MODULE zdfiwm !!======================================================================== !! *** MODULE zdfiwm *** !! Ocean physics: Internal gravity wave-driven vertical mixing !!======================================================================== !! History : 1.0 ! 2004-04 (L. Bessieres, G. Madec) Original code !! - ! 2006-08 (A. Koch-Larrouy) Indonesian strait !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase !! 3.6 ! 2016-03 (C. de Lavergne) New param: internal wave-driven mixing !! 4.0 ! 2017-04 (G. Madec) renamed module, remove the old param. and the CPP keys !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! zdf_iwm : global momentum & tracer Kz with wave induced Kz !! zdf_iwm_init : global momentum & tracer Kz with wave induced Kz !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE zdf_oce ! ocean vertical physics variables USE zdfddm ! ocean vertical physics: double diffusive mixing USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE eosbn2 ! ocean equation of state USE phycst ! physical constants ! USE prtctl ! Print control USE in_out_manager ! I/O manager USE iom ! I/O Manager USE lib_mpp ! MPP library USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) IMPLICIT NONE PRIVATE PUBLIC zdf_iwm ! called in step module PUBLIC zdf_iwm_init ! called in nemogcm module ! !!* Namelist namzdf_iwm : internal wave-driven mixing * INTEGER :: nn_zpyc ! pycnocline-intensified mixing energy proportional to N (=1) or N^2 (=2) LOGICAL :: ln_mevar ! variable (=T) or constant (=F) mixing efficiency LOGICAL :: ln_tsdiff ! account for differential T/S wave-driven mixing (=T) or not (=F) REAL(wp):: r1_6 = 1._wp / 6._wp REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ebot_iwm ! power available from high-mode wave breaking (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: epyc_iwm ! power available from low-mode, pycnocline-intensified wave breaking (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ecri_iwm ! power available from low-mode, critical slope wave breaking (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hbot_iwm ! WKB decay scale for high-mode energy dissipation (m) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hcri_iwm ! decay scale for low-mode critical slope dissipation (m) !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id: zdfiwm.F90 8093 2017-05-30 08:13:14Z gm $ !! Software governed by the CeCILL licence (./LICENSE) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION zdf_iwm_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION zdf_iwm_alloc *** !!---------------------------------------------------------------------- ALLOCATE( ebot_iwm(jpi,jpj), epyc_iwm(jpi,jpj), ecri_iwm(jpi,jpj) , & & hbot_iwm(jpi,jpj), hcri_iwm(jpi,jpj) , STAT=zdf_iwm_alloc ) ! CALL mpp_sum ( 'zdfiwm', zdf_iwm_alloc ) IF( zdf_iwm_alloc /= 0 ) CALL ctl_warn('zdf_iwm_alloc: failed to allocate arrays') END FUNCTION zdf_iwm_alloc SUBROUTINE zdf_iwm( kt, p_avm, p_avt, p_avs ) !!---------------------------------------------------------------------- !! *** ROUTINE zdf_iwm *** !! !! ** Purpose : add to the vertical mixing coefficients the effect of !! breaking internal waves. !! !! ** Method : - internal wave-driven vertical mixing is given by: !! Kz_wave = min( 100 cm2/s, f( Reb = zemx_iwm /( Nu * N^2 ) ) !! where zemx_iwm is the 3D space distribution of the wave-breaking !! energy and Nu the molecular kinematic viscosity. !! The function f(Reb) is linear (constant mixing efficiency) !! if the namelist parameter ln_mevar = F and nonlinear if ln_mevar = T. !! !! - Compute zemx_iwm, the 3D power density that allows to compute !! Reb and therefrom the wave-induced vertical diffusivity. !! This is divided into three components: !! 1. Bottom-intensified low-mode dissipation at critical slopes !! zemx_iwm(z) = ( ecri_iwm / rau0 ) * EXP( -(H-z)/hcri_iwm ) !! / ( 1. - EXP( - H/hcri_iwm ) ) * hcri_iwm !! where hcri_iwm is the characteristic length scale of the bottom !! intensification, ecri_iwm a map of available power, and H the ocean depth. !! 2. Pycnocline-intensified low-mode dissipation !! zemx_iwm(z) = ( epyc_iwm / rau0 ) * ( sqrt(rn2(z))^nn_zpyc ) !! / SUM( sqrt(rn2(z))^nn_zpyc * e3w(z) ) !! where epyc_iwm is a map of available power, and nn_zpyc !! is the chosen stratification-dependence of the internal wave !! energy dissipation. !! 3. WKB-height dependent high mode dissipation !! zemx_iwm(z) = ( ebot_iwm / rau0 ) * rn2(z) * EXP(-z_wkb(z)/hbot_iwm) !! / SUM( rn2(z) * EXP(-z_wkb(z)/hbot_iwm) * e3w(z) ) !! where hbot_iwm is the characteristic length scale of the WKB bottom !! intensification, ebot_iwm is a map of available power, and z_wkb is the !! WKB-stretched height above bottom defined as !! z_wkb(z) = H * SUM( sqrt(rn2(z'>=z)) * e3w(z'>=z) ) !! / SUM( sqrt(rn2(z')) * e3w(z') ) !! !! - update the model vertical eddy viscosity and diffusivity: !! avt = avt + av_wave !! avm = avm + av_wave !! !! - if namelist parameter ln_tsdiff = T, account for differential mixing: !! avs = avt + av_wave * diffusivity_ratio(Reb) !! !! ** Action : - avt, avs, avm, increased by tide internal wave-driven mixing !! !! References : de Lavergne et al. 2015, JPO; 2016, in prep. !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time step REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: p_avm ! momentum Kz (w-points) REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: p_avt, p_avs ! tracer Kz (w-points) ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zztmp ! scalar workspace REAL(wp), DIMENSION(jpi,jpj) :: zfact ! Used for vertical structure REAL(wp), DIMENSION(jpi,jpj) :: zhdep ! Ocean depth REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwkb ! WKB-stretched height above bottom REAL(wp), DIMENSION(jpi,jpj,jpk) :: zweight ! Weight for high mode vertical distribution REAL(wp), DIMENSION(jpi,jpj,jpk) :: znu_t ! Molecular kinematic viscosity (T grid) REAL(wp), DIMENSION(jpi,jpj,jpk) :: znu_w ! Molecular kinematic viscosity (W grid) REAL(wp), DIMENSION(jpi,jpj,jpk) :: zReb ! Turbulence intensity parameter REAL(wp), DIMENSION(jpi,jpj,jpk) :: zemx_iwm ! local energy density available for mixing (W/kg) REAL(wp), DIMENSION(jpi,jpj,jpk) :: zav_ratio ! S/T diffusivity ratio (only for ln_tsdiff=T) REAL(wp), DIMENSION(jpi,jpj,jpk) :: zav_wave ! Internal wave-induced diffusivity REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: z3d ! 3D workspace used for iom_put REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z2d ! 2D - - - - !!---------------------------------------------------------------------- ! ! !* Set to zero the 1st and last vertical levels of appropriate variables zemx_iwm (:,:,1) = 0._wp ; zemx_iwm (:,:,jpk) = 0._wp zav_ratio(:,:,1) = 0._wp ; zav_ratio(:,:,jpk) = 0._wp zav_wave (:,:,1) = 0._wp ; zav_wave (:,:,jpk) = 0._wp ! ! ! ----------------------------- ! ! ! Internal wave-driven mixing ! (compute zav_wave) ! ! ----------------------------- ! ! ! !* Critical slope mixing: distribute energy over the time-varying ocean depth, ! using an exponential decay from the seafloor. DO jj = 1, jpj ! part independent of the level DO ji = 1, jpi zhdep(ji,jj) = gdepw_0(ji,jj,mbkt(ji,jj)+1) ! depth of the ocean zfact(ji,jj) = rau0 * ( 1._wp - EXP( -zhdep(ji,jj) / hcri_iwm(ji,jj) ) ) IF( zfact(ji,jj) /= 0._wp ) zfact(ji,jj) = ecri_iwm(ji,jj) / zfact(ji,jj) END DO END DO !!gm gde3w ==>>> check for ssh taken into account.... seem OK gde3w_n=gdept_n - sshn DO jk = 2, jpkm1 ! complete with the level-dependent part zemx_iwm(:,:,jk) = zfact(:,:) * ( EXP( ( gde3w_n(:,:,jk ) - zhdep(:,:) ) / hcri_iwm(:,:) ) & & - EXP( ( gde3w_n(:,:,jk-1) - zhdep(:,:) ) / hcri_iwm(:,:) ) ) * wmask(:,:,jk) & & / ( gde3w_n(:,:,jk) - gde3w_n(:,:,jk-1) ) !!gm delta(gde3w_n) = e3t_n !! Please verify the grid-point position w versus t-point !!gm it seems to me that only 1/hcri_iwm is used ==> compute it one for all END DO ! !* Pycnocline-intensified mixing: distribute energy over the time-varying ! !* ocean depth as proportional to sqrt(rn2)^nn_zpyc ! ! (NB: N2 is masked, so no use of wmask here) SELECT CASE ( nn_zpyc ) ! CASE ( 1 ) ! Dissipation scales as N (recommended) ! zfact(:,:) = 0._wp DO jk = 2, jpkm1 ! part independent of the level zfact(:,:) = zfact(:,:) + e3w_n(:,:,jk) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk) END DO ! DO jj = 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = epyc_iwm(ji,jj) / ( rau0 * zfact(ji,jj) ) END DO END DO ! DO jk = 2, jpkm1 ! complete with the level-dependent part zemx_iwm(:,:,jk) = zemx_iwm(:,:,jk) + zfact(:,:) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk) END DO ! CASE ( 2 ) ! Dissipation scales as N^2 ! zfact(:,:) = 0._wp DO jk = 2, jpkm1 ! part independent of the level zfact(:,:) = zfact(:,:) + e3w_n(:,:,jk) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk) END DO ! DO jj= 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = epyc_iwm(ji,jj) / ( rau0 * zfact(ji,jj) ) END DO END DO ! DO jk = 2, jpkm1 ! complete with the level-dependent part zemx_iwm(:,:,jk) = zemx_iwm(:,:,jk) + zfact(:,:) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk) END DO ! END SELECT ! !* WKB-height dependent mixing: distribute energy over the time-varying ! !* ocean depth as proportional to rn2 * exp(-z_wkb/rn_hbot) ! zwkb (:,:,:) = 0._wp zfact(:,:) = 0._wp DO jk = 2, jpkm1 zfact(:,:) = zfact(:,:) + e3w_n(:,:,jk) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk) zwkb(:,:,jk) = zfact(:,:) END DO !!gm even better: ! DO jk = 2, jpkm1 ! zwkb(:,:) = zwkb(:,:) + e3w_n(:,:,jk) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) ! END DO ! zfact(:,:) = zwkb(:,:,jpkm1) !!gm or just use zwkb(k=jpk-1) instead of zfact... !!gm ! DO jk = 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zwkb(ji,jj,jk) = zhdep(ji,jj) * ( zfact(ji,jj) - zwkb(ji,jj,jk) ) & & * wmask(ji,jj,jk) / zfact(ji,jj) END DO END DO END DO zwkb(:,:,1) = zhdep(:,:) * wmask(:,:,1) ! zweight(:,:,:) = 0._wp DO jk = 2, jpkm1 zweight(:,:,jk) = MAX( 0._wp, rn2(:,:,jk) ) * hbot_iwm(:,:) * wmask(:,:,jk) & & * ( EXP( -zwkb(:,:,jk) / hbot_iwm(:,:) ) - EXP( -zwkb(:,:,jk-1) / hbot_iwm(:,:) ) ) END DO ! zfact(:,:) = 0._wp DO jk = 2, jpkm1 ! part independent of the level zfact(:,:) = zfact(:,:) + zweight(:,:,jk) END DO ! DO jj = 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = ebot_iwm(ji,jj) / ( rau0 * zfact(ji,jj) ) END DO END DO ! DO jk = 2, jpkm1 ! complete with the level-dependent part zemx_iwm(:,:,jk) = zemx_iwm(:,:,jk) + zweight(:,:,jk) * zfact(:,:) * wmask(:,:,jk) & & / ( gde3w_n(:,:,jk) - gde3w_n(:,:,jk-1) ) !!gm use of e3t_n just above? END DO ! !!gm this is to be replaced by just a constant value znu=1.e-6 m2/s ! Calculate molecular kinematic viscosity znu_t(:,:,:) = 1.e-4_wp * ( 17.91_wp - 0.53810_wp * tsn(:,:,:,jp_tem) + 0.00694_wp * tsn(:,:,:,jp_tem) * tsn(:,:,:,jp_tem) & & + 0.02305_wp * tsn(:,:,:,jp_sal) ) * tmask(:,:,:) * r1_rau0 DO jk = 2, jpkm1 znu_w(:,:,jk) = 0.5_wp * ( znu_t(:,:,jk-1) + znu_t(:,:,jk) ) * wmask(:,:,jk) END DO !!gm end ! ! Calculate turbulence intensity parameter Reb DO jk = 2, jpkm1 zReb(:,:,jk) = zemx_iwm(:,:,jk) / MAX( 1.e-20_wp, znu_w(:,:,jk) * rn2(:,:,jk) ) END DO ! ! Define internal wave-induced diffusivity DO jk = 2, jpkm1 zav_wave(:,:,jk) = znu_w(:,:,jk) * zReb(:,:,jk) * r1_6 ! This corresponds to a constant mixing efficiency of 1/6 END DO ! IF( ln_mevar ) THEN ! Variable mixing efficiency case : modify zav_wave in the DO jk = 2, jpkm1 ! energetic (Reb > 480) and buoyancy-controlled (Reb <10.224 ) regimes DO jj = 1, jpj DO ji = 1, jpi IF( zReb(ji,jj,jk) > 480.00_wp ) THEN zav_wave(ji,jj,jk) = 3.6515_wp * znu_w(ji,jj,jk) * SQRT( zReb(ji,jj,jk) ) ELSEIF( zReb(ji,jj,jk) < 10.224_wp ) THEN zav_wave(ji,jj,jk) = 0.052125_wp * znu_w(ji,jj,jk) * zReb(ji,jj,jk) * SQRT( zReb(ji,jj,jk) ) ENDIF END DO END DO END DO ENDIF ! DO jk = 2, jpkm1 ! Bound diffusivity by molecular value and 100 cm2/s zav_wave(:,:,jk) = MIN( MAX( 1.4e-7_wp, zav_wave(:,:,jk) ), 1.e-2_wp ) * wmask(:,:,jk) END DO ! IF( kt == nit000 ) THEN !* Control print at first time-step: diagnose the energy consumed by zav_wave zztmp = 0._wp !!gm used of glosum 3D.... DO jk = 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi zztmp = zztmp + e3w_n(ji,jj,jk) * e1e2t(ji,jj) & & * MAX( 0._wp, rn2(ji,jj,jk) ) * zav_wave(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO CALL mpp_sum( 'zdfiwm', zztmp ) zztmp = rau0 * zztmp ! Global integral of rauo * Kz * N^2 = power contributing to mixing ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'zdf_iwm : Internal wave-driven mixing (iwm)' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) WRITE(numout,*) ' Total power consumption by av_wave = ', zztmp * 1.e-12_wp, 'TW' ENDIF ENDIF ! ! ----------------------- ! ! ! Update mixing coefs ! ! ! ----------------------- ! ! IF( ln_tsdiff ) THEN !* Option for differential mixing of salinity and temperature DO jk = 2, jpkm1 ! Calculate S/T diffusivity ratio as a function of Reb DO jj = 1, jpj DO ji = 1, jpi zav_ratio(ji,jj,jk) = ( 0.505_wp + 0.495_wp * & & TANH( 0.92_wp * ( LOG10( MAX( 1.e-20_wp, zReb(ji,jj,jk) * 5._wp * r1_6 ) ) - 0.60_wp ) ) & & ) * wmask(ji,jj,jk) END DO END DO END DO CALL iom_put( "av_ratio", zav_ratio ) DO jk = 2, jpkm1 !* update momentum & tracer diffusivity with wave-driven mixing p_avs(:,:,jk) = p_avs(:,:,jk) + zav_wave(:,:,jk) * zav_ratio(:,:,jk) p_avt(:,:,jk) = p_avt(:,:,jk) + zav_wave(:,:,jk) p_avm(:,:,jk) = p_avm(:,:,jk) + zav_wave(:,:,jk) END DO ! ELSE !* update momentum & tracer diffusivity with wave-driven mixing DO jk = 2, jpkm1 p_avs(:,:,jk) = p_avs(:,:,jk) + zav_wave(:,:,jk) p_avt(:,:,jk) = p_avt(:,:,jk) + zav_wave(:,:,jk) p_avm(:,:,jk) = p_avm(:,:,jk) + zav_wave(:,:,jk) END DO ENDIF ! !* output internal wave-driven mixing coefficient CALL iom_put( "av_wave", zav_wave ) !* output useful diagnostics: Kz*N^2 , !!gm Kz*N2 should take into account the ratio avs/avt if it is used.... (see diaar5) ! vertical integral of rau0 * Kz * N^2 , energy density (zemx_iwm) IF( iom_use("bflx_iwm") .OR. iom_use("pcmap_iwm") ) THEN ALLOCATE( z2d(jpi,jpj) , z3d(jpi,jpj,jpk) ) z3d(:,:,:) = MAX( 0._wp, rn2(:,:,:) ) * zav_wave(:,:,:) z2d(:,:) = 0._wp DO jk = 2, jpkm1 z2d(:,:) = z2d(:,:) + e3w_n(:,:,jk) * z3d(:,:,jk) * wmask(:,:,jk) END DO z2d(:,:) = rau0 * z2d(:,:) CALL iom_put( "bflx_iwm", z3d ) CALL iom_put( "pcmap_iwm", z2d ) DEALLOCATE( z2d , z3d ) ENDIF CALL iom_put( "emix_iwm", zemx_iwm ) IF(ln_ctl) CALL prt_ctl(tab3d_1=zav_wave , clinfo1=' iwm - av_wave: ', tab3d_2=avt, clinfo2=' avt: ', kdim=jpk) ! END SUBROUTINE zdf_iwm SUBROUTINE zdf_iwm_init !!---------------------------------------------------------------------- !! *** ROUTINE zdf_iwm_init *** !! !! ** Purpose : Initialization of the wave-driven vertical mixing, reading !! of input power maps and decay length scales in netcdf files. !! !! ** Method : - Read the namzdf_iwm namelist and check the parameters !! !! - Read the input data in NetCDF files : !! power available from high-mode wave breaking (mixing_power_bot.nc) !! power available from pycnocline-intensified wave-breaking (mixing_power_pyc.nc) !! power available from critical slope wave-breaking (mixing_power_cri.nc) !! WKB decay scale for high-mode wave-breaking (decay_scale_bot.nc) !! decay scale for critical slope wave-breaking (decay_scale_cri.nc) !! !! ** input : - Namlist namzdf_iwm !! - NetCDF files : mixing_power_bot.nc, mixing_power_pyc.nc, mixing_power_cri.nc, !! decay_scale_bot.nc decay_scale_cri.nc !! !! ** Action : - Increase by 1 the nstop flag is setting problem encounter !! - Define ebot_iwm, epyc_iwm, ecri_iwm, hbot_iwm, hcri_iwm !! !! References : de Lavergne et al. JPO, 2015 ; de Lavergne PhD 2016 !! de Lavergne et al. in prep., 2017 !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: inum ! local integer INTEGER :: ios REAL(wp) :: zbot, zpyc, zcri ! local scalars !! NAMELIST/namzdf_iwm/ nn_zpyc, ln_mevar, ln_tsdiff !!---------------------------------------------------------------------- ! REWIND( numnam_ref ) ! Namelist namzdf_iwm in reference namelist : Wave-driven mixing READ ( numnam_ref, namzdf_iwm, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_iwm in reference namelist', lwp ) ! REWIND( numnam_cfg ) ! Namelist namzdf_iwm in configuration namelist : Wave-driven mixing READ ( numnam_cfg, namzdf_iwm, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namzdf_iwm in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namzdf_iwm ) ! IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'zdf_iwm_init : internal wave-driven mixing' WRITE(numout,*) '~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namzdf_iwm : set wave-driven mixing parameters' WRITE(numout,*) ' Pycnocline-intensified diss. scales as N (=1) or N^2 (=2) = ', nn_zpyc WRITE(numout,*) ' Variable (T) or constant (F) mixing efficiency = ', ln_mevar WRITE(numout,*) ' Differential internal wave-driven mixing (T) or not (F) = ', ln_tsdiff ENDIF ! The new wave-driven mixing parameterization elevates avt and avm in the interior, and ! ensures that avt remains larger than its molecular value (=1.4e-7). Therefore, avtb should ! be set here to a very small value, and avmb to its (uniform) molecular value (=1.4e-6). avmb(:) = 1.4e-6_wp ! viscous molecular value avtb(:) = 1.e-10_wp ! very small diffusive minimum (background avt is specified in zdf_iwm) avtb_2d(:,:) = 1.e0_wp ! uniform IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) ' Force the background value applied to avm & avt in TKE to be everywhere ', & & 'the viscous molecular value & a very small diffusive value, resp.' ENDIF ! ! allocate iwm arrays IF( zdf_iwm_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_iwm_init : unable to allocate iwm arrays' ) ! ! ! read necessary fields !!$ CALL iom_open('mixing_power_bot',inum) ! energy flux for high-mode wave breaking [W/m2] !!$ CALL iom_get (inum, jpdom_data, 'field', ebot_iwm, 1 ) !!$ CALL iom_close(inum) ebot_iwm(:,:) = 1.e-6 ! !!$ CALL iom_open('mixing_power_pyc',inum) ! energy flux for pynocline-intensified wave breaking [W/m2] !!$ CALL iom_get (inum, jpdom_data, 'field', epyc_iwm, 1 ) !!$ CALL iom_close(inum) epyc_iwm(:,:) = 1.e-6 ! !!$ CALL iom_open('mixing_power_cri',inum) ! energy flux for critical slope wave breaking [W/m2] !!$ CALL iom_get (inum, jpdom_data, 'field', ecri_iwm, 1 ) !!$ CALL iom_close(inum) ecri_iwm(:,:) = 1.e-10 ! !!$ CALL iom_open('decay_scale_bot',inum) ! spatially variable decay scale for high-mode wave breaking [m] !!$ CALL iom_get (inum, jpdom_data, 'field', hbot_iwm, 1 ) !!$ CALL iom_close(inum) hbot_iwm(:,:) = 100. ! !!$ CALL iom_open('decay_scale_cri',inum) ! spatially variable decay scale for critical slope wave breaking [m] !!$ CALL iom_get (inum, jpdom_data, 'field', hcri_iwm, 1 ) !!$ CALL iom_close(inum) hcri_iwm(:,:) = 100. ebot_iwm(:,:) = ebot_iwm(:,:) * ssmask(:,:) epyc_iwm(:,:) = epyc_iwm(:,:) * ssmask(:,:) ecri_iwm(:,:) = ecri_iwm(:,:) * ssmask(:,:) zbot = glob_sum( 'zdfiwm', e1e2t(:,:) * ebot_iwm(:,:) ) zpyc = glob_sum( 'zdfiwm', e1e2t(:,:) * epyc_iwm(:,:) ) zcri = glob_sum( 'zdfiwm', e1e2t(:,:) * ecri_iwm(:,:) ) IF(lwp) THEN WRITE(numout,*) ' High-mode wave-breaking energy: ', zbot * 1.e-12_wp, 'TW' WRITE(numout,*) ' Pycnocline-intensifed wave-breaking energy: ', zpyc * 1.e-12_wp, 'TW' WRITE(numout,*) ' Critical slope wave-breaking energy: ', zcri * 1.e-12_wp, 'TW' ENDIF ! END SUBROUTINE zdf_iwm_init !!====================================================================== END MODULE zdfiwm