MODULE nemogcm !!====================================================================== !! *** MODULE nemogcm *** !! Off-line Ocean : passive tracer evolution, dynamics read in files !!====================================================================== !! History : 3.3 ! 2010-05 (C. Ethe) Full reorganization of the off-line: phasing with the on-line !! 4.0 ! 2011-01 (C. Ethe, A. R. Porter, STFC Daresbury) dynamical allocation !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! nemo_gcm : off-line: solve ocean tracer only !! nemo_init : initialization of the nemo model !! nemo_ctl : initialisation of algorithm flag !! nemo_closefile : close remaining files !!---------------------------------------------------------------------- USE dom_oce ! ocean space domain variables USE oce ! dynamics and tracers variables USE c1d ! 1D configuration USE domcfg ! domain configuration (dom_cfg routine) USE domain ! domain initialization from coordinate & bathymetry (dom_init routine) USE domrea ! domain initialization from mesh_mask (dom_init routine) USE eosbn2 ! equation of state (eos bn2 routine) ! ! ocean physics USE ldftra ! lateral diffusivity setting (ldf_tra_init routine) USE ldfslp ! slopes of neutral surfaces (ldf_slp_init routine) USE traqsr ! solar radiation penetration (tra_qsr_init routine) USE trabbl ! bottom boundary layer (tra_bbl_init routine) USE zdfini ! vertical physics: initialization USE sbcmod ! surface boundary condition (sbc_init routine) USE phycst ! physical constant (par_cst routine) USE dtadyn ! Lecture and Interpolation of the dynamical fields USE trcini ! Initilization of the passive tracers USE daymod ! calendar (day routine) USE trcstp ! passive tracer time-stepping (trc_stp routine) USE dtadyn ! Lecture and interpolation of the dynamical fields ! ! I/O & MPP USE iom ! I/O library USE in_out_manager ! I/O manager USE mppini ! shared/distributed memory setting (mpp_init routine) USE lib_mpp ! distributed memory computing #if defined key_iomput USE xios #endif USE prtctl ! Print control (prt_ctl_init routine) USE timing ! Timing USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) USE lbcnfd, ONLY: isendto, nsndto, nfsloop, nfeloop ! Setup of north fold exchanges USE trc USE trcnam USE trcrst USE diaptr ! Need to initialise this as some variables are used in if statements later IMPLICIT NONE PRIVATE PUBLIC nemo_gcm ! called by nemo.F90 CHARACTER (len=64) :: cform_aaa="( /, 'AAAAAAAA', / ) " ! flag for output listing !!---------------------------------------------------------------------- !! NEMO/OFF 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE nemo_gcm !!---------------------------------------------------------------------- !! *** ROUTINE nemo_gcm *** !! !! ** Purpose : nemo solves the primitive equations on an orthogonal !! curvilinear mesh on the sphere. !! !! ** Method : - model general initialization !! - launch the time-stepping (dta_dyn and trc_stp) !! - finalize the run by closing files and communications !! !! References : Madec, Delecluse,Imbard, and Levy, 1997: internal report, IPSL. !! Madec, 2008, internal report, IPSL. !!---------------------------------------------------------------------- INTEGER :: istp, indic ! time step index !!---------------------------------------------------------------------- CALL nemo_init ! Initializations ! check that all process are still there... If some process have an error, ! they will never enter in step and other processes will wait until the end of the cpu time! IF( lk_mpp ) CALL mpp_max( nstop ) ! !-----------------------! ! !== time stepping ==! ! !-----------------------! istp = nit000 ! CALL iom_init( cxios_context ) ! iom_put initialization (must be done after nemo_init for AGRIF+XIOS+OASIS) ! DO WHILE ( istp <= nitend .AND. nstop == 0 ) ! time stepping ! IF( istp /= nit000 ) CALL day ( istp ) ! Calendar (day was already called at nit000 in day_init) CALL iom_setkt( istp - nit000 + 1, "nemo" ) ! say to iom that we are at time step kstp CALL dta_dyn ( istp ) ! Interpolation of the dynamical fields CALL trc_stp ( istp ) ! time-stepping CALL stp_ctl ( istp, indic ) ! Time loop: control and print istp = istp + 1 IF( lk_mpp ) CALL mpp_max( nstop ) END DO #if defined key_iomput CALL iom_context_finalize( cxios_context ) ! needed for XIOS+AGRIF #endif ! !------------------------! ! !== finalize the run ==! ! !------------------------! IF(lwp) WRITE(numout,cform_aaa) ! Flag AAAAAAA IF( nstop /= 0 .AND. lwp ) THEN ! error print WRITE(numout,cform_err) WRITE(numout,*) nstop, ' error have been found' ENDIF ! IF( nn_timing == 1 ) CALL timing_finalize ! CALL nemo_closefile ! # if defined key_iomput CALL xios_finalize ! end mpp communications # else IF( lk_mpp ) CALL mppstop ! end mpp communications # endif ! END SUBROUTINE nemo_gcm SUBROUTINE nemo_init !!---------------------------------------------------------------------- !! *** ROUTINE nemo_init *** !! !! ** Purpose : initialization of the nemo model in off-line mode !!---------------------------------------------------------------------- INTEGER :: ji ! dummy loop indices INTEGER :: ilocal_comm ! local integer INTEGER :: ios LOGICAL :: llexist CHARACTER(len=80), DIMENSION(16) :: cltxt !! NAMELIST/namctl/ ln_ctl , nn_print, nn_ictls, nn_ictle, & & nn_isplt, nn_jsplt, nn_jctls, nn_jctle, & & nn_bench, nn_timing NAMELIST/namcfg/ cp_cfg, cp_cfz, jp_cfg, jpidta, jpjdta, jpkdta, jpiglo, jpjglo, & & jpizoom, jpjzoom, jperio, ln_use_jattr !!---------------------------------------------------------------------- cltxt = '' cxios_context = 'nemo' ! ! ! Open reference namelist and configuration namelist files CALL ctl_opn( numnam_ref, 'namelist_ref', 'OLD', 'FORMATTED', 'SEQUENTIAL', -1, 6, .FALSE. ) CALL ctl_opn( numnam_cfg, 'namelist_cfg', 'OLD', 'FORMATTED', 'SEQUENTIAL', -1, 6, .FALSE. ) ! REWIND( numnam_ref ) ! Namelist namctl in reference namelist : Control prints & Benchmark READ ( numnam_ref, namctl, IOSTAT = ios, ERR = 901 ) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namctl in reference namelist', .TRUE. ) REWIND( numnam_cfg ) ! Namelist namctl in confguration namelist : Control prints & Benchmark READ ( numnam_cfg, namctl, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namctl in configuration namelist', .TRUE. ) ! REWIND( numnam_ref ) ! Namelist namcfg in reference namelist : Control prints & Benchmark READ ( numnam_ref, namcfg, IOSTAT = ios, ERR = 903 ) 903 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namcfg in reference namelist', .TRUE. ) REWIND( numnam_cfg ) ! Namelist namcfg in confguration namelist : Control prints & Benchmark READ ( numnam_cfg, namcfg, IOSTAT = ios, ERR = 904 ) 904 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namcfg in configuration namelist', .TRUE. ) ! ! !--------------------------------------------! ! ! set communicator & select the local node ! ! ! NB: mynode also opens output.namelist.dyn ! ! ! on unit number numond on first proc ! ! !--------------------------------------------! #if defined key_iomput CALL xios_initialize( "for_xios_mpi_id",return_comm=ilocal_comm ) narea = mynode( cltxt, 'output.namelist.dyn', numnam_ref, numnam_cfg, numond , nstop, ilocal_comm ) ! Nodes selection #else ilocal_comm = 0 narea = mynode( cltxt, 'output.namelist.dyn', numnam_ref, numnam_cfg, numond , nstop ) ! Nodes selection (control print return in cltxt) #endif narea = narea + 1 ! mynode return the rank of proc (0 --> jpnij -1 ) lwm = (narea == 1) ! control of output namelists lwp = (narea == 1) .OR. ln_ctl ! control of all listing output print IF(lwm) THEN ! write merged namelists from earlier to output namelist now that the ! file has been opened in call to mynode. nammpp has already been ! written in mynode (if lk_mpp_mpi) WRITE( numond, namctl ) WRITE( numond, namcfg ) ENDIF ! If dimensions of processor grid weren't specified in the namelist file ! then we calculate them here now that we have our communicator size IF( (jpni < 1) .OR. (jpnj < 1) )THEN #if defined key_mpp_mpi CALL nemo_partition(mppsize) #else jpni = 1 jpnj = 1 jpnij = jpni*jpnj #endif END IF ! Calculate domain dimensions given calculated jpni and jpnj ! This used to be done in par_oce.F90 when they were parameters rather ! than variables jpi = ( jpiglo-2*jpreci + (jpni-1) ) / jpni + 2*jpreci ! first dim. jpj = ( jpjglo-2*jprecj + (jpnj-1) ) / jpnj + 2*jprecj ! second dim. jpk = jpkdta ! third dim jpim1 = jpi-1 ! inner domain indices jpjm1 = jpj-1 ! " " jpkm1 = jpk-1 ! " " jpij = jpi*jpj ! jpi x j IF(lwp) THEN ! open listing units ! CALL ctl_opn( numout, 'ocean.output', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, 6, .FALSE., narea ) ! WRITE(numout,*) WRITE(numout,*) ' CNRS - NERC - Met OFFICE - MERCATOR-ocean - INGV - CMCC' WRITE(numout,*) ' NEMO team' WRITE(numout,*) ' Ocean General Circulation Model' WRITE(numout,*) ' version 3.6 (2015) ' WRITE(numout,*) WRITE(numout,*) DO ji = 1, SIZE(cltxt) IF( TRIM(cltxt(ji)) /= '' ) WRITE(numout,*) cltxt(ji) ! control print of mynode END DO WRITE(numout,cform_aaa) ! Flag AAAAAAA ! ENDIF ! Now we know the dimensions of the grid and numout has been set we can ! allocate arrays CALL nemo_alloc() ! !--------------------------------! ! ! Model general initialization ! ! !--------------------------------! CALL nemo_ctl ! Control prints & Benchmark ! ! Domain decomposition IF( jpni*jpnj == jpnij ) THEN ; CALL mpp_init ! standard cutting out ELSE ; CALL mpp_init2 ! eliminate land processors ENDIF ! IF( nn_timing == 1 ) CALL timing_init ! ! ! General initialization IF( nn_timing == 1 ) CALL timing_start( 'nemo_init') ! CALL phy_cst ! Physical constants CALL eos_init ! Equation of state IF( lk_c1d ) CALL c1d_init ! 1D column configuration CALL dom_cfg ! Domain configuration ! INQUIRE( FILE='coordinates.nc', EXIST = llexist ) ! Check if coordinate file exist ! IF( llexist ) THEN ; CALL dom_init ! compute the grid from coordinates and bathymetry ELSE ; CALL dom_rea ! read grid from the meskmask ENDIF CALL istate_init ! ocean initial state (Dynamics and tracers) IF( ln_nnogather ) CALL nemo_northcomms ! Initialise the northfold neighbour lists (must be done after the masks are defined) IF( ln_ctl ) CALL prt_ctl_init ! Print control CALL sbc_init ! Forcings : surface module #if ! defined key_degrad CALL ldf_tra_init ! Lateral ocean tracer physics #endif IF( lk_ldfslp ) CALL ldf_slp_init ! slope of lateral mixing CALL tra_qsr_init ! penetrative solar radiation qsr IF( lk_trabbl ) CALL tra_bbl_init ! advective (and/or diffusive) bottom boundary layer scheme CALL trc_nam_run ! Needed to get restart parameters for passive tracers CALL trc_rst_cal( nit000, 'READ' ) ! calendar CALL dta_dyn_init ! Initialization for the dynamics CALL trc_init ! Passive tracers initialization CALL dia_ptr_init ! Initialise diaptr as some variables are used ! ! in various advection and diffusion routines IF(lwp) WRITE(numout,cform_aaa) ! Flag AAAAAAA ! IF( nn_timing == 1 ) CALL timing_stop( 'nemo_init') ! END SUBROUTINE nemo_init SUBROUTINE nemo_ctl !!---------------------------------------------------------------------- !! *** ROUTINE nemo_ctl *** !! !! ** Purpose : control print setting !! !! ** Method : - print namctl information and check some consistencies !!---------------------------------------------------------------------- ! IF(lwp) THEN ! Parameter print WRITE(numout,*) WRITE(numout,*) 'nemo_flg: Control prints & Benchmark' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist namctl' WRITE(numout,*) ' run control (for debugging) ln_ctl = ', ln_ctl WRITE(numout,*) ' level of print nn_print = ', nn_print WRITE(numout,*) ' Start i indice for SUM control nn_ictls = ', nn_ictls WRITE(numout,*) ' End i indice for SUM control nn_ictle = ', nn_ictle WRITE(numout,*) ' Start j indice for SUM control nn_jctls = ', nn_jctls WRITE(numout,*) ' End j indice for SUM control nn_jctle = ', nn_jctle WRITE(numout,*) ' number of proc. following i nn_isplt = ', nn_isplt WRITE(numout,*) ' number of proc. following j nn_jsplt = ', nn_jsplt WRITE(numout,*) ' benchmark parameter (0/1) nn_bench = ', nn_bench ENDIF ! nprint = nn_print ! convert DOCTOR namelist names into OLD names nictls = nn_ictls nictle = nn_ictle njctls = nn_jctls njctle = nn_jctle isplt = nn_isplt jsplt = nn_jsplt nbench = nn_bench IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'namcfg : configuration initialization through namelist read' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist namcfg' WRITE(numout,*) ' configuration name cp_cfg = ', TRIM(cp_cfg) WRITE(numout,*) ' configuration resolution jp_cfg = ', jp_cfg WRITE(numout,*) ' 1st lateral dimension ( >= jpi ) jpidta = ', jpidta WRITE(numout,*) ' 2nd " " ( >= jpj ) jpjdta = ', jpjdta WRITE(numout,*) ' 3nd " " jpkdta = ', jpkdta WRITE(numout,*) ' 1st dimension of global domain in i jpiglo = ', jpiglo WRITE(numout,*) ' 2nd - - in j jpjglo = ', jpjglo WRITE(numout,*) ' left bottom i index of the zoom (in data domain) jpizoom = ', jpizoom WRITE(numout,*) ' left bottom j index of the zoom (in data domain) jpizoom = ', jpjzoom WRITE(numout,*) ' lateral cond. type (between 0 and 6) jperio = ', jperio WRITE(numout,*) ' use file attribute if exists as i/p j-start ln_use_jattr = ', ln_use_jattr ENDIF ! ! Parameter control ! IF( ln_ctl ) THEN ! sub-domain area indices for the control prints IF( lk_mpp ) THEN isplt = jpni ; jsplt = jpnj ; ijsplt = jpni*jpnj ! the domain is forced to the real splitted domain ELSE IF( isplt == 1 .AND. jsplt == 1 ) THEN CALL ctl_warn( ' - isplt & jsplt are equal to 1', & & ' - the print control will be done over the whole domain' ) ENDIF ijsplt = isplt * jsplt ! total number of processors ijsplt ENDIF IF(lwp) WRITE(numout,*)' - The total number of processors over which the' IF(lwp) WRITE(numout,*)' print control will be done is ijsplt : ', ijsplt ! ! ! indices used for the SUM control IF( nictls+nictle+njctls+njctle == 0 ) THEN ! print control done over the default area lsp_area = .FALSE. ELSE ! print control done over a specific area lsp_area = .TRUE. IF( nictls < 1 .OR. nictls > jpiglo ) THEN CALL ctl_warn( ' - nictls must be 1<=nictls>=jpiglo, it is forced to 1' ) nictls = 1 ENDIF IF( nictle < 1 .OR. nictle > jpiglo ) THEN CALL ctl_warn( ' - nictle must be 1<=nictle>=jpiglo, it is forced to jpiglo' ) nictle = jpiglo ENDIF IF( njctls < 1 .OR. njctls > jpjglo ) THEN CALL ctl_warn( ' - njctls must be 1<=njctls>=jpjglo, it is forced to 1' ) njctls = 1 ENDIF IF( njctle < 1 .OR. njctle > jpjglo ) THEN CALL ctl_warn( ' - njctle must be 1<=njctle>=jpjglo, it is forced to jpjglo' ) njctle = jpjglo ENDIF ENDIF ENDIF ! IF( nbench == 1 ) THEN ! Benchmark SELECT CASE ( cp_cfg ) CASE ( 'gyre' ) ; CALL ctl_warn( ' The Benchmark is activated ' ) CASE DEFAULT ; CALL ctl_stop( ' The Benchmark is based on the GYRE configuration:', & & ' cp_cfg="gyre" in namelsit &namcfg or set nbench = 0' ) END SELECT ENDIF ! IF( lk_c1d .AND. .NOT.lk_iomput ) CALL ctl_stop( 'nemo_ctl: The 1D configuration must be used ', & & 'with the IOM Input/Output manager. ' , & & 'Compile with key_iomput enabled' ) ! IF( 1_wp /= SIGN(1._wp,-0._wp) ) CALL ctl_stop( 'nemo_ctl: The intrinsec SIGN function follows ', & & 'f2003 standard. ' , & & 'Compile with key_nosignedzero enabled' ) ! END SUBROUTINE nemo_ctl SUBROUTINE nemo_closefile !!---------------------------------------------------------------------- !! *** ROUTINE nemo_closefile *** !! !! ** Purpose : Close the files !!---------------------------------------------------------------------- ! IF ( lk_mpp ) CALL mppsync ! CALL iom_close ! close all input/output files managed by iom_* ! IF( numstp /= -1 ) CLOSE( numstp ) ! time-step file IF( numnam_ref /= -1 ) CLOSE( numnam_ref ) ! oce reference namelist IF( numnam_cfg /= -1 ) CLOSE( numnam_cfg ) ! oce configuration namelist IF( numout /= 6 ) CLOSE( numout ) ! standard model output file numout = 6 ! redefine numout in case it is used after this point... ! END SUBROUTINE nemo_closefile SUBROUTINE nemo_alloc !!---------------------------------------------------------------------- !! *** ROUTINE nemo_alloc *** !! !! ** Purpose : Allocate all the dynamic arrays of the OPA modules !! !! ** Method : !!---------------------------------------------------------------------- USE diawri, ONLY: dia_wri_alloc USE dom_oce, ONLY: dom_oce_alloc USE zdf_oce, ONLY: zdf_oce_alloc USE ldftra_oce, ONLY: ldftra_oce_alloc USE trc_oce, ONLY: trc_oce_alloc ! INTEGER :: ierr !!---------------------------------------------------------------------- ! ierr = oce_alloc () ! ocean ierr = ierr + dia_wri_alloc () ierr = ierr + dom_oce_alloc () ! ocean domain ierr = ierr + ldftra_oce_alloc() ! ocean lateral physics : tracers ierr = ierr + zdf_oce_alloc () ! ocean vertical physics ! ierr = ierr + trc_oce_alloc () ! shared TRC / TRA arrays ! IF( lk_mpp ) CALL mpp_sum( ierr ) IF( ierr /= 0 ) CALL ctl_stop( 'STOP', 'nemo_alloc: unable to allocate standard ocean arrays' ) ! END SUBROUTINE nemo_alloc SUBROUTINE nemo_partition( num_pes ) !!---------------------------------------------------------------------- !! *** ROUTINE nemo_partition *** !! !! ** Purpose : !! !! ** Method : !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: num_pes ! The number of MPI processes we have ! INTEGER, PARAMETER :: nfactmax = 20 INTEGER :: nfact ! The no. of factors returned INTEGER :: ierr ! Error flag INTEGER :: ji INTEGER :: idiff, mindiff, imin ! For choosing pair of factors that are closest in value INTEGER, DIMENSION(nfactmax) :: ifact ! Array of factors !!---------------------------------------------------------------------- ierr = 0 CALL factorise( ifact, nfactmax, nfact, num_pes, ierr ) IF( nfact <= 1 ) THEN WRITE (numout, *) 'WARNING: factorisation of number of PEs failed' WRITE (numout, *) ' : using grid of ',num_pes,' x 1' jpnj = 1 jpni = num_pes ELSE ! Search through factors for the pair that are closest in value mindiff = 1000000 imin = 1 DO ji = 1, nfact-1, 2 idiff = ABS( ifact(ji) - ifact(ji+1) ) IF( idiff < mindiff ) THEN mindiff = idiff imin = ji ENDIF END DO jpnj = ifact(imin) jpni = ifact(imin + 1) ENDIF ! jpnij = jpni*jpnj ! END SUBROUTINE nemo_partition SUBROUTINE factorise( kfax, kmaxfax, knfax, kn, kerr ) !!---------------------------------------------------------------------- !! *** ROUTINE factorise *** !! !! ** Purpose : return the prime factors of n. !! knfax factors are returned in array kfax which is of !! maximum dimension kmaxfax. !! ** Method : !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kn, kmaxfax INTEGER , INTENT( out) :: kerr, knfax INTEGER, DIMENSION(kmaxfax), INTENT( out) :: kfax ! INTEGER :: ifac, jl, inu INTEGER, PARAMETER :: ntest = 14 INTEGER :: ilfax(ntest) ! ! lfax contains the set of allowed factors. data (ilfax(jl),jl=1,ntest) / 16384, 8192, 4096, 2048, 1024, 512, 256, & & 128, 64, 32, 16, 8, 4, 2 / !!---------------------------------------------------------------------- ! Clear the error flag and initialise output vars kerr = 0 kfax = 1 knfax = 0 ! Find the factors of n. IF( kn == 1 ) GOTO 20 ! nu holds the unfactorised part of the number. ! knfax holds the number of factors found. ! l points to the allowed factor list. ! ifac holds the current factor. inu = kn knfax = 0 DO jl = ntest, 1, -1 ! ifac = ilfax(jl) IF( ifac > inu ) CYCLE ! Test whether the factor will divide. IF( MOD(inu,ifac) == 0 ) THEN ! knfax = knfax + 1 ! Add the factor to the list IF( knfax > kmaxfax ) THEN kerr = 6 write (*,*) 'FACTOR: insufficient space in factor array ', knfax return ENDIF kfax(knfax) = ifac ! Store the other factor that goes with this one knfax = knfax + 1 kfax(knfax) = inu / ifac !WRITE (*,*) 'ARPDBG, factors ',knfax-1,' & ',knfax,' are ', kfax(knfax-1),' and ',kfax(knfax) ENDIF ! END DO 20 CONTINUE ! Label 20 is the exit point from the factor search loop. ! END SUBROUTINE factorise #if defined key_mpp_mpi SUBROUTINE nemo_northcomms !!====================================================================== !! *** ROUTINE nemo_northcomms *** !! nemo_northcomms : Setup for north fold exchanges with explicit !! point-to-point messaging !!===================================================================== !!---------------------------------------------------------------------- !! !! ** Purpose : Initialization of the northern neighbours lists. !!---------------------------------------------------------------------- !! 1.0 ! 2011-10 (A. C. Coward, NOCS & J. Donners, PRACE) !! 2.0 ! 2013-06 Setup avoiding MPI communication (I. Epicoco, S. !Mocavero, CMCC) !!---------------------------------------------------------------------- INTEGER :: sxM, dxM, sxT, dxT, jn INTEGER :: njmppmax njmppmax = MAXVAL( njmppt ) !initializes the north-fold communication variables isendto(:) = 0 nsndto = 0 !if I am a process in the north IF ( njmpp == njmppmax ) THEN !sxM is the first point (in the global domain) needed to compute the !north-fold for the current process sxM = jpiglo - nimppt(narea) - nlcit(narea) + 1 !dxM is the last point (in the global domain) needed to compute the !north-fold for the current process dxM = jpiglo - nimppt(narea) + 2 !loop over the other north-fold processes to find the processes !managing the points belonging to the sxT-dxT range DO jn = 1, jpni !sxT is the first point (in the global domain) of the jn !process sxT = nfiimpp(jn, jpnj) !dxT is the last point (in the global domain) of the jn !process dxT = nfiimpp(jn, jpnj) + nfilcit(jn, jpnj) - 1 IF ((sxM .gt. sxT) .AND. (sxM .lt. dxT)) THEN nsndto = nsndto + 1 isendto(nsndto) = jn ELSEIF ((sxM .le. sxT) .AND. (dxM .ge. dxT)) THEN nsndto = nsndto + 1 isendto(nsndto) = jn ELSEIF ((dxM .lt. dxT) .AND. (sxT .lt. dxM)) THEN nsndto = nsndto + 1 isendto(nsndto) = jn END IF END DO nfsloop = 1 nfeloop = nlci DO jn = 2,jpni-1 IF(nfipproc(jn,jpnj) .eq. (narea - 1)) THEN IF (nfipproc(jn - 1 ,jpnj) .eq. -1) THEN nfsloop = nldi ENDIF IF (nfipproc(jn + 1,jpnj) .eq. -1) THEN nfeloop = nlei ENDIF ENDIF END DO ENDIF l_north_nogather = .TRUE. END SUBROUTINE nemo_northcomms #else SUBROUTINE nemo_northcomms ! Dummy routine WRITE(*,*) 'nemo_northcomms: You should not have seen this print! error?' END SUBROUTINE nemo_northcomms #endif SUBROUTINE istate_init !!---------------------------------------------------------------------- !! *** ROUTINE istate_init *** !! !! ** Purpose : Initialization to zero of the dynamics and tracers. !!---------------------------------------------------------------------- ! ! now fields ! after fields ! un (:,:,:) = 0._wp ; ua(:,:,:) = 0._wp ! vn (:,:,:) = 0._wp ; va(:,:,:) = 0._wp ! wn (:,:,:) = 0._wp ! ! hdivn(:,:,:) = 0._wp ! ! tsn (:,:,:,:) = 0._wp ! ! ! rhd (:,:,:) = 0.e0 rhop (:,:,:) = 0.e0 rn2 (:,:,:) = 0.e0 ! END SUBROUTINE istate_init SUBROUTINE stp_ctl( kt, kindic ) !!---------------------------------------------------------------------- !! *** ROUTINE stp_ctl *** !! !! ** Purpose : Control the run !! !! ** Method : - Save the time step in numstp !! !! ** Actions : 'time.step' file containing the last ocean time-step !!---------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt ! ocean time-step index INTEGER, INTENT(inout) :: kindic ! indicator of solver convergence !!---------------------------------------------------------------------- ! IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*) 'stp_ctl : time-stepping control' WRITE(numout,*) '~~~~~~~' ! open time.step file CALL ctl_opn( numstp, 'time.step', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, numout, lwp, narea ) ENDIF ! IF(lwp) WRITE ( numstp, '(1x, i8)' ) kt !* save the current time step in numstp IF(lwp) REWIND( numstp ) ! -------------------------- ! END SUBROUTINE stp_ctl !!====================================================================== END MODULE nemogcm