1) - ztv(ji,jj,jk+1) & & -ztu(ji-1,jj ,jk ) + ztu(ji,jj,jk ) & & -ztv(ji ,jj-1,jk ) + ztv(ji,jj,jk ) & & ) * r1_e1e2t(ji,jj) END DO END DO END DO CALL lbc_lnk_multi( un_td, 'U', -1., vn_td, 'V', -1. ) !* local domain boundaries ! CALL dom_vvl_ups_cor( kt, tilde_e3t_a, un_td, vn_td ) ! IF ( ln_vvl_ztilde ) THEN ! ztu(:,:,:) = -un_lf(:,:,:) ! ztv(:,:,:) = -vn_lf(:,:,:) ! CALL dom_vvl_ups_cor( kt, tilde_e3t_a, ztu, ztv ) ! ENDIF ! ! Remove "external thickness" tendency: DO jk = 1, jpkm1 tilde_e3t_a(:,:,jk) = tilde_e3t_a(:,:,jk) + (e3t_n(:,:,jk)-zmet*tilde_e3t_n(:,:,jk)) * zhdiv(:,:) * tmask(:,:,jk) END DO ! Leapfrog time stepping ! ~~~~~~~~~~~~~~~~~~~~~~ zramp = 1._wp IF ((.NOT.ln_rstart).AND.ln_vvl_ramp) zramp = MIN(MAX( ((kt-nit000)*rdt)/(rn_day_ramp*rday),0._wp),1._wp) DO jk=1,jpkm1 tilde_e3t_a(:,:,jk) = tilde_e3t_b(:,:,jk) + z2dt * tmask(:,:,jk) * tilde_e3t_a(:,:,jk) & & * tildemask(:,:) * zramp END DO ! Ensure layer separation: ! ~~~~~~~~~~~~~~~~~~~~~~~~ IF ( ln_vvl_regrid ) CALL dom_vvl_regrid( kt ) ! Boundary conditions: ! ~~~~~~~~~~~~~~~~~~~~ IF ( ln_bdy ) THEN DO ib_bdy = 1, nb_bdy DO ib = 1, idx_bdy(ib_bdy)%nblenrim(1) !! DO ib = 1, idx_bdy(ib_bdy)%nblen(1) ji = idx_bdy(ib_bdy)%nbi(ib,1) jj = idx_bdy(ib_bdy)%nbj(ib,1) zwgt = idx_bdy(ib_bdy)%nbw(ib,1) ip = bdytmask(ji+1,jj ) - bdytmask(ji-1,jj ) jp = bdytmask(ji ,jj+1) - bdytmask(ji ,jj-1) DO jk = 1, jpkm1 tilde_e3t_a(ji,jj,jk) = 0.e0 !! tilde_e3t_a(ji,jj,jk) = tilde_e3t_a(ji,jj,jk) * (1._wp - zwgt) !! tilde_e3t_a(ji,jj,jk) = tilde_e3t_a(ji+ip,jj+jp,jk) * tmask(ji+ip,jj+jp,jk) END DO END DO END DO ENDIF CALL lbc_lnk( tilde_e3t_a(:,:,:), 'T', 1. ) ENDIF IF( ln_vvl_ztilde.AND.( ncall==1)) THEN zalpha = rdt * 2.0_wp * rpi / ( MAX( rn_lf_cutoff, rsmall ) * 86400.0_wp ) ! ! divergence of diffusive fluxes DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ze3t(ji,jj,jk) = ( un_td(ji,jj,jk) - un_td(ji-1,jj ,jk) & & + vn_td(ji,jj,jk) - vn_td(ji ,jj-1,jk) & & ) / ( e1t(ji,jj) * e2t(ji,jj) ) END DO END DO END DO CALL lbc_lnk( ze3t(:,:,:), 'T', 1. ) DO jo = nn_filt_order,1,-1 hdivn_lf(:,:,:,jo) = hdivn_lf(:,:,:,jo) + zalpha**(nn_filt_order-jo+1) * ze3t(:,:,:) END DO ENDIF IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN ! z_tilde or layer coordinate ! ! ! ---baroclinic part--------- ! IF ( (ncall==2).AND.(.NOT.ll_do_bclinic) ) THEN DO jk = 1, jpkm1 ztu(:,:,jk) = (un_adv(:,:)*r1_hu_n(:,:) - un_b(:,:) ) * e3u_n(:,:,jk) * e2u(:,:) * umask(:,:,jk) ztv(:,:,jk) = (vn_adv(:,:)*r1_hv_n(:,:) - vn_b(:,:) ) * e3v_n(:,:,jk) * e1v(:,:) * vmask(:,:,jk) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ze3t(ji,jj,jk) = ( ztu(ji,jj,jk) - ztu(ji-1,jj ,jk) & & + ztv(ji,jj,jk) - ztv(ji ,jj-1,jk) & & ) / ( e1t(ji,jj) * e2t(ji,jj) ) END DO END DO END DO ! zhdiv(:,:) = 0. DO jk = 1, jpkm1 zhdiv(:,:) = zhdiv(:,:) + ze3t(:,:,jk) * tmask(:,:,jk) END DO zhdiv(:,:) = zhdiv(:,:) / ( ht_0(:,:) + sshn(:,:) + 1._wp - tmask_i(:,:) ) ! DO jk = 1, jpkm1 tilde_e3t_a(:,:,jk) = tilde_e3t_a(:,:,jk) - z2dt * (ze3t(:,:,jk) & & - zhdiv(:,:)*(e3t_n(:,:,jk)-zmet*tilde_e3t_n(:,:,jk))*tmask(:,:,jk)) END DO CALL lbc_lnk( tilde_e3t_a(:,:,:), 'T', 1. ) ENDIF ! DO jk = 1, jpkm1 e3t_a(:,:,jk) = e3t_a(:,:,jk) + tilde_e3t_a(:,:,jk) - tilde_e3t_b(:,:,jk) END DO ! IF( ln_vvl_ztilde ) THEN ! Relax barotropic component: ! DO jk = 1, jpkm1 ! e3t_a(:,:,jk) = e3t_a(:,:,jk) & ! & - z2dt * frq_rst_e3t(:,:) * (e3t_b(:,:,jk) - tilde_e3t_b(:,:,jk) & ! & - e3t_0(:,:,jk) * (ht_0(:,:) + sshb(:,:))/ (ht_0(:,:)*tmask(:,:,1) + 1._wp - tmask(:,:,1))) ! END DO ! ENDIF ENDIF IF( ln_vvl_dbg.AND.(ln_vvl_ztilde .OR. ln_vvl_layer) ) THEN ! - ML - test: control prints for debuging ! zht(:,:) = 0.0_wp DO jk = 1, jpkm1 zht(:,:) = zht(:,:) + tilde_e3t_a(:,:,jk) * tmask(:,:,jk) END DO IF( lwp ) WRITE(numout, *) 'kt = ', kt IF( lwp ) WRITE(numout, *) 'ncall = ', ncall IF( lwp ) WRITE(numout, *) 'll_do_bclinic', ll_do_bclinic IF ( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN z_tmax = MAXVAL( tmask(:,:,1) * tmask_i(:,:) * ABS( zht(:,:) ), mask = tmask(:,:,1) == 1.e0 ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(SUM(tilde_e3t_a))) =', z_tmax END IF ! z_tmin = MINVAL( e3t_n(:,:,:) ) IF( lk_mpp ) CALL mpp_min( z_tmin ) ! min over the global domain IF( lwp ) WRITE(numout, *) kt,' MINVAL(e3t_n) =', z_tmin IF ( z_tmin .LE. 0._wp ) THEN IF( lk_mpp ) THEN CALL mpp_minloc(e3t_n(:,:,:), tmask, z_tmin, ijk_min(1), ijk_min(2), ijk_min(3) ) ELSE ijk_min = MINLOC( e3t_n(:,:,:) ) ijk_min(1) = ijk_min(1) + nimpp - 1 ijk_min(2) = ijk_min(2) + njmpp - 1 ENDIF IF (lwp) THEN ji = ijk_min(1) ; jj = ijk_min(2) ; jk = ijk_min(3) WRITE(numout, *) 'Negative scale factor, e3t_n =', z_tmin WRITE(numout, *) 'at i, j, k=', ijk_min CALL ctl_stop('dom_vvl_sf_nxt: Negative scale factor') ENDIF ENDIF ! z_tmin = MINVAL( e3u_n(:,:,:)) IF( lk_mpp ) CALL mpp_min( z_tmin ) ! min over the global domain IF( lwp ) WRITE(numout, *) kt,' MINVAL(e3u_n) =', z_tmin IF ( z_tmin .LE. 0._wp ) THEN IF( lk_mpp ) THEN CALL mpp_minloc(e3u_n(:,:,:), umask, z_tmin, ijk_min(1), ijk_min(2), ijk_min(3) ) ELSE ijk_min = MINLOC( e3u_n(:,:,:) ) ijk_min(1) = ijk_min(1) + nimpp - 1 ijk_min(2) = ijk_min(2) + njmpp - 1 ENDIF IF (lwp) THEN WRITE(numout, *) 'Negative scale factor, e3u_n =', z_tmin WRITE(numout, *) 'at i, j, k=', ijk_min CALL ctl_stop('dom_vvl_sf_nxt: Negative scale factor') ENDIF ENDIF ! z_tmin = MINVAL( e3v_n(:,:,:) ) IF( lk_mpp ) CALL mpp_min( z_tmin ) ! min over the global domain IF( lwp ) WRITE(numout, *) kt,' MINVAL(e3v_n) =', z_tmin IF ( z_tmin .LE. 0._wp ) THEN IF( lk_mpp ) THEN CALL mpp_minloc(e3v_n(:,:,:), vmask, z_tmin, ijk_min(1), ijk_min(2), ijk_min(3) ) ELSE ijk_min = MINLOC( e3v_n(:,:,:), mask = vmask(:,:,:) == 1.e0 ) ijk_min(1) = ijk_min(1) + nimpp - 1 ijk_min(2) = ijk_min(2) + njmpp - 1 ENDIF IF (lwp) THEN WRITE(numout, *) 'Negative scale factor, e3v_n =', z_tmin WRITE(numout, *) 'at i, j, k=', ijk_min CALL ctl_stop('dom_vvl_sf_nxt: Negative scale factor') ENDIF ENDIF ! z_tmin = MINVAL( e3f_n(:,:,:)) IF( lk_mpp ) CALL mpp_min( z_tmin ) ! min over the global domain IF( lwp ) WRITE(numout, *) kt,' MINVAL(e3f_n) =', z_tmin IF ( z_tmin .LE. 0._wp ) THEN IF( lk_mpp ) THEN CALL mpp_minloc(e3f_n(:,:,:), fmask, z_tmin, ijk_min(1), ijk_min(2), ijk_min(3) ) ELSE ijk_min = MINLOC( e3f_n(:,:,:) ) ijk_min(1) = ijk_min(1) + nimpp - 1 ijk_min(2) = ijk_min(2) + njmpp - 1 ENDIF IF (lwp) THEN WRITE(numout, *) 'Negative scale factor, e3f_n =', z_tmin WRITE(numout, *) 'at i, j, k=', ijk_min CALL ctl_stop('dom_vvl_sf_nxt: Negative scale factor') ENDIF ENDIF ! zht(:,:) = 0.0_wp DO jk = 1, jpkm1 zht(:,:) = zht(:,:) + e3t_n(:,:,jk) * tmask(:,:,jk) END DO z_tmax = MAXVAL( tmask(:,:,1) * tmask_i(:,:) * ABS( ht_0(:,:) + sshn(:,:) - zht(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(ht_0+sshn -SUM(e3t_n))) =', z_tmax ! zht(:,:) = 0.0_wp DO jk = 1, jpkm1 zht(:,:) = zht(:,:) + e3u_n(:,:,jk) * umask(:,:,jk) END DO zwu(:,:) = 0._wp DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zwu(ji,jj) = 0.5_wp * umask(ji,jj,1) * r1_e1e2u(ji,jj) & & * ( e1e2t(ji,jj) * sshn(ji,jj) + e1e2t(ji+1,jj) * sshn(ji+1,jj) ) END DO END DO CALL lbc_lnk( zwu(:,:), 'U', 1._wp ) z_tmax = MAXVAL( ssumask(:,:) * ssumask(:,:) * ABS( hu_0(:,:) + zwu(:,:) - zht(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(hu_0+sshu_n-SUM(e3u_n))) =', z_tmax ! zht(:,:) = 0.0_wp DO jk = 1, jpkm1 zht(:,:) = zht(:,:) + e3v_n(:,:,jk) * vmask(:,:,jk) END DO zwv(:,:) = 0._wp DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zwv(ji,jj) = 0.5_wp * vmask(ji,jj,1) * r1_e1e2v(ji,jj) & & * ( e1e2t(ji,jj) * sshn(ji,jj) + e1e2t(ji,jj+1) * sshn(ji,jj+1) ) END DO END DO CALL lbc_lnk( zwv(:,:), 'V', 1._wp ) z_tmax = MAXVAL( ssvmask(:,:) * ssvmask(:,:) * ABS( hv_0(:,:) + zwv(:,:) - zht(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(hv_0+sshv_n-SUM(e3v_n))) =', z_tmax ! zht(:,:) = 0.0_wp DO jk = 1, jpkm1 DO jj = 1, jpjm1 zht(:,jj) = zht(:,jj) + e3f_n(:,jj,jk) * umask(:,jj,jk)*umask(:,jj+1,jk) END DO END DO zwu(:,:) = 0._wp DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zwu(ji,jj) = 0.25_wp * umask(ji,jj,1) * umask(ji,jj+1,1) * r1_e1e2f(ji,jj) & & * ( e1e2t(ji ,jj) * sshn(ji ,jj) + e1e2t(ji ,jj+1) * sshn(ji ,jj+1) & & + e1e2t(ji+1,jj) * sshn(ji+1,jj) + e1e2t(ji+1,jj+1) * sshn(ji+1,jj+1) ) END DO END DO CALL lbc_lnk( zht(:,:), 'F', 1._wp ) CALL lbc_lnk( zwu(:,:), 'F', 1._wp ) z_tmax = MAXVAL( fmask(:,:,1) * fmask(:,:,1) * ABS( hf_0(:,:) + zwu(:,:) - zht(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(hf_0+sshf_n-SUM(e3f_n))) =', z_tmax ! END IF ! *********************************** ! ! After scale factors at u- v- points ! ! *********************************** ! CALL dom_vvl_interpol( e3t_a(:,:,:), e3u_a(:,:,:), 'U' ) CALL dom_vvl_interpol( e3t_a(:,:,:), e3v_a(:,:,:), 'V' ) ! *********************************** ! ! After depths at u- v points ! ! *********************************** ! hu_a(:,:) = e3u_a(:,:,1) * umask(:,:,1) hv_a(:,:) = e3v_a(:,:,1) * vmask(:,:,1) DO jk = 2, jpkm1 hu_a(:,:) = hu_a(:,:) + e3u_a(:,:,jk) * umask(:,:,jk) hv_a(:,:) = hv_a(:,:) + e3v_a(:,:,jk) * vmask(:,:,jk) END DO ! ! Inverse of the local depth !!gm BUG ? don't understand the use of umask_i here ..... r1_hu_a(:,:) = ssumask(:,:) / ( hu_a(:,:) + 1._wp - ssumask(:,:) ) r1_hv_a(:,:) = ssvmask(:,:) / ( hv_a(:,:) + 1._wp - ssvmask(:,:) ) ! IF( ln_timing ) CALL timing_stop('dom_vvl_sf_nxt') ! END SUBROUTINE dom_vvl_sf_nxt SUBROUTINE dom_vvl_sf_swp( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE dom_vvl_sf_swp *** !! !! ** Purpose : compute time filter and swap of scale factors !! compute all depths and related variables for next time step !! write outputs and restart file !! !! ** Method : - swap of e3t with trick for volume/tracer conservation !! - reconstruct scale factor at other grid points (interpolate) !! - recompute depths and water height fields !! !! ** Action : - e3t_(b/n), tilde_e3t_(b/n) and e3(u/v)_n ready for next time step !! - Recompute: !! e3(u/v)_b !! e3w_n !! e3(u/v)w_b !! e3(u/v)w_n !! gdept_n, gdepw_n and gde3w_n !! h(u/v) and h(u/v)r !! !! Reference : Leclair, M., and G. Madec, 2009, Ocean Modelling. !! Leclair, M., and G. Madec, 2011, Ocean Modelling. !!---------------------------------------------------------------------- INTEGER, INTENT( in ) :: kt ! time step ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zcoef ! local scalar !!---------------------------------------------------------------------- ! IF( ln_linssh ) RETURN ! No calculation in linear free surface ! IF( ln_timing ) CALL timing_start('dom_vvl_sf_swp') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dom_vvl_sf_swp : - time filter and swap of scale factors' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~ - interpolate scale factors and compute depths for next time step' ENDIF ! ! Time filter and swap of scale factors ! ===================================== ! - ML - e3(t/u/v)_b are allready computed in dynnxt. IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN IF( neuler == 0 .AND. kt == nit000 ) THEN tilde_e3t_b(:,:,:) = tilde_e3t_n(:,:,:) ELSE tilde_e3t_b(:,:,:) = tilde_e3t_n(:,:,:) & & + atfp * ( tilde_e3t_b(:,:,:) - 2.0_wp * tilde_e3t_n(:,:,:) + tilde_e3t_a(:,:,:) ) ENDIF tilde_e3t_n(:,:,:) = tilde_e3t_a(:,:,:) ENDIF gdept_b(:,:,:) = gdept_n(:,:,:) gdepw_b(:,:,:) = gdepw_n(:,:,:) e3t_n(:,:,:) = e3t_a(:,:,:) e3u_n(:,:,:) = e3u_a(:,:,:) e3v_n(:,:,:) = e3v_a(:,:,:) ! Compute all missing vertical scale factor and depths ! ==================================================== ! Horizontal scale factor interpolations ! -------------------------------------- ! - ML - e3u_b and e3v_b are allready computed in dynnxt ! - JC - hu_b, hv_b, hur_b, hvr_b also CALL dom_vvl_interpol( e3t_n(:,:,:), e3f_n(:,:,:), 'F' ) ! Vertical scale factor interpolations CALL dom_vvl_interpol( e3t_n(:,:,:), e3w_n(:,:,:), 'W' ) CALL dom_vvl_interpol( e3u_n(:,:,:), e3uw_n(:,:,:), 'UW' ) CALL dom_vvl_interpol( e3v_n(:,:,:), e3vw_n(:,:,:), 'VW' ) CALL dom_vvl_interpol( e3t_b(:,:,:), e3w_b(:,:,:), 'W' ) CALL dom_vvl_interpol( e3u_b(:,:,:), e3uw_b(:,:,:), 'UW' ) CALL dom_vvl_interpol( e3v_b(:,:,:), e3vw_b(:,:,:), 'VW' ) ! t- and w- points depth (set the isf depth as it is in the initial step) gdept_n(:,:,1) = 0.5_wp * e3w_n(:,:,1) gdepw_n(:,:,1) = 0.0_wp gde3w_n(:,:,1) = gdept_n(:,:,1) - sshn(:,:) DO jk = 2, jpk DO jj = 1,jpj DO ji = 1,jpi ! zcoef = (tmask(ji,jj,jk) - wmask(ji,jj,jk)) ! 0 everywhere tmask = wmask, ie everywhere expect at jk = mikt ! 1 for jk = mikt zcoef = (tmask(ji,jj,jk) - wmask(ji,jj,jk)) gdepw_n(ji,jj,jk) = gdepw_n(ji,jj,jk-1) + e3t_n(ji,jj,jk-1) gdept_n(ji,jj,jk) = zcoef * ( gdepw_n(ji,jj,jk ) + 0.5 * e3w_n(ji,jj,jk) ) & & + (1-zcoef) * ( gdept_n(ji,jj,jk-1) + e3w_n(ji,jj,jk) ) gde3w_n(ji,jj,jk) = gdept_n(ji,jj,jk) - sshn(ji,jj) END DO END DO END DO ! Local depth and Inverse of the local depth of the water ! ------------------------------------------------------- hu_n(:,:) = hu_a(:,:) ; r1_hu_n(:,:) = r1_hu_a(:,:) hv_n(:,:) = hv_a(:,:) ; r1_hv_n(:,:) = r1_hv_a(:,:) ! ht_n(:,:) = e3t_n(:,:,1) * tmask(:,:,1) DO jk = 2, jpkm1 ht_n(:,:) = ht_n(:,:) + e3t_n(:,:,jk) * tmask(:,:,jk) END DO ! write restart file ! ================== IF( lrst_oce ) CALL dom_vvl_rst( kt, 'WRITE' ) ! IF( ln_timing ) CALL timing_stop('dom_vvl_sf_swp') ! END SUBROUTINE dom_vvl_sf_swp SUBROUTINE dom_vvl_interpol( pe3_in, pe3_out, pout ) !!--------------------------------------------------------------------- !! *** ROUTINE dom_vvl__interpol *** !! !! ** Purpose : interpolate scale factors from one grid point to another !! !! ** Method : e3_out = e3_0 + interpolation(e3_in - e3_0) !! - horizontal interpolation: grid cell surface averaging !! - vertical interpolation: simple averaging !!---------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in ) :: pe3_in ! input e3 to be interpolated REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pe3_out ! output interpolated e3 CHARACTER(LEN=*) , INTENT(in ) :: pout ! grid point of out scale factors ! ! = 'U', 'V', 'W, 'F', 'UW' or 'VW' ! INTEGER :: ji, jj, jk, jkbot ! dummy loop indices INTEGER :: nmet ! horizontal interpolation method REAL(wp) :: zlnwd ! =1./0. when ln_wd_il = T/F REAL(wp) :: ztap, zsmall ! Parameters defining minimum thicknesses UVF-points REAL(wp) :: zmin REAL(wp) :: zdo, zup ! Lower and upper interfaces depths anomalies REAL(wp), DIMENSION(jpi,jpj) :: zs ! Surface interface depth anomaly REAL(wp), DIMENSION(jpi,jpj,jpk) :: zw ! Interface depth anomaly !!---------------------------------------------------------------------- ! ! nmet = 0 ! Original method (Surely wrong) nmet = 2 ! Interface interpolation ! nmet = 2 ! Internal interfaces interpolation only, spread barotropic increment ! Note that we kept surface weighted interpolation for barotropic increment to be compliant ! with what is done in surface pressure module. ! IF(ln_wd_il) THEN zlnwd = 1.0_wp ELSE zlnwd = 0.0_wp END IF ! ztap = 0._wp ! Minimum fraction of T-point thickness at cell interfaces zsmall = 1.e-8_wp ! Minimum thickness at U or V points (m) ! IF ( (nmet==1).OR.(nmet==2) ) THEN SELECT CASE ( pout ) ! CASE( 'U', 'V', 'F' ) ! Compute interface depth anomaly at T-points ! zw(:,:,:) = 0._wp ! DO jk=2,jpk zw(:,:,jk) = zw(:,:,jk-1) + pe3_in(:,:,jk-1)*tmask(:,:,jk-1) END DO ! Interface depth anomalies: DO jk=1,jpkm1 zw(:,:,jk) = zw(:,:,jk) - zw(:,:,jpk) + ht_0(:,:) END DO zw(:,:,jpk) = ht_0(:,:) ! IF (nmet==2) THEN ! Consider "internal" interfaces only zs(:,:) = - zw(:,:,1) ! Save surface anomaly (ssh) ! DO jj = 1, jpj DO ji = 1, jpi DO jk=1,jpk zw(ji,jj,jk) = (zw(ji,jj,jk) + zs(ji,jj)) & & * ht_0(ji,jj) / (ht_0(ji,jj) + zs(ji,jj) + 1._wp - tmask(ji,jj,1)) & & * tmask(ji,jj,jk) END DO END DO END DO ENDIF zw(:,:,:) = (zw(:,:,:) - gdepw_0(:,:,:))*tmask(:,:,:) ! END SELECT END IF ! pe3_out(:,:,:) = 0.0_wp ! SELECT CASE ( pout ) !== type of interpolation ==! ! CASE( 'U' ) !* from T- to U-point : hor. surface weighted mean IF (nmet==0) THEN DO jk = 1, jpk DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. pe3_out(ji,jj,jk) = 0.5_wp * ( umask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) * r1_e1e2u(ji,jj) & & * ( e1e2t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1e2t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) ) END DO END DO END DO ELSE DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ! Correction at last level: jkbot = mbku(ji,jj) zdo = 0._wp DO jk=jkbot,1,-1 zup = 0.5_wp * ( e1e2t(ji ,jj)*zw(ji ,jj,jk) & & + e1e2t(ji+1,jj)*zw(ji+1,jj,jk) ) * r1_e1e2u(ji,jj) ! ! If there is a step, taper bottom interface: ! IF ((hu_0(ji,jj) < 0.5_wp * ( ht_0(ji,jj) + ht_0(ji+1,jj) ) ).AND.(jk==jkbot)) THEN ! IF ( ht_0(ji+1,jj) < ht_0(ji,jj) ) THEN ! zmin = ztap * (zw(ji+1,jj,jk+1)-zw(ji+1,jj,jk)) ! ELSE ! zmin = ztap * (zw(ji ,jj,jk+1)-zw(ji ,jj,jk)) ! ENDIF ! zup = MIN(zup, zdo-zmin) ! ENDIF zup = MIN(zup, zdo+e3u_0(ji,jj,jk)-zsmall) pe3_out(ji,jj,jk) = (zdo - zup) * ( umask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) zdo = zup END DO END DO END DO END IF ! IF (nmet==2) THEN ! Spread sea level anomaly DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. DO jk=1,jpk pe3_out(ji,jj,jk) = pe3_out(ji,jj,jk) & & + ( pe3_out(ji,jj,jk) + e3u_0(ji,jj,jk) ) & & / ( hu_0(ji,jj) + 1._wp - ssumask(ji,jj) ) & & * 0.5_wp * r1_e1e2u(ji,jj) & & * ( umask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) & & * ( e1e2t(ji,jj)*zs(ji,jj) + e1e2t(ji+1,jj)*zs(ji+1,jj) ) END DO END DO END DO ! ENDIF ! CALL lbc_lnk( pe3_out(:,:,:), 'U', 1._wp ) pe3_out(:,:,:) = pe3_out(:,:,:) + e3u_0(:,:,:) ! CASE( 'V' ) !* from T- to V-point : hor. surface weighted mean IF (nmet==0) THEN DO jk = 1, jpk DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. pe3_out(ji,jj,jk) = 0.5_wp * ( vmask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) * r1_e1e2v(ji,jj) & & * ( e1e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e1e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) ) END DO END DO END DO ELSE DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ! Correction at last level: jkbot = mbkv(ji,jj) zdo = 0._wp DO jk=jkbot,1,-1 zup = 0.5_wp * ( e1e2t(ji,jj ) * zw(ji,jj ,jk) & & + e1e2t(ji,jj+1) * zw(ji,jj+1,jk) ) * r1_e1e2v(ji,jj) ! ! If there is a step, taper bottom interface: ! IF ((hv_0(ji,jj) < 0.5_wp * ( ht_0(ji,jj) + ht_0(ji,jj+1) ) ).AND.(jk==jkbot)) THEN ! IF ( ht_0(ji,jj+1) < ht_0(ji,jj) ) THEN ! zmin = ztap * (zw(ji,jj+1,jk+1)-zw(ji,jj+1,jk)) ! ELSE ! zmin = ztap * (zw(ji ,jj,jk+1)-zw(ji ,jj,jk)) ! ENDIF ! zup = MIN(zup, zdo-zmin) ! ENDIF zup = MIN(zup, zdo + e3v_0(ji,jj,jk) - zsmall) pe3_out(ji,jj,jk) = (zdo - zup) * ( vmask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) zdo = zup END DO END DO END DO END IF ! IF (nmet==2) THEN ! Spread sea level anomaly DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. DO jk=1,jpk pe3_out(ji,jj,jk) = pe3_out(ji,jj,jk) & & + ( pe3_out(ji,jj,jk) + e3v_0(ji,jj,jk) ) & & / ( hv_0(ji,jj) + 1._wp - ssvmask(ji,jj) ) & & * 0.5_wp * r1_e1e2v(ji,jj) & * ( vmask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) & & * ( e1e2t(ji,jj)*zs(ji,jj) + e1e2t(ji,jj+1)*zs(ji,jj+1) ) END DO END DO END DO ! ENDIF ! CALL lbc_lnk( pe3_out(:,:,:), 'V', 1._wp ) pe3_out(:,:,:) = pe3_out(:,:,:) + e3v_0(:,:,:) ! CASE( 'F' ) !* from T-point to F-point : hor. surface weighted mean IF (nmet==0) THEN DO jk=1,jpk DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. pe3_out(ji,jj,jk) = 0.25_wp * ( umask(ji,jj,jk) * umask(ji,jj+1,jk) * (1.0_wp - zlnwd) + zlnwd ) & & * r1_e1e2f(ji,jj) & & * ( e1e2t(ji ,jj ) * ( pe3_in(ji ,jj ,jk)-e3t_0(ji ,jj ,jk) ) & & + e1e2t(ji ,jj+1) * ( pe3_in(ji ,jj+1,jk)-e3t_0(ji ,jj+1,jk) ) & & + e1e2t(ji+1,jj ) * ( pe3_in(ji+1,jj ,jk)-e3t_0(ji+1,jj ,jk) ) & & + e1e2t(ji+1,jj+1) * ( pe3_in(ji+1,jj+1,jk)-e3t_0(ji+1,jj+1,jk) ) ) END DO END DO END DO ELSE DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ! bottom correction: jkbot = MIN(mbku(ji,jj), mbku(ji,jj+1)) zdo = 0._wp DO jk=jkbot,1,-1 zup = 0.25_wp * ( e1e2t(ji ,jj ) * zw(ji ,jj ,jk) & & + e1e2t(ji+1,jj ) * zw(ji+1,jj ,jk) & & + e1e2t(ji ,jj+1) * zw(ji ,jj+1,jk) & & + e1e2t(ji+1,jj+1) * zw(ji+1,jj+1,jk) ) * r1_e1e2f(ji,jj) ! ! If there is a step, taper bottom interface: ! IF ((hf_0(ji,jj) < 0.5_wp * ( hu_0(ji,jj ) + hu_0(ji,jj+1) ) ).AND.(jk==jkbot)) THEN ! IF ( hu_0(ji,jj+1) < hu_0(ji,jj) ) THEN ! IF ( ht_0(ji+1,jj+1) < ht_0(ji ,jj+1) ) THEN ! zmin = ztap * (zw(ji+1,jj+1,jk+1)-zw(ji+1,jj+1,jk)) ! ELSE ! zmin = ztap * (zw(ji ,jj+1,jk+1)-zw(ji ,jj+1,jk)) ! ENDIF ! ELSE ! IF ( ht_0(ji+1,jj ) < ht_0(ji ,jj ) ) THEN ! zmin = ztap * (zw(ji+1,jj ,jk+1)-zw(ji+1,jj ,jk)) ! ELSE ! zmin = ztap * (zw(ji ,jj ,jk+1)-zw(ji ,jj ,jk)) ! ENDIF ! ENDIF ! zup = MIN(zup, zdo-zmin) ! ENDIF zup = MIN(zup, zdo+e3f_0(ji,jj,jk)-zsmall) ! pe3_out(ji,jj,jk) = ( zdo - zup ) & & *( umask(ji,jj,jk) * umask(ji,jj+1,jk) * (1.0_wp - zlnwd) + zlnwd ) zdo = zup END DO END DO END DO END IF ! IF (nmet==2) THEN ! Spread sea level anomaly ! DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. DO jk=1,jpk pe3_out(ji,jj,jk) = pe3_out(ji,jj,jk) & & + ( pe3_out(ji,jj,jk) + e3f_0(ji,jj,jk) ) & & / ( hf_0(ji,jj) + 1._wp - umask(ji,jj,1)*umask(ji,jj+1,1) ) & & * 0.25_wp * r1_e1e2f(ji,jj) & & * ( umask(ji,jj,jk)*umask(ji,jj+1,jk)*(1.0_wp - zlnwd) + zlnwd )& & * ( e1e2t(ji ,jj)*zs(ji ,jj) + e1e2t(ji ,jj+1)*zs(ji ,jj+1) & & +e1e2t(ji+1,jj)*zs(ji+1,jj) + e1e2t(ji+1,jj+1)*zs(ji+1,jj+1) ) END DO END DO END DO END IF ! CALL lbc_lnk( pe3_out(:,:,:), 'F', 1._wp ) pe3_out(:,:,:) = pe3_out(:,:,:) + e3f_0(:,:,:) ! CASE( 'W' ) !* from T- to W-point : vertical simple mean ! pe3_out(:,:,1) = e3w_0(:,:,1) + pe3_in(:,:,1) - e3t_0(:,:,1) ! - ML - The use of mask in this formulea enables the special treatment of the last w-point without indirect adressing !!gm BUG? use here wmask in case of ISF ? to be checked DO jk = 2, jpk pe3_out(:,:,jk) = e3w_0(:,:,jk) + ( 1.0_wp - 0.5_wp * ( tmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) ) & & * ( pe3_in(:,:,jk-1) - e3t_0(:,:,jk-1) ) & & + 0.5_wp * ( tmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) & & * ( pe3_in(:,:,jk ) - e3t_0(:,:,jk ) ) END DO ! CASE( 'UW' ) !* from U- to UW-point : vertical simple mean ! pe3_out(:,:,1) = e3uw_0(:,:,1) + pe3_in(:,:,1) - e3u_0(:,:,1) ! - ML - The use of mask in this formaula enables the special treatment of the last w- point without indirect adressing !!gm BUG? use here wumask in case of ISF ? to be checked DO jk = 2, jpk pe3_out(:,:,jk) = e3uw_0(:,:,jk) + ( 1.0_wp - 0.5_wp * ( umask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) ) & & * ( pe3_in(:,:,jk-1) - e3u_0(:,:,jk-1) ) & & + 0.5_wp * ( umask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) & & * ( pe3_in(:,:,jk ) - e3u_0(:,:,jk ) ) END DO ! CASE( 'VW' ) !* from V- to VW-point : vertical simple mean ! pe3_out(:,:,1) = e3vw_0(:,:,1) + pe3_in(:,:,1) - e3v_0(:,:,1) ! - ML - The use of mask in this formaula enables the special treatment of the last w- point without indirect adressing !!gm BUG? use here wvmask in case of ISF ? to be checked DO jk = 2, jpk pe3_out(:,:,jk) = e3vw_0(:,:,jk) + ( 1.0_wp - 0.5_wp * ( vmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) ) & & * ( pe3_in(:,:,jk-1) - e3v_0(:,:,jk-1) ) & & + 0.5_wp * ( vmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) & & * ( pe3_in(:,:,jk ) - e3v_0(:,:,jk ) ) END DO END SELECT ! END SUBROUTINE dom_vvl_interpol SUBROUTINE dom_vvl_rst( kt, cdrw ) !!--------------------------------------------------------------------- !! *** ROUTINE dom_vvl_rst *** !! !! ** Purpose : Read or write VVL file in restart file !! !! ** Method : use of IOM library !! if the restart does not contain vertical scale factors, !! they are set to the _0 values !! if the restart does not contain vertical scale factors increments (z_tilde), !! they are set to 0. !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: kt ! ocean time-step CHARACTER(len=*), INTENT(in) :: cdrw ! "READ"/"WRITE" flag ! INTEGER :: ji, jj, jk INTEGER :: id1, id2, id3, id4, id5, id6, id7 ! local integers !!---------------------------------------------------------------------- ! IF( TRIM(cdrw) == 'READ' ) THEN ! Read/initialise ! ! =============== IF( ln_rstart ) THEN !* Read the restart file CALL rst_read_open ! open the restart file if necessary CALL iom_get( numror, jpdom_autoglo, 'sshn' , sshn, ldxios = lrxios ) ! id1 = iom_varid( numror, 'e3t_b', ldstop = .FALSE. ) id2 = iom_varid( numror, 'e3t_n', ldstop = .FALSE. ) id3 = iom_varid( numror, 'tilde_e3t_b', ldstop = .FALSE. ) id4 = iom_varid( numror, 'tilde_e3t_n', ldstop = .FALSE. ) id5 = iom_varid( numror, 'hdivn_lf', ldstop = .FALSE. ) id6 = iom_varid( numror, 'un_lf', ldstop = .FALSE. ) id7 = iom_varid( numror, 'vn_lf', ldstop = .FALSE. ) ! ! --------- ! ! ! all cases ! ! ! --------- ! IF( MIN( id1, id2 ) > 0 ) THEN ! all required arrays exist CALL iom_get( numror, jpdom_autoglo, 'e3t_b', e3t_b(:,:,:), ldxios = lrxios ) CALL iom_get( numror, jpdom_autoglo, 'e3t_n', e3t_n(:,:,:), ldxios = lrxios ) ! needed to restart if land processor not computed IF(lwp) write(numout,*) 'dom_vvl_rst : e3t_b and e3t_n found in restart files' WHERE ( tmask(:,:,:) == 0.0_wp ) e3t_n(:,:,:) = e3t_0(:,:,:) e3t_b(:,:,:) = e3t_0(:,:,:) END WHERE IF( neuler == 0 ) THEN e3t_b(:,:,:) = e3t_n(:,:,:) ENDIF ELSE IF( id1 > 0 ) THEN IF(lwp) write(numout,*) 'dom_vvl_rst WARNING : e3t_n not found in restart files' IF(lwp) write(numout,*) 'e3t_n set equal to e3t_b.' IF(lwp) write(numout,*) 'neuler is forced to 0' CALL iom_get( numror, jpdom_autoglo, 'e3t_b', e3t_b(:,:,:), ldxios = lrxios ) e3t_n(:,:,:) = e3t_b(:,:,:) neuler = 0 ELSE IF( id2 > 0 ) THEN IF(lwp) write(numout,*) 'dom_vvl_rst WARNING : e3t_b not found in restart files' IF(lwp) write(numout,*) 'e3t_b set equal to e3t_n.' IF(lwp) write(numout,*) 'neuler is forced to 0' CALL iom_get( numror, jpdom_autoglo, 'e3t_n', e3t_n(:,:,:), ldxios = lrxios ) e3t_b(:,:,:) = e3t_n(:,:,:) neuler = 0 ELSE IF(lwp) write(numout,*) 'dom_vvl_rst WARNING : e3t_n not found in restart file' IF(lwp) write(numout,*) 'Compute scale factor from sshn' IF(lwp) write(numout,*) 'neuler is forced to 0' DO jk = 1, jpk e3t_n(:,:,jk) = e3t_0(:,:,jk) * ( ht_0(:,:) + sshn(:,:) ) & & / ( ht_0(:,:) + 1._wp - ssmask(:,:) ) * tmask(:,:,jk) & & + e3t_0(:,:,jk) * (1._wp -tmask(:,:,jk)) END DO e3t_b(:,:,:) = e3t_n(:,:,:) neuler = 0 ENDIF ! ! ----------- ! IF( ln_vvl_zstar ) THEN ! z_star case ! ! ! ----------- ! IF( MIN( id3, id4 ) > 0 ) THEN CALL ctl_stop( 'dom_vvl_rst: z_star cannot restart from a z_tilde or layer run' ) ENDIF ! ! ----------------------- ! ELSE ! z_tilde and layer cases ! ! ! ----------------------- ! IF( MIN( id3, id4 ) > 0 ) THEN ! all required arrays exist CALL iom_get( numror, jpdom_autoglo, 'tilde_e3t_b', tilde_e3t_b(:,:,:), ldxios = lrxios ) CALL iom_get( numror, jpdom_autoglo, 'tilde_e3t_n', tilde_e3t_n(:,:,:), ldxios = lrxios ) ELSE ! one at least array is missing tilde_e3t_b(:,:,:) = 0.0_wp tilde_e3t_n(:,:,:) = 0.0_wp ENDIF ! ! ------------ ! IF( ln_vvl_ztilde ) THEN ! z_tilde case ! ! ! ------------ ! IF( MIN(id5, id6, id7) > 0 ) THEN ! required arrays exist CALL iom_get( numror, jpdom_autoglo, 'hdivn_lf', hdivn_lf(:,:,:,1), ldxios = lrxios ) CALL iom_get( numror, jpdom_autoglo, 'un_lf', un_lf(:,:,:,1), ldxios = lrxios ) CALL iom_get( numror, jpdom_autoglo, 'vn_lf', vn_lf(:,:,:,1), ldxios = lrxios ) ELSE ! array is missing hdivn_lf(:,:,:,:) = 0.0_wp un_lf(:,:,:,:) = 0.0_wp vn_lf(:,:,:,:) = 0.0_wp ENDIF ENDIF ENDIF ! ELSE !* Initialize at "rest" ! IF( ll_wd ) THEN ! MJB ll_wd edits start here - these are essential ! IF( cn_cfg == 'wad' ) THEN ! Wetting and drying test case CALL usr_def_istate( gdept_b, tmask, tsb, ub, vb, sshb ) tsn (:,:,:,:) = tsb (:,:,:,:) ! set now values from to before ones sshn (:,:) = sshb(:,:) un (:,:,:) = ub (:,:,:) vn (:,:,:) = vb (:,:,:) ELSE ! if not test case sshn(:,:) = -ssh_ref sshb(:,:) = -ssh_ref DO jj = 1, jpj DO ji = 1, jpi IF( ht_0(ji,jj)-ssh_ref < rn_wdmin1 ) THEN ! if total depth is less than min depth sshb(ji,jj) = rn_wdmin1 - (ht_0(ji,jj) ) sshn(ji,jj) = rn_wdmin1 - (ht_0(ji,jj) ) ssha(ji,jj) = rn_wdmin1 - (ht_0(ji,jj) ) ENDIF ENDDO ENDDO ENDIF !If test case else ! Adjust vertical metrics for all wad DO jk = 1, jpk e3t_n(:,:,jk) = e3t_0(:,:,jk) * ( ht_0(:,:) + sshn(:,:) ) & & / ( ht_0(:,:) + 1._wp - ssmask(:,:) ) * tmask(:,:,jk) & & + e3t_0(:,:,jk) * ( 1._wp - tmask(:,:,jk) ) END DO e3t_b(:,:,:) = e3t_n(:,:,:) DO ji = 1, jpi DO jj = 1, jpj IF ( ht_0(ji,jj) .LE. 0.0 .AND. NINT( ssmask(ji,jj) ) .EQ. 1) THEN CALL ctl_stop( 'dom_vvl_rst: ht_0 must be positive at potentially wet points' ) ENDIF END DO END DO ! ELSE ! ! Just to read set ssh in fact, called latter once vertical grid ! is set up: ! CALL usr_def_istate( gdept_0, tmask, tsb, ub, vb, sshb ) ! ! ! DO jk=1,jpk ! e3t_b(:,:,jk) = e3t_0(:,:,jk) * ( ht_0(:,:) + sshb(:,:) ) & ! & / ( ht_0(:,:) + 1._wp -ssmask(:,:) ) * tmask(:,:,jk) ! END DO ! e3t_n(:,:,:) = e3t_b(:,:,:) sshn(:,:)=0._wp e3t_n(:,:,:)=e3t_0(:,:,:) e3t_b(:,:,:)=e3t_0(:,:,:) ! END IF ! end of ll_wd edits IF( ln_vvl_ztilde .OR. ln_vvl_layer) THEN tilde_e3t_b(:,:,:) = 0._wp tilde_e3t_n(:,:,:) = 0._wp IF( ln_vvl_ztilde ) THEN hdivn_lf(:,:,:,:) = 0._wp un_lf(:,:,:,:) = 0._wp vn_lf(:,:,:,:) = 0._wp ENDIF END IF ENDIF ! ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN ! Create restart file ! ! =================== IF(lwp) WRITE(numout,*) '---- dom_vvl_rst ----' IF( lwxios ) CALL iom_swap( cwxios_context ) ! ! --------- ! ! ! all cases ! ! ! --------- ! CALL iom_rstput( kt, nitrst, numrow, 'e3t_b', e3t_b(:,:,:), ldxios = lwxios ) CALL iom_rstput( kt, nitrst, numrow, 'e3t_n', e3t_n(:,:,:), ldxios = lwxios ) ! ! ----------------------- ! IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN ! z_tilde and layer cases ! ! ! ----------------------- ! CALL iom_rstput( kt, nitrst, numrow, 'tilde_e3t_b', tilde_e3t_b(:,:,:), ldxios = lwxios) CALL iom_rstput( kt, nitrst, numrow, 'tilde_e3t_n', tilde_e3t_n(:,:,:), ldxios = lwxios) END IF ! ! -------------! IF( ln_vvl_ztilde ) THEN ! z_tilde case ! ! ! ------------ ! CALL iom_rstput( kt, nitrst, numrow, 'hdivn_lf', hdivn_lf(:,:,:,1), ldxios = lwxios) CALL iom_rstput( kt, nitrst, numrow, 'un_lf', un_lf(:,:,:,1), ldxios = lwxios) CALL iom_rstput( kt, nitrst, numrow, 'vn_lf', vn_lf(:,:,:,1), ldxios = lwxios) ENDIF ! IF( lwxios ) CALL iom_swap( cxios_context ) ENDIF ! END SUBROUTINE dom_vvl_rst SUBROUTINE dom_vvl_ctl !!--------------------------------------------------------------------- !! *** ROUTINE dom_vvl_ctl *** !! !! ** Purpose : Control the consistency between namelist options !! for vertical coordinate !!---------------------------------------------------------------------- INTEGER :: ioptio, ios NAMELIST/nam_vvl/ ln_vvl_zstar , ln_vvl_ztilde , & & ln_vvl_layer , ln_vvl_ztilde_as_zstar , & & ln_vvl_zstar_at_eqtor , ln_vvl_zstar_on_shelf , & & ln_vvl_adv_cn2 , ln_vvl_adv_fct , & & ln_vvl_lap , ln_vvl_blp , & & rn_ahe3_lap , rn_ahe3_blp , & & rn_rst_e3t , rn_lf_cutoff , & & ln_vvl_regrid , & & ln_vvl_ramp , rn_day_ramp , & & ln_vvl_dbg ! not yet implemented: ln_vvl_kepe !!---------------------------------------------------------------------- ! REWIND( numnam_ref ) ! Namelist nam_vvl in reference namelist : READ ( numnam_ref, nam_vvl, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nam_vvl in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist nam_vvl in configuration namelist : Parameters of the run READ ( numnam_cfg, nam_vvl, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nam_vvl in configuration namelist', lwp ) IF(lwm) WRITE ( numond, nam_vvl ) ! IF(lwp) THEN ! Namelist print WRITE(numout,*) WRITE(numout,*) 'dom_vvl_ctl : choice/control of the variable vertical coordinate' WRITE(numout,*) '~~~~~~~~~~~' WRITE(numout,*) ' Namelist nam_vvl : chose a vertical coordinate' WRITE(numout,*) ' zstar ln_vvl_zstar = ', ln_vvl_zstar WRITE(numout,*) ' ztilde ln_vvl_ztilde = ', ln_vvl_ztilde WRITE(numout,*) ' layer ln_vvl_layer = ', ln_vvl_layer WRITE(numout,*) ' ztilde as zstar ln_vvl_ztilde_as_zstar = ', ln_vvl_ztilde_as_zstar ! WRITE(numout,*) ' Namelist nam_vvl : chose kinetic-to-potential energy conservation' ! WRITE(numout,*) ' ln_vvl_kepe = ', ln_vvl_kepe WRITE(numout,*) ' ztilde near the equator ln_vvl_zstar_at_eqtor = ', ln_vvl_zstar_at_eqtor WRITE(numout,*) ' ztilde on shelves ln_vvl_zstar_on_shelf = ', ln_vvl_zstar_on_shelf WRITE(numout,*) ' Namelist nam_vvl : thickness advection scheme' WRITE(numout,*) ' 2nd order ln_vvl_adv_cn2 = ', ln_vvl_adv_cn2 WRITE(numout,*) ' 2nd order FCT ln_vvl_adv_fct = ', ln_vvl_adv_fct WRITE(numout,*) ' Namelist nam_vvl : thickness diffusion scheme' WRITE(numout,*) ' Laplacian ln_vvl_lap = ', ln_vvl_lap WRITE(numout,*) ' Bilaplacian ln_vvl_blp = ', ln_vvl_blp WRITE(numout,*) ' Laplacian coefficient rn_ahe3_lap = ', rn_ahe3_lap WRITE(numout,*) ' Bilaplacian coefficient rn_ahe3_blp = ', rn_ahe3_blp WRITE(numout,*) ' Namelist nam_vvl : layers regriding' WRITE(numout,*) ' ln_vvl_regrid = ', ln_vvl_regrid WRITE(numout,*) ' Namelist nam_vvl : linear ramp at startup' WRITE(numout,*) ' ln_vvl_ramp = ', ln_vvl_ramp WRITE(numout,*) ' rn_day_ramp = ', rn_day_ramp IF( ln_vvl_ztilde_as_zstar ) THEN WRITE(numout,*) ' ztilde running in zstar emulation mode; ' WRITE(numout,*) ' ignoring namelist timescale parameters and using:' WRITE(numout,*) ' hard-wired : z-tilde to zstar restoration timescale (days)' WRITE(numout,*) ' rn_rst_e3t = 0.0' WRITE(numout,*) ' hard-wired : z-tilde cutoff frequency of low-pass filter (days)' WRITE(numout,*) ' rn_lf_cutoff = 1.0/rdt' ELSE WRITE(numout,*) ' Namelist nam_vvl : z-tilde to zstar restoration timescale (days)' WRITE(numout,*) ' rn_rst_e3t = ', rn_rst_e3t WRITE(numout,*) ' Namelist nam_vvl : z-tilde cutoff frequency of low-pass filter (days)' WRITE(numout,*) ' rn_lf_cutoff = ', rn_lf_cutoff ENDIF WRITE(numout,*) ' Namelist nam_vvl : debug prints' WRITE(numout,*) ' ln_vvl_dbg = ', ln_vvl_dbg ENDIF ! IF ( ln_vvl_ztilde.OR.ln_vvl_layer ) THEN ioptio = 0 ! Choose one advection scheme at most IF( ln_vvl_adv_cn2 ) ioptio = ioptio + 1 IF( ln_vvl_adv_fct ) ioptio = ioptio + 1 IF( ioptio /= 1 ) CALL ctl_stop( 'Choose ONE thickness advection scheme in namelist nam_vvl' ) ENDIF ! ioptio = 0 ! Parameter control IF( ln_vvl_ztilde_as_zstar ) ln_vvl_ztilde = .true. IF( ln_vvl_zstar ) ioptio = ioptio + 1 IF( ln_vvl_ztilde ) ioptio = ioptio + 1 IF( ln_vvl_layer ) ioptio = ioptio + 1 ! IF( ioptio /= 1 ) CALL ctl_stop( 'Choose ONE vertical coordinate in namelist nam_vvl' ) IF( .NOT. ln_vvl_zstar .AND. ln_isf ) CALL ctl_stop( 'Only vvl_zstar has been tested with ice shelf cavity' ) ! IF(lwp) THEN ! Print the choice WRITE(numout,*) IF( ln_vvl_zstar ) WRITE(numout,*) ' ==>>> zstar vertical coordinate is used' IF( ln_vvl_ztilde ) WRITE(numout,*) ' ==>>> ztilde vertical coordinate is used' IF( ln_vvl_layer ) WRITE(numout,*) ' ==>>> layer vertical coordinate is used' IF( ln_vvl_ztilde_as_zstar ) WRITE(numout,*) ' ==>>> to emulate a zstar coordinate' ENDIF ! ! Use of "shelf horizon depths" should be allowed with s-z coordinates, but we restrict it to zco and zps ! for the time being IF ( ln_sco ) THEN ll_shorizd=.FALSE. ELSE ll_shorizd=.TRUE. ENDIF ! #if defined key_agrif IF( (.NOT.Agrif_Root()).AND.(.NOT.ln_vvl_zstar) ) CALL ctl_stop( 'AGRIF is implemented with zstar coordinate only' ) #endif ! END SUBROUTINE dom_vvl_ctl SUBROUTINE dom_vvl_regrid( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE dom_vvl_regrid *** !! !! ** Purpose : Ensure "well-behaved" vertical grid !! !! ** Method : More or less adapted from references below. !!regrid !! ** Action : Ensure that thickness are above a given value, spaced enough !! and revert to Eulerian coordinates near the bottom. !! !! References : Bleck, R. and S. Benjamin, 1993: Regional Weather Prediction !! with a Model Combining Terrain-following and Isentropic !! coordinates. Part I: Model Description. Monthly Weather Rev., !! 121, 1770-1785. !! Toy, M., 2011: Incorporating Condensational Heating into a !! Nonhydrostatic Atmospheric Model Based on a Hybrid Isentropic- !! Sigma Vertical Coordinate. Monthly Weather Rev., 139, 2940-2954. !!---------------------------------------------------------------------- !! * Arguments INTEGER, INTENT( in ) :: kt ! time step !! * Local declarations INTEGER :: ji, jj, jk ! dummy loop indices LOGICAL :: ll_chk_bot2top, ll_chk_top2bot, ll_lapdiff_cond LOGICAL :: ll_zdiff_cond, ll_blpdiff_cond INTEGER :: jkbot REAL(wp) :: zh_min, zh_0, zh2, zdiff, zh_max, ztmph, ztmpd REAL(wp) :: zufim1, zufi, zvfjm1, zvfj, dzmin_int, dzmin_surf REAL(wp) :: zh_new, zh_old, zh_bef, ztmp, ztmp1, z2dt, zh_up, zh_dwn REAL(wp) :: zeu2, zev2, zfrch_stp, zfrch_rel, zfrac_bot, zscal_bot REAL(wp) :: zhdiff, zhdiff2, zvdiff, zhlim, zhlim2, zvlim REAL(wp), DIMENSION(jpi,jpj) :: zdw, zwu, zwv REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwdw, zwdw_b !!---------------------------------------------------------------------- IF( ln_timing ) CALL timing_start('dom_vvl_regrid') ! ! ! Some user defined parameters below: ll_chk_bot2top = .TRUE. ll_chk_top2bot = .TRUE. dzmin_int = 1.0_wp ! Absolute minimum depth in the interior (in meters) dzmin_surf = 1.0_wp ! Absolute minimum depth at the surface (in meters) zfrch_stp = 5._wp ! Maximum fractionnal thickness change in one time step (<= 1.) zfrch_rel = 0.4_wp ! Maximum relative thickness change in the vertical (<= 1.) zfrac_bot = 0.05_wp ! Fraction of bottom level allowed to change zscal_bot = 2.0_wp ! Depth lengthscale ll_zdiff_cond = .TRUE. ! Conditionnal vertical diffusion of interfaces zvdiff = 0.2_wp ! m zvlim = 0.5_wp ! max d2h/dh ll_lapdiff_cond = .TRUE. ! Conditionnal Laplacian diffusion of interfaces zhdiff = 0.01_wp ! ad. zhlim = 0.03_wp ! ad. max lap(z)*e1 ll_blpdiff_cond = .TRUE. ! Conditionnal Bilaplacian diffusion of interfaces zhdiff2 = 0.2_wp ! ad. zhlim2 = 0.01_wp ! ad. max bilap(z)*e1**3 ! --------------------------------------------------------------------------------------- ! ! Set arrays determining maximum vertical displacement at the bottom: !-------------------------------------------------------------------- IF ( kt==nit000 ) THEN DO jj = 2, jpjm1 DO ji = 2, jpim1 jk = MIN(mbkt(ji,jj), mbkt(ji+1,jj), mbkt(ji-1,jj), mbkt(ji,jj+1), mbkt(ji,jj-1)) jk = MIN(jk,mbkt(ji-1,jj-1), mbkt(ji-1,jj+1), mbkt(ji+1,jj+1), mbkt(ji+1,jj-1)) i_int_bot(ji,jj) = jk END DO END DO dsm(:,:) = REAL( i_int_bot(:,:), wp ) ; CALL lbc_lnk(dsm(:,:),'T',1.) i_int_bot(:,:) = MAX( INT( dsm(:,:) ), 1 ) DO jj = 2, jpjm1 DO ji = 2, jpim1 zdw(ji,jj) = MAX(ABS(ht_0(ji,jj)-ht_0(ji+1,jj))*umask(ji ,jj,1), & & ABS(ht_0(ji,jj)-ht_0(ji-1,jj))*umask(ji-1,jj,1), & & ABS(ht_0(ji,jj)-ht_0(ji,jj+1))*vmask(ji,jj ,1), & & ABS(ht_0(ji,jj)-ht_0(ji,jj-1))*vmask(ji,jj-1,1) ) zdw(ji,jj) = MAX(zscal_bot * zdw(ji,jj), rsmall ) END DO END DO CALL lbc_lnk( zdw(:,:), 'T', 1. ) DO jj = 2, jpjm1 DO ji = 2, jpim1 dsm(ji,jj) = 1._wp/16._wp * ( zdw(ji-1,jj-1) + zdw(ji+1,jj-1) & & + zdw(ji-1,jj+1) + zdw(ji+1,jj+1) & & + 2._wp*( zdw(ji ,jj-1) + zdw(ji-1,jj ) & & + zdw(ji+1,jj ) + zdw(ji ,jj+1) ) & & + 4._wp* zdw(ji ,jj ) ) END DO END DO CALL lbc_lnk( dsm(:,:), 'T', 1. ) IF (ln_zps) THEN DO jj = 1, jpj DO ji = 1, jpi jk = i_int_bot(ji,jj) hsm(ji,jj) = zfrac_bot * e3w_1d(jk) dsm(ji,jj) = MAX(dsm(ji,jj), 0.05_wp*ht_0(ji,jj)) END DO END DO ELSE DO jj = 1, jpj DO ji = 1, jpi jk = i_int_bot(ji,jj) hsm(ji,jj) = zfrac_bot * e3w_0(ji,jj,jk) dsm(ji,jj) = MAX(dsm(ji,jj), 0.05_wp*ht_0(ji,jj)) END DO END DO ENDIF END IF ! Provisionnal interface depths: !------------------------------- zwdw(:,:,1) = 0.e0 DO jj = 1, jpj DO ji = 1, jpi DO jk = 2, jpk zwdw(ji,jj,jk) = zwdw(ji,jj,jk-1) + & & (tilde_e3t_a(ji,jj,jk-1)+e3t_0(ji,jj,jk-1)) * tmask(ji,jj,jk-1) END DO END DO END DO ! ! Conditionnal horizontal Laplacian diffusion: !--------------------------------------------- IF ( ll_lapdiff_cond ) THEN ! zwdw_b(:,:,1) = 0._wp DO jj = 1, jpj DO ji = 1, jpi DO jk=2,jpk zwdw_b(ji,jj,jk) = zwdw_b(ji,jj,jk-1) + & & (tilde_e3t_b(ji,jj,jk-1)+e3t_0(ji,jj,jk-1)) * tmask(ji,jj,jk-1) END DO END DO END DO ! DO jk = 2, jpkm1 zwu(:,:) = 0._wp zwv(:,:) = 0._wp DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zwu(ji,jj) = umask(ji,jj,jk) * e2_e1u(ji,jj) & & * ( zwdw_b(ji,jj,jk) - zwdw_b(ji+1,jj ,jk) ) zwv(ji,jj) = vmask(ji,jj,jk) * e1_e2v(ji,jj) & & * ( zwdw_b(ji,jj,jk) - zwdw_b(ji ,jj+1,jk) ) END DO END DO DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ztmp1 = ( zwu(ji-1,jj ) - zwu(ji,jj) & & + zwv(ji ,jj-1) - zwv(ji,jj) ) * r1_e1e2t(ji,jj) zh2 = MAX(abs(ztmp1)-zhlim*SQRT(r1_e1e2t(ji,jj)), 0._wp) ztmp = SIGN(zh2, ztmp1) zeu2 = zhdiff * e1e2t(ji,jj)*e1e2t(ji,jj)/(e1t(ji,jj)*e1t(ji,jj) + e2t(ji,jj)*e2t(ji,jj)) zwdw(ji,jj,jk) = zwdw(ji,jj,jk) + zeu2 * ztmp * tmask(ji,jj,jk) END DO END DO END DO ! ENDIF ! Conditionnal horizontal Bilaplacian diffusion: !----------------------------------------------- IF ( ll_blpdiff_cond ) THEN ! zwdw_b(:,:,1) = 0._wp DO jj = 1, jpj DO ji = 1, jpi DO jk = 2,jpkm1 zwdw_b(ji,jj,jk) = zwdw_b(ji,jj,jk-1) + & & (tilde_e3t_b(ji,jj,jk-1)+e3t_0(ji,jj,jk-1)) * tmask(ji,jj,jk-1) END DO END DO END DO ! DO jk = 2, jpkm1 zwu(:,:) = 0._wp zwv(:,:) = 0._wp DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zwu(ji,jj) = umask(ji,jj,jk) * e2_e1u(ji,jj) & & * ( zwdw_b(ji,jj,jk) - zwdw_b(ji+1,jj ,jk) ) zwv(ji,jj) = vmask(ji,jj,jk) * e1_e2v(ji,jj) & & * ( zwdw_b(ji,jj,jk) - zwdw_b(ji ,jj+1,jk) ) END DO END DO DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zwdw_b(ji,jj,jk) = -( (zwu(ji-1,jj ) - zwu(ji,jj)) & & + (zwv(ji ,jj-1) - zwv(ji,jj)) ) * r1_e1e2t(ji,jj) END DO END DO END DO ! CALL lbc_lnk( zwdw_b(:,:,:), 'T', 1. ) ! DO jk = 2, jpkm1 zwu(:,:) = 0._wp zwv(:,:) = 0._wp DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zwu(ji,jj) = umask(ji,jj,jk) * e2_e1u(ji,jj) & & * ( zwdw_b(ji,jj,jk) - zwdw_b(ji+1,jj ,jk) ) zwv(ji,jj) = vmask(ji,jj,jk) * e1_e2v(ji,jj) & & * ( zwdw_b(ji,jj,jk) - zwdw_b(ji ,jj+1,jk) ) END DO END DO DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ztmp1 = ( (zwu(ji-1,jj ) - zwv(ji,jj)) & & + (zwv(ji ,jj-1) - zwv(ji,jj)) ) * r1_e1e2t(ji,jj) zh2 = MAX(abs(ztmp1)-zhlim2*SQRT(r1_e1e2t(ji,jj))*r1_e1e2t(ji,jj), 0._wp) ztmp = SIGN(zh2, ztmp1) zeu2 = zhdiff2 * e1e2t(ji,jj)*e1e2t(ji,jj) / 16._wp zwdw(ji,jj,jk) = zwdw(ji,jj,jk) + zeu2 * ztmp * tmask(ji,jj,jk) END DO END DO END DO ! ENDIF ! Conditionnal vertical diffusion: !--------------------------------- IF ( ll_zdiff_cond ) THEN DO jk = 2, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ztmp = -( (tilde_e3t_b(ji,jj,jk-1)+e3t_0(ji,jj,jk-1))*tmask(ji,jj,jk-1) & -(tilde_e3t_b(ji,jj,jk )+e3t_0(ji,jj,jk ))*tmask(ji,jj,jk ) ) ztmp1 = 0.5_wp * ( tilde_e3t_b(ji,jj,jk-1) + e3t_0(ji,jj,jk-1) & & +tilde_e3t_b(ji,jj,jk ) + e3t_0(ji,jj,jk ) ) zh2 = MAX(abs(ztmp)-zvlim*ztmp1, 0._wp) ztmp = SIGN(zh2, ztmp) IF ((jk==mbkt(ji,jj)).AND.(ln_zps)) ztmp=0.e0 zwdw(ji,jj,jk) = zwdw(ji,jj,jk) + zvdiff * ztmp * tmask(ji,jj,jk) END DO END DO END DO ENDIF ! ! Check grid from the bottom to the surface !------------------------------------------ IF ( ll_chk_bot2top ) THEN DO jj = 2, jpjm1 DO ji = 2, jpim1 jkbot = mbkt(ji,jj) DO jk = jkbot,2,-1 ! zh_0 = e3t_0(ji,jj,jk) zh_bef = MIN(tilde_e3t_b(ji,jj,jk) + zh_0, tilde_e3t_b(ji,jj,jk-1) + e3t_0(ji,jj,jk-1)) zh_old = zwdw(ji,jj,jk+1) - zwdw(ji,jj,jk) zh_min = MIN(zh_0/3._wp, dzmin_int) ! zh_min = MAX(zh_min, zh_min-e3t_a(ji,jj,jk)+e3t_0(ji,jj,jk)) ! ! Set maximum and minimum vertical excursions ztmph = hsm(ji,jj) ztmpd = dsm(ji,jj) zh2 = ztmph * exp(-(gdepw_0(ji,jj,jk)-gdepw_0(ji,jj,i_int_bot(ji,jj)))/ztmpd) ! zh2 = ztmph * exp(-(gdepw_0(ji,jj,jk)-gdepw_0(ji,jj,i_int_bot(ji,jj)+1))/ztmpd) zh2 = MAX(zh2,0.001_wp) ! Extend tolerance a bit for stability reasons (to be explored) zdiff = cush_max(gdepw_0(ji,jj,jk)-zwdw(ji,jj,jk), zh2 ) zwdw(ji,jj,jk) = MAX(zwdw(ji,jj,jk), gdepw_0(ji,jj,jk) - zdiff) zdiff = cush_max(zwdw(ji,jj,jk)-gdepw_0(ji,jj,jk), zh2 ) zwdw(ji,jj,jk) = MIN(zwdw(ji,jj,jk), gdepw_0(ji,jj,jk) + zdiff) ! ! New layer thickness: zh_new = zwdw(ji,jj,jk+1) - zwdw(ji,jj,jk) ! ! Ensure minimum layer thickness: ! zh_new = MAX((1._wp-zfrch_stp)*zh_bef, zh_new) ! zh_new = cush(zh_new, zh_min) zh_new = MAX(zh_new, zh_min) ! ! Final flux: zdiff = (zh_new - zh_old) * tmask(ji,jj,jk) ! ! Limit thickness change in 1 time step: ! ztmp = MIN( ABS(zdiff), zfrch_stp*zh_bef ) ! zdiff = SIGN(ztmp, zh_new - zh_old) zh_new = zdiff + zh_old ! zwdw(ji,jj,jk) = zwdw(ji,jj,jk+1) - zh_new END DO END DO END DO END IF ! ! Check grid from the surface to the bottom !------------------------------------------ IF ( ll_chk_top2bot ) THEN DO jj = 2, jpjm1 DO ji = 2, jpim1 jkbot = mbkt(ji,jj) DO jk = 1, jkbot-1 ! zh_0 = e3t_0(ji,jj,jk) zh_bef = MIN(tilde_e3t_b(ji,jj,jk) + zh_0, tilde_e3t_b(ji,jj,jk+1) + e3t_0(ji,jj,jk+1)) zh_old = zwdw(ji,jj,jk+1) - zwdw(ji,jj,jk) zh_min = MIN(zh_0/3._wp, dzmin_int) ! zh_min = MAX(zh_min, zh_min-e3t_a(ji,jj,jk)+e3t_0(ji,jj,jk)) ! ! zwdw(ji,jj,jk+1) = MAX(zwdw(ji,jj,jk+1), REAL(jk)*dzmin_surf) ! ! New layer thickness: zh_new = zwdw(ji,jj,jk+1) - zwdw(ji,jj,jk) ! ! Ensure minimum layer thickness: ! zh_new = MAX((1._wp-zfrch_stp)*zh_bef, zh_new) ! zh_new = cush(zh_new, zh_min) zh_new = MAX(zh_new, zh_min) ! ! Final flux: zdiff = (zh_new -zh_old) * tmask(ji,jj,jk) ! ! Limit flux: ! ztmp = MIN( ABS(zdiff), zfrch_stp*zh_bef ) ! zdiff = SIGN(ztmp, zh_new - zh_old) zh_new = zdiff + zh_old ! zwdw(ji,jj,jk+1) = zwdw(ji,jj,jk) + zh_new END DO ! END DO END DO ENDIF ! DO jj = 2, jpjm1 DO ji = 2, jpim1 DO jk = 1, jpkm1 tilde_e3t_a(ji,jj,jk) = (zwdw(ji,jj,jk+1)-zwdw(ji,jj,jk)-e3t_0(ji,jj,jk)) * tmask(ji,jj,jk) END DO END DO END DO ! ! IF( ln_timing ) CALL timing_stop('dom_vvl_regrid') ! END SUBROUTINE dom_vvl_regrid FUNCTION cush(hin, hmin) RESULT(hout) !!---------------------------------------------------------------------- !! *** FUNCTION cush *** !! !! ** Purpose : !! !! ** Method : !! !!---------------------------------------------------------------------- IMPLICIT NONE REAL(wp), INTENT(in) :: hin, hmin REAL(wp) :: hout, zx, zh_cri !!---------------------------------------------------------------------- zh_cri = 3._wp * hmin ! IF ( hin<=0._wp ) THEN hout = hmin ! ELSEIF ( (hin>0._wp).AND.(hin<=zh_cri) ) THEN zx = hin/zh_cri hout = hmin * (1._wp + zx + zx*zx) ! ELSEIF ( hin>zh_cri ) THEN hout = hin ! ENDIF ! END FUNCTION cush FUNCTION cush_max(hin, hmax) RESULT(hout) !!---------------------------------------------------------------------- !! *** FUNCTION cush *** !! !! ** Purpose : !! !! ** Method : !! !!---------------------------------------------------------------------- IMPLICIT NONE REAL(wp), INTENT(in) :: hin, hmax REAL(wp) :: hout, hmin, zx, zh_cri !!---------------------------------------------------------------------- hmin = 0.1_wp * hmax zh_cri = 3._wp * hmin ! IF ( (hin>=(hmax-zh_cri)).AND.(hin<=(hmax-hmin))) THEN zx = (hmax-hin)/zh_cri hout = hmax - hmin * (1._wp + zx + zx*zx) ! ELSEIF ( hin>(hmax-zh_cri) ) THEN hout = hmax - hmin ! ELSE hout = hin ! ENDIF ! END FUNCTION cush_max SUBROUTINE dom_vvl_adv_fct( kt, pta, uin, vin ) !!---------------------------------------------------------------------- !! *** ROUTINE dom_vvl_adv_fct *** !! !! ** Purpose : Do thickness advection !! !! ** Method : FCT scheme to ensure positivity !! !! ** Action : - Update pta thickness tendency and diffusive fluxes !! - this is the total trend, hence it does include sea level motions !!---------------------------------------------------------------------- ! INTEGER, INTENT( in ) :: kt ! ocean time-step index REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pta ! thickness baroclinic trend REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: uin, vin ! input velocities ! INTEGER :: ji, jj, jk, ib, ib_bdy ! dummy loop indices INTEGER :: ikbu, ikbv, ibot REAL(wp) :: z2dtt, zbtr, ztra ! local scalar REAL(wp) :: zdi, zdj, zmin ! - - REAL(wp) :: zfp_ui, zfp_vj ! - - REAL(wp) :: zfm_ui, zfm_vj ! - - REAL(wp) :: zfp_hi, zfp_hj ! - - REAL(wp) :: zfm_hi, zfm_hj ! - - REAL(wp) :: ztout, ztin, zfac ! - - REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwx, zwy, zwi !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('dom_vvl_adv_fct') ! ! ! 1. Initializations ! ------------------ ! IF( neuler == 0 .AND. kt == nit000 ) THEN z2dtt = rdt ELSE z2dtt = 2.0_wp * rdt ENDIF ! zwi(:,:,:) = 0.e0 zwx(:,:,:) = 0.e0 zwy(:,:,:) = 0.e0 ! ! ! 2. upstream advection with initial mass fluxes & intermediate update ! -------------------------------------------------------------------- IF ( ll_shorizd ) THEN DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ! zfp_hi = MAX(hu_b(ji,jj) - gdepw_b(ji ,jj ,jk), 0._wp) zfp_hi = MIN(zfp_hi, e3t_b(ji ,jj ,jk)) zfp_hi = 0.5_wp *(zfp_hi + SIGN(zfp_hi, zfp_hi-hsmall) ) ! zfm_hi = MAX(hu_b(ji,jj) - gdepw_b(ji+1,jj ,jk), 0._wp) zfm_hi = MIN(zfm_hi, e3t_b(ji+1,jj ,jk)) zfm_hi = 0.5_wp *(zfm_hi + SIGN(zfm_hi, zfm_hi-hsmall) ) ! zfp_hj = MAX(hv_b(ji,jj) - gdepw_b(ji ,jj ,jk), 0._wp) zfp_hj = MIN(zfp_hj, e3t_b(ji ,jj ,jk)) zfp_hj = 0.5_wp *(zfp_hj + SIGN(zfp_hj, zfp_hj-hsmall) ) ! zfm_hj = MAX(hv_b(ji,jj) - gdepw_b(ji ,jj+1,jk), 0._wp) zfm_hj = MIN(zfm_hj, e3t_b(ji ,jj+1,jk)) zfm_hj = 0.5_wp *(zfm_hj + SIGN(zfm_hj, zfm_hj-hsmall) ) ! zfp_ui = uin(ji,jj,jk) + ABS( uin(ji,jj,jk) ) zfm_ui = uin(ji,jj,jk) - ABS( uin(ji,jj,jk) ) zfp_vj = vin(ji,jj,jk) + ABS( vin(ji,jj,jk) ) zfm_vj = vin(ji,jj,jk) - ABS( vin(ji,jj,jk) ) zwx(ji,jj,jk) = 0.5 * e2u(ji,jj) * ( zfp_ui * zfp_hi + zfm_ui * zfm_hi ) * umask(ji,jj,jk) zwy(ji,jj,jk) = 0.5 * e1v(ji,jj) * ( zfp_vj * zfp_hj + zfm_vj * zfm_hj ) * vmask(ji,jj,jk) END DO END DO END DO ELSE DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ! zfp_hi = e3t_b(ji ,jj ,jk) zfm_hi = e3t_b(ji+1,jj ,jk) zfp_hj = e3t_b(ji ,jj ,jk) zfm_hj = e3t_b(ji ,jj+1,jk) ! zfp_ui = uin(ji,jj,jk) + ABS( uin(ji,jj,jk) ) zfm_ui = uin(ji,jj,jk) - ABS( uin(ji,jj,jk) ) zfp_vj = vin(ji,jj,jk) + ABS( vin(ji,jj,jk) ) zfm_vj = vin(ji,jj,jk) - ABS( vin(ji,jj,jk) ) zwx(ji,jj,jk) = 0.5 * e2u(ji,jj) * ( zfp_ui * zfp_hi + zfm_ui * zfm_hi ) * umask(ji,jj,jk) zwy(ji,jj,jk) = 0.5 * e1v(ji,jj) * ( zfp_vj * zfp_hj + zfm_vj * zfm_hj ) * vmask(ji,jj,jk) END DO END DO END DO ENDIF ! total advective trend DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr = r1_e1e2t(ji,jj) ! total intermediate advective trends ztra = - zbtr * ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk ) & & + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk ) ) ! ! update and guess with monotonic sheme pta(ji,jj,jk) = pta(ji,jj,jk) + ztra zwi(ji,jj,jk) = (e3t_b(ji,jj,jk) + z2dtt * ztra ) * tmask(ji,jj,jk) END DO END DO END DO CALL lbc_lnk( zwi, 'T', 1. ) IF ( ln_bdy ) THEN DO ib_bdy=1, nb_bdy DO ib = 1, idx_bdy(ib_bdy)%nblenrim(1) ji = idx_bdy(ib_bdy)%nbi(ib,1) jj = idx_bdy(ib_bdy)%nbj(ib,1) DO jk = 1, jpkm1 zwi(ji,jj,jk) = e3t_a(ji,jj,jk) END DO END DO END DO ENDIF ! IF ( ln_vvl_dbg ) THEN ! zmin = MINVAL( zwi(:,:,:), mask = tmask(:,:,:) == 1.e0 ) ! IF( lk_mpp ) CALL mpp_min( zmin ) ! IF( zmin < 0._wp) THEN ! IF(lwp) CALL ctl_warn('vvl_adv: CFL issue here') ! IF(lwp) WRITE(numout,*) zmin ! ENDIF ! ENDIF ! 3. antidiffusive flux : high order minus low order ! -------------------------------------------------- ! antidiffusive flux on i and j DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zwx(ji,jj,jk) = (e2u(ji,jj) * uin(ji,jj,jk) * e3u_n(ji,jj,jk) & & - zwx(ji,jj,jk)) * umask(ji,jj,jk) zwy(ji,jj,jk) = (e1v(ji,jj) * vin(ji,jj,jk) * e3v_n(ji,jj,jk) & & - zwy(ji,jj,jk)) * vmask(ji,jj,jk) ! ! Update advective fluxes un_td(ji,jj,jk) = un_td(ji,jj,jk) - zwx(ji,jj,jk) vn_td(ji,jj,jk) = vn_td(ji,jj,jk) - zwy(ji,jj,jk) END DO END DO END DO CALL lbc_lnk_multi( zwx, 'U', -1., zwy, 'V', -1. ) !* local domain boundaries ! 4. monotonicity algorithm ! ------------------------- CALL nonosc_2d( e3t_b(:,:,:), zwx, zwy, zwi, z2dtt ) ! 5. final trend with corrected fluxes ! ------------------------------------ ! ! Update advective fluxes un_td(:,:,:) = (un_td(:,:,:) + zwx(:,:,:))*umask(:,:,:) vn_td(:,:,:) = (vn_td(:,:,:) + zwy(:,:,:))*vmask(:,:,:) ! DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ! zbtr = r1_e1e2t(ji,jj) ztra = - zbtr * ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk ) & & + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk ) ) ! add them to the general tracer trends pta(ji,jj,jk) = pta(ji,jj,jk) + ztra zwi(ji,jj,jk) = (e3t_b(ji,jj,jk) + z2dtt * pta(ji,jj,jk)* bdytmask(ji,jj) ) * tmask(ji,jj,jk) END DO END DO END DO IF ( ln_vvl_dbg ) THEN zmin = MINVAL( zwi(:,:,:), mask = tmask(:,:,:) == 1.e0 ) IF( lk_mpp ) CALL mpp_min( zmin ) IF( zmin < 0._wp) THEN IF(lwp) CALL ctl_warn('vvl_adv: CFL issue here') IF(lwp) WRITE(numout,*) zmin ENDIF ENDIF ! IF( ln_timing ) CALL timing_stop('dom_vvl_adv_fct') ! END SUBROUTINE dom_vvl_adv_fct SUBROUTINE dom_vvl_ups_cor( kt, pta, uin, vin ) !!---------------------------------------------------------------------- !! *** ROUTINE dom_vvl_adv_fct *** !! !! ** Purpose : Correct for addionnal barotropic fluxes !! in the upstream direction !! !! ** Method : !! !! ** Action : - Update diffusive fluxes uin, vin !! - Remove divergence from thickness tendency !!---------------------------------------------------------------------- INTEGER, INTENT( in ) :: kt ! ocean time-step index REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pta ! thickness baroclinic trend REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: uin, vin ! input fluxes INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: ikbu, ikbv, ibot REAL(wp) :: zbtr, ztra ! local scalar REAL(wp) :: zdi, zdj ! - - REAL(wp) :: zfp_hi, zfp_hj ! - - REAL(wp) :: zfm_hi, zfm_hj ! - - REAL(wp) :: zfp_ui, zfp_vj ! - - REAL(wp) :: zfm_ui, zfm_vj ! - - REAL(wp), DIMENSION(jpi,jpj) :: zbu, zbv, zhu_b, zhv_b REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwx, zwy !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('dom_vvl_ups_cor') ! ! Compute barotropic flux difference: zbu(:,:) = 0.e0 zbv(:,:) = 0.e0 DO jj = 1, jpj DO ji = 1, jpi ! vector opt. DO jk = 1, jpkm1 zbu(ji,jj) = zbu(ji,jj) - uin(ji,jj,jk) * umask(ji,jj,jk) zbv(ji,jj) = zbv(ji,jj) - vin(ji,jj,jk) * vmask(ji,jj,jk) END DO END DO ENDDO ! Compute upstream depths: zhu_b(:,:) = 0.e0 zhv_b(:,:) = 0.e0 IF ( ll_shorizd ) THEN ! Correct bottom value ! considering "shelf horizon depth" DO jj = 1, jpjm1 DO ji = 1, jpim1 ! vector opt. zdi = 0.5_wp + 0.5_wp * SIGN(1._wp, zbu(ji,jj)) zdj = 0.5_wp + 0.5_wp * SIGN(1._wp, zbv(ji,jj)) DO jk=1, jpkm1 zfp_hi = MAX(hu_b(ji,jj) - gdepw_b(ji ,jj ,jk), 0._wp) zfp_hi = MIN(zfp_hi, e3t_b(ji ,jj ,jk)) zfp_hi = 0.5_wp *(zfp_hi + SIGN(zfp_hi, zfp_hi-hsmall) ) ! zfm_hi = MAX(hu_b(ji,jj) - gdepw_b(ji+1,jj ,jk), 0._wp) zfm_hi = MIN(zfm_hi, e3t_b(ji+1,jj ,jk)) zfm_hi = 0.5_wp *(zfm_hi + SIGN(zfm_hi, zfm_hi-hsmall) ) ! zfp_hj = MAX(hv_b(ji,jj) - gdepw_b(ji ,jj ,jk), 0._wp) zfp_hj = MIN(zfp_hj, e3t_b(ji ,jj ,jk)) zfp_hj = 0.5_wp *(zfp_hj + SIGN(zfp_hj, zfp_hj-hsmall) ) ! zfm_hj = MAX(hv_b(ji,jj) - gdepw_b(ji ,jj+1,jk), 0._wp) zfm_hj = MIN(zfm_hj, e3t_b(ji ,jj+1,jk)) zfm_hj = 0.5_wp *(zfm_hj + SIGN(zfm_hj, zfm_hj-hsmall) ) ! zhu_b(ji,jj) = zhu_b(ji,jj) + ( zdi * zfp_hi & & + (1._wp-zdi) * zfm_hi & & ) * umask(ji,jj,jk) zhv_b(ji,jj) = zhv_b(ji,jj) + ( zdj * zfp_hj & & + (1._wp-zdj) * zfm_hj & & ) * vmask(ji,jj,jk) END DO END DO END DO ELSE DO jj = 1, jpjm1 DO ji = 1, jpim1 ! vector opt. zdi = 0.5_wp + 0.5_wp * SIGN(1._wp, zbu(ji,jj)) zdj = 0.5_wp + 0.5_wp * SIGN(1._wp, zbv(ji,jj)) DO jk = 1, jpkm1 zfp_hi = e3t_b(ji ,jj ,jk) zfm_hi = e3t_b(ji+1,jj ,jk) zfp_hj = e3t_b(ji ,jj ,jk) zfm_hj = e3t_b(ji ,jj+1,jk) ! zhu_b(ji,jj) = zhu_b(ji,jj) + ( zdi * zfp_hi & & + (1._wp-zdi) * zfm_hi & & ) * umask(ji,jj,jk) ! zhv_b(ji,jj) = zhv_b(ji,jj) + ( zdj * zfp_hj & & + (1._wp-zdj) * zfm_hj & & ) * vmask(ji,jj,jk) END DO END DO END DO ENDIF CALL lbc_lnk_multi( zhu_b(:,:), 'U', 1., zhv_b(:,:), 'V', 1. ) !* local domain boundaries ! Corrective barotropic velocity (times hor. scale factor) zbu(:,:) = zbu(:,:)/ (zhu_b(:,:)*umask(:,:,1)+1._wp-umask(:,:,1)) zbv(:,:) = zbv(:,:)/ (zhv_b(:,:)*vmask(:,:,1)+1._wp-vmask(:,:,1)) ! Set corrective fluxes in upstream direction: ! zwx(:,:,:) = 0.e0 zwy(:,:,:) = 0.e0 IF ( ll_shorizd ) THEN DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ! upstream scheme zfp_ui = zbu(ji,jj) + ABS( zbu(ji,jj) ) zfm_ui = zbu(ji,jj) - ABS( zbu(ji,jj) ) zfp_vj = zbv(ji,jj) + ABS( zbv(ji,jj) ) zfm_vj = zbv(ji,jj) - ABS( zbv(ji,jj) ) DO jk = 1, jpkm1 zfp_hi = MAX(hu_b(ji,jj) - gdepw_b(ji ,jj ,jk), 0._wp) zfp_hi = MIN(e3t_b(ji ,jj ,jk), zfp_hi) zfp_hi = 0.5_wp *(zfp_hi + SIGN(zfp_hi, zfp_hi-hsmall) ) ! zfm_hi = MAX(hu_b(ji,jj) - gdepw_b(ji+1,jj ,jk), 0._wp) zfm_hi = MIN(e3t_b(ji+1,jj ,jk), zfm_hi) zfm_hi = 0.5_wp *(zfm_hi + SIGN(zfm_hi, zfm_hi-hsmall) ) ! zfp_hj = MAX(hv_b(ji,jj) - gdepw_b(ji ,jj ,jk), 0._wp) zfp_hj = MIN(e3t_b(ji ,jj ,jk), zfp_hj) zfp_hj = 0.5_wp *(zfp_hj + SIGN(zfp_hj, zfp_hj-hsmall) ) ! zfm_hj = MAX(hv_b(ji,jj) - gdepw_b(ji ,jj+1,jk), 0._wp) zfm_hj = MIN(e3t_b(ji ,jj+1,jk), zfm_hj) zfm_hj = 0.5_wp *(zfm_hj + SIGN(zfm_hj, zfm_hj-hsmall) ) ! zwx(ji,jj,jk) = 0.5 * ( zfp_ui * zfp_hi + zfm_ui * zfm_hi ) * umask(ji,jj,jk) zwy(ji,jj,jk) = 0.5 * ( zfp_vj * zfp_hj + zfm_vj * zfm_hj ) * vmask(ji,jj,jk) END DO END DO END DO ELSE DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ! upstream scheme zfp_ui = zbu(ji,jj) + ABS( zbu(ji,jj) ) zfm_ui = zbu(ji,jj) - ABS( zbu(ji,jj) ) zfp_vj = zbv(ji,jj) + ABS( zbv(ji,jj) ) zfm_vj = zbv(ji,jj) - ABS( zbv(ji,jj) ) DO jk = 1, jpkm1 zfp_hi = e3t_b(ji ,jj ,jk) zfm_hi = e3t_b(ji+1,jj ,jk) zfp_hj = e3t_b(ji ,jj ,jk) zfm_hj = e3t_b(ji ,jj+1,jk) ! zwx(ji,jj,jk) = 0.5 * ( zfp_ui * zfp_hi + zfm_ui * zfm_hi ) * umask(ji,jj,jk) zwy(ji,jj,jk) = 0.5 * ( zfp_vj * zfp_hj + zfm_vj * zfm_hj ) * vmask(ji,jj,jk) END DO END DO END DO ENDIF CALL lbc_lnk_multi( zwx, 'U', -1., zwy, 'V', -1. ) !* local domain boundaries uin(:,:,:) = uin(:,:,:) + zwx(:,:,:) vin(:,:,:) = vin(:,:,:) + zwy(:,:,:) ! ! Update trend with corrective fluxes: DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ! zbtr = r1_e1e2t(ji,jj) ! total advective trends ztra = - zbtr * ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk ) & & + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk ) ) ! add them to the general tracer trends pta(ji,jj,jk) = pta(ji,jj,jk) + ztra END DO END DO END DO ! IF( ln_timing ) CALL timing_stop('dom_vvl_ups_cor') ! END SUBROUTINE dom_vvl_ups_cor SUBROUTINE nonosc_2d( pbef, paa, pbb, paft, p2dt ) !!--------------------------------------------------------------------- !! *** ROUTINE nonosc_2d *** !! !! ** Purpose : compute monotonic thickness fluxes from the upstream !! scheme and the before field by a nonoscillatory algorithm !! !! ** Method : ... ??? !! warning : pbef and paft must be masked, but the boundaries !! conditions on the fluxes are not necessary zalezak (1979) !! drange (1995) multi-dimensional forward-in-time and upstream- !! in-space based differencing for fluid !!---------------------------------------------------------------------- ! !!---------------------------------------------------------------------- REAL(wp) , INTENT(in ) :: p2dt ! vertical profile of tracer time-step REAL(wp), DIMENSION (jpi,jpj,jpk), INTENT(in ) :: pbef, paft ! before & after field REAL(wp), DIMENSION (jpi,jpj,jpk), INTENT(inout) :: paa, pbb ! monotonic fluxes in the 3 directions ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zpos, zneg, zbt, za, zb, zc, zbig, zrtrn, z2dtt ! local scalars REAL(wp) :: zau, zbu, zcu, zav, zbv, zcv, zup, zdo ! - - REAL(wp) :: zupip1, zupim1, zupjp1, zupjm1, zupb, zupa REAL(wp) :: zdoip1, zdoim1, zdojp1, zdojm1, zdob, zdoa REAL(wp), DIMENSION(jpi,jpj,jpk) :: zbetup, zbetdo, zbup, zbdo !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('nonosc2') ! zbig = 1.e+40_wp zrtrn = 1.e-15_wp zbetup(:,:,jpk) = 0._wp ; zbetdo(:,:,jpk) = 0._wp ! Search local extrema ! -------------------- ! max/min of pbef & paft with large negative/positive value (-/+zbig) inside land zbup = MAX( pbef * tmask - zbig * ( 1.e0 - tmask ), & & paft * tmask - zbig * ( 1.e0 - tmask ) ) zbdo = MIN( pbef * tmask + zbig * ( 1.e0 - tmask ), & & paft * tmask + zbig * ( 1.e0 - tmask ) ) DO jk = 1, jpkm1 z2dtt = p2dt DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ! search maximum in neighbourhood zup = MAX( zbup(ji ,jj ,jk ), & & zbup(ji-1,jj ,jk ), zbup(ji+1,jj ,jk ), & & zbup(ji ,jj-1,jk ), zbup(ji ,jj+1,jk )) ! search minimum in neighbourhood zdo = MIN( zbdo(ji ,jj ,jk ), & & zbdo(ji-1,jj ,jk ), zbdo(ji+1,jj ,jk ), & & zbdo(ji ,jj-1,jk ), zbdo(ji ,jj+1,jk )) ! positive part of the flux zpos = MAX( 0., paa(ji-1,jj ,jk ) ) - MIN( 0., paa(ji ,jj ,jk ) ) & & + MAX( 0., pbb(ji ,jj-1,jk ) ) - MIN( 0., pbb(ji ,jj ,jk ) ) ! negative part of the flux zneg = MAX( 0., paa(ji ,jj ,jk ) ) - MIN( 0., paa(ji-1,jj ,jk ) ) & & + MAX( 0., pbb(ji ,jj ,jk ) ) - MIN( 0., pbb(ji ,jj-1,jk ) ) ! up & down beta terms zbt = e1t(ji,jj) * e2t(ji,jj) / z2dtt zbetup(ji,jj,jk) = ( zup - paft(ji,jj,jk) ) / ( zpos + zrtrn ) * zbt zbetdo(ji,jj,jk) = ( paft(ji,jj,jk) - zdo ) / ( zneg + zrtrn ) * zbt END DO END DO END DO CALL lbc_lnk_multi( zbetup, 'T', 1. , zbetdo, 'T', 1. ) ! lateral boundary cond. (unchanged sign) ! 3. monotonic flux in the i & j direction (paa & pbb) ! ---------------------------------------- DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zau = MIN( 1.e0, zbetdo(ji,jj,jk), zbetup(ji+1,jj,jk) ) zbu = MIN( 1.e0, zbetup(ji,jj,jk), zbetdo(ji+1,jj,jk) ) zcu = ( 0.5 + SIGN( 0.5 , paa(ji,jj,jk) ) ) paa(ji,jj,jk) = paa(ji,jj,jk) * ( zcu * zau + ( 1.e0 - zcu) * zbu ) zav = MIN( 1.e0, zbetdo(ji,jj,jk), zbetup(ji,jj+1,jk) ) zbv = MIN( 1.e0, zbetup(ji,jj,jk), zbetdo(ji,jj+1,jk) ) zcv = ( 0.5 + SIGN( 0.5 , pbb(ji,jj,jk) ) ) pbb(ji,jj,jk) = pbb(ji,jj,jk) * ( zcv * zav + ( 1.e0 - zcv) * zbv ) END DO END DO END DO CALL lbc_lnk_multi( paa, 'U', -1., pbb, 'V', -1. ) !* local domain boundaries ! IF( ln_timing ) CALL timing_stop('nonosc2') ! END SUBROUTINE nonosc_2d !!====================================================================== END MODULE domvvl