MODULE closea !!====================================================================== !! *** MODULE closea *** !! Closed Seas : specific treatments associated with closed seas !!====================================================================== !! History : 8.2 ! 00-05 (O. Marti) Original code !! 8.5 ! 02-06 (E. Durand, G. Madec) F90 !! 9.0 ! 06-07 (G. Madec) add clo_rnf, clo_ups, clo_bat !! NEMO 3.4 ! 03-12 (P.G. Fogli) sbc_clo bug fix & mpp reproducibility !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dom_clo : modification of the ocean domain for closed seas cases !! sbc_clo : Special handling of closed seas !! clo_rnf : set close sea outflows as river mouths (see sbcrnf) !! clo_ups : set mixed centered/upstream scheme in closed sea (see traadv_cen2) !! clo_bat : set to zero a field over closed sea (see domzrg) !!---------------------------------------------------------------------- USE oce ! dynamics and tracers USE dom_oce ! ocean space and time domain USE phycst ! physical constants USE in_out_manager ! I/O manager USE sbc_oce ! ocean surface boundary conditions USE lib_fortran, ONLY: glob_sum, DDPDD USE lbclnk ! lateral boundary condition - MPP exchanges USE lib_mpp ! MPP library USE timing IMPLICIT NONE PRIVATE PUBLIC dom_clo ! routine called by domain module PUBLIC sbc_clo ! routine called by step module PUBLIC clo_rnf ! routine called by sbcrnf module PUBLIC clo_ups ! routine called in traadv_cen2(_jki) module PUBLIC clo_bat ! routine called in domzgr module INTEGER, PUBLIC, PARAMETER :: jpncs = 10 !: number of closed sea INTEGER, PUBLIC, DIMENSION(jpncs) :: ncstt !: Type of closed sea INTEGER, PUBLIC, DIMENSION(jpncs) :: ncsi1, ncsj1 !: south-west closed sea limits (i,j) INTEGER, PUBLIC, DIMENSION(jpncs) :: ncsi2, ncsj2 !: north-east closed sea limits (i,j) INTEGER, PUBLIC, DIMENSION(jpncs) :: ncsnr !: number of point where run-off pours INTEGER, PUBLIC, DIMENSION(jpncs,4) :: ncsir, ncsjr !: Location of runoff REAL(wp), DIMENSION (jpncs+1) :: surf ! closed sea surface !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dom_clo !!--------------------------------------------------------------------- !! *** ROUTINE dom_clo *** !! !! ** Purpose : Closed sea domain initialization !! !! ** Method : if a closed sea is located only in a model grid point !! just the thermodynamic processes are applied. !! !! ** Action : ncsi1(), ncsj1() : south-west closed sea limits (i,j) !! ncsi2(), ncsj2() : north-east Closed sea limits (i,j) !! ncsir(), ncsjr() : Location of runoff !! ncsnr : number of point where run-off pours !! ncstt : Type of closed sea !! =0 spread over the world ocean !! =2 put at location runoff !!---------------------------------------------------------------------- INTEGER :: jc ! dummy loop indices INTEGER :: isrow ! local index !!---------------------------------------------------------------------- IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*)'dom_clo : closed seas ' IF(lwp) WRITE(numout,*)'~~~~~~~' IF(lwp .AND. lflush) CALL flush(numout) ! initial values ncsnr(:) = 1 ; ncsi1(:) = 1 ; ncsi2(:) = 1 ; ncsir(:,:) = 1 ncstt(:) = 0 ; ncsj1(:) = 1 ; ncsj2(:) = 1 ; ncsjr(:,:) = 1 ! set the closed seas (in data domain indices) ! ------------------- IF( cp_cfg == "orca" ) THEN ! SELECT CASE ( jp_cfg ) ! ! ======================= CASE ( 1 ) ! ORCA_R1 configuration ! ! ======================= ! This dirty section will be suppressed by simplification process: ! all this will come back in input files ! Currently these hard-wired indices relate to configuration with ! extend grid (jpjglo=332) isrow = 332 - jpjglo ! ncsnr(1) = 1 ; ncstt(1) = 0 ! Caspian Sea ncsi1(1) = 332 ; ncsj1(1) = 243 - isrow ncsi2(1) = 344 ; ncsj2(1) = 275 - isrow ncsir(1,1) = 1 ; ncsjr(1,1) = 1 ! ! ! ======================= CASE ( 2 ) ! ORCA_R2 configuration ! ! ======================= ! ! Caspian Sea ncsnr(1) = 1 ; ncstt(1) = 0 ! spread over the globe ncsi1(1) = 11 ; ncsj1(1) = 103 ncsi2(1) = 17 ; ncsj2(1) = 112 ncsir(1,1) = 1 ; ncsjr(1,1) = 1 ! ! Great North American Lakes ncsnr(2) = 1 ; ncstt(2) = 2 ! put at St Laurent mouth ncsi1(2) = 97 ; ncsj1(2) = 107 ncsi2(2) = 103 ; ncsj2(2) = 111 ncsir(2,1) = 110 ; ncsjr(2,1) = 111 ! ! Black Sea (crossed by the cyclic boundary condition) ncsnr(3:4) = 4 ; ncstt(3:4) = 2 ! put in Med Sea (north of Aegean Sea) ncsir(3:4,1) = 171; ncsjr(3:4,1) = 106 ! ncsir(3:4,2) = 170; ncsjr(3:4,2) = 106 ncsir(3:4,3) = 171; ncsjr(3:4,3) = 105 ncsir(3:4,4) = 170; ncsjr(3:4,4) = 105 ncsi1(3) = 174 ; ncsj1(3) = 107 ! 1 : west part of the Black Sea ncsi2(3) = 181 ; ncsj2(3) = 112 ! (ie west of the cyclic b.c.) ncsi1(4) = 2 ; ncsj1(4) = 107 ! 2 : east part of the Black Sea ncsi2(4) = 6 ; ncsj2(4) = 112 ! (ie east of the cyclic b.c.) ! ! ======================= CASE ( 4 ) ! ORCA_R4 configuration ! ! ======================= ! ! Caspian Sea ncsnr(1) = 1 ; ncstt(1) = 0 ncsi1(1) = 4 ; ncsj1(1) = 53 ncsi2(1) = 4 ; ncsj2(1) = 56 ncsir(1,1) = 1 ; ncsjr(1,1) = 1 ! ! Great North American Lakes ncsnr(2) = 1 ; ncstt(2) = 2 ncsi1(2) = 49 ; ncsj1(2) = 55 ncsi2(2) = 51 ; ncsj2(2) = 56 ncsir(2,1) = 57 ; ncsjr(2,1) = 55 ! ! Black Sea ncsnr(3) = 4 ; ncstt(3) = 2 ncsi1(3) = 88 ; ncsj1(3) = 55 ncsi2(3) = 91 ; ncsj2(3) = 56 ncsir(3,1) = 86 ; ncsjr(3,1) = 53 ncsir(3,2) = 87 ; ncsjr(3,2) = 53 ncsir(3,3) = 86 ; ncsjr(3,3) = 52 ncsir(3,4) = 87 ; ncsjr(3,4) = 52 ! ! Baltic Sea ncsnr(4) = 1 ; ncstt(4) = 2 ncsi1(4) = 75 ; ncsj1(4) = 59 ncsi2(4) = 76 ; ncsj2(4) = 61 ncsir(4,1) = 84 ; ncsjr(4,1) = 59 ! ! ================================ CASE ( 025 ) ! ORCA_R025 extended configuration ! ! ================================ ncsnr(1) = 1 ; ncstt(1) = 0 ! Caspian sea ncsi1(1) = 1330 ; ncsj1(1) = 831 ncsi2(1) = 1375 ; ncsj2(1) = 981 ncsir(1,1) = 1 ; ncsjr(1,1) = 1 ! ncsnr(2) = 1 ; ncstt(2) = 0 ! Aral sea ncsi1(2) = 1376 ; ncsj1(2) = 900 ncsi2(2) = 1400 ; ncsj2(2) = 981 ncsir(2,1) = 1 ; ncsjr(2,1) = 1 ! ncsnr(3) = 1 ; ncstt(3) = 0 ! Azov Sea ncsi1(3) = 1284 ; ncsj1(3) = 908 ncsi2(3) = 1304 ; ncsj2(3) = 933 ncsir(3,1) = 1 ; ncsjr(3,1) = 1 ! ncsnr(4) = 1 ; ncstt(4) = 0 ! Lake Superior ncsi1(4) = 781 ; ncsj1(4) = 904 ncsi2(4) = 815 ; ncsj2(4) = 926 ncsir(4,1) = 1 ; ncsjr(4,1) = 1 ! ncsnr(5) = 1 ; ncstt(5) = 0 ! Lake Michigan ncsi1(5) = 795 ; ncsj1(5) = 871 ncsi2(5) = 813 ; ncsj2(5) = 905 ncsir(5,1) = 1 ; ncsjr(5,1) = 1 ! ncsnr(6) = 1 ; ncstt(6) = 0 ! Lake Huron part 1 ncsi1(6) = 814 ; ncsj1(6) = 882 ncsi2(6) = 825 ; ncsj2(6) = 905 ncsir(6,1) = 1 ; ncsjr(6,1) = 1 ! ncsnr(7) = 1 ; ncstt(7) = 0 ! Lake Huron part 2 ncsi1(7) = 826 ; ncsj1(7) = 889 ncsi2(7) = 833 ; ncsj2(7) = 905 ncsir(7,1) = 1 ; ncsjr(7,1) = 1 ! ncsnr(8) = 1 ; ncstt(8) = 0 ! Lake Erie ncsi1(8) = 816 ; ncsj1(8) = 871 ncsi2(8) = 837 ; ncsj2(8) = 881 ncsir(8,1) = 1 ; ncsjr(8,1) = 1 ! ncsnr(9) = 1 ; ncstt(9) = 0 ! Lake Ontario ncsi1(9) = 831 ; ncsj1(9) = 882 ncsi2(9) = 847 ; ncsj2(9) = 889 ncsir(9,1) = 1 ; ncsjr(9,1) = 1 ! ncsnr(10) = 1 ; ncstt(10) = 0 ! Lake Victoria ncsi1(10) = 1274 ; ncsj1(10) = 672 ncsi2(10) = 1289 ; ncsj2(10) = 687 ncsir(10,1) = 1 ; ncsjr(10,1) = 1 ! END SELECT ! ENDIF ! convert the position in local domain indices ! -------------------------------------------- DO jc = 1, jpncs ncsi1(jc) = mi0( ncsi1(jc) ) ncsj1(jc) = mj0( ncsj1(jc) ) ncsi2(jc) = mi1( ncsi2(jc) ) ncsj2(jc) = mj1( ncsj2(jc) ) END DO ! END SUBROUTINE dom_clo SUBROUTINE sbc_clo( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_clo *** !! !! ** Purpose : Special handling of closed seas !! !! ** Method : Water flux is forced to zero over closed sea !! Excess is shared between remaining ocean, or !! put as run-off in open ocean. !! !! ** Action : emp updated surface freshwater fluxes and associated heat content at kt !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean model time step ! INTEGER :: ji, jj, jc, jn ! dummy loop indices REAL(wp), PARAMETER :: rsmall = 1.e-20_wp ! Closed sea correction epsilon REAL(wp) :: zze2, ztmp, zcorr ! REAL(wp) :: zcoef, zcoef1 ! COMPLEX(wp) :: ctmp REAL(wp), DIMENSION(jpncs) :: zfwf ! 1D workspace !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('sbc_clo') ! !------------------! IF( kt == nit000 ) THEN ! Initialisation ! ! !------------------! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*)'sbc_clo : closed seas ' IF(lwp) WRITE(numout,*)'~~~~~~~' surf(:) = 0.e0_wp ! surf(jpncs+1) = glob_sum( e1e2t(:,:) ) ! surface of the global ocean ! ! ! surface of closed seas IF( lk_mpp_rep ) THEN ! MPP reproductible calculation DO jc = 1, jpncs ctmp = CMPLX( 0.e0, 0.e0, wp ) DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) ztmp = e1e2t(ji,jj) * tmask_i(ji,jj) CALL DDPDD( CMPLX( ztmp, 0.e0, wp ), ctmp ) END DO END DO IF( lk_mpp ) CALL mpp_sum( ctmp ) surf(jc) = REAL(ctmp,wp) END DO ELSE ! Standard calculation DO jc = 1, jpncs DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) surf(jc) = surf(jc) + e1e2t(ji,jj) * tmask_i(ji,jj) ! surface of closed seas END DO END DO END DO IF( lk_mpp ) CALL mpp_sum ( surf, jpncs ) ! mpp: sum over all the global domain ENDIF IF(lwp) WRITE(numout,*)' Closed sea surfaces' DO jc = 1, jpncs IF(lwp)WRITE(numout,FMT='(1I3,4I4,5X,F16.2)') jc, ncsi1(jc), ncsi2(jc), ncsj1(jc), ncsj2(jc), surf(jc) END DO ! jpncs+1 : surface of sea, closed seas excluded DO jc = 1, jpncs surf(jpncs+1) = surf(jpncs+1) - surf(jc) END DO ! ENDIF ! !--------------------! ! ! update emp ! zfwf = 0.e0_wp !--------------------! IF( lk_mpp_rep ) THEN ! MPP reproductible calculation DO jc = 1, jpncs ctmp = CMPLX( 0.e0, 0.e0, wp ) DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) ztmp = e1e2t(ji,jj) * ( emp(ji,jj)-rnf(ji,jj) ) * tmask_i(ji,jj) CALL DDPDD( CMPLX( ztmp, 0.e0, wp ), ctmp ) END DO END DO IF( lk_mpp ) CALL mpp_sum( ctmp ) zfwf(jc) = REAL(ctmp,wp) END DO ELSE ! Standard calculation DO jc = 1, jpncs DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) zfwf(jc) = zfwf(jc) + e1e2t(ji,jj) * ( emp(ji,jj)-rnf(ji,jj) ) * tmask_i(ji,jj) END DO END DO END DO IF( lk_mpp ) CALL mpp_sum ( zfwf(:) , jpncs ) ! mpp: sum over all the global domain ENDIF IF( cp_cfg == "orca" .AND. jp_cfg == 2 ) THEN ! Black Sea case for ORCA_R2 configuration zze2 = ( zfwf(3) + zfwf(4) ) * 0.5_wp zfwf(3) = zze2 zfwf(4) = zze2 ENDIF zcorr = 0._wp DO jc = 1, jpncs ! ! The following if avoids the redistribution of the round off IF ( ABS(zfwf(jc) / surf(jpncs+1) ) > rsmall) THEN ! IF( ncstt(jc) == 0 ) THEN ! water/evap excess is shared by all open ocean zcoef = zfwf(jc) / surf(jpncs+1) zcoef1 = rcp * zcoef emp(:,:) = emp(:,:) + zcoef qns(:,:) = qns(:,:) - zcoef1 * sst_m(:,:) ! accumulate closed seas correction zcorr = zcorr + zcoef ! ELSEIF( ncstt(jc) == 1 ) THEN ! Excess water in open sea, at outflow location, excess evap shared IF ( zfwf(jc) <= 0.e0_wp ) THEN DO jn = 1, ncsnr(jc) ji = mi0(ncsir(jc,jn)) jj = mj0(ncsjr(jc,jn)) ! Location of outflow in open ocean IF ( ji > 1 .AND. ji < jpi & .AND. jj > 1 .AND. jj < jpj ) THEN zcoef = zfwf(jc) / ( REAL(ncsnr(jc)) * e1e2t(ji,jj) ) zcoef1 = rcp * zcoef emp(ji,jj) = emp(ji,jj) + zcoef qns(ji,jj) = qns(ji,jj) - zcoef1 * sst_m(ji,jj) ENDIF END DO ELSE zcoef = zfwf(jc) / surf(jpncs+1) zcoef1 = rcp * zcoef emp(:,:) = emp(:,:) + zcoef qns(:,:) = qns(:,:) - zcoef1 * sst_m(:,:) ! accumulate closed seas correction zcorr = zcorr + zcoef ENDIF ELSEIF( ncstt(jc) == 2 ) THEN ! Excess e-p-r (either sign) goes to open ocean, at outflow location DO jn = 1, ncsnr(jc) ji = mi0(ncsir(jc,jn)) jj = mj0(ncsjr(jc,jn)) ! Location of outflow in open ocean IF( ji > 1 .AND. ji < jpi & .AND. jj > 1 .AND. jj < jpj ) THEN zcoef = zfwf(jc) / ( REAL(ncsnr(jc)) * e1e2t(ji,jj) ) zcoef1 = rcp * zcoef emp(ji,jj) = emp(ji,jj) + zcoef qns(ji,jj) = qns(ji,jj) - zcoef1 * sst_m(ji,jj) ENDIF END DO ENDIF ! DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) zcoef = zfwf(jc) / surf(jc) zcoef1 = rcp * zcoef emp(ji,jj) = emp(ji,jj) - zcoef qns(ji,jj) = qns(ji,jj) + zcoef1 * sst_m(ji,jj) END DO END DO ! END IF END DO IF ( ABS(zcorr) > rsmall ) THEN ! remove the global correction from the closed seas DO jc = 1, jpncs ! only if it is large enough DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) emp(ji,jj) = emp(ji,jj) - zcorr qns(ji,jj) = qns(ji,jj) + rcp * zcorr * sst_m(ji,jj) END DO END DO END DO ENDIF ! emp (:,:) = emp (:,:) * tmask(:,:,1) ! CALL lbc_lnk( emp , 'T', 1._wp ) ! IF(lwp .AND. lflush) CALL flush(numout) ! IF( nn_timing == 1 ) CALL timing_stop('sbc_clo') ! END SUBROUTINE sbc_clo SUBROUTINE clo_rnf( p_rnfmsk ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_rnf *** !! !! ** Purpose : allow the treatment of closed sea outflow grid-points !! to be the same as river mouth grid-points !! !! ** Method : set to 1 the runoff mask (mskrnf, see sbcrnf module) !! at the closed sea outflow grid-point. !! !! ** Action : update (p_)mskrnf (set 1 at closed sea outflow) !!---------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj), INTENT(inout) :: p_rnfmsk ! river runoff mask (rnfmsk array) ! INTEGER :: jc, jn, ji, jj ! dummy loop indices !!---------------------------------------------------------------------- ! DO jc = 1, jpncs IF( ncstt(jc) >= 1 ) THEN ! runoff mask set to 1 at closed sea outflows DO jn = 1, 4 DO jj = mj0( ncsjr(jc,jn) ), mj1( ncsjr(jc,jn) ) DO ji = mi0( ncsir(jc,jn) ), mi1( ncsir(jc,jn) ) p_rnfmsk(ji,jj) = MAX( p_rnfmsk(ji,jj), 1.0_wp ) END DO END DO END DO ENDIF END DO ! END SUBROUTINE clo_rnf SUBROUTINE clo_ups( p_upsmsk ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_rnf *** !! !! ** Purpose : allow the treatment of closed sea outflow grid-points !! to be the same as river mouth grid-points !! !! ** Method : set to 0.5 the upstream mask (upsmsk, see traadv_cen2 !! module) over the closed seas. !! !! ** Action : update (p_)upsmsk (set 0.5 over closed seas) !!---------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj), INTENT(inout) :: p_upsmsk ! upstream mask (upsmsk array) ! INTEGER :: jc, ji, jj ! dummy loop indices !!---------------------------------------------------------------------- ! DO jc = 1, jpncs DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) p_upsmsk(ji,jj) = 0.5_wp ! mixed upstream/centered scheme over closed seas END DO END DO END DO ! END SUBROUTINE clo_ups SUBROUTINE clo_bat( pbat, kbat ) !!--------------------------------------------------------------------- !! *** ROUTINE clo_bat *** !! !! ** Purpose : suppress closed sea from the domain !! !! ** Method : set to 0 the meter and level bathymetry (given in !! arguments) over the closed seas. !! !! ** Action : set pbat=0 and kbat=0 over closed seas !!---------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj), INTENT(inout) :: pbat ! bathymetry in meters (bathy array) INTEGER , DIMENSION(jpi,jpj), INTENT(inout) :: kbat ! bathymetry in levels (mbathy array) ! INTEGER :: jc, ji, jj ! dummy loop indices !!---------------------------------------------------------------------- ! DO jc = 1, jpncs DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) pbat(ji,jj) = 0._wp kbat(ji,jj) = 0 END DO END DO END DO ! END SUBROUTINE clo_bat !!====================================================================== END MODULE closea