MODULE bdyini !!====================================================================== !! *** MODULE bdyini *** !! Unstructured open boundaries : initialisation !!====================================================================== !! History : 1.0 ! 2005-01 (J. Chanut, A. Sellar) Original code !! - ! 2007-01 (D. Storkey) Update to use IOM module !! - ! 2007-01 (D. Storkey) Tidal forcing !! 3.0 ! 2008-04 (NEMO team) add in the reference version !! 3.3 ! 2010-09 (E.O'Dea) updates for Shelf configurations !! 3.3 ! 2010-09 (D.Storkey) add ice boundary conditions !! 3.4 ! 2011 (D. Storkey) rewrite in preparation for OBC-BDY merge !! 3.4 ! 2012 (J. Chanut) straight open boundary case update !! 3.5 ! 2012 (S. Mocavero, I. Epicoco) optimization of BDY communications !! 3.7 ! 2016 (T. Lovato) Remove bdy macro, call here init for dta and tides !!---------------------------------------------------------------------- !! bdy_init : Initialization of unstructured open boundaries !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain USE bdy_oce ! unstructured open boundary conditions USE bdydta ! open boundary cond. setting (bdy_dta_init routine) USE bdytides ! open boundary cond. setting (bdytide_init routine) USE sbctide ! Tidal forcing or not USE phycst , ONLY: rday ! USE in_out_manager ! I/O units USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_mpp ! for mpp_sum USE iom ! I/O IMPLICIT NONE PRIVATE PUBLIC bdy_init ! routine called in nemo_init INTEGER, PARAMETER :: jp_nseg = 100 ! INTEGER, PARAMETER :: nrimmax = 20 ! maximum rimwidth in structured ! open boundary data files ! Straight open boundary segment parameters: INTEGER :: nbdysege, nbdysegw, nbdysegn, nbdysegs INTEGER, DIMENSION(jp_nseg) :: jpieob, jpjedt, jpjeft, npckge ! INTEGER, DIMENSION(jp_nseg) :: jpiwob, jpjwdt, jpjwft, npckgw ! INTEGER, DIMENSION(jp_nseg) :: jpjnob, jpindt, jpinft, npckgn ! INTEGER, DIMENSION(jp_nseg) :: jpjsob, jpisdt, jpisft, npckgs ! !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE bdy_init !!---------------------------------------------------------------------- !! *** ROUTINE bdy_init *** !! !! ** Purpose : Initialization of the dynamics and tracer fields with !! unstructured open boundaries. !! !! ** Method : Read initialization arrays (mask, indices) to identify !! an unstructured open boundary !! !! ** Input : bdy_init.nc, input file for unstructured open boundaries !!---------------------------------------------------------------------- NAMELIST/nambdy/ ln_bdy, nb_bdy, ln_coords_file, cn_coords_file, & & ln_mask_file, cn_mask_file, cn_dyn2d, nn_dyn2d_dta, & & cn_dyn3d, nn_dyn3d_dta, cn_tra, nn_tra_dta, & & ln_tra_dmp, ln_dyn3d_dmp, rn_time_dmp, rn_time_dmp_out, & & cn_ice, nn_ice_dta, & & rn_ice_tem, rn_ice_sal, rn_ice_age, & & ln_vol, nn_volctl, nn_rimwidth, nb_jpk_bdy ! INTEGER :: ios ! Local integer output status for namelist read !!---------------------------------------------------------------------- ! ------------------------ ! Read namelist parameters ! ------------------------ REWIND( numnam_ref ) ! Namelist nambdy in reference namelist :Unstructured open boundaries READ ( numnam_ref, nambdy, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambdy in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist nambdy in configuration namelist :Unstructured open boundaries READ ( numnam_cfg, nambdy, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nambdy in configuration namelist', lwp ) IF(lwm) WRITE ( numond, nambdy ) IF( .NOT. Agrif_Root() ) ln_bdy = .FALSE. ! forced for Agrif children ! ----------------------------------------- ! unstructured open boundaries use control ! ----------------------------------------- IF ( ln_bdy ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'bdy_init : initialization of open boundaries' IF(lwp) WRITE(numout,*) '~~~~~~~~' ! ! Open boundaries definition (arrays and masks) CALL bdy_segs ! ! Open boundaries initialisation of external data arrays CALL bdy_dta_init ! ! Open boundaries initialisation of tidal harmonic forcing IF( ln_tide ) CALL bdytide_init ! ELSE IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'bdy_init : open boundaries not used (ln_bdy = F)' IF(lwp) WRITE(numout,*) '~~~~~~~~' ! ENDIF ! END SUBROUTINE bdy_init SUBROUTINE bdy_segs !!---------------------------------------------------------------------- !! *** ROUTINE bdy_init *** !! !! ** Purpose : Definition of unstructured open boundaries. !! !! ** Method : Read initialization arrays (mask, indices) to identify !! an unstructured open boundary !! !! ** Input : bdy_init.nc, input file for unstructured open boundaries !!---------------------------------------------------------------------- INTEGER :: ib_bdy, ii, ij, ik, igrd, ib, ir, iseg ! dummy loop indices INTEGER :: icount, icountr, ibr_max, ilen1, ibm1 ! local integers INTEGER :: iwe, ies, iso, ino, inum, id_dummy ! - - INTEGER :: igrd_start, igrd_end, jpbdta ! - - INTEGER :: jpbdtau, jpbdtas ! - - INTEGER :: ib_bdy1, ib_bdy2, ib1, ib2 ! - - INTEGER :: i_offset, j_offset ! - - INTEGER , POINTER :: nbi, nbj, nbr ! short cuts REAL(wp), POINTER :: flagu, flagv ! - - REAL(wp), POINTER, DIMENSION(:,:) :: pmask ! pointer to 2D mask fields REAL(wp) :: zefl, zwfl, znfl, zsfl ! local scalars INTEGER, DIMENSION (2) :: kdimsz INTEGER, DIMENSION(jpbgrd,jp_bdy) :: nblendta ! Length of index arrays INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: nbidta, nbjdta ! Index arrays: i and j indices of bdy dta INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: nbrdta ! Discrete distance from rim points CHARACTER(LEN=1),DIMENSION(jpbgrd) :: cgrid INTEGER :: com_east, com_west, com_south, com_north ! Flags for boundaries sending INTEGER :: com_east_b, com_west_b, com_south_b, com_north_b ! Flags for boundaries receiving INTEGER :: iw_b(4), ie_b(4), is_b(4), in_b(4) ! Arrays for neighbours coordinates REAL(wp), TARGET, DIMENSION(jpi,jpj) :: zfmask ! temporary fmask array excluding coastal boundary condition (shlat) !! CHARACTER(LEN=1) :: ctypebdy ! - - INTEGER :: nbdyind, nbdybeg, nbdyend !! NAMELIST/nambdy_index/ ctypebdy, nbdyind, nbdybeg, nbdyend INTEGER :: ios ! Local integer output status for namelist read !!---------------------------------------------------------------------- ! cgrid = (/'t','u','v'/) ! ----------------------------------------- ! Check and write out namelist parameters ! ----------------------------------------- IF( jperio /= 0 ) CALL ctl_stop( 'bdy_segs: Cyclic or symmetric,', & & ' and general open boundary condition are not compatible' ) IF( nb_bdy == 0 ) THEN IF(lwp) WRITE(numout,*) 'nb_bdy = 0, NO OPEN BOUNDARIES APPLIED.' ELSE IF(lwp) WRITE(numout,*) 'Number of open boundary sets : ', nb_bdy ENDIF DO ib_bdy = 1,nb_bdy IF(lwp) WRITE(numout,*) ' ' IF(lwp) WRITE(numout,*) '------ Open boundary data set ',ib_bdy,'------' IF( ln_coords_file(ib_bdy) ) THEN IF(lwp) WRITE(numout,*) 'Boundary definition read from file '//TRIM(cn_coords_file(ib_bdy)) ELSE IF(lwp) WRITE(numout,*) 'Boundary defined in namelist.' ENDIF IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'Boundary conditions for barotropic solution: ' SELECT CASE( cn_dyn2d(ib_bdy) ) CASE( 'none' ) IF(lwp) WRITE(numout,*) ' no open boundary condition' dta_bdy(ib_bdy)%ll_ssh = .false. dta_bdy(ib_bdy)%ll_u2d = .false. dta_bdy(ib_bdy)%ll_v2d = .false. CASE( 'frs' ) IF(lwp) WRITE(numout,*) ' Flow Relaxation Scheme' dta_bdy(ib_bdy)%ll_ssh = .false. dta_bdy(ib_bdy)%ll_u2d = .true. dta_bdy(ib_bdy)%ll_v2d = .true. CASE( 'flather' ) IF(lwp) WRITE(numout,*) ' Flather radiation condition' dta_bdy(ib_bdy)%ll_ssh = .true. dta_bdy(ib_bdy)%ll_u2d = .true. dta_bdy(ib_bdy)%ll_v2d = .true. CASE( 'orlanski' ) IF(lwp) WRITE(numout,*) ' Orlanski (fully oblique) radiation condition with adaptive nudging' dta_bdy(ib_bdy)%ll_ssh = .false. dta_bdy(ib_bdy)%ll_u2d = .true. dta_bdy(ib_bdy)%ll_v2d = .true. CASE( 'orlanski_npo' ) IF(lwp) WRITE(numout,*) ' Orlanski (NPO) radiation condition with adaptive nudging' dta_bdy(ib_bdy)%ll_ssh = .false. dta_bdy(ib_bdy)%ll_u2d = .true. dta_bdy(ib_bdy)%ll_v2d = .true. CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for cn_dyn2d' ) END SELECT IF( cn_dyn2d(ib_bdy) /= 'none' ) THEN SELECT CASE( nn_dyn2d_dta(ib_bdy) ) ! CASE( 0 ) ; IF(lwp) WRITE(numout,*) ' initial state used for bdy data' CASE( 1 ) ; IF(lwp) WRITE(numout,*) ' boundary data taken from file' CASE( 2 ) ; IF(lwp) WRITE(numout,*) ' tidal harmonic forcing taken from file' CASE( 3 ) ; IF(lwp) WRITE(numout,*) ' boundary data AND tidal harmonic forcing taken from files' CASE DEFAULT ; CALL ctl_stop( 'nn_dyn2d_dta must be between 0 and 3' ) END SELECT IF (( nn_dyn2d_dta(ib_bdy) .ge. 2 ).AND.(.NOT.ln_tide)) THEN CALL ctl_stop( 'You must activate with ln_tide to add tidal forcing at open boundaries' ) ENDIF ENDIF IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'Boundary conditions for baroclinic velocities: ' SELECT CASE( cn_dyn3d(ib_bdy) ) CASE('none') IF(lwp) WRITE(numout,*) ' no open boundary condition' dta_bdy(ib_bdy)%ll_u3d = .false. dta_bdy(ib_bdy)%ll_v3d = .false. CASE('frs') IF(lwp) WRITE(numout,*) ' Flow Relaxation Scheme' dta_bdy(ib_bdy)%ll_u3d = .true. dta_bdy(ib_bdy)%ll_v3d = .true. CASE('specified') IF(lwp) WRITE(numout,*) ' Specified value' dta_bdy(ib_bdy)%ll_u3d = .true. dta_bdy(ib_bdy)%ll_v3d = .true. CASE('neumann') IF(lwp) WRITE(numout,*) ' Neumann conditions' dta_bdy(ib_bdy)%ll_u3d = .false. dta_bdy(ib_bdy)%ll_v3d = .false. CASE('zerograd') IF(lwp) WRITE(numout,*) ' Zero gradient for baroclinic velocities' dta_bdy(ib_bdy)%ll_u3d = .false. dta_bdy(ib_bdy)%ll_v3d = .false. CASE('zero') IF(lwp) WRITE(numout,*) ' Zero baroclinic velocities (runoff case)' dta_bdy(ib_bdy)%ll_u3d = .false. dta_bdy(ib_bdy)%ll_v3d = .false. CASE('orlanski') IF(lwp) WRITE(numout,*) ' Orlanski (fully oblique) radiation condition with adaptive nudging' dta_bdy(ib_bdy)%ll_u3d = .true. dta_bdy(ib_bdy)%ll_v3d = .true. CASE('orlanski_npo') IF(lwp) WRITE(numout,*) ' Orlanski (NPO) radiation condition with adaptive nudging' dta_bdy(ib_bdy)%ll_u3d = .true. dta_bdy(ib_bdy)%ll_v3d = .true. CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for cn_dyn3d' ) END SELECT IF( cn_dyn3d(ib_bdy) /= 'none' ) THEN SELECT CASE( nn_dyn3d_dta(ib_bdy) ) ! CASE( 0 ) ; IF(lwp) WRITE(numout,*) ' initial state used for bdy data' CASE( 1 ) ; IF(lwp) WRITE(numout,*) ' boundary data taken from file' CASE DEFAULT ; CALL ctl_stop( 'nn_dyn3d_dta must be 0 or 1' ) END SELECT ENDIF IF ( ln_dyn3d_dmp(ib_bdy) ) THEN IF ( cn_dyn3d(ib_bdy) == 'none' ) THEN IF(lwp) WRITE(numout,*) 'No open boundary condition for baroclinic velocities: ln_dyn3d_dmp is set to .false.' ln_dyn3d_dmp(ib_bdy)=.false. ELSEIF ( cn_dyn3d(ib_bdy) == 'frs' ) THEN CALL ctl_stop( 'Use FRS OR relaxation' ) ELSE IF(lwp) WRITE(numout,*) ' + baroclinic velocities relaxation zone' IF(lwp) WRITE(numout,*) ' Damping time scale: ',rn_time_dmp(ib_bdy),' days' IF((lwp).AND.rn_time_dmp(ib_bdy)<0) CALL ctl_stop( 'Time scale must be positive' ) dta_bdy(ib_bdy)%ll_u3d = .true. dta_bdy(ib_bdy)%ll_v3d = .true. ENDIF ELSE IF(lwp) WRITE(numout,*) ' NO relaxation on baroclinic velocities' ENDIF IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'Boundary conditions for temperature and salinity: ' SELECT CASE( cn_tra(ib_bdy) ) CASE('none') IF(lwp) WRITE(numout,*) ' no open boundary condition' dta_bdy(ib_bdy)%ll_tem = .false. dta_bdy(ib_bdy)%ll_sal = .false. CASE('frs') IF(lwp) WRITE(numout,*) ' Flow Relaxation Scheme' dta_bdy(ib_bdy)%ll_tem = .true. dta_bdy(ib_bdy)%ll_sal = .true. CASE('specified') IF(lwp) WRITE(numout,*) ' Specified value' dta_bdy(ib_bdy)%ll_tem = .true. dta_bdy(ib_bdy)%ll_sal = .true. CASE('neumann') IF(lwp) WRITE(numout,*) ' Neumann conditions' dta_bdy(ib_bdy)%ll_tem = .false. dta_bdy(ib_bdy)%ll_sal = .false. CASE('runoff') IF(lwp) WRITE(numout,*) ' Runoff conditions : Neumann for T and specified to 0.1 for salinity' dta_bdy(ib_bdy)%ll_tem = .false. dta_bdy(ib_bdy)%ll_sal = .false. CASE('orlanski') IF(lwp) WRITE(numout,*) ' Orlanski (fully oblique) radiation condition with adaptive nudging' dta_bdy(ib_bdy)%ll_tem = .true. dta_bdy(ib_bdy)%ll_sal = .true. CASE('orlanski_npo') IF(lwp) WRITE(numout,*) ' Orlanski (NPO) radiation condition with adaptive nudging' dta_bdy(ib_bdy)%ll_tem = .true. dta_bdy(ib_bdy)%ll_sal = .true. CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for cn_tra' ) END SELECT IF( cn_tra(ib_bdy) /= 'none' ) THEN SELECT CASE( nn_tra_dta(ib_bdy) ) ! CASE( 0 ) ; IF(lwp) WRITE(numout,*) ' initial state used for bdy data' CASE( 1 ) ; IF(lwp) WRITE(numout,*) ' boundary data taken from file' CASE DEFAULT ; CALL ctl_stop( 'nn_tra_dta must be 0 or 1' ) END SELECT ENDIF IF ( ln_tra_dmp(ib_bdy) ) THEN IF ( cn_tra(ib_bdy) == 'none' ) THEN IF(lwp) WRITE(numout,*) 'No open boundary condition for tracers: ln_tra_dmp is set to .false.' ln_tra_dmp(ib_bdy)=.false. ELSEIF ( cn_tra(ib_bdy) == 'frs' ) THEN CALL ctl_stop( 'Use FRS OR relaxation' ) ELSE IF(lwp) WRITE(numout,*) ' + T/S relaxation zone' IF(lwp) WRITE(numout,*) ' Damping time scale: ',rn_time_dmp(ib_bdy),' days' IF(lwp) WRITE(numout,*) ' Outflow damping time scale: ',rn_time_dmp_out(ib_bdy),' days' IF((lwp).AND.rn_time_dmp(ib_bdy)<0) CALL ctl_stop( 'Time scale must be positive' ) dta_bdy(ib_bdy)%ll_tem = .true. dta_bdy(ib_bdy)%ll_sal = .true. ENDIF ELSE IF(lwp) WRITE(numout,*) ' NO T/S relaxation' ENDIF IF(lwp) WRITE(numout,*) #if defined key_si3 IF(lwp) WRITE(numout,*) 'Boundary conditions for sea ice: ' SELECT CASE( cn_ice(ib_bdy) ) CASE('none') IF(lwp) WRITE(numout,*) ' no open boundary condition' dta_bdy(ib_bdy)%ll_a_i = .false. dta_bdy(ib_bdy)%ll_h_i = .false. dta_bdy(ib_bdy)%ll_h_s = .false. CASE('frs') IF(lwp) WRITE(numout,*) ' Flow Relaxation Scheme' dta_bdy(ib_bdy)%ll_a_i = .true. dta_bdy(ib_bdy)%ll_h_i = .true. dta_bdy(ib_bdy)%ll_h_s = .true. CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for cn_ice' ) END SELECT IF( cn_ice(ib_bdy) /= 'none' ) THEN SELECT CASE( nn_ice_dta(ib_bdy) ) ! CASE( 0 ) ; IF(lwp) WRITE(numout,*) ' initial state used for bdy data' CASE( 1 ) ; IF(lwp) WRITE(numout,*) ' boundary data taken from file' CASE DEFAULT ; CALL ctl_stop( 'nn_ice_dta must be 0 or 1' ) END SELECT ENDIF IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' tem of bdy sea-ice = ', rn_ice_tem(ib_bdy) IF(lwp) WRITE(numout,*) ' sal of bdy sea-ice = ', rn_ice_sal(ib_bdy) IF(lwp) WRITE(numout,*) ' age of bdy sea-ice = ', rn_ice_age(ib_bdy) #endif IF(lwp) WRITE(numout,*) ' Width of relaxation zone = ', nn_rimwidth(ib_bdy) IF(lwp) WRITE(numout,*) ! END DO IF( nb_bdy > 0 ) THEN IF( ln_vol ) THEN ! check volume conservation (nn_volctl value) IF(lwp) WRITE(numout,*) 'Volume correction applied at open boundaries' IF(lwp) WRITE(numout,*) SELECT CASE ( nn_volctl ) CASE( 1 ) ; IF(lwp) WRITE(numout,*) ' The total volume will be constant' CASE( 0 ) ; IF(lwp) WRITE(numout,*) ' The total volume will vary according to the surface E-P flux' CASE DEFAULT ; CALL ctl_stop( 'nn_volctl must be 0 or 1' ) END SELECT IF(lwp) WRITE(numout,*) ELSE IF(lwp) WRITE(numout,*) 'No volume correction applied at open boundaries' IF(lwp) WRITE(numout,*) ENDIF IF( nb_jpk_bdy > 0 ) THEN IF(lwp) WRITE(numout,*) '*** open boundary will be interpolate in the vertical onto the native grid ***' ELSE IF(lwp) WRITE(numout,*) '*** open boundary will be read straight onto the native grid without vertical interpolation ***' ENDIF ENDIF ! ------------------------------------------------- ! Initialise indices arrays for open boundaries ! ------------------------------------------------- ! Work out global dimensions of boundary data ! --------------------------------------------- REWIND( numnam_cfg ) nblendta(:,:) = 0 nbdysege = 0 nbdysegw = 0 nbdysegn = 0 nbdysegs = 0 icount = 0 ! count user defined segments ! Dimensions below are used to allocate arrays to read external data jpbdtas = 1 ! Maximum size of boundary data (structured case) jpbdtau = 1 ! Maximum size of boundary data (unstructured case) DO ib_bdy = 1, nb_bdy IF( .NOT. ln_coords_file(ib_bdy) ) THEN ! Work out size of global arrays from namelist parameters icount = icount + 1 ! No REWIND here because may need to read more than one nambdy_index namelist. ! Read only namelist_cfg to avoid unseccessfull overwrite ! keep full control of the configuration namelist READ ( numnam_cfg, nambdy_index, IOSTAT = ios, ERR = 904 ) 904 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambdy_index in configuration namelist', lwp ) IF(lwm) WRITE ( numond, nambdy_index ) SELECT CASE ( TRIM(ctypebdy) ) CASE( 'N' ) IF( nbdyind == -1 ) THEN ! Automatic boundary definition: if nbdysegX = -1 nbdyind = jpjglo - 2 ! set boundary to whole side of model domain. nbdybeg = 2 nbdyend = jpiglo - 1 ENDIF nbdysegn = nbdysegn + 1 npckgn(nbdysegn) = ib_bdy ! Save bdy package number jpjnob(nbdysegn) = nbdyind jpindt(nbdysegn) = nbdybeg jpinft(nbdysegn) = nbdyend ! CASE( 'S' ) IF( nbdyind == -1 ) THEN ! Automatic boundary definition: if nbdysegX = -1 nbdyind = 2 ! set boundary to whole side of model domain. nbdybeg = 2 nbdyend = jpiglo - 1 ENDIF nbdysegs = nbdysegs + 1 npckgs(nbdysegs) = ib_bdy ! Save bdy package number jpjsob(nbdysegs) = nbdyind jpisdt(nbdysegs) = nbdybeg jpisft(nbdysegs) = nbdyend ! CASE( 'E' ) IF( nbdyind == -1 ) THEN ! Automatic boundary definition: if nbdysegX = -1 nbdyind = jpiglo - 2 ! set boundary to whole side of model domain. nbdybeg = 2 nbdyend = jpjglo - 1 ENDIF nbdysege = nbdysege + 1 npckge(nbdysege) = ib_bdy ! Save bdy package number jpieob(nbdysege) = nbdyind jpjedt(nbdysege) = nbdybeg jpjeft(nbdysege) = nbdyend ! CASE( 'W' ) IF( nbdyind == -1 ) THEN ! Automatic boundary definition: if nbdysegX = -1 nbdyind = 2 ! set boundary to whole side of model domain. nbdybeg = 2 nbdyend = jpjglo - 1 ENDIF nbdysegw = nbdysegw + 1 npckgw(nbdysegw) = ib_bdy ! Save bdy package number jpiwob(nbdysegw) = nbdyind jpjwdt(nbdysegw) = nbdybeg jpjwft(nbdysegw) = nbdyend ! CASE DEFAULT ; CALL ctl_stop( 'ctypebdy must be N, S, E or W' ) END SELECT ! For simplicity we assume that in case of straight bdy, arrays have the same length ! (even if it is true that last tangential velocity points ! are useless). This simplifies a little bit boundary data format (and agrees with format ! used so far in obc package) nblendta(1:jpbgrd,ib_bdy) = (nbdyend - nbdybeg + 1) * nn_rimwidth(ib_bdy) jpbdtas = MAX(jpbdtas, (nbdyend - nbdybeg + 1)) IF (lwp.and.(nn_rimwidth(ib_bdy)>nrimmax)) & & CALL ctl_stop( 'rimwidth must be lower than nrimmax' ) ELSE ! Read size of arrays in boundary coordinates file. CALL iom_open( cn_coords_file(ib_bdy), inum ) DO igrd = 1, jpbgrd id_dummy = iom_varid( inum, 'nbi'//cgrid(igrd), kdimsz=kdimsz ) nblendta(igrd,ib_bdy) = MAXVAL(kdimsz) jpbdtau = MAX(jpbdtau, MAXVAL(kdimsz)) END DO CALL iom_close( inum ) ! ENDIF ! END DO ! ib_bdy IF (nb_bdy>0) THEN jpbdta = MAXVAL(nblendta(1:jpbgrd,1:nb_bdy)) ! Allocate arrays !--------------- ALLOCATE( nbidta(jpbdta, jpbgrd, nb_bdy), nbjdta(jpbdta, jpbgrd, nb_bdy), & & nbrdta(jpbdta, jpbgrd, nb_bdy) ) IF( nb_jpk_bdy>0 ) THEN ALLOCATE( dta_global(jpbdtau, 1, nb_jpk_bdy) ) ALLOCATE( dta_global_z(jpbdtau, 1, nb_jpk_bdy) ) ALLOCATE( dta_global_dz(jpbdtau, 1, nb_jpk_bdy) ) ELSE ALLOCATE( dta_global(jpbdtau, 1, jpk) ) ALLOCATE( dta_global_z(jpbdtau, 1, jpk) ) ! needed ?? TODO ALLOCATE( dta_global_dz(jpbdtau, 1, jpk) )! needed ?? TODO ENDIF IF ( icount>0 ) THEN IF( nb_jpk_bdy>0 ) THEN ALLOCATE( dta_global2(jpbdtas, nrimmax, nb_jpk_bdy) ) ALLOCATE( dta_global2_z(jpbdtas, nrimmax, nb_jpk_bdy) ) ALLOCATE( dta_global2_dz(jpbdtas, nrimmax, nb_jpk_bdy) ) ELSE ALLOCATE( dta_global2(jpbdtas, nrimmax, jpk) ) ALLOCATE( dta_global2_z(jpbdtas, nrimmax, jpk) ) ! needed ?? TODO ALLOCATE( dta_global2_dz(jpbdtas, nrimmax, jpk) )! needed ?? TODO ENDIF ENDIF ! ENDIF ! Now look for crossings in user (namelist) defined open boundary segments: !-------------------------------------------------------------------------- IF( icount>0 ) CALL bdy_ctl_seg ! Calculate global boundary index arrays or read in from file !------------------------------------------------------------ ! 1. Read global index arrays from boundary coordinates file. DO ib_bdy = 1, nb_bdy ! IF( ln_coords_file(ib_bdy) ) THEN ! CALL iom_open( cn_coords_file(ib_bdy), inum ) DO igrd = 1, jpbgrd CALL iom_get( inum, jpdom_unknown, 'nbi'//cgrid(igrd), dta_global(1:nblendta(igrd,ib_bdy),:,1) ) DO ii = 1,nblendta(igrd,ib_bdy) nbidta(ii,igrd,ib_bdy) = INT( dta_global(ii,1,1) ) END DO CALL iom_get( inum, jpdom_unknown, 'nbj'//cgrid(igrd), dta_global(1:nblendta(igrd,ib_bdy),:,1) ) DO ii = 1,nblendta(igrd,ib_bdy) nbjdta(ii,igrd,ib_bdy) = INT( dta_global(ii,1,1) ) END DO CALL iom_get( inum, jpdom_unknown, 'nbr'//cgrid(igrd), dta_global(1:nblendta(igrd,ib_bdy),:,1) ) DO ii = 1,nblendta(igrd,ib_bdy) nbrdta(ii,igrd,ib_bdy) = INT( dta_global(ii,1,1) ) END DO ! ibr_max = MAXVAL( nbrdta(:,igrd,ib_bdy) ) IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' Maximum rimwidth in file is ', ibr_max IF(lwp) WRITE(numout,*) ' nn_rimwidth from namelist is ', nn_rimwidth(ib_bdy) IF (ibr_max < nn_rimwidth(ib_bdy)) & CALL ctl_stop( 'nn_rimwidth is larger than maximum rimwidth in file',cn_coords_file(ib_bdy) ) END DO CALL iom_close( inum ) ! ENDIF ! END DO ! 2. Now fill indices corresponding to straight open boundary arrays: ! East !----- DO iseg = 1, nbdysege ib_bdy = npckge(iseg) ! ! ------------ T points ------------- igrd=1 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) DO ij = jpjedt(iseg), jpjeft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = jpieob(iseg) + 2 - ir nbjdta(icount, igrd, ib_bdy) = ij nbrdta(icount, igrd, ib_bdy) = ir ENDDO ENDDO ! ! ------------ U points ------------- igrd=2 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) DO ij = jpjedt(iseg), jpjeft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = jpieob(iseg) + 1 - ir nbjdta(icount, igrd, ib_bdy) = ij nbrdta(icount, igrd, ib_bdy) = ir ENDDO ENDDO ! ! ------------ V points ------------- igrd=3 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) ! DO ij = jpjedt(iseg), jpjeft(iseg) - 1 DO ij = jpjedt(iseg), jpjeft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = jpieob(iseg) + 2 - ir nbjdta(icount, igrd, ib_bdy) = ij nbrdta(icount, igrd, ib_bdy) = ir ENDDO nbidta(icount, igrd, ib_bdy) = -ib_bdy ! Discount this point nbjdta(icount, igrd, ib_bdy) = -ib_bdy ! Discount this point ENDDO ENDDO ! ! West !----- DO iseg = 1, nbdysegw ib_bdy = npckgw(iseg) ! ! ------------ T points ------------- igrd=1 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) DO ij = jpjwdt(iseg), jpjwft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = jpiwob(iseg) + ir - 1 nbjdta(icount, igrd, ib_bdy) = ij nbrdta(icount, igrd, ib_bdy) = ir ENDDO ENDDO ! ! ------------ U points ------------- igrd=2 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) DO ij = jpjwdt(iseg), jpjwft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = jpiwob(iseg) + ir - 1 nbjdta(icount, igrd, ib_bdy) = ij nbrdta(icount, igrd, ib_bdy) = ir ENDDO ENDDO ! ! ------------ V points ------------- igrd=3 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) ! DO ij = jpjwdt(iseg), jpjwft(iseg) - 1 DO ij = jpjwdt(iseg), jpjwft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = jpiwob(iseg) + ir - 1 nbjdta(icount, igrd, ib_bdy) = ij nbrdta(icount, igrd, ib_bdy) = ir ENDDO nbidta(icount, igrd, ib_bdy) = -ib_bdy ! Discount this point nbjdta(icount, igrd, ib_bdy) = -ib_bdy ! Discount this point ENDDO ENDDO ! ! North !----- DO iseg = 1, nbdysegn ib_bdy = npckgn(iseg) ! ! ------------ T points ------------- igrd=1 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) DO ii = jpindt(iseg), jpinft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = ii nbjdta(icount, igrd, ib_bdy) = jpjnob(iseg) + 2 - ir nbrdta(icount, igrd, ib_bdy) = ir ENDDO ENDDO ! ! ------------ U points ------------- igrd=2 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) ! DO ii = jpindt(iseg), jpinft(iseg) - 1 DO ii = jpindt(iseg), jpinft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = ii nbjdta(icount, igrd, ib_bdy) = jpjnob(iseg) + 2 - ir nbrdta(icount, igrd, ib_bdy) = ir ENDDO nbidta(icount, igrd, ib_bdy) = -ib_bdy ! Discount this point nbjdta(icount, igrd, ib_bdy) = -ib_bdy ! Discount this point ENDDO ! ! ------------ V points ------------- igrd=3 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) DO ii = jpindt(iseg), jpinft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = ii nbjdta(icount, igrd, ib_bdy) = jpjnob(iseg) + 1 - ir nbrdta(icount, igrd, ib_bdy) = ir ENDDO ENDDO ENDDO ! ! South !----- DO iseg = 1, nbdysegs ib_bdy = npckgs(iseg) ! ! ------------ T points ------------- igrd=1 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) DO ii = jpisdt(iseg), jpisft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = ii nbjdta(icount, igrd, ib_bdy) = jpjsob(iseg) + ir - 1 nbrdta(icount, igrd, ib_bdy) = ir ENDDO ENDDO ! ! ------------ U points ------------- igrd=2 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) ! DO ii = jpisdt(iseg), jpisft(iseg) - 1 DO ii = jpisdt(iseg), jpisft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = ii nbjdta(icount, igrd, ib_bdy) = jpjsob(iseg) + ir - 1 nbrdta(icount, igrd, ib_bdy) = ir ENDDO nbidta(icount, igrd, ib_bdy) = -ib_bdy ! Discount this point nbjdta(icount, igrd, ib_bdy) = -ib_bdy ! Discount this point ENDDO ! ! ------------ V points ------------- igrd=3 icount=0 DO ir = 1, nn_rimwidth(ib_bdy) DO ii = jpisdt(iseg), jpisft(iseg) icount = icount + 1 nbidta(icount, igrd, ib_bdy) = ii nbjdta(icount, igrd, ib_bdy) = jpjsob(iseg) + ir - 1 nbrdta(icount, igrd, ib_bdy) = ir ENDDO ENDDO ENDDO ! Deal with duplicated points !----------------------------- ! We assign negative indices to duplicated points (to remove them from bdy points to be updated) ! if their distance to the bdy is greater than the other ! If their distance are the same, just keep only one to avoid updating a point twice DO igrd = 1, jpbgrd DO ib_bdy1 = 1, nb_bdy DO ib_bdy2 = 1, nb_bdy IF (ib_bdy1/=ib_bdy2) THEN DO ib1 = 1, nblendta(igrd,ib_bdy1) DO ib2 = 1, nblendta(igrd,ib_bdy2) IF ((nbidta(ib1, igrd, ib_bdy1)==nbidta(ib2, igrd, ib_bdy2)).AND. & & (nbjdta(ib1, igrd, ib_bdy1)==nbjdta(ib2, igrd, ib_bdy2))) THEN ! IF ((lwp).AND.(igrd==1)) WRITE(numout,*) ' found coincident point ji, jj:', & ! & nbidta(ib1, igrd, ib_bdy1), & ! & nbjdta(ib2, igrd, ib_bdy2) ! keep only points with the lowest distance to boundary: IF (nbrdta(ib1, igrd, ib_bdy1)nbrdta(ib2, igrd, ib_bdy2)) THEN nbidta(ib1, igrd, ib_bdy1) =-ib_bdy1 nbjdta(ib1, igrd, ib_bdy1) =-ib_bdy1 ! Arbitrary choice if distances are the same: ELSE nbidta(ib1, igrd, ib_bdy1) =-ib_bdy1 nbjdta(ib1, igrd, ib_bdy1) =-ib_bdy1 ENDIF END IF END DO END DO ENDIF END DO END DO END DO ! Work out dimensions of boundary data on each processor ! ------------------------------------------------------ ! Rather assume that boundary data indices are given on global domain ! TO BE DISCUSSED ? ! iw = mig(1) + 1 ! if monotasking and no zoom, iw=2 ! ie = mig(1) + nlci-1 - 1 ! if monotasking and no zoom, ie=jpim1 ! is = mjg(1) + 1 ! if monotasking and no zoom, is=2 ! in = mjg(1) + nlcj-1 - 1 ! if monotasking and no zoom, in=jpjm1 iwe = mig(1) - 1 + 2 ! if monotasking and no zoom, iw=2 ies = mig(1) + nlci-1 - 1 ! if monotasking and no zoom, ie=jpim1 iso = mjg(1) - 1 + 2 ! if monotasking and no zoom, is=2 ino = mjg(1) + nlcj-1 - 1 ! if monotasking and no zoom, in=jpjm1 ALLOCATE( nbondi_bdy(nb_bdy)) ALLOCATE( nbondj_bdy(nb_bdy)) nbondi_bdy(:)=2 nbondj_bdy(:)=2 ALLOCATE( nbondi_bdy_b(nb_bdy)) ALLOCATE( nbondj_bdy_b(nb_bdy)) nbondi_bdy_b(:)=2 nbondj_bdy_b(:)=2 ! Work out dimensions of boundary data on each neighbour process IF(nbondi == 0) THEN iw_b(1) = 1 + nimppt(nowe+1) ie_b(1) = 1 + nimppt(nowe+1)+nlcit(nowe+1)-3 is_b(1) = 1 + njmppt(nowe+1) in_b(1) = 1 + njmppt(nowe+1)+nlcjt(nowe+1)-3 iw_b(2) = 1 + nimppt(noea+1) ie_b(2) = 1 + nimppt(noea+1)+nlcit(noea+1)-3 is_b(2) = 1 + njmppt(noea+1) in_b(2) = 1 + njmppt(noea+1)+nlcjt(noea+1)-3 ELSEIF(nbondi == 1) THEN iw_b(1) = 1 + nimppt(nowe+1) ie_b(1) = 1 + nimppt(nowe+1)+nlcit(nowe+1)-3 is_b(1) = 1 + njmppt(nowe+1) in_b(1) = 1 + njmppt(nowe+1)+nlcjt(nowe+1)-3 ELSEIF(nbondi == -1) THEN iw_b(2) = 1 + nimppt(noea+1) ie_b(2) = 1 + nimppt(noea+1)+nlcit(noea+1)-3 is_b(2) = 1 + njmppt(noea+1) in_b(2) = 1 + njmppt(noea+1)+nlcjt(noea+1)-3 ENDIF IF(nbondj == 0) THEN iw_b(3) = 1 + nimppt(noso+1) ie_b(3) = 1 + nimppt(noso+1)+nlcit(noso+1)-3 is_b(3) = 1 + njmppt(noso+1) in_b(3) = 1 + njmppt(noso+1)+nlcjt(noso+1)-3 iw_b(4) = 1 + nimppt(nono+1) ie_b(4) = 1 + nimppt(nono+1)+nlcit(nono+1)-3 is_b(4) = 1 + njmppt(nono+1) in_b(4) = 1 + njmppt(nono+1)+nlcjt(nono+1)-3 ELSEIF(nbondj == 1) THEN iw_b(3) = 1 + nimppt(noso+1) ie_b(3) = 1 + nimppt(noso+1)+nlcit(noso+1)-3 is_b(3) = 1 + njmppt(noso+1) in_b(3) = 1 + njmppt(noso+1)+nlcjt(noso+1)-3 ELSEIF(nbondj == -1) THEN iw_b(4) = 1 + nimppt(nono+1) ie_b(4) = 1 + nimppt(nono+1)+nlcit(nono+1)-3 is_b(4) = 1 + njmppt(nono+1) in_b(4) = 1 + njmppt(nono+1)+nlcjt(nono+1)-3 ENDIF DO ib_bdy = 1, nb_bdy DO igrd = 1, jpbgrd icount = 0 icountr = 0 idx_bdy(ib_bdy)%nblen(igrd) = 0 idx_bdy(ib_bdy)%nblenrim(igrd) = 0 DO ib = 1, nblendta(igrd,ib_bdy) ! check that data is in correct order in file ibm1 = MAX(1,ib-1) IF(lwp) THEN ! Since all procs read global data only need to do this check on one proc... IF( nbrdta(ib,igrd,ib_bdy) < nbrdta(ibm1,igrd,ib_bdy) ) THEN CALL ctl_stop('bdy_segs : ERROR : boundary data in file must be defined ', & & ' in order of distance from edge nbr A utility for re-ordering ', & & ' boundary coordinates and data files exists in the TOOLS/OBC directory') ENDIF ENDIF ! check if point is in local domain IF( nbidta(ib,igrd,ib_bdy) >= iwe .AND. nbidta(ib,igrd,ib_bdy) <= ies .AND. & & nbjdta(ib,igrd,ib_bdy) >= iso .AND. nbjdta(ib,igrd,ib_bdy) <= ino ) THEN ! icount = icount + 1 ! IF( nbrdta(ib,igrd,ib_bdy) == 1 ) icountr = icountr+1 ENDIF END DO idx_bdy(ib_bdy)%nblenrim(igrd) = icountr !: length of rim boundary data on each proc idx_bdy(ib_bdy)%nblen (igrd) = icount !: length of boundary data on each proc END DO ! igrd ! Allocate index arrays for this boundary set !-------------------------------------------- ilen1 = MAXVAL( idx_bdy(ib_bdy)%nblen(:) ) ALLOCATE( idx_bdy(ib_bdy)%nbi (ilen1,jpbgrd) , & & idx_bdy(ib_bdy)%nbj (ilen1,jpbgrd) , & & idx_bdy(ib_bdy)%nbr (ilen1,jpbgrd) , & & idx_bdy(ib_bdy)%nbd (ilen1,jpbgrd) , & & idx_bdy(ib_bdy)%nbdout(ilen1,jpbgrd) , & & idx_bdy(ib_bdy)%nbmap (ilen1,jpbgrd) , & & idx_bdy(ib_bdy)%nbw (ilen1,jpbgrd) , & & idx_bdy(ib_bdy)%flagu (ilen1,jpbgrd) , & & idx_bdy(ib_bdy)%flagv (ilen1,jpbgrd) ) ! Dispatch mapping indices and discrete distances on each processor ! ----------------------------------------------------------------- com_east = 0 com_west = 0 com_south = 0 com_north = 0 com_east_b = 0 com_west_b = 0 com_south_b = 0 com_north_b = 0 DO igrd = 1, jpbgrd icount = 0 ! Loop on rimwidth to ensure outermost points come first in the local arrays. DO ir=1, nn_rimwidth(ib_bdy) DO ib = 1, nblendta(igrd,ib_bdy) ! check if point is in local domain and equals ir IF( nbidta(ib,igrd,ib_bdy) >= iwe .AND. nbidta(ib,igrd,ib_bdy) <= ies .AND. & & nbjdta(ib,igrd,ib_bdy) >= iso .AND. nbjdta(ib,igrd,ib_bdy) <= ino .AND. & & nbrdta(ib,igrd,ib_bdy) == ir ) THEN ! icount = icount + 1 ! Rather assume that boundary data indices are given on global domain ! TO BE DISCUSSED ? ! idx_bdy(ib_bdy)%nbi(icount,igrd) = nbidta(ib,igrd,ib_bdy)- mig(1)+1 ! idx_bdy(ib_bdy)%nbj(icount,igrd) = nbjdta(ib,igrd,ib_bdy)- mjg(1)+1 idx_bdy(ib_bdy)%nbi(icount,igrd) = nbidta(ib,igrd,ib_bdy)- mig(1)+1 idx_bdy(ib_bdy)%nbj(icount,igrd) = nbjdta(ib,igrd,ib_bdy)- mjg(1)+1 ! check if point has to be sent ii = idx_bdy(ib_bdy)%nbi(icount,igrd) ij = idx_bdy(ib_bdy)%nbj(icount,igrd) if((com_east .ne. 1) .and. (ii == (nlci-1)) .and. (nbondi .le. 0)) then com_east = 1 elseif((com_west .ne. 1) .and. (ii == 2) .and. (nbondi .ge. 0) .and. (nbondi .ne. 2)) then com_west = 1 endif if((com_south .ne. 1) .and. (ij == 2) .and. (nbondj .ge. 0) .and. (nbondj .ne. 2)) then com_south = 1 elseif((com_north .ne. 1) .and. (ij == (nlcj-1)) .and. (nbondj .le. 0)) then com_north = 1 endif idx_bdy(ib_bdy)%nbr(icount,igrd) = nbrdta(ib,igrd,ib_bdy) idx_bdy(ib_bdy)%nbmap(icount,igrd) = ib ENDIF ! check if point has to be received from a neighbour IF(nbondi == 0) THEN IF( nbidta(ib,igrd,ib_bdy) >= iw_b(1) .AND. nbidta(ib,igrd,ib_bdy) <= ie_b(1) .AND. & & nbjdta(ib,igrd,ib_bdy) >= is_b(1) .AND. nbjdta(ib,igrd,ib_bdy) <= in_b(1) .AND. & & nbrdta(ib,igrd,ib_bdy) == ir ) THEN ii = nbidta(ib,igrd,ib_bdy)- iw_b(1)+2 if((com_west_b .ne. 1) .and. (ii == (nlcit(nowe+1)-1))) then ij = nbjdta(ib,igrd,ib_bdy) - is_b(1)+2 if((ij == 2) .and. (nbondj == 0 .or. nbondj == 1)) then com_south = 1 elseif((ij == nlcjt(nowe+1)-1) .and. (nbondj == 0 .or. nbondj == -1)) then com_north = 1 endif com_west_b = 1 endif ENDIF IF( nbidta(ib,igrd,ib_bdy) >= iw_b(2) .AND. nbidta(ib,igrd,ib_bdy) <= ie_b(2) .AND. & & nbjdta(ib,igrd,ib_bdy) >= is_b(2) .AND. nbjdta(ib,igrd,ib_bdy) <= in_b(2) .AND. & & nbrdta(ib,igrd,ib_bdy) == ir ) THEN ii = nbidta(ib,igrd,ib_bdy)- iw_b(2)+2 if((com_east_b .ne. 1) .and. (ii == 2)) then ij = nbjdta(ib,igrd,ib_bdy) - is_b(2)+2 if((ij == 2) .and. (nbondj == 0 .or. nbondj == 1)) then com_south = 1 elseif((ij == nlcjt(noea+1)-1) .and. (nbondj == 0 .or. nbondj == -1)) then com_north = 1 endif com_east_b = 1 endif ENDIF ELSEIF(nbondi == 1) THEN IF( nbidta(ib,igrd,ib_bdy) >= iw_b(1) .AND. nbidta(ib,igrd,ib_bdy) <= ie_b(1) .AND. & & nbjdta(ib,igrd,ib_bdy) >= is_b(1) .AND. nbjdta(ib,igrd,ib_bdy) <= in_b(1) .AND. & & nbrdta(ib,igrd,ib_bdy) == ir ) THEN ii = nbidta(ib,igrd,ib_bdy)- iw_b(1)+2 if((com_west_b .ne. 1) .and. (ii == (nlcit(nowe+1)-1))) then ij = nbjdta(ib,igrd,ib_bdy) - is_b(1)+2 if((ij == 2) .and. (nbondj == 0 .or. nbondj == 1)) then com_south = 1 elseif((ij == nlcjt(nowe+1)-1) .and. (nbondj == 0 .or. nbondj == -1)) then com_north = 1 endif com_west_b = 1 endif ENDIF ELSEIF(nbondi == -1) THEN IF( nbidta(ib,igrd,ib_bdy) >= iw_b(2) .AND. nbidta(ib,igrd,ib_bdy) <= ie_b(2) .AND. & & nbjdta(ib,igrd,ib_bdy) >= is_b(2) .AND. nbjdta(ib,igrd,ib_bdy) <= in_b(2) .AND. & & nbrdta(ib,igrd,ib_bdy) == ir ) THEN ii = nbidta(ib,igrd,ib_bdy)- iw_b(2)+2 if((com_east_b .ne. 1) .and. (ii == 2)) then ij = nbjdta(ib,igrd,ib_bdy) - is_b(2)+2 if((ij == 2) .and. (nbondj == 0 .or. nbondj == 1)) then com_south = 1 elseif((ij == nlcjt(noea+1)-1) .and. (nbondj == 0 .or. nbondj == -1)) then com_north = 1 endif com_east_b = 1 endif ENDIF ENDIF IF(nbondj == 0) THEN IF(com_north_b .ne. 1 .AND. (nbidta(ib,igrd,ib_bdy) == iw_b(4)-1 & & .OR. nbidta(ib,igrd,ib_bdy) == ie_b(4)+1) .AND. & & nbjdta(ib,igrd,ib_bdy) == is_b(4) .AND. nbrdta(ib,igrd,ib_bdy) == ir) THEN com_north_b = 1 ENDIF IF(com_south_b .ne. 1 .AND. (nbidta(ib,igrd,ib_bdy) == iw_b(3)-1 & &.OR. nbidta(ib,igrd,ib_bdy) == ie_b(3)+1) .AND. & & nbjdta(ib,igrd,ib_bdy) == in_b(3) .AND. nbrdta(ib,igrd,ib_bdy) == ir) THEN com_south_b = 1 ENDIF IF( nbidta(ib,igrd,ib_bdy) >= iw_b(3) .AND. nbidta(ib,igrd,ib_bdy) <= ie_b(3) .AND. & & nbjdta(ib,igrd,ib_bdy) >= is_b(3) .AND. nbjdta(ib,igrd,ib_bdy) <= in_b(3) .AND. & & nbrdta(ib,igrd,ib_bdy) == ir ) THEN ij = nbjdta(ib,igrd,ib_bdy)- is_b(3)+2 if((com_south_b .ne. 1) .and. (ij == (nlcjt(noso+1)-1))) then com_south_b = 1 endif ENDIF IF( nbidta(ib,igrd,ib_bdy) >= iw_b(4) .AND. nbidta(ib,igrd,ib_bdy) <= ie_b(4) .AND. & & nbjdta(ib,igrd,ib_bdy) >= is_b(4) .AND. nbjdta(ib,igrd,ib_bdy) <= in_b(4) .AND. & & nbrdta(ib,igrd,ib_bdy) == ir ) THEN ij = nbjdta(ib,igrd,ib_bdy)- is_b(4)+2 if((com_north_b .ne. 1) .and. (ij == 2)) then com_north_b = 1 endif ENDIF ELSEIF(nbondj == 1) THEN IF( com_south_b .ne. 1 .AND. (nbidta(ib,igrd,ib_bdy) == iw_b(3)-1 .OR. & & nbidta(ib,igrd,ib_bdy) == ie_b(3)+1) .AND. & & nbjdta(ib,igrd,ib_bdy) == in_b(3) .AND. nbrdta(ib,igrd,ib_bdy) == ir) THEN com_south_b = 1 ENDIF IF( nbidta(ib,igrd,ib_bdy) >= iw_b(3) .AND. nbidta(ib,igrd,ib_bdy) <= ie_b(3) .AND. & & nbjdta(ib,igrd,ib_bdy) >= is_b(3) .AND. nbjdta(ib,igrd,ib_bdy) <= in_b(3) .AND. & & nbrdta(ib,igrd,ib_bdy) == ir ) THEN ij = nbjdta(ib,igrd,ib_bdy)- is_b(3)+2 if((com_south_b .ne. 1) .and. (ij == (nlcjt(noso+1)-1))) then com_south_b = 1 endif ENDIF ELSEIF(nbondj == -1) THEN IF(com_north_b .ne. 1 .AND. (nbidta(ib,igrd,ib_bdy) == iw_b(4)-1 & & .OR. nbidta(ib,igrd,ib_bdy) == ie_b(4)+1) .AND. & & nbjdta(ib,igrd,ib_bdy) == is_b(4) .AND. nbrdta(ib,igrd,ib_bdy) == ir) THEN com_north_b = 1 ENDIF IF( nbidta(ib,igrd,ib_bdy) >= iw_b(4) .AND. nbidta(ib,igrd,ib_bdy) <= ie_b(4) .AND. & & nbjdta(ib,igrd,ib_bdy) >= is_b(4) .AND. nbjdta(ib,igrd,ib_bdy) <= in_b(4) .AND. & & nbrdta(ib,igrd,ib_bdy) == ir ) THEN ij = nbjdta(ib,igrd,ib_bdy)- is_b(4)+2 if((com_north_b .ne. 1) .and. (ij == 2)) then com_north_b = 1 endif ENDIF ENDIF ENDDO ENDDO ENDDO ! definition of the i- and j- direction local boundaries arrays used for sending the boundaries IF( (com_east == 1) .and. (com_west == 1) ) THEN ; nbondi_bdy(ib_bdy) = 0 ELSEIF( (com_east == 1) .and. (com_west == 0) ) THEN ; nbondi_bdy(ib_bdy) = -1 ELSEIF( (com_east == 0) .and. (com_west == 1) ) THEN ; nbondi_bdy(ib_bdy) = 1 ENDIF IF( (com_north == 1) .and. (com_south == 1) ) THEN ; nbondj_bdy(ib_bdy) = 0 ELSEIF( (com_north == 1) .and. (com_south == 0) ) THEN ; nbondj_bdy(ib_bdy) = -1 ELSEIF( (com_north == 0) .and. (com_south == 1) ) THEN ; nbondj_bdy(ib_bdy) = 1 ENDIF ! definition of the i- and j- direction local boundaries arrays used for receiving the boundaries IF( (com_east_b == 1) .and. (com_west_b == 1) ) THEN ; nbondi_bdy_b(ib_bdy) = 0 ELSEIF( (com_east_b == 1) .and. (com_west_b == 0) ) THEN ; nbondi_bdy_b(ib_bdy) = -1 ELSEIF( (com_east_b == 0) .and. (com_west_b == 1) ) THEN ; nbondi_bdy_b(ib_bdy) = 1 ENDIF IF( (com_north_b == 1) .and. (com_south_b == 1) ) THEN ; nbondj_bdy_b(ib_bdy) = 0 ELSEIF( (com_north_b == 1) .and. (com_south_b == 0) ) THEN ; nbondj_bdy_b(ib_bdy) = -1 ELSEIF( (com_north_b == 0) .and. (com_south_b == 1) ) THEN ; nbondj_bdy_b(ib_bdy) = 1 ENDIF ! Compute rim weights for FRS scheme ! ---------------------------------- DO igrd = 1, jpbgrd DO ib = 1, idx_bdy(ib_bdy)%nblen(igrd) nbr => idx_bdy(ib_bdy)%nbr(ib,igrd) idx_bdy(ib_bdy)%nbw(ib,igrd) = 1.- TANH( REAL( nbr - 1 ) *0.5 ) ! tanh formulation ! idx_bdy(ib_bdy)%nbw(ib,igrd) = (REAL(nn_rimwidth(ib_bdy)+1-nbr)/REAL(nn_rimwidth(ib_bdy)))**2. ! quadratic ! idx_bdy(ib_bdy)%nbw(ib,igrd) = REAL(nn_rimwidth(ib_bdy)+1-nbr)/REAL(nn_rimwidth(ib_bdy)) ! linear END DO END DO ! Compute damping coefficients ! ---------------------------- DO igrd = 1, jpbgrd DO ib = 1, idx_bdy(ib_bdy)%nblen(igrd) nbr => idx_bdy(ib_bdy)%nbr(ib,igrd) idx_bdy(ib_bdy)%nbd(ib,igrd) = 1. / ( rn_time_dmp(ib_bdy) * rday ) & & *(REAL(nn_rimwidth(ib_bdy)+1-nbr)/REAL(nn_rimwidth(ib_bdy)))**2. ! quadratic idx_bdy(ib_bdy)%nbdout(ib,igrd) = 1. / ( rn_time_dmp_out(ib_bdy) * rday ) & & *(REAL(nn_rimwidth(ib_bdy)+1-nbr)/REAL(nn_rimwidth(ib_bdy)))**2. ! quadratic END DO END DO END DO ! ------------------------------------------------------ ! Initialise masks and find normal/tangential directions ! ------------------------------------------------------ ! Read global 2D mask at T-points: bdytmask ! ----------------------------------------- ! bdytmask = 1 on the computational domain AND on open boundaries ! = 0 elsewhere bdytmask(:,:) = ssmask(:,:) ! Derive mask on U and V grid from mask on T grid bdyumask(:,:) = 0._wp bdyvmask(:,:) = 0._wp DO ij = 1, jpjm1 DO ii = 1, jpim1 bdyumask(ii,ij) = bdytmask(ii,ij) * bdytmask(ii+1, ij ) bdyvmask(ii,ij) = bdytmask(ii,ij) * bdytmask(ii ,ij+1) END DO END DO CALL lbc_lnk_multi( 'bdyini', bdyumask, 'U', 1. , bdyvmask, 'V', 1. ) ! Lateral boundary cond. ! bdy masks are now set to zero on boundary points: ! igrd = 1 DO ib_bdy = 1, nb_bdy DO ib = 1, idx_bdy(ib_bdy)%nblenrim(igrd) bdytmask(idx_bdy(ib_bdy)%nbi(ib,igrd), idx_bdy(ib_bdy)%nbj(ib,igrd)) = 0._wp END DO END DO ! igrd = 2 DO ib_bdy = 1, nb_bdy DO ib = 1, idx_bdy(ib_bdy)%nblenrim(igrd) bdyumask(idx_bdy(ib_bdy)%nbi(ib,igrd), idx_bdy(ib_bdy)%nbj(ib,igrd)) = 0._wp END DO END DO ! igrd = 3 DO ib_bdy = 1, nb_bdy DO ib = 1, idx_bdy(ib_bdy)%nblenrim(igrd) bdyvmask(idx_bdy(ib_bdy)%nbi(ib,igrd), idx_bdy(ib_bdy)%nbj(ib,igrd)) = 0._wp END DO END DO ! For the flagu/flagv calculation below we require a version of fmask without ! the land boundary condition (shlat) included: zfmask(:,:) = 0 DO ij = 2, jpjm1 DO ii = 2, jpim1 zfmask(ii,ij) = tmask(ii,ij ,1) * tmask(ii+1,ij ,1) & & * tmask(ii,ij+1,1) * tmask(ii+1,ij+1,1) END DO END DO ! Lateral boundary conditions CALL lbc_lnk( 'bdyini', zfmask, 'F', 1. ) CALL lbc_lnk_multi( 'bdyini', bdyumask, 'U', 1. , bdyvmask, 'V', 1., bdytmask, 'T', 1. ) DO ib_bdy = 1, nb_bdy ! Indices and directions of rim velocity components idx_bdy(ib_bdy)%flagu(:,:) = 0._wp idx_bdy(ib_bdy)%flagv(:,:) = 0._wp icount = 0 ! Calculate relationship of U direction to the local orientation of the boundary ! flagu = -1 : u component is normal to the dynamical boundary and its direction is outward ! flagu = 0 : u is tangential ! flagu = 1 : u is normal to the boundary and is direction is inward DO igrd = 1, jpbgrd SELECT CASE( igrd ) CASE( 1 ) ; pmask => umask (:,:,1) ; i_offset = 0 CASE( 2 ) ; pmask => bdytmask(:,:) ; i_offset = 1 CASE( 3 ) ; pmask => zfmask (:,:) ; i_offset = 0 END SELECT icount = 0 DO ib = 1, idx_bdy(ib_bdy)%nblenrim(igrd) nbi => idx_bdy(ib_bdy)%nbi(ib,igrd) nbj => idx_bdy(ib_bdy)%nbj(ib,igrd) zefl = pmask(nbi+i_offset-1,nbj) zwfl = pmask(nbi+i_offset,nbj) ! This error check only works if you are using the bdyXmask arrays IF( i_offset == 1 .and. zefl + zwfl == 2 ) THEN icount = icount + 1 IF(lwp) WRITE(numout,*) 'Problem with igrd = ',igrd,' at (global) nbi, nbj : ',mig(nbi),mjg(nbj) ELSE idx_bdy(ib_bdy)%flagu(ib,igrd) = -zefl + zwfl ENDIF END DO IF( icount /= 0 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Some ',cgrid(igrd),' grid points,', & ' are not boundary points (flagu calculation). Check nbi, nbj, indices for boundary set ',ib_bdy IF(lwp) WRITE(numout,*) ' ========== ' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ENDIF END DO ! Calculate relationship of V direction to the local orientation of the boundary ! flagv = -1 : v component is normal to the dynamical boundary but its direction is outward ! flagv = 0 : v is tangential ! flagv = 1 : v is normal to the boundary and is direction is inward DO igrd = 1, jpbgrd SELECT CASE( igrd ) CASE( 1 ) ; pmask => vmask (:,:,1) ; j_offset = 0 CASE( 2 ) ; pmask => zfmask(:,:) ; j_offset = 0 CASE( 3 ) ; pmask => bdytmask ; j_offset = 1 END SELECT icount = 0 DO ib = 1, idx_bdy(ib_bdy)%nblenrim(igrd) nbi => idx_bdy(ib_bdy)%nbi(ib,igrd) nbj => idx_bdy(ib_bdy)%nbj(ib,igrd) znfl = pmask(nbi,nbj+j_offset-1) zsfl = pmask(nbi,nbj+j_offset ) ! This error check only works if you are using the bdyXmask arrays IF( j_offset == 1 .and. znfl + zsfl == 2 ) THEN IF(lwp) WRITE(numout,*) 'Problem with igrd = ',igrd,' at (global) nbi, nbj : ',mig(nbi),mjg(nbj) icount = icount + 1 ELSE idx_bdy(ib_bdy)%flagv(ib,igrd) = -znfl + zsfl END IF END DO IF( icount /= 0 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Some ',cgrid(igrd),' grid points,', & ' are not boundary points (flagv calculation). Check nbi, nbj, indices for boundary set ',ib_bdy IF(lwp) WRITE(numout,*) ' ========== ' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ENDIF END DO ! END DO ! Compute total lateral surface for volume correction: ! ---------------------------------------------------- ! JC: this must be done at each time step with non-linear free surface bdysurftot = 0._wp IF( ln_vol ) THEN igrd = 2 ! Lateral surface at U-points DO ib_bdy = 1, nb_bdy DO ib = 1, idx_bdy(ib_bdy)%nblenrim(igrd) nbi => idx_bdy(ib_bdy)%nbi(ib,igrd) nbj => idx_bdy(ib_bdy)%nbj(ib,igrd) flagu => idx_bdy(ib_bdy)%flagu(ib,igrd) bdysurftot = bdysurftot + hu_n (nbi , nbj) & & * e2u (nbi , nbj) * ABS( flagu ) & & * tmask_i(nbi , nbj) & & * tmask_i(nbi+1, nbj) END DO END DO igrd=3 ! Add lateral surface at V-points DO ib_bdy = 1, nb_bdy DO ib = 1, idx_bdy(ib_bdy)%nblenrim(igrd) nbi => idx_bdy(ib_bdy)%nbi(ib,igrd) nbj => idx_bdy(ib_bdy)%nbj(ib,igrd) flagv => idx_bdy(ib_bdy)%flagv(ib,igrd) bdysurftot = bdysurftot + hv_n (nbi, nbj ) & & * e1v (nbi, nbj ) * ABS( flagv ) & & * tmask_i(nbi, nbj ) & & * tmask_i(nbi, nbj+1) END DO END DO ! IF( lk_mpp ) CALL mpp_sum( 'bdyini', bdysurftot ) ! sum over the global domain END IF ! ! Tidy up !-------- IF( nb_bdy>0 ) DEALLOCATE( nbidta, nbjdta, nbrdta ) ! END SUBROUTINE bdy_segs SUBROUTINE bdy_ctl_seg !!---------------------------------------------------------------------- !! *** ROUTINE bdy_ctl_seg *** !! !! ** Purpose : Check straight open boundary segments location !! !! ** Method : - Look for open boundary corners !! - Check that segments start or end on land !!---------------------------------------------------------------------- INTEGER :: ib, ib1, ib2, ji ,jj, itest INTEGER, DIMENSION(jp_nseg,2) :: icorne, icornw, icornn, icorns REAL(wp), DIMENSION(2) :: ztestmask !!---------------------------------------------------------------------- ! IF (lwp) WRITE(numout,*) ' ' IF (lwp) WRITE(numout,*) 'bdy_ctl_seg: Check analytical segments' IF (lwp) WRITE(numout,*) '~~~~~~~~~~~~' ! IF(lwp) WRITE(numout,*) 'Number of east segments : ', nbdysege IF(lwp) WRITE(numout,*) 'Number of west segments : ', nbdysegw IF(lwp) WRITE(numout,*) 'Number of north segments : ', nbdysegn IF(lwp) WRITE(numout,*) 'Number of south segments : ', nbdysegs ! 1. Check bounds !---------------- DO ib = 1, nbdysegn IF (lwp) WRITE(numout,*) '**check north seg bounds pckg: ', npckgn(ib) IF ((jpjnob(ib).ge.jpjglo-1).or.& &(jpjnob(ib).le.1)) CALL ctl_stop( 'nbdyind out of domain' ) IF (jpindt(ib).ge.jpinft(ib)) CALL ctl_stop( 'Bdy start index is greater than end index' ) IF (jpindt(ib).le.1 ) CALL ctl_stop( 'Start index out of domain' ) IF (jpinft(ib).ge.jpiglo) CALL ctl_stop( 'End index out of domain' ) END DO ! DO ib = 1, nbdysegs IF (lwp) WRITE(numout,*) '**check south seg bounds pckg: ', npckgs(ib) IF ((jpjsob(ib).ge.jpjglo-1).or.& &(jpjsob(ib).le.1)) CALL ctl_stop( 'nbdyind out of domain' ) IF (jpisdt(ib).ge.jpisft(ib)) CALL ctl_stop( 'Bdy start index is greater than end index' ) IF (jpisdt(ib).le.1 ) CALL ctl_stop( 'Start index out of domain' ) IF (jpisft(ib).ge.jpiglo) CALL ctl_stop( 'End index out of domain' ) END DO ! DO ib = 1, nbdysege IF (lwp) WRITE(numout,*) '**check east seg bounds pckg: ', npckge(ib) IF ((jpieob(ib).ge.jpiglo-1).or.& &(jpieob(ib).le.1)) CALL ctl_stop( 'nbdyind out of domain' ) IF (jpjedt(ib).ge.jpjeft(ib)) CALL ctl_stop( 'Bdy start index is greater than end index' ) IF (jpjedt(ib).lt.1 ) CALL ctl_stop( 'Start index out of domain' )!ACC IF (jpjeft(ib).gt.jpjglo) CALL ctl_stop( 'End index out of domain' )!ACC END DO ! DO ib = 1, nbdysegw IF (lwp) WRITE(numout,*) '**check west seg bounds pckg: ', npckgw(ib) IF ((jpiwob(ib).ge.jpiglo-1).or.& &(jpiwob(ib).le.1)) CALL ctl_stop( 'nbdyind out of domain' ) IF (jpjwdt(ib).ge.jpjwft(ib)) CALL ctl_stop( 'Bdy start index is greater than end index' ) IF (jpjwdt(ib).lt.1 ) CALL ctl_stop( 'Start index out of domain' ) !ACC IF (jpjwft(ib).gt.jpjglo) CALL ctl_stop( 'End index out of domain' ) !ACC ENDDO ! ! ! 2. Look for segment crossings !------------------------------ IF (lwp) WRITE(numout,*) '**Look for segments corners :' ! itest = 0 ! corner number ! ! flag to detect if start or end of open boundary belongs to a corner ! if not (=0), it must be on land. ! if a corner is detected, save bdy package number for further tests icorne(:,:)=0. ; icornw(:,:)=0. ; icornn(:,:)=0. ; icorns(:,:)=0. ! South/West crossings IF ((nbdysegw > 0).AND.(nbdysegs > 0)) THEN DO ib1 = 1, nbdysegw DO ib2 = 1, nbdysegs IF (( jpisdt(ib2)<=jpiwob(ib1)).AND. & & ( jpisft(ib2)>=jpiwob(ib1)).AND. & & ( jpjwdt(ib1)<=jpjsob(ib2)).AND. & & ( jpjwft(ib1)>=jpjsob(ib2))) THEN IF ((jpjwdt(ib1)==jpjsob(ib2)).AND.(jpisdt(ib2)==jpiwob(ib1))) THEN ! We have a possible South-West corner ! WRITE(numout,*) ' Found a South-West corner at (i,j): ', jpisdt(ib2), jpjwdt(ib1) ! WRITE(numout,*) ' between segments: ', npckgw(ib1), npckgs(ib2) icornw(ib1,1) = npckgs(ib2) icorns(ib2,1) = npckgw(ib1) ELSEIF ((jpisft(ib2)==jpiwob(ib1)).AND.(jpjwft(ib1)==jpjsob(ib2))) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Found an acute open boundary corner at point (i,j)= ', & & jpisft(ib2), jpjwft(ib1) IF(lwp) WRITE(numout,*) ' ========== Not allowed yet' IF(lwp) WRITE(numout,*) ' Crossing problem with West segment: ',npckgw(ib1), & & ' and South segment: ',npckgs(ib2) IF(lwp) WRITE(numout,*) nstop = nstop + 1 ELSE IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Check South and West Open boundary indices' IF(lwp) WRITE(numout,*) ' ========== Crossing problem with West segment: ',npckgw(ib1) , & & ' and South segment: ',npckgs(ib2) IF(lwp) WRITE(numout,*) nstop = nstop+1 END IF END IF END DO END DO END IF ! ! South/East crossings IF ((nbdysege > 0).AND.(nbdysegs > 0)) THEN DO ib1 = 1, nbdysege DO ib2 = 1, nbdysegs IF (( jpisdt(ib2)<=jpieob(ib1)+1).AND. & & ( jpisft(ib2)>=jpieob(ib1)+1).AND. & & ( jpjedt(ib1)<=jpjsob(ib2) ).AND. & & ( jpjeft(ib1)>=jpjsob(ib2) )) THEN IF ((jpjedt(ib1)==jpjsob(ib2)).AND.(jpisft(ib2)==jpieob(ib1)+1)) THEN ! We have a possible South-East corner ! WRITE(numout,*) ' Found a South-East corner at (i,j): ', jpisft(ib2), jpjedt(ib1) ! WRITE(numout,*) ' between segments: ', npckge(ib1), npckgs(ib2) icorne(ib1,1) = npckgs(ib2) icorns(ib2,2) = npckge(ib1) ELSEIF ((jpjeft(ib1)==jpjsob(ib2)).AND.(jpisdt(ib2)==jpieob(ib1)+1)) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Found an acute open boundary corner at point (i,j)= ', & & jpisdt(ib2), jpjeft(ib1) IF(lwp) WRITE(numout,*) ' ========== Not allowed yet' IF(lwp) WRITE(numout,*) ' Crossing problem with East segment: ',npckge(ib1), & & ' and South segment: ',npckgs(ib2) IF(lwp) WRITE(numout,*) nstop = nstop + 1 ELSE IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Check South and East Open boundary indices' IF(lwp) WRITE(numout,*) ' ========== Crossing problem with East segment: ',npckge(ib1), & & ' and South segment: ',npckgs(ib2) IF(lwp) WRITE(numout,*) nstop = nstop + 1 END IF END IF END DO END DO END IF ! ! North/West crossings IF ((nbdysegn > 0).AND.(nbdysegw > 0)) THEN DO ib1 = 1, nbdysegw DO ib2 = 1, nbdysegn IF (( jpindt(ib2)<=jpiwob(ib1) ).AND. & & ( jpinft(ib2)>=jpiwob(ib1) ).AND. & & ( jpjwdt(ib1)<=jpjnob(ib2)+1).AND. & & ( jpjwft(ib1)>=jpjnob(ib2)+1)) THEN IF ((jpjwft(ib1)==jpjnob(ib2)+1).AND.(jpindt(ib2)==jpiwob(ib1))) THEN ! We have a possible North-West corner ! WRITE(numout,*) ' Found a North-West corner at (i,j): ', jpindt(ib2), jpjwft(ib1) ! WRITE(numout,*) ' between segments: ', npckgw(ib1), npckgn(ib2) icornw(ib1,2) = npckgn(ib2) icornn(ib2,1) = npckgw(ib1) ELSEIF ((jpjwdt(ib1)==jpjnob(ib2)+1).AND.(jpinft(ib2)==jpiwob(ib1))) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Found an acute open boundary corner at point (i,j)= ', & & jpinft(ib2), jpjwdt(ib1) IF(lwp) WRITE(numout,*) ' ========== Not allowed yet' IF(lwp) WRITE(numout,*) ' Crossing problem with West segment: ',npckgw(ib1), & & ' and North segment: ',npckgn(ib2) IF(lwp) WRITE(numout,*) nstop = nstop + 1 ELSE IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Check North and West Open boundary indices' IF(lwp) WRITE(numout,*) ' ========== Crossing problem with West segment: ',npckgw(ib1), & & ' and North segment: ',npckgn(ib2) IF(lwp) WRITE(numout,*) nstop = nstop + 1 END IF END IF END DO END DO END IF ! ! North/East crossings IF ((nbdysegn > 0).AND.(nbdysege > 0)) THEN DO ib1 = 1, nbdysege DO ib2 = 1, nbdysegn IF (( jpindt(ib2)<=jpieob(ib1)+1).AND. & & ( jpinft(ib2)>=jpieob(ib1)+1).AND. & & ( jpjedt(ib1)<=jpjnob(ib2)+1).AND. & & ( jpjeft(ib1)>=jpjnob(ib2)+1)) THEN IF ((jpjeft(ib1)==jpjnob(ib2)+1).AND.(jpinft(ib2)==jpieob(ib1)+1)) THEN ! We have a possible North-East corner ! WRITE(numout,*) ' Found a North-East corner at (i,j): ', jpinft(ib2), jpjeft(ib1) ! WRITE(numout,*) ' between segments: ', npckge(ib1), npckgn(ib2) icorne(ib1,2) = npckgn(ib2) icornn(ib2,2) = npckge(ib1) ELSEIF ((jpjedt(ib1)==jpjnob(ib2)+1).AND.(jpindt(ib2)==jpieob(ib1)+1)) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Found an acute open boundary corner at point (i,j)= ', & & jpindt(ib2), jpjedt(ib1) IF(lwp) WRITE(numout,*) ' ========== Not allowed yet' IF(lwp) WRITE(numout,*) ' Crossing problem with East segment: ',npckge(ib1), & & ' and North segment: ',npckgn(ib2) IF(lwp) WRITE(numout,*) nstop = nstop + 1 ELSE IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Check North and East Open boundary indices' IF(lwp) WRITE(numout,*) ' ========== Crossing problem with East segment: ',npckge(ib1), & & ' and North segment: ',npckgn(ib2) IF(lwp) WRITE(numout,*) nstop = nstop + 1 END IF END IF END DO END DO END IF ! ! 3. Check if segment extremities are on land !-------------------------------------------- ! ! West segments DO ib = 1, nbdysegw ! get mask at boundary extremities: ztestmask(1:2)=0. DO ji = 1, jpi DO jj = 1, jpj IF (((ji + nimpp - 1) == jpiwob(ib)).AND. & & ((jj + njmpp - 1) == jpjwdt(ib))) ztestmask(1)=tmask(ji,jj,1) IF (((ji + nimpp - 1) == jpiwob(ib)).AND. & & ((jj + njmpp - 1) == jpjwft(ib))) ztestmask(2)=tmask(ji,jj,1) END DO END DO IF( lk_mpp ) CALL mpp_sum( 'bdyini', ztestmask, 2 ) ! sum over the global domain IF (ztestmask(1)==1) THEN IF (icornw(ib,1)==0) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Open boundary segment ', npckgw(ib) IF(lwp) WRITE(numout,*) ' ========== does not start on land or on a corner' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ELSE ! This is a corner IF(lwp) WRITE(numout,*) 'Found a South-West corner at (i,j): ', jpiwob(ib), jpjwdt(ib) CALL bdy_ctl_corn(npckgw(ib), icornw(ib,1)) itest=itest+1 ENDIF ENDIF IF (ztestmask(2)==1) THEN IF (icornw(ib,2)==0) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Open boundary segment ', npckgw(ib) IF(lwp) WRITE(numout,*) ' ========== does not end on land or on a corner' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ELSE ! This is a corner IF(lwp) WRITE(numout,*) 'Found a North-West corner at (i,j): ', jpiwob(ib), jpjwft(ib) CALL bdy_ctl_corn(npckgw(ib), icornw(ib,2)) itest=itest+1 ENDIF ENDIF END DO ! ! East segments DO ib = 1, nbdysege ! get mask at boundary extremities: ztestmask(1:2)=0. DO ji = 1, jpi DO jj = 1, jpj IF (((ji + nimpp - 1) == jpieob(ib)+1).AND. & & ((jj + njmpp - 1) == jpjedt(ib))) ztestmask(1)=tmask(ji,jj,1) IF (((ji + nimpp - 1) == jpieob(ib)+1).AND. & & ((jj + njmpp - 1) == jpjeft(ib))) ztestmask(2)=tmask(ji,jj,1) END DO END DO IF( lk_mpp ) CALL mpp_sum( 'bdyini', ztestmask, 2 ) ! sum over the global domain IF (ztestmask(1)==1) THEN IF (icorne(ib,1)==0) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Open boundary segment ', npckge(ib) IF(lwp) WRITE(numout,*) ' ========== does not start on land or on a corner' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ELSE ! This is a corner IF(lwp) WRITE(numout,*) 'Found a South-East corner at (i,j): ', jpieob(ib)+1, jpjedt(ib) CALL bdy_ctl_corn(npckge(ib), icorne(ib,1)) itest=itest+1 ENDIF ENDIF IF (ztestmask(2)==1) THEN IF (icorne(ib,2)==0) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Open boundary segment ', npckge(ib) IF(lwp) WRITE(numout,*) ' ========== does not end on land or on a corner' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ELSE ! This is a corner IF(lwp) WRITE(numout,*) 'Found a North-East corner at (i,j): ', jpieob(ib)+1, jpjeft(ib) CALL bdy_ctl_corn(npckge(ib), icorne(ib,2)) itest=itest+1 ENDIF ENDIF END DO ! ! South segments DO ib = 1, nbdysegs ! get mask at boundary extremities: ztestmask(1:2)=0. DO ji = 1, jpi DO jj = 1, jpj IF (((jj + njmpp - 1) == jpjsob(ib)).AND. & & ((ji + nimpp - 1) == jpisdt(ib))) ztestmask(1)=tmask(ji,jj,1) IF (((jj + njmpp - 1) == jpjsob(ib)).AND. & & ((ji + nimpp - 1) == jpisft(ib))) ztestmask(2)=tmask(ji,jj,1) END DO END DO IF( lk_mpp ) CALL mpp_sum( 'bdyini', ztestmask, 2 ) ! sum over the global domain IF ((ztestmask(1)==1).AND.(icorns(ib,1)==0)) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Open boundary segment ', npckgs(ib) IF(lwp) WRITE(numout,*) ' ========== does not start on land or on a corner' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ENDIF IF ((ztestmask(2)==1).AND.(icorns(ib,2)==0)) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Open boundary segment ', npckgs(ib) IF(lwp) WRITE(numout,*) ' ========== does not end on land or on a corner' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ENDIF END DO ! ! North segments DO ib = 1, nbdysegn ! get mask at boundary extremities: ztestmask(1:2)=0. DO ji = 1, jpi DO jj = 1, jpj IF (((jj + njmpp - 1) == jpjnob(ib)+1).AND. & & ((ji + nimpp - 1) == jpindt(ib))) ztestmask(1)=tmask(ji,jj,1) IF (((jj + njmpp - 1) == jpjnob(ib)+1).AND. & & ((ji + nimpp - 1) == jpinft(ib))) ztestmask(2)=tmask(ji,jj,1) END DO END DO IF( lk_mpp ) CALL mpp_sum( 'bdyini', ztestmask, 2 ) ! sum over the global domain IF ((ztestmask(1)==1).AND.(icornn(ib,1)==0)) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Open boundary segment ', npckgn(ib) IF(lwp) WRITE(numout,*) ' ========== does not start on land' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ENDIF IF ((ztestmask(2)==1).AND.(icornn(ib,2)==0)) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' E R R O R : Open boundary segment ', npckgn(ib) IF(lwp) WRITE(numout,*) ' ========== does not end on land' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ENDIF END DO ! IF ((itest==0).AND.(lwp)) WRITE(numout,*) 'NO open boundary corner found' ! ! Other tests TBD: ! segments completly on land ! optimized open boundary array length according to landmask ! Nudging layers that overlap with interior domain ! END SUBROUTINE bdy_ctl_seg SUBROUTINE bdy_ctl_corn( ib1, ib2 ) !!---------------------------------------------------------------------- !! *** ROUTINE bdy_ctl_corn *** !! !! ** Purpose : Check numerical schemes consistency between !! segments having a common corner !! !! ** Method : !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: ib1, ib2 INTEGER :: itest !!---------------------------------------------------------------------- itest = 0 IF( cn_dyn2d(ib1) /= cn_dyn2d(ib2) ) itest = itest + 1 IF( cn_dyn3d(ib1) /= cn_dyn3d(ib2) ) itest = itest + 1 IF( cn_tra (ib1) /= cn_tra (ib2) ) itest = itest + 1 ! IF( nn_dyn2d_dta(ib1) /= nn_dyn2d_dta(ib2) ) itest = itest + 1 IF( nn_dyn3d_dta(ib1) /= nn_dyn3d_dta(ib2) ) itest = itest + 1 IF( nn_tra_dta (ib1) /= nn_tra_dta (ib2) ) itest = itest + 1 ! IF( nn_rimwidth(ib1) /= nn_rimwidth(ib2) ) itest = itest + 1 ! IF( itest>0 ) THEN IF(lwp) WRITE(numout,*) ' E R R O R : Segments ', ib1, 'and ', ib2 IF(lwp) WRITE(numout,*) ' ========== have different open bdy schemes' IF(lwp) WRITE(numout,*) nstop = nstop + 1 ENDIF ! END SUBROUTINE bdy_ctl_corn !!================================================================================= END MODULE bdyini