MODULE lib_fortran !!====================================================================== !! *** MODULE lib_fortran *** !! Fortran utilities: includes some low levels fortran functionality !!====================================================================== !! History : 3.2 ! 2010-05 (M. Dunphy, R. Benshila) Original code !! 3.4 ! 2013-06 (C. Rousset) add glob_min, glob_max !! + 3d dim. of input is fexible (jpk, jpl...) !! 4.0 ! 2016-06 (T. Lovato) double precision global sum by default !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! glob_sum : generic interface for global masked summation over !! the interior domain for 1 or 2 2D or 3D arrays !! it works only for T points !! SIGN : generic interface for SIGN to overwrite f95 behaviour !! of intrinsinc sign function !!---------------------------------------------------------------------- USE par_oce ! Ocean parameter USE dom_oce ! ocean domain USE in_out_manager ! I/O manager USE lib_mpp ! distributed memory computing USE lbclnk ! ocean lateral boundary conditions IMPLICIT NONE PRIVATE PUBLIC glob_sum ! used in many places (masked with tmask_i) PUBLIC glob_sum_full ! used in many places (masked with tmask_h, ie only over the halos) PUBLIC local_sum ! used in trcrad, local operation before glob_sum_delay PUBLIC sum3x3 ! used in trcrad, do a sum over 3x3 boxes PUBLIC DDPDD ! also used in closea module PUBLIC glob_min, glob_max #if defined key_nosignedzero PUBLIC SIGN #endif INTERFACE glob_sum MODULE PROCEDURE glob_sum_1d, glob_sum_2d, glob_sum_3d END INTERFACE INTERFACE glob_sum_full MODULE PROCEDURE glob_sum_full_2d, glob_sum_full_3d END INTERFACE INTERFACE local_sum MODULE PROCEDURE local_sum_2d, local_sum_3d END INTERFACE INTERFACE sum3x3 MODULE PROCEDURE sum3x3_2d, sum3x3_3d END INTERFACE INTERFACE glob_min MODULE PROCEDURE glob_min_2d, glob_min_3d END INTERFACE INTERFACE glob_max MODULE PROCEDURE glob_max_2d, glob_max_3d END INTERFACE #if defined key_nosignedzero INTERFACE SIGN MODULE PROCEDURE SIGN_SCALAR, SIGN_ARRAY_1D, SIGN_ARRAY_2D, SIGN_ARRAY_3D, & & SIGN_ARRAY_1D_A, SIGN_ARRAY_2D_A, SIGN_ARRAY_3D_A, & & SIGN_ARRAY_1D_B, SIGN_ARRAY_2D_B, SIGN_ARRAY_3D_B END INTERFACE #endif !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS # define GLOBSUM_CODE # define DIM_1d # define FUNCTION_GLOBSUM glob_sum_1d # include "lib_fortran_generic.h90" # undef FUNCTION_GLOBSUM # undef DIM_1d # define DIM_2d # define OPERATION_GLOBSUM # define FUNCTION_GLOBSUM glob_sum_2d # include "lib_fortran_generic.h90" # undef FUNCTION_GLOBSUM # undef OPERATION_GLOBSUM # define OPERATION_FULL_GLOBSUM # define FUNCTION_GLOBSUM glob_sum_full_2d # include "lib_fortran_generic.h90" # undef FUNCTION_GLOBSUM # undef OPERATION_FULL_GLOBSUM # undef DIM_2d # define DIM_3d # define OPERATION_GLOBSUM # define FUNCTION_GLOBSUM glob_sum_3d # include "lib_fortran_generic.h90" # undef FUNCTION_GLOBSUM # undef OPERATION_GLOBSUM # define OPERATION_FULL_GLOBSUM # define FUNCTION_GLOBSUM glob_sum_full_3d # include "lib_fortran_generic.h90" # undef FUNCTION_GLOBSUM # undef OPERATION_FULL_GLOBSUM # undef DIM_3d # undef GLOBSUM_CODE # define GLOBMINMAX_CODE # define DIM_2d # define OPERATION_GLOBMIN # define FUNCTION_GLOBMINMAX glob_min_2d # include "lib_fortran_generic.h90" # undef FUNCTION_GLOBMINMAX # undef OPERATION_GLOBMIN # define OPERATION_GLOBMAX # define FUNCTION_GLOBMINMAX glob_max_2d # include "lib_fortran_generic.h90" # undef FUNCTION_GLOBMINMAX # undef OPERATION_GLOBMAX # undef DIM_2d # define DIM_3d # define OPERATION_GLOBMIN # define FUNCTION_GLOBMINMAX glob_min_3d # include "lib_fortran_generic.h90" # undef FUNCTION_GLOBMINMAX # undef OPERATION_GLOBMIN # define OPERATION_GLOBMAX # define FUNCTION_GLOBMINMAX glob_max_3d # include "lib_fortran_generic.h90" # undef FUNCTION_GLOBMINMAX # undef OPERATION_GLOBMAX # undef DIM_3d # undef GLOBMINMAX_CODE ! ! FUNCTION local_sum ! FUNCTION local_sum_2d( ptab ) !!---------------------------------------------------------------------- REAL(wp), INTENT(in ) :: ptab(:,:) ! array on which operation is applied COMPLEX(wp) :: local_sum_2d ! !!----------------------------------------------------------------------- ! COMPLEX(wp):: ctmp REAL(wp) :: ztmp INTEGER :: ji, jj ! dummy loop indices INTEGER :: ipi, ipj ! dimensions !!----------------------------------------------------------------------- ! ipi = SIZE(ptab,1) ! 1st dimension ipj = SIZE(ptab,2) ! 2nd dimension ! ctmp = CMPLX( 0.e0, 0.e0, wp ) ! warning ctmp is cumulated DO jj = 1, ipj DO ji = 1, ipi ztmp = ptab(ji,jj) * tmask_i(ji,jj) CALL DDPDD( CMPLX( ztmp, 0.e0, wp ), ctmp ) END DO END DO ! local_sum_2d = ctmp END FUNCTION local_sum_2d FUNCTION local_sum_3d( ptab ) !!---------------------------------------------------------------------- REAL(wp), INTENT(in ) :: ptab(:,:,:) ! array on which operation is applied COMPLEX(wp) :: local_sum_3d ! !!----------------------------------------------------------------------- ! COMPLEX(wp):: ctmp REAL(wp) :: ztmp INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: ipi, ipj, ipk ! dimensions !!----------------------------------------------------------------------- ! ipi = SIZE(ptab,1) ! 1st dimension ipj = SIZE(ptab,2) ! 2nd dimension ipk = SIZE(ptab,3) ! 3rd dimension ! ctmp = CMPLX( 0.e0, 0.e0, wp ) ! warning ctmp is cumulated DO jk = 1, ipk DO jj = 1, ipj DO ji = 1, ipi ztmp = ptab(ji,jj,jk) * tmask_i(ji,jj) CALL DDPDD( CMPLX( ztmp, 0.e0, wp ), ctmp ) END DO END DO END DO ! local_sum_3d = ctmp END FUNCTION local_sum_3d ! ! FUNCTION sum3x3 ! SUBROUTINE sum3x3_2d( p2d ) !!----------------------------------------------------------------------- !! *** routine sum3x3_2d *** !! !! ** Purpose : sum over 3x3 boxes !!---------------------------------------------------------------------- REAL(wp), DIMENSION (:,:), INTENT(inout) :: p2d ! INTEGER :: ji, ji2, jj, jj2 ! dummy loop indices !!---------------------------------------------------------------------- ! IF( SIZE(p2d,1) /= jpi ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_2d, the first dimension is not equal to jpi' ) IF( SIZE(p2d,2) /= jpj ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_2d, the second dimension is not equal to jpj' ) ! DO jj = 1, jpj DO ji = 1, jpi IF( MOD(mig(ji), 3) == 1 .AND. MOD(mjg(jj), 3) == 1 ) THEN ! bottom left corber of a 3x3 box ji2 = MIN(mig(ji)+2, jpiglo) - nimpp + 1 ! right position of the box jj2 = MIN(mjg(jj)+2, jpjglo) - njmpp + 1 ! upper position of the box IF( ji2 <= jpi .AND. jj2 <= jpj ) THEN ! the box is fully included in the local mpi domain p2d(ji:ji2,jj:jj2) = SUM(p2d(ji:ji2,jj:jj2)) ENDIF ENDIF END DO END DO CALL lbc_lnk( 'lib_fortran', p2d, 'T', 1. ) IF( nbondi /= -1 ) THEN IF( MOD(mig( 1), 3) == 1 ) p2d( 1,:) = p2d( 2,:) IF( MOD(mig( 1), 3) == 2 ) p2d( 2,:) = p2d( 1,:) ENDIF IF( nbondi /= 1 ) THEN IF( MOD(mig(jpi-2), 3) == 1 ) p2d( jpi,:) = p2d(jpi-1,:) IF( MOD(mig(jpi-2), 3) == 0 ) p2d(jpi-1,:) = p2d( jpi,:) ENDIF IF( nbondj /= -1 ) THEN IF( MOD(mjg( 1), 3) == 1 ) p2d(:, 1) = p2d(:, 2) IF( MOD(mjg( 1), 3) == 2 ) p2d(:, 2) = p2d(:, 1) ENDIF IF( nbondj /= 1 ) THEN IF( MOD(mjg(jpj-2), 3) == 1 ) p2d(:, jpj) = p2d(:,jpj-1) IF( MOD(mjg(jpj-2), 3) == 0 ) p2d(:,jpj-1) = p2d(:, jpj) ENDIF CALL lbc_lnk( 'lib_fortran', p2d, 'T', 1. ) END SUBROUTINE sum3x3_2d SUBROUTINE sum3x3_3d( p3d ) !!----------------------------------------------------------------------- !! *** routine sum3x3_3d *** !! !! ** Purpose : sum over 3x3 boxes !!---------------------------------------------------------------------- REAL(wp), DIMENSION (:,:,:), INTENT(inout) :: p3d ! INTEGER :: ji, ji2, jj, jj2, jn ! dummy loop indices INTEGER :: ipn ! Third dimension size !!---------------------------------------------------------------------- ! IF( SIZE(p3d,1) /= jpi ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_3d, the first dimension is not equal to jpi' ) IF( SIZE(p3d,2) /= jpj ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_3d, the second dimension is not equal to jpj' ) ipn = SIZE(p3d,3) ! DO jn = 1, ipn DO jj = 1, jpj DO ji = 1, jpi IF( MOD(mig(ji), 3) == 1 .AND. MOD(mjg(jj), 3) == 1 ) THEN ! bottom left corber of a 3x3 box ji2 = MIN(mig(ji)+2, jpiglo) - nimpp + 1 ! right position of the box jj2 = MIN(mjg(jj)+2, jpjglo) - njmpp + 1 ! upper position of the box IF( ji2 <= jpi .AND. jj2 <= jpj ) THEN ! the box is fully included in the local mpi domain p3d(ji:ji2,jj:jj2,jn) = SUM(p3d(ji:ji2,jj:jj2,jn)) ENDIF ENDIF END DO END DO END DO CALL lbc_lnk( 'lib_fortran', p3d, 'T', 1. ) IF( nbondi /= -1 ) THEN IF( MOD(mig( 1), 3) == 1 ) p3d( 1,:,:) = p3d( 2,:,:) IF( MOD(mig( 1), 3) == 2 ) p3d( 2,:,:) = p3d( 1,:,:) ENDIF IF( nbondi /= 1 ) THEN IF( MOD(mig(jpi-2), 3) == 1 ) p3d( jpi,:,:) = p3d(jpi-1,:,:) IF( MOD(mig(jpi-2), 3) == 0 ) p3d(jpi-1,:,:) = p3d( jpi,:,:) ENDIF IF( nbondj /= -1 ) THEN IF( MOD(mjg( 1), 3) == 1 ) p3d(:, 1,:) = p3d(:, 2,:) IF( MOD(mjg( 1), 3) == 2 ) p3d(:, 2,:) = p3d(:, 1,:) ENDIF IF( nbondj /= 1 ) THEN IF( MOD(mjg(jpj-2), 3) == 1 ) p3d(:, jpj,:) = p3d(:,jpj-1,:) IF( MOD(mjg(jpj-2), 3) == 0 ) p3d(:,jpj-1,:) = p3d(:, jpj,:) ENDIF CALL lbc_lnk( 'lib_fortran', p3d, 'T', 1. ) END SUBROUTINE sum3x3_3d SUBROUTINE DDPDD( ydda, yddb ) !!---------------------------------------------------------------------- !! *** ROUTINE DDPDD *** !! !! ** Purpose : Add a scalar element to a sum !! !! !! ** Method : The code uses the compensated summation with doublet !! (sum,error) emulated useing complex numbers. ydda is the !! scalar to add to the summ yddb !! !! ** Action : This does only work for MPI. !! !! References : Using Acurate Arithmetics to Improve Numerical !! Reproducibility and Sability in Parallel Applications !! Yun HE and Chris H. Q. DING, Journal of Supercomputing 18, 259-277, 2001 !!---------------------------------------------------------------------- COMPLEX(wp), INTENT(in ) :: ydda COMPLEX(wp), INTENT(inout) :: yddb ! REAL(wp) :: zerr, zt1, zt2 ! local work variables !!----------------------------------------------------------------------- ! ! Compute ydda + yddb using Knuth's trick. zt1 = REAL(ydda) + REAL(yddb) zerr = zt1 - REAL(ydda) zt2 = ( (REAL(yddb) - zerr) + (REAL(ydda) - (zt1 - zerr)) ) & & + AIMAG(ydda) + AIMAG(yddb) ! ! The result is t1 + t2, after normalization. yddb = CMPLX( zt1 + zt2, zt2 - ((zt1 + zt2) - zt1), wp ) ! END SUBROUTINE DDPDD #if defined key_nosignedzero !!---------------------------------------------------------------------- !! 'key_nosignedzero' F90 SIGN !!---------------------------------------------------------------------- FUNCTION SIGN_SCALAR( pa, pb ) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_SCALAR *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa,pb ! input REAL(wp) :: SIGN_SCALAR ! result !!----------------------------------------------------------------------- IF ( pb >= 0.e0) THEN ; SIGN_SCALAR = ABS(pa) ELSE ; SIGN_SCALAR =-ABS(pa) ENDIF END FUNCTION SIGN_SCALAR FUNCTION SIGN_ARRAY_1D( pa, pb ) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_ARRAY_1D *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa,pb(:) ! input REAL(wp) :: SIGN_ARRAY_1D(SIZE(pb,1)) ! result !!----------------------------------------------------------------------- WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_1D = ABS(pa) ELSEWHERE ; SIGN_ARRAY_1D =-ABS(pa) END WHERE END FUNCTION SIGN_ARRAY_1D FUNCTION SIGN_ARRAY_2D(pa,pb) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_ARRAY_2D *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa,pb(:,:) ! input REAL(wp) :: SIGN_ARRAY_2D(SIZE(pb,1),SIZE(pb,2)) ! result !!----------------------------------------------------------------------- WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_2D = ABS(pa) ELSEWHERE ; SIGN_ARRAY_2D =-ABS(pa) END WHERE END FUNCTION SIGN_ARRAY_2D FUNCTION SIGN_ARRAY_3D(pa,pb) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_ARRAY_3D *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa,pb(:,:,:) ! input REAL(wp) :: SIGN_ARRAY_3D(SIZE(pb,1),SIZE(pb,2),SIZE(pb,3)) ! result !!----------------------------------------------------------------------- WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_3D = ABS(pa) ELSEWHERE ; SIGN_ARRAY_3D =-ABS(pa) END WHERE END FUNCTION SIGN_ARRAY_3D FUNCTION SIGN_ARRAY_1D_A(pa,pb) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_ARRAY_1D_A *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa(:),pb(:) ! input REAL(wp) :: SIGN_ARRAY_1D_A(SIZE(pb,1)) ! result !!----------------------------------------------------------------------- WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_1D_A = ABS(pa) ELSEWHERE ; SIGN_ARRAY_1D_A =-ABS(pa) END WHERE END FUNCTION SIGN_ARRAY_1D_A FUNCTION SIGN_ARRAY_2D_A(pa,pb) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_ARRAY_2D_A *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa(:,:),pb(:,:) ! input REAL(wp) :: SIGN_ARRAY_2D_A(SIZE(pb,1),SIZE(pb,2)) ! result !!----------------------------------------------------------------------- WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_2D_A = ABS(pa) ELSEWHERE ; SIGN_ARRAY_2D_A =-ABS(pa) END WHERE END FUNCTION SIGN_ARRAY_2D_A FUNCTION SIGN_ARRAY_3D_A(pa,pb) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_ARRAY_3D_A *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa(:,:,:),pb(:,:,:) ! input REAL(wp) :: SIGN_ARRAY_3D_A(SIZE(pb,1),SIZE(pb,2),SIZE(pb,3)) ! result !!----------------------------------------------------------------------- WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_3D_A = ABS(pa) ELSEWHERE ; SIGN_ARRAY_3D_A =-ABS(pa) END WHERE END FUNCTION SIGN_ARRAY_3D_A FUNCTION SIGN_ARRAY_1D_B(pa,pb) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_ARRAY_1D_B *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa(:),pb ! input REAL(wp) :: SIGN_ARRAY_1D_B(SIZE(pa,1)) ! result !!----------------------------------------------------------------------- IF( pb >= 0.e0 ) THEN ; SIGN_ARRAY_1D_B = ABS(pa) ELSE ; SIGN_ARRAY_1D_B =-ABS(pa) ENDIF END FUNCTION SIGN_ARRAY_1D_B FUNCTION SIGN_ARRAY_2D_B(pa,pb) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_ARRAY_2D_B *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa(:,:),pb ! input REAL(wp) :: SIGN_ARRAY_2D_B(SIZE(pa,1),SIZE(pa,2)) ! result !!----------------------------------------------------------------------- IF( pb >= 0.e0 ) THEN ; SIGN_ARRAY_2D_B = ABS(pa) ELSE ; SIGN_ARRAY_2D_B =-ABS(pa) ENDIF END FUNCTION SIGN_ARRAY_2D_B FUNCTION SIGN_ARRAY_3D_B(pa,pb) !!----------------------------------------------------------------------- !! *** FUNCTION SIGN_ARRAY_3D_B *** !! !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function !!----------------------------------------------------------------------- REAL(wp) :: pa(:,:,:),pb ! input REAL(wp) :: SIGN_ARRAY_3D_B(SIZE(pa,1),SIZE(pa,2),SIZE(pa,3)) ! result !!----------------------------------------------------------------------- IF( pb >= 0.e0 ) THEN ; SIGN_ARRAY_3D_B = ABS(pa) ELSE ; SIGN_ARRAY_3D_B =-ABS(pa) ENDIF END FUNCTION SIGN_ARRAY_3D_B #endif !!====================================================================== END MODULE lib_fortran