MODULE agrif_opa_interp !!====================================================================== !! *** MODULE agrif_opa_interp *** !! AGRIF: interpolation package !!====================================================================== !! History : 2.0 ! 2002-06 (XXX) Original cade !! - ! 2005-11 (XXX) !! 3.2 ! 2009-04 (R. Benshila) !! 3.6 ! 2014-09 (R. Benshila) !!---------------------------------------------------------------------- #if defined key_agrif && ! defined key_offline !!---------------------------------------------------------------------- !! 'key_agrif' AGRIF zoom !! NOT 'key_offline' NO off-line tracers !!---------------------------------------------------------------------- !! Agrif_tra : !! Agrif_dyn : !! interpu : !! interpv : !!---------------------------------------------------------------------- USE par_oce USE oce USE dom_oce USE sol_oce USE agrif_oce USE phycst USE in_out_manager USE agrif_opa_sponge USE lib_mpp USE wrk_nemo USE dynspg_oce USE zdf_oce IMPLICIT NONE PRIVATE INTEGER :: bdy_tinterp = 0 PUBLIC Agrif_tra, Agrif_dyn, Agrif_ssh, Agrif_dyn_ts, Agrif_ssh_ts, Agrif_dta_ts PUBLIC interpun, interpvn, interpun2d, interpvn2d PUBLIC interptsn, interpsshn PUBLIC interpunb, interpvnb, interpub2b, interpvb2b PUBLIC interpe3t, interpumsk, interpvmsk # if defined key_zdftke PUBLIC Agrif_tke, interpavm # endif # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/NST 3.6 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE Agrif_tra !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_tra *** !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN Agrif_SpecialValue = 0.e0 Agrif_UseSpecialValue = .TRUE. CALL Agrif_Bc_variable( tsn_id, procname=interptsn ) Agrif_UseSpecialValue = .FALSE. ! END SUBROUTINE Agrif_tra SUBROUTINE Agrif_dyn( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_DYN *** !!---------------------------------------------------------------------- !! INTEGER, INTENT(in) :: kt !! INTEGER :: ji,jj,jk, j1,j2, i1,i2 REAL(wp) :: timeref REAL(wp) :: z2dt, znugdt REAL(wp) :: zrhox, zrhoy REAL(wp), POINTER, DIMENSION(:,:) :: spgv1, spgu1 !!---------------------------------------------------------------------- IF( Agrif_Root() ) RETURN CALL wrk_alloc( jpi, jpj, spgv1, spgu1 ) Agrif_SpecialValue=0. Agrif_UseSpecialValue = ln_spc_dyn CALL Agrif_Bc_variable(un_interp_id,procname=interpun) CALL Agrif_Bc_variable(vn_interp_id,procname=interpvn) #if defined key_dynspg_flt CALL Agrif_Bc_variable(e1u_id,calledweight=1., procname=interpun2d) CALL Agrif_Bc_variable(e2v_id,calledweight=1., procname=interpvn2d) #endif Agrif_UseSpecialValue = .FALSE. zrhox = Agrif_Rhox() zrhoy = Agrif_Rhoy() timeref = 1. ! time step: leap-frog z2dt = 2. * rdt ! time step: Euler if restart from rest IF( neuler == 0 .AND. kt == nit000 ) z2dt = rdt ! coefficients znugdt = grav * z2dt ! prevent smoothing in ghost cells i1=1 i2=jpi j1=1 j2=jpj IF((nbondj == -1).OR.(nbondj == 2)) j1 = 3 IF((nbondj == +1).OR.(nbondj == 2)) j2 = nlcj-2 IF((nbondi == -1).OR.(nbondi == 2)) i1 = 3 IF((nbondi == +1).OR.(nbondi == 2)) i2 = nlci-2 IF((nbondi == -1).OR.(nbondi == 2)) THEN #if defined key_dynspg_flt DO jk=1,jpkm1 DO jj=j1,j2 ua(2,jj,jk) = (ua(2,jj,jk) - z2dt * znugdt * laplacu(2,jj))*umask(2,jj,jk) END DO END DO spgu(2,:)=0. DO jk=1,jpkm1 DO jj=1,jpj spgu(2,jj)=spgu(2,jj)+fse3u(2,jj,jk)*ua(2,jj,jk) END DO END DO DO jj=1,jpj IF (umask(2,jj,1).NE.0.) THEN spgu(2,jj)=spgu(2,jj)/hu(2,jj) ENDIF END DO #else spgu(2,:) = ua_b(2,:) #endif DO jk=1,jpkm1 DO jj=j1,j2 ua(2,jj,jk) = 0.25*(ua(1,jj,jk)+2.*ua(2,jj,jk)+ua(3,jj,jk)) ua(2,jj,jk) = ua(2,jj,jk) * umask(2,jj,jk) END DO END DO spgu1(2,:)=0. DO jk=1,jpkm1 DO jj=1,jpj spgu1(2,jj)=spgu1(2,jj)+fse3u(2,jj,jk)*ua(2,jj,jk) END DO END DO DO jj=1,jpj IF (umask(2,jj,1).NE.0.) THEN spgu1(2,jj)=spgu1(2,jj)/hu(2,jj) ENDIF END DO DO jk=1,jpkm1 DO jj=j1,j2 ua(2,jj,jk) = (ua(2,jj,jk)+spgu(2,jj)-spgu1(2,jj))*umask(2,jj,jk) END DO END DO #if defined key_dynspg_ts ! Set tangential velocities to time splitting estimate spgv1(2,:)=0. DO jk=1,jpkm1 DO jj=1,jpj spgv1(2,jj)=spgv1(2,jj)+fse3v_a(2,jj,jk)*va(2,jj,jk) END DO END DO DO jj=1,jpj spgv1(2,jj)=spgv1(2,jj)*hvr_a(2,jj) END DO DO jk=1,jpkm1 DO jj=1,jpj va(2,jj,jk) = (va(2,jj,jk)+va_b(2,jj)-spgv1(2,jj))*vmask(2,jj,jk) END DO END DO #endif ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN #if defined key_dynspg_flt DO jk=1,jpkm1 DO jj=j1,j2 ua(nlci-2,jj,jk) = (ua(nlci-2,jj,jk)- z2dt * znugdt * laplacu(nlci-2,jj))*umask(nlci-2,jj,jk) END DO END DO spgu(nlci-2,:)=0. DO jk=1,jpkm1 DO jj=1,jpj spgu(nlci-2,jj)=spgu(nlci-2,jj)+fse3u(nlci-2,jj,jk)*ua(nlci-2,jj,jk) ENDDO ENDDO DO jj=1,jpj IF (umask(nlci-2,jj,1).NE.0.) THEN spgu(nlci-2,jj)=spgu(nlci-2,jj)/hu(nlci-2,jj) ENDIF END DO #else spgu(nlci-2,:) = ua_b(nlci-2,:) #endif DO jk=1,jpkm1 DO jj=j1,j2 ua(nlci-2,jj,jk) = 0.25*(ua(nlci-3,jj,jk)+2.*ua(nlci-2,jj,jk)+ua(nlci-1,jj,jk)) ua(nlci-2,jj,jk) = ua(nlci-2,jj,jk) * umask(nlci-2,jj,jk) END DO END DO spgu1(nlci-2,:)=0. DO jk=1,jpkm1 DO jj=1,jpj spgu1(nlci-2,jj)=spgu1(nlci-2,jj)+fse3u(nlci-2,jj,jk)*ua(nlci-2,jj,jk)*umask(nlci-2,jj,jk) END DO END DO DO jj=1,jpj IF (umask(nlci-2,jj,1).NE.0.) THEN spgu1(nlci-2,jj)=spgu1(nlci-2,jj)/hu(nlci-2,jj) ENDIF END DO DO jk=1,jpkm1 DO jj=j1,j2 ua(nlci-2,jj,jk) = (ua(nlci-2,jj,jk)+spgu(nlci-2,jj)-spgu1(nlci-2,jj))*umask(nlci-2,jj,jk) END DO END DO #if defined key_dynspg_ts ! Set tangential velocities to time splitting estimate spgv1(nlci-1,:)=0._wp DO jk=1,jpkm1 DO jj=1,jpj spgv1(nlci-1,jj)=spgv1(nlci-1,jj)+fse3v_a(nlci-1,jj,jk)*va(nlci-1,jj,jk)*vmask(nlci-1,jj,jk) END DO END DO DO jj=1,jpj spgv1(nlci-1,jj)=spgv1(nlci-1,jj)*hvr_a(nlci-1,jj) END DO DO jk=1,jpkm1 DO jj=1,jpj va(nlci-1,jj,jk) = (va(nlci-1,jj,jk)+va_b(nlci-1,jj)-spgv1(nlci-1,jj))*vmask(nlci-1,jj,jk) END DO END DO #endif ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN #if defined key_dynspg_flt DO jk=1,jpkm1 DO ji=1,jpi va(ji,2,jk) = (va(ji,2,jk) - z2dt * znugdt * laplacv(ji,2))*vmask(ji,2,jk) END DO END DO spgv(:,2)=0. DO jk=1,jpkm1 DO ji=1,jpi spgv(ji,2)=spgv(ji,2)+fse3v(ji,2,jk)*va(ji,2,jk) END DO END DO DO ji=1,jpi IF (vmask(ji,2,1).NE.0.) THEN spgv(ji,2)=spgv(ji,2)/hv(ji,2) ENDIF END DO #else spgv(:,2)=va_b(:,2) #endif DO jk=1,jpkm1 DO ji=i1,i2 va(ji,2,jk)=0.25*(va(ji,1,jk)+2.*va(ji,2,jk)+va(ji,3,jk)) va(ji,2,jk)=va(ji,2,jk)*vmask(ji,2,jk) END DO END DO spgv1(:,2)=0. DO jk=1,jpkm1 DO ji=1,jpi spgv1(ji,2)=spgv1(ji,2)+fse3v(ji,2,jk)*va(ji,2,jk)*vmask(ji,2,jk) END DO END DO DO ji=1,jpi IF (vmask(ji,2,1).NE.0.) THEN spgv1(ji,2)=spgv1(ji,2)/hv(ji,2) ENDIF END DO DO jk=1,jpkm1 DO ji=1,jpi va(ji,2,jk) = (va(ji,2,jk)+spgv(ji,2)-spgv1(ji,2))*vmask(ji,2,jk) END DO END DO #if defined key_dynspg_ts ! Set tangential velocities to time splitting estimate spgu1(:,2)=0._wp DO jk=1,jpkm1 DO ji=1,jpi spgu1(ji,2)=spgu1(ji,2)+fse3u_a(ji,2,jk)*ua(ji,2,jk)*umask(ji,2,jk) END DO END DO DO ji=1,jpi spgu1(ji,2)=spgu1(ji,2)*hur_a(ji,2) END DO DO jk=1,jpkm1 DO ji=1,jpi ua(ji,2,jk) = (ua(ji,2,jk)+ua_b(ji,2)-spgu1(ji,2))*umask(ji,2,jk) END DO END DO #endif ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN #if defined key_dynspg_flt DO jk=1,jpkm1 DO ji=1,jpi va(ji,nlcj-2,jk) = (va(ji,nlcj-2,jk)-z2dt * znugdt * laplacv(ji,nlcj-2))*vmask(ji,nlcj-2,jk) END DO END DO spgv(:,nlcj-2)=0. DO jk=1,jpkm1 DO ji=1,jpi spgv(ji,nlcj-2)=spgv(ji,nlcj-2)+fse3v(ji,nlcj-2,jk)*va(ji,nlcj-2,jk) END DO END DO DO ji=1,jpi IF (vmask(ji,nlcj-2,1).NE.0.) THEN spgv(ji,nlcj-2)=spgv(ji,nlcj-2)/hv(ji,nlcj-2) ENDIF END DO #else spgv(:,nlcj-2)=va_b(:,nlcj-2) #endif DO jk=1,jpkm1 DO ji=i1,i2 va(ji,nlcj-2,jk)=0.25*(va(ji,nlcj-3,jk)+2.*va(ji,nlcj-2,jk)+va(ji,nlcj-1,jk)) va(ji,nlcj-2,jk) = va(ji,nlcj-2,jk) * vmask(ji,nlcj-2,jk) END DO END DO spgv1(:,nlcj-2)=0. DO jk=1,jpkm1 DO ji=1,jpi spgv1(ji,nlcj-2)=spgv1(ji,nlcj-2)+fse3v(ji,nlcj-2,jk)*va(ji,nlcj-2,jk) END DO END DO DO ji=1,jpi IF (vmask(ji,nlcj-2,1).NE.0.) THEN spgv1(ji,nlcj-2)=spgv1(ji,nlcj-2)/hv(ji,nlcj-2) ENDIF END DO DO jk=1,jpkm1 DO ji=1,jpi va(ji,nlcj-2,jk) = (va(ji,nlcj-2,jk)+spgv(ji,nlcj-2)-spgv1(ji,nlcj-2))*vmask(ji,nlcj-2,jk) END DO END DO #if defined key_dynspg_ts ! Set tangential velocities to time splitting estimate spgu1(:,nlcj-1)=0._wp DO jk=1,jpkm1 DO ji=1,jpi spgu1(ji,nlcj-1)=spgu1(ji,nlcj-1)+fse3u_a(ji,nlcj-1,jk)*ua(ji,nlcj-1,jk) END DO END DO DO ji=1,jpi spgu1(ji,nlcj-1)=spgu1(ji,nlcj-1)*hur_a(ji,nlcj-1) END DO DO jk=1,jpkm1 DO ji=1,jpi ua(ji,nlcj-1,jk) = (ua(ji,nlcj-1,jk)+ua_b(ji,nlcj-1)-spgu1(ji,nlcj-1))*umask(ji,nlcj-1,jk) END DO END DO #endif ENDIF ! CALL wrk_dealloc( jpi, jpj, spgv1, spgu1 ) ! END SUBROUTINE Agrif_dyn SUBROUTINE Agrif_dyn_ts( jn ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_dyn_ts *** !!---------------------------------------------------------------------- !! INTEGER, INTENT(in) :: jn !! INTEGER :: ji, jj !!---------------------------------------------------------------------- IF( Agrif_Root() ) RETURN IF((nbondi == -1).OR.(nbondi == 2)) THEN DO jj=1,jpj va_e(2,jj) = vbdy_w(jj) * hvr_e(2,jj) ! Specified fluxes: ua_e(2,jj) = ubdy_w(jj) * hur_e(2,jj) ! Characteristics method: !alt ua_e(2,jj) = 0.5_wp * ( ubdy_w(jj) * hur_e(2,jj) + ua_e(3,jj) & !alt & - sqrt(grav * hur_e(2,jj)) * (sshn_e(3,jj) - hbdy_w(jj)) ) END DO ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN DO jj=1,jpj va_e(nlci-1,jj) = vbdy_e(jj) * hvr_e(nlci-1,jj) ! Specified fluxes: ua_e(nlci-2,jj) = ubdy_e(jj) * hur_e(nlci-2,jj) ! Characteristics method: !alt ua_e(nlci-2,jj) = 0.5_wp * ( ubdy_e(jj) * hur_e(nlci-2,jj) + ua_e(nlci-3,jj) & !alt & + sqrt(grav * hur_e(nlci-2,jj)) * (sshn_e(nlci-2,jj) - hbdy_e(jj)) ) END DO ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN DO ji=1,jpi ua_e(ji,2) = ubdy_s(ji) * hur_e(ji,2) ! Specified fluxes: va_e(ji,2) = vbdy_s(ji) * hvr_e(ji,2) ! Characteristics method: !alt va_e(ji,2) = 0.5_wp * ( vbdy_s(ji) * hvr_e(ji,2) + va_e(ji,3) & !alt & - sqrt(grav * hvr_e(ji,2)) * (sshn_e(ji,3) - hbdy_s(ji)) ) END DO ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN DO ji=1,jpi ua_e(ji,nlcj-1) = ubdy_n(ji) * hur_e(ji,nlcj-1) ! Specified fluxes: va_e(ji,nlcj-2) = vbdy_n(ji) * hvr_e(ji,nlcj-2) ! Characteristics method: !alt va_e(ji,nlcj-2) = 0.5_wp * ( vbdy_n(ji) * hvr_e(ji,nlcj-2) + va_e(ji,nlcj-3) & !alt & + sqrt(grav * hvr_e(ji,nlcj-2)) * (sshn_e(ji,nlcj-2) - hbdy_n(ji)) ) END DO ENDIF ! END SUBROUTINE Agrif_dyn_ts SUBROUTINE Agrif_dta_ts( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_dta_ts *** !!---------------------------------------------------------------------- !! INTEGER, INTENT(in) :: kt !! INTEGER :: ji, jj LOGICAL :: ll_int_cons REAL(wp) :: zrhot, zt !!---------------------------------------------------------------------- IF( Agrif_Root() ) RETURN ll_int_cons = ln_bt_fw ! Assume conservative temporal integration in ! the forward case only zrhot = Agrif_rhot() ! "Central" time index for interpolation: IF (ln_bt_fw) THEN zt = REAL(Agrif_NbStepint()+0.5_wp,wp) / zrhot ELSE zt = REAL(Agrif_NbStepint(),wp) / zrhot ENDIF ! Linear interpolation of sea level Agrif_SpecialValue = 0.e0 Agrif_UseSpecialValue = .TRUE. CALL Agrif_Bc_variable(sshn_id,calledweight=zt, procname=interpsshn ) Agrif_UseSpecialValue = .FALSE. ! Interpolate barotropic fluxes Agrif_SpecialValue=0. Agrif_UseSpecialValue = ln_spc_dyn IF (ll_int_cons) THEN ! Conservative interpolation ! orders matters here !!!!!! CALL Agrif_Bc_variable(ub2b_interp_id,calledweight=1._wp, procname=interpub2b) ! Time integrated CALL Agrif_Bc_variable(vb2b_interp_id,calledweight=1._wp, procname=interpvb2b) bdy_tinterp = 1 CALL Agrif_Bc_variable(unb_id ,calledweight=1._wp, procname=interpunb) ! After CALL Agrif_Bc_variable(vnb_id ,calledweight=1._wp, procname=interpvnb) bdy_tinterp = 2 CALL Agrif_Bc_variable(unb_id ,calledweight=0._wp, procname=interpunb) ! Before CALL Agrif_Bc_variable(vnb_id ,calledweight=0._wp, procname=interpvnb) ELSE ! Linear interpolation bdy_tinterp = 0 ubdy_w(:) = 0.e0 ; vbdy_w(:) = 0.e0 ubdy_e(:) = 0.e0 ; vbdy_e(:) = 0.e0 ubdy_n(:) = 0.e0 ; vbdy_n(:) = 0.e0 ubdy_s(:) = 0.e0 ; vbdy_s(:) = 0.e0 CALL Agrif_Bc_variable(unb_id,calledweight=zt, procname=interpunb) CALL Agrif_Bc_variable(vnb_id,calledweight=zt, procname=interpvnb) ENDIF Agrif_UseSpecialValue = .FALSE. ! END SUBROUTINE Agrif_dta_ts SUBROUTINE Agrif_ssh( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_DYN *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt !! !!---------------------------------------------------------------------- IF( Agrif_Root() ) RETURN IF((nbondi == -1).OR.(nbondi == 2)) THEN ssha(2,:)=ssha(3,:) sshn(2,:)=sshn(3,:) ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN ssha(nlci-1,:)=ssha(nlci-2,:) sshn(nlci-1,:)=sshn(nlci-2,:) ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN ssha(:,2)=ssha(:,3) sshn(:,2)=sshn(:,3) ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN ssha(:,nlcj-1)=ssha(:,nlcj-2) sshn(:,nlcj-1)=sshn(:,nlcj-2) ENDIF END SUBROUTINE Agrif_ssh SUBROUTINE Agrif_ssh_ts( jn ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_ssh_ts *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: jn !! INTEGER :: ji,jj !!---------------------------------------------------------------------- IF((nbondi == -1).OR.(nbondi == 2)) THEN DO jj=1,jpj ssha_e(2,jj) = hbdy_w(jj) END DO ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN DO jj=1,jpj ssha_e(nlci-1,jj) = hbdy_e(jj) END DO ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN DO ji=1,jpi ssha_e(ji,2) = hbdy_s(ji) END DO ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN DO ji=1,jpi ssha_e(ji,nlcj-1) = hbdy_n(ji) END DO ENDIF END SUBROUTINE Agrif_ssh_ts # if defined key_zdftke SUBROUTINE Agrif_tke !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_tke *** !!---------------------------------------------------------------------- REAL(wp) :: zalpha ! zalpha = REAL( Agrif_NbStepint() + Agrif_IRhot() - 1, wp ) / REAL( Agrif_IRhot(), wp ) IF( zalpha > 1. ) zalpha = 1. Agrif_SpecialValue = 0.e0 Agrif_UseSpecialValue = .TRUE. CALL Agrif_Bc_variable(avm_id ,calledweight=zalpha, procname=interpavm) Agrif_UseSpecialValue = .FALSE. ! END SUBROUTINE Agrif_tke # endif SUBROUTINE interptsn(ptab,i1,i2,j1,j2,k1,k2,n1,n2,before,nb,ndir) !!--------------------------------------------- !! *** ROUTINE interptsn *** !!--------------------------------------------- REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,n1:n2), INTENT(inout) :: ptab INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2,n1,n2 LOGICAL, INTENT(in) :: before INTEGER, INTENT(in) :: nb , ndir ! INTEGER :: ji, jj, jk, jn ! dummy loop indices INTEGER :: imin, imax, jmin, jmax REAL(wp) :: zrhox , zalpha1, zalpha2, zalpha3 REAL(wp) :: zalpha4, zalpha5, zalpha6, zalpha7 LOGICAL :: western_side, eastern_side,northern_side,southern_side IF (before) THEN ptab(i1:i2,j1:j2,k1:k2,n1:n2) = tsn(i1:i2,j1:j2,k1:k2,n1:n2) ELSE ! western_side = (nb == 1).AND.(ndir == 1) eastern_side = (nb == 1).AND.(ndir == 2) southern_side = (nb == 2).AND.(ndir == 1) northern_side = (nb == 2).AND.(ndir == 2) ! zrhox = Agrif_Rhox() ! zalpha1 = ( zrhox - 1. ) * 0.5 zalpha2 = 1. - zalpha1 ! zalpha3 = ( zrhox - 1. ) / ( zrhox + 1. ) zalpha4 = 1. - zalpha3 ! zalpha6 = 2. * ( zrhox - 1. ) / ( zrhox + 1. ) zalpha7 = - ( zrhox - 1. ) / ( zrhox + 3. ) zalpha5 = 1. - zalpha6 - zalpha7 ! imin = i1 imax = i2 jmin = j1 jmax = j2 ! ! Remove CORNERS IF((nbondj == -1).OR.(nbondj == 2)) jmin = 3 IF((nbondj == +1).OR.(nbondj == 2)) jmax = nlcj-2 IF((nbondi == -1).OR.(nbondi == 2)) imin = 3 IF((nbondi == +1).OR.(nbondi == 2)) imax = nlci-2 ! IF( eastern_side) THEN DO jn = 1, jpts tsa(nlci,j1:j2,k1:k2,jn) = zalpha1 * ptab(nlci,j1:j2,k1:k2,jn) + zalpha2 * ptab(nlci-1,j1:j2,k1:k2,jn) DO jk = 1, jpkm1 DO jj = jmin,jmax IF( umask(nlci-2,jj,jk) == 0.e0 ) THEN tsa(nlci-1,jj,jk,jn) = tsa(nlci,jj,jk,jn) * tmask(nlci-1,jj,jk) ELSE tsa(nlci-1,jj,jk,jn)=(zalpha4*tsa(nlci,jj,jk,jn)+zalpha3*tsa(nlci-2,jj,jk,jn))*tmask(nlci-1,jj,jk) IF( un(nlci-2,jj,jk) > 0.e0 ) THEN tsa(nlci-1,jj,jk,jn)=( zalpha6*tsa(nlci-2,jj,jk,jn)+zalpha5*tsa(nlci,jj,jk,jn) & + zalpha7*tsa(nlci-3,jj,jk,jn) ) * tmask(nlci-1,jj,jk) ENDIF ENDIF END DO END DO ENDDO ENDIF ! IF( northern_side ) THEN DO jn = 1, jpts tsa(i1:i2,nlcj,k1:k2,jn) = zalpha1 * ptab(i1:i2,nlcj,k1:k2,jn) + zalpha2 * ptab(i1:i2,nlcj-1,k1:k2,jn) DO jk = 1, jpkm1 DO ji = imin,imax IF( vmask(ji,nlcj-2,jk) == 0.e0 ) THEN tsa(ji,nlcj-1,jk,jn) = tsa(ji,nlcj,jk,jn) * tmask(ji,nlcj-1,jk) ELSE tsa(ji,nlcj-1,jk,jn)=(zalpha4*tsa(ji,nlcj,jk,jn)+zalpha3*tsa(ji,nlcj-2,jk,jn))*tmask(ji,nlcj-1,jk) IF (vn(ji,nlcj-2,jk) > 0.e0 ) THEN tsa(ji,nlcj-1,jk,jn)=( zalpha6*tsa(ji,nlcj-2,jk,jn)+zalpha5*tsa(ji,nlcj,jk,jn) & + zalpha7*tsa(ji,nlcj-3,jk,jn) ) * tmask(ji,nlcj-1,jk) ENDIF ENDIF END DO END DO ENDDO ENDIF ! IF( western_side) THEN DO jn = 1, jpts tsa(1,j1:j2,k1:k2,jn) = zalpha1 * ptab(1,j1:j2,k1:k2,jn) + zalpha2 * ptab(2,j1:j2,k1:k2,jn) DO jk = 1, jpkm1 DO jj = jmin,jmax IF( umask(2,jj,jk) == 0.e0 ) THEN tsa(2,jj,jk,jn) = tsa(1,jj,jk,jn) * tmask(2,jj,jk) ELSE tsa(2,jj,jk,jn)=(zalpha4*tsa(1,jj,jk,jn)+zalpha3*tsa(3,jj,jk,jn))*tmask(2,jj,jk) IF( un(2,jj,jk) < 0.e0 ) THEN tsa(2,jj,jk,jn)=(zalpha6*tsa(3,jj,jk,jn)+zalpha5*tsa(1,jj,jk,jn)+zalpha7*tsa(4,jj,jk,jn))*tmask(2,jj,jk) ENDIF ENDIF END DO END DO END DO ENDIF ! IF( southern_side ) THEN DO jn = 1, jpts tsa(i1:i2,1,k1:k2,jn) = zalpha1 * ptab(i1:i2,1,k1:k2,jn) + zalpha2 * ptab(i1:i2,2,k1:k2,jn) DO jk=1,jpk DO ji=imin,imax IF( vmask(ji,2,jk) == 0.e0 ) THEN tsa(ji,2,jk,jn)=tsa(ji,1,jk,jn) * tmask(ji,2,jk) ELSE tsa(ji,2,jk,jn)=(zalpha4*tsa(ji,1,jk,jn)+zalpha3*tsa(ji,3,jk,jn))*tmask(ji,2,jk) IF( vn(ji,2,jk) < 0.e0 ) THEN tsa(ji,2,jk,jn)=(zalpha6*tsa(ji,3,jk,jn)+zalpha5*tsa(ji,1,jk,jn)+zalpha7*tsa(ji,4,jk,jn))*tmask(ji,2,jk) ENDIF ENDIF END DO END DO ENDDO ENDIF ! ! Treatment of corners ! ! East south IF ((eastern_side).AND.((nbondj == -1).OR.(nbondj == 2))) THEN tsa(nlci-1,2,:,:) = ptab(nlci-1,2,:,:) ENDIF ! East north IF ((eastern_side).AND.((nbondj == 1).OR.(nbondj == 2))) THEN tsa(nlci-1,nlcj-1,:,:) = ptab(nlci-1,nlcj-1,:,:) ENDIF ! West south IF ((western_side).AND.((nbondj == -1).OR.(nbondj == 2))) THEN tsa(2,2,:,:) = ptab(2,2,:,:) ENDIF ! West north IF ((western_side).AND.((nbondj == 1).OR.(nbondj == 2))) THEN tsa(2,nlcj-1,:,:) = ptab(2,nlcj-1,:,:) ENDIF ! ENDIF ! END SUBROUTINE interptsn SUBROUTINE interpsshn(ptab,i1,i2,j1,j2,before,nb,ndir) !!---------------------------------------------------------------------- !! *** ROUTINE interpsshn *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before INTEGER, INTENT(in) :: nb , ndir LOGICAL :: western_side, eastern_side,northern_side,southern_side !!---------------------------------------------------------------------- ! IF( before) THEN ptab(i1:i2,j1:j2) = sshn(i1:i2,j1:j2) ELSE western_side = (nb == 1).AND.(ndir == 1) eastern_side = (nb == 1).AND.(ndir == 2) southern_side = (nb == 2).AND.(ndir == 1) northern_side = (nb == 2).AND.(ndir == 2) IF(western_side) hbdy_w(j1:j2) = ptab(i1,j1:j2) * tmask(i1,j1:j2,1) IF(eastern_side) hbdy_e(j1:j2) = ptab(i1,j1:j2) * tmask(i1,j1:j2,1) IF(southern_side) hbdy_s(i1:i2) = ptab(i1:i2,j1) * tmask(i1:i2,j1,1) IF(northern_side) hbdy_n(i1:i2) = ptab(i1:i2,j1) * tmask(i1:i2,j1,1) ENDIF ! END SUBROUTINE interpsshn SUBROUTINE interpun(ptab,i1,i2,j1,j2,k1,k2, before) !!--------------------------------------------- !! *** ROUTINE interpun *** !!--------------------------------------------- !! INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2 REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before !! INTEGER :: ji,jj,jk REAL(wp) :: zrhoy !!--------------------------------------------- ! IF (before) THEN DO jk=1,jpk DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk) = e2u(ji,jj) * un(ji,jj,jk) ptab(ji,jj,jk) = ptab(ji,jj,jk) * fse3u(ji,jj,jk) END DO END DO END DO ELSE zrhoy = Agrif_Rhoy() DO jk=1,jpkm1 DO jj=j1,j2 ua(i1:i2,jj,jk) = (ptab(i1:i2,jj,jk)/(zrhoy*e2u(i1:i2,jj))) ua(i1:i2,jj,jk) = ua(i1:i2,jj,jk) / fse3u(i1:i2,jj,jk) END DO END DO ENDIF ! END SUBROUTINE interpun SUBROUTINE interpun2d(ptab,i1,i2,j1,j2,before) !!--------------------------------------------- !! *** ROUTINE interpun *** !!--------------------------------------------- ! INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before ! INTEGER :: ji,jj REAL(wp) :: ztref REAL(wp) :: zrhoy !!--------------------------------------------- ! ztref = 1. IF (before) THEN DO jj=j1,j2 DO ji=i1,MIN(i2,nlci-1) ptab(ji,jj) = e2u(ji,jj) * ((gcx(ji+1,jj) - gcx(ji,jj))/e1u(ji,jj)) END DO END DO ELSE zrhoy = Agrif_Rhoy() DO jj=j1,j2 laplacu(i1:i2,jj) = ztref * (ptab(i1:i2,jj)/(zrhoy*e2u(i1:i2,jj))) !*umask(i1:i2,jj,1) END DO ENDIF ! END SUBROUTINE interpun2d SUBROUTINE interpvn(ptab,i1,i2,j1,j2,k1,k2, before) !!--------------------------------------------- !! *** ROUTINE interpvn *** !!--------------------------------------------- ! INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2 REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before ! INTEGER :: ji,jj,jk REAL(wp) :: zrhox !!--------------------------------------------- ! IF (before) THEN !interpv entre 1 et k2 et interpv2d en jpkp1 DO jk=k1,jpk DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk) = e1v(ji,jj) * vn(ji,jj,jk) ptab(ji,jj,jk) = ptab(ji,jj,jk) * fse3v(ji,jj,jk) END DO END DO END DO ELSE zrhox= Agrif_Rhox() DO jk=1,jpkm1 DO jj=j1,j2 va(i1:i2,jj,jk) = (ptab(i1:i2,jj,jk)/(zrhox*e1v(i1:i2,jj))) va(i1:i2,jj,jk) = va(i1:i2,jj,jk) / fse3v(i1:i2,jj,jk) END DO END DO ENDIF ! END SUBROUTINE interpvn SUBROUTINE interpvn2d(ptab,i1,i2,j1,j2,before) !!--------------------------------------------- !! *** ROUTINE interpvn *** !!--------------------------------------------- ! INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before ! INTEGER :: ji,jj REAL(wp) :: zrhox REAL(wp) :: ztref !!--------------------------------------------- ! ztref = 1. IF (before) THEN !interpv entre 1 et k2 et interpv2d en jpkp1 DO jj=j1,MIN(j2,nlcj-1) DO ji=i1,i2 ptab(ji,jj) = e1v(ji,jj) * ((gcx(ji,jj+1) - gcx(ji,jj))/e2v(ji,jj)) * vmask(ji,jj,1) END DO END DO ELSE zrhox = Agrif_Rhox() DO ji=i1,i2 laplacv(ji,j1:j2) = ztref * (ptab(ji,j1:j2)/(zrhox*e1v(ji,j1:j2))) END DO ENDIF ! END SUBROUTINE interpvn2d SUBROUTINE interpunb(ptab,i1,i2,j1,j2,before,nb,ndir) !!---------------------------------------------------------------------- !! *** ROUTINE interpunb *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before INTEGER, INTENT(in) :: nb , ndir !! INTEGER :: ji,jj REAL(wp) :: zrhoy, zrhot, zt0, zt1, ztcoeff LOGICAL :: western_side, eastern_side,northern_side,southern_side !!---------------------------------------------------------------------- ! IF (before) THEN DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj) = un_b(ji,jj) * e2u(ji,jj) * hu(ji,jj) END DO END DO ELSE western_side = (nb == 1).AND.(ndir == 1) eastern_side = (nb == 1).AND.(ndir == 2) southern_side = (nb == 2).AND.(ndir == 1) northern_side = (nb == 2).AND.(ndir == 2) zrhoy = Agrif_Rhoy() zrhot = Agrif_rhot() ! Time indexes bounds for integration zt0 = REAL(Agrif_NbStepint() , wp) / zrhot zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot ! Polynomial interpolation coefficients: IF( bdy_tinterp == 1 ) THEN ztcoeff = zrhot * ( zt1**2._wp * ( zt1 - 1._wp) & & - zt0**2._wp * ( zt0 - 1._wp) ) ELSEIF( bdy_tinterp == 2 ) THEN ztcoeff = zrhot * ( zt1 * ( zt1 - 1._wp)**2._wp & & - zt0 * ( zt0 - 1._wp)**2._wp ) ELSE ztcoeff = 1 ENDIF ! IF(western_side) THEN ubdy_w(j1:j2) = ubdy_w(j1:j2) + ztcoeff * ptab(i1,j1:j2) ENDIF IF(eastern_side) THEN ubdy_e(j1:j2) = ubdy_e(j1:j2) + ztcoeff * ptab(i1,j1:j2) ENDIF IF(southern_side) THEN ubdy_s(i1:i2) = ubdy_s(i1:i2) + ztcoeff * ptab(i1:i2,j1) ENDIF IF(northern_side) THEN ubdy_n(i1:i2) = ubdy_n(i1:i2) + ztcoeff * ptab(i1:i2,j1) ENDIF ! IF( bdy_tinterp == 0 .OR. bdy_tinterp == 2) THEN IF(western_side) THEN ubdy_w(j1:j2) = ubdy_w(j1:j2) / (zrhoy*e2u(i1,j1:j2)) & & * umask(i1,j1:j2,1) ENDIF IF(eastern_side) THEN ubdy_e(j1:j2) = ubdy_e(j1:j2) / (zrhoy*e2u(i1,j1:j2)) & & * umask(i1,j1:j2,1) ENDIF IF(southern_side) THEN ubdy_s(i1:i2) = ubdy_s(i1:i2) / (zrhoy*e2u(i1:i2,j1)) & & * umask(i1:i2,j1,1) ENDIF IF(northern_side) THEN ubdy_n(i1:i2) = ubdy_n(i1:i2) / (zrhoy*e2u(i1:i2,j1)) & & * umask(i1:i2,j1,1) ENDIF ENDIF ENDIF ! END SUBROUTINE interpunb SUBROUTINE interpvnb(ptab,i1,i2,j1,j2,before,nb,ndir) !!---------------------------------------------------------------------- !! *** ROUTINE interpvnb *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before INTEGER, INTENT(in) :: nb , ndir !! INTEGER :: ji,jj REAL(wp) :: zrhox, zrhot, zt0, zt1, ztcoeff LOGICAL :: western_side, eastern_side,northern_side,southern_side !!---------------------------------------------------------------------- ! IF (before) THEN DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj) = vn_b(ji,jj) * e1v(ji,jj) * hv(ji,jj) END DO END DO ELSE western_side = (nb == 1).AND.(ndir == 1) eastern_side = (nb == 1).AND.(ndir == 2) southern_side = (nb == 2).AND.(ndir == 1) northern_side = (nb == 2).AND.(ndir == 2) zrhox = Agrif_Rhox() zrhot = Agrif_rhot() ! Time indexes bounds for integration zt0 = REAL(Agrif_NbStepint() , wp) / zrhot zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot IF( bdy_tinterp == 1 ) THEN ztcoeff = zrhot * ( zt1**2._wp * ( zt1 - 1._wp) & & - zt0**2._wp * ( zt0 - 1._wp) ) ELSEIF( bdy_tinterp == 2 ) THEN ztcoeff = zrhot * ( zt1 * ( zt1 - 1._wp)**2._wp & & - zt0 * ( zt0 - 1._wp)**2._wp ) ELSE ztcoeff = 1 ENDIF ! IF(western_side) THEN vbdy_w(j1:j2) = vbdy_w(j1:j2) + ztcoeff * ptab(i1,j1:j2) ENDIF IF(eastern_side) THEN vbdy_e(j1:j2) = vbdy_e(j1:j2) + ztcoeff * ptab(i1,j1:j2) ENDIF IF(southern_side) THEN vbdy_s(i1:i2) = vbdy_s(i1:i2) + ztcoeff * ptab(i1:i2,j1) ENDIF IF(northern_side) THEN vbdy_n(i1:i2) = vbdy_n(i1:i2) + ztcoeff * ptab(i1:i2,j1) ENDIF ! IF( bdy_tinterp == 0 .OR. bdy_tinterp == 2) THEN IF(western_side) THEN vbdy_w(j1:j2) = vbdy_w(j1:j2) / (zrhox*e1v(i1,j1:j2)) & & * vmask(i1,j1:j2,1) ENDIF IF(eastern_side) THEN vbdy_e(j1:j2) = vbdy_e(j1:j2) / (zrhox*e1v(i1,j1:j2)) & & * vmask(i1,j1:j2,1) ENDIF IF(southern_side) THEN vbdy_s(i1:i2) = vbdy_s(i1:i2) / (zrhox*e1v(i1:i2,j1)) & & * vmask(i1:i2,j1,1) ENDIF IF(northern_side) THEN vbdy_n(i1:i2) = vbdy_n(i1:i2) / (zrhox*e1v(i1:i2,j1)) & & * vmask(i1:i2,j1,1) ENDIF ENDIF ENDIF ! END SUBROUTINE interpvnb SUBROUTINE interpub2b(ptab,i1,i2,j1,j2,before,nb,ndir) !!---------------------------------------------------------------------- !! *** ROUTINE interpub2b *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before INTEGER, INTENT(in) :: nb , ndir !! INTEGER :: ji,jj REAL(wp) :: zrhot, zt0, zt1,zat LOGICAL :: western_side, eastern_side,northern_side,southern_side !!---------------------------------------------------------------------- IF( before ) THEN DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj) = ub2_b(ji,jj) * e2u(ji,jj) END DO END DO ELSE western_side = (nb == 1).AND.(ndir == 1) eastern_side = (nb == 1).AND.(ndir == 2) southern_side = (nb == 2).AND.(ndir == 1) northern_side = (nb == 2).AND.(ndir == 2) zrhot = Agrif_rhot() ! Time indexes bounds for integration zt0 = REAL(Agrif_NbStepint() , wp) / zrhot zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot ! Polynomial interpolation coefficients: zat = zrhot * ( zt1**2._wp * (-2._wp*zt1 + 3._wp) & & - zt0**2._wp * (-2._wp*zt0 + 3._wp) ) ! IF(western_side ) ubdy_w(j1:j2) = zat * ptab(i1,j1:j2) IF(eastern_side ) ubdy_e(j1:j2) = zat * ptab(i1,j1:j2) IF(southern_side) ubdy_s(i1:i2) = zat * ptab(i1:i2,j1) IF(northern_side) ubdy_n(i1:i2) = zat * ptab(i1:i2,j1) ENDIF ! END SUBROUTINE interpub2b SUBROUTINE interpvb2b(ptab,i1,i2,j1,j2,before,nb,ndir) !!---------------------------------------------------------------------- !! *** ROUTINE interpvb2b *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before INTEGER, INTENT(in) :: nb , ndir !! INTEGER :: ji,jj REAL(wp) :: zrhot, zt0, zt1,zat LOGICAL :: western_side, eastern_side,northern_side,southern_side !!---------------------------------------------------------------------- ! IF( before ) THEN DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj) = vb2_b(ji,jj) * e1v(ji,jj) END DO END DO ELSE western_side = (nb == 1).AND.(ndir == 1) eastern_side = (nb == 1).AND.(ndir == 2) southern_side = (nb == 2).AND.(ndir == 1) northern_side = (nb == 2).AND.(ndir == 2) zrhot = Agrif_rhot() ! Time indexes bounds for integration zt0 = REAL(Agrif_NbStepint() , wp) / zrhot zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot ! Polynomial interpolation coefficients: zat = zrhot * ( zt1**2._wp * (-2._wp*zt1 + 3._wp) & & - zt0**2._wp * (-2._wp*zt0 + 3._wp) ) ! IF(western_side ) vbdy_w(j1:j2) = zat * ptab(i1,j1:j2) IF(eastern_side ) vbdy_e(j1:j2) = zat * ptab(i1,j1:j2) IF(southern_side) vbdy_s(i1:i2) = zat * ptab(i1:i2,j1) IF(northern_side) vbdy_n(i1:i2) = zat * ptab(i1:i2,j1) ENDIF ! END SUBROUTINE interpvb2b SUBROUTINE interpe3t(ptab,i1,i2,j1,j2,k1,k2,before,nb,ndir) !!---------------------------------------------------------------------- !! *** ROUTINE interpe3t *** !!---------------------------------------------------------------------- ! INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2 REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab LOGICAL :: before INTEGER, INTENT(in) :: nb , ndir ! INTEGER :: ji, jj, jk LOGICAL :: western_side, eastern_side, northern_side, southern_side REAL(wp) :: ztmpmsk !!---------------------------------------------------------------------- ! IF (before) THEN DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk) = tmask(ji,jj,jk) * e3t_0(ji,jj,jk) END DO END DO END DO ELSE western_side = (nb == 1).AND.(ndir == 1) eastern_side = (nb == 1).AND.(ndir == 2) southern_side = (nb == 2).AND.(ndir == 1) northern_side = (nb == 2).AND.(ndir == 2) DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ! Get velocity mask at boundary edge points: IF (western_side) ztmpmsk = umask(ji ,jj ,1) IF (eastern_side) ztmpmsk = umask(nlci-2,jj ,1) IF (northern_side) ztmpmsk = vmask(ji ,nlcj-2,1) IF (southern_side) ztmpmsk = vmask(ji ,2 ,1) IF (ABS(ptab(ji,jj,jk) - tmask(ji,jj,jk) * e3t_0(ji,jj,jk))*ztmpmsk > 1.D-2) THEN IF (western_side) THEN WRITE(numout,*) 'ERROR bathymetry merge at the western border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk ELSEIF (eastern_side) THEN WRITE(numout,*) 'ERROR bathymetry merge at the eastern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk ELSEIF (southern_side) THEN WRITE(numout,*) 'ERROR bathymetry merge at the southern border ji,jj,jk', ji+nimpp-1,jj+njmpp-1,jk ELSEIF (northern_side) THEN WRITE(numout,*) 'ERROR bathymetry merge at the northen border ji,jj,jk', ji+nimpp-1,jj+njmpp-1,jk ENDIF WRITE(numout,*) ' ptab(ji,jj,jk), fse3t(ji,jj,jk) ', ptab(ji,jj,jk), e3t_0(ji,jj,jk) kindic_agr = kindic_agr + 1 ENDIF END DO END DO END DO ENDIF ! END SUBROUTINE interpe3t SUBROUTINE interpumsk(ptab,i1,i2,j1,j2,k1,k2,before,nb,ndir) !!---------------------------------------------------------------------- !! *** ROUTINE interpumsk *** !!---------------------------------------------------------------------- ! INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2 REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab LOGICAL :: before INTEGER, INTENT(in) :: nb , ndir ! INTEGER :: ji, jj, jk LOGICAL :: western_side, eastern_side !!---------------------------------------------------------------------- ! IF (before) THEN DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk) = umask(ji,jj,jk) END DO END DO END DO ELSE western_side = (nb == 1).AND.(ndir == 1) eastern_side = (nb == 1).AND.(ndir == 2) DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ! Velocity mask at boundary edge points: IF (ABS(ptab(ji,jj,jk) - umask(ji,jj,jk)) > 1.D-2) THEN IF (western_side) THEN WRITE(numout,*) 'ERROR with umask at the western border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), umask(ji,jj,jk) kindic_agr = kindic_agr + 1 ELSEIF (eastern_side) THEN WRITE(numout,*) 'ERROR with umask at the eastern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), umask(ji,jj,jk) kindic_agr = kindic_agr + 1 ENDIF ENDIF END DO END DO END DO ENDIF ! END SUBROUTINE interpumsk SUBROUTINE interpvmsk(ptab,i1,i2,j1,j2,k1,k2,before,nb,ndir) !!---------------------------------------------------------------------- !! *** ROUTINE interpvmsk *** !!---------------------------------------------------------------------- ! INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2 REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab LOGICAL :: before INTEGER, INTENT(in) :: nb , ndir ! INTEGER :: ji, jj, jk LOGICAL :: northern_side, southern_side !!---------------------------------------------------------------------- ! IF (before) THEN DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk) = vmask(ji,jj,jk) END DO END DO END DO ELSE southern_side = (nb == 2).AND.(ndir == 1) northern_side = (nb == 2).AND.(ndir == 2) DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ! Velocity mask at boundary edge points: IF (ABS(ptab(ji,jj,jk) - vmask(ji,jj,jk)) > 1.D-2) THEN IF (southern_side) THEN WRITE(numout,*) 'ERROR with vmask at the southern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), vmask(ji,jj,jk) kindic_agr = kindic_agr + 1 ELSEIF (northern_side) THEN WRITE(numout,*) 'ERROR with vmask at the northern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), vmask(ji,jj,jk) kindic_agr = kindic_agr + 1 ENDIF ENDIF END DO END DO END DO ENDIF ! END SUBROUTINE interpvmsk # if defined key_zdftke SUBROUTINE interpavm(ptab,i1,i2,j1,j2,k1,k2,before) !!---------------------------------------------------------------------- !! *** ROUTINE interavm *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2 REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before !!---------------------------------------------------------------------- ! IF( before) THEN ptab (i1:i2,j1:j2,k1:k2) = avm_k(i1:i2,j1:j2,k1:k2) ELSE avm_k(i1:i2,j1:j2,k1:k2) = ptab (i1:i2,j1:j2,k1:k2) ENDIF ! END SUBROUTINE interpavm # endif /* key_zdftke */ #else !!---------------------------------------------------------------------- !! Empty module no AGRIF zoom !!---------------------------------------------------------------------- CONTAINS SUBROUTINE Agrif_OPA_Interp_empty WRITE(*,*) 'agrif_opa_interp : You should not have seen this print! error?' END SUBROUTINE Agrif_OPA_Interp_empty #endif !!====================================================================== END MODULE agrif_opa_interp