MODULE sbcssm !!====================================================================== !! *** MODULE sbcssm *** !! Surface module : provide time-mean ocean surface variables !!====================================================================== !! History : 9.0 ! 2006-07 (G. Madec) Original code !! 3.3 ! 2010-10 (C. Bricaud, G. Madec) add the Patm forcing for sea-ice !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_ssm : calculate sea surface mean currents, temperature, !! and salinity over nn_fsbc time-step !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce ! surface boundary condition: ocean fields USE sbcapr ! surface boundary condition: atmospheric pressure USE eosbn2 ! equation of state and related derivatives ! USE in_out_manager ! I/O manager USE prtctl ! Print control USE iom ! IOM library USE timing IMPLICIT NONE PRIVATE PUBLIC sbc_ssm ! routine called by step.F90 PUBLIC sbc_ssm_init ! routine called by sbcmod.F90 LOGICAL, SAVE :: l_ssm_mean = .FALSE. ! keep track of whether means have been read ! from restart file !! * Substitutions # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_ssm( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_oce *** !! !! ** Purpose : provide ocean surface variable to sea-surface boundary !! condition computation !! !! ** Method : compute mean surface velocity (2 components at U and !! V-points) [m/s], temperature [Celcius] and salinity [psu] over !! the periode (kt - nn_fsbc) to kt !! Note that the inverse barometer ssh (i.e. ssh associated with Patm) !! is add to ssh_m when ln_apr_dyn = T. Required for sea-ice dynamics. !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step ! INTEGER :: ji, jj ! loop index REAL(wp) :: zcoef, zf_sbc ! local scalar REAL(wp), DIMENSION(jpi,jpj,jpts) :: zts !!--------------------------------------------------------------------- ! !* surface T-, U-, V- ocean level variables (T, S, depth, velocity) DO jj = 1, jpj DO ji = 1, jpi zts(ji,jj,jp_tem) = tsn(ji,jj,mikt(ji,jj),jp_tem) zts(ji,jj,jp_sal) = tsn(ji,jj,mikt(ji,jj),jp_sal) END DO END DO ! IF( nn_fsbc == 1 ) THEN ! Instantaneous surface fields ! ! ! ---------------------------------------- ! ssu_m(:,:) = ub(:,:,1) ssv_m(:,:) = vb(:,:,1) IF( ln_useCT ) THEN ; sst_m(:,:) = eos_pt_from_ct( zts(:,:,jp_tem), zts(:,:,jp_sal) ) ELSE ; sst_m(:,:) = zts(:,:,jp_tem) ENDIF sss_m(:,:) = zts(:,:,jp_sal) ! ! removed inverse barometer ssh when Patm forcing is used (for sea-ice dynamics) IF( ln_apr_dyn ) THEN ; ssh_m(:,:) = sshn(:,:) - 0.5 * ( ssh_ib(:,:) + ssh_ibb(:,:) ) ELSE ; ssh_m(:,:) = sshn(:,:) ENDIF ! IF( lk_vvl ) e3t_m(:,:) = fse3t_n(:,:,1) ! frq_m(:,:) = fraqsr_1lev(:,:) ! ELSE ! ! ----------------------------------------------- ! IF( kt == nit000 .AND. .NOT. l_ssm_mean ) THEN ! Initialisation: 1st time-step, no input means ! ! ! ----------------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) '~~~~~~~ mean fields initialised to instantaneous values' zcoef = REAL( nn_fsbc - 1, wp ) ssu_m(:,:) = zcoef * ub(:,:,1) ssv_m(:,:) = zcoef * vb(:,:,1) IF( ln_useCT ) THEN ; sst_m(:,:) = zcoef * eos_pt_from_ct( zts(:,:,jp_tem), zts(:,:,jp_sal) ) ELSE ; sst_m(:,:) = zcoef * zts(:,:,jp_tem) ENDIF sss_m(:,:) = zcoef * zts(:,:,jp_sal) ! ! removed inverse barometer ssh when Patm forcing is used (for sea-ice dynamics) IF( ln_apr_dyn ) THEN ; ssh_m(:,:) = zcoef * ( sshn(:,:) - 0.5 * ( ssh_ib(:,:) + ssh_ibb(:,:) ) ) ELSE ; ssh_m(:,:) = zcoef * sshn(:,:) ENDIF ! IF( lk_vvl ) e3t_m(:,:) = zcoef * fse3t_n(:,:,1) ! frq_m(:,:) = zcoef * fraqsr_1lev(:,:) ! ! ---------------------------------------- ! ELSEIF( MOD( kt - 2 , nn_fsbc ) == 0 ) THEN ! Initialisation: New mean computation ! ! ! ---------------------------------------- ! ssu_m(:,:) = 0.e0 ! reset to zero ocean mean sbc fields ssv_m(:,:) = 0.e0 sst_m(:,:) = 0.e0 sss_m(:,:) = 0.e0 ssh_m(:,:) = 0.e0 IF( lk_vvl ) e3t_m(:,:) = 0.e0 frq_m(:,:) = 0.e0 ENDIF ! ! ---------------------------------------- ! ! ! Cumulate at each time step ! ! ! ---------------------------------------- ! ssu_m(:,:) = ssu_m(:,:) + ub(:,:,1) ssv_m(:,:) = ssv_m(:,:) + vb(:,:,1) IF( ln_useCT ) THEN ; sst_m(:,:) = sst_m(:,:) + eos_pt_from_ct( zts(:,:,jp_tem), zts(:,:,jp_sal) ) ELSE ; sst_m(:,:) = sst_m(:,:) + zts(:,:,jp_tem) ENDIF sss_m(:,:) = sss_m(:,:) + zts(:,:,jp_sal) ! ! removed inverse barometer ssh when Patm forcing is used (for sea-ice dynamics) IF( ln_apr_dyn ) THEN ; ssh_m(:,:) = ssh_m(:,:) + sshn(:,:) - 0.5 * ( ssh_ib(:,:) + ssh_ibb(:,:) ) ELSE ; ssh_m(:,:) = ssh_m(:,:) + sshn(:,:) ENDIF ! IF( lk_vvl ) e3t_m(:,:) = fse3t_m(:,:) + fse3t_n(:,:,1) ! frq_m(:,:) = frq_m(:,:) + fraqsr_1lev(:,:) ! ! ---------------------------------------- ! IF( MOD( kt - 1 , nn_fsbc ) == 0 ) THEN ! Mean value at each nn_fsbc time-step ! ! ! ---------------------------------------- ! zcoef = 1. / REAL( nn_fsbc, wp ) sst_m(:,:) = sst_m(:,:) * zcoef ! mean SST [Celcius] sss_m(:,:) = sss_m(:,:) * zcoef ! mean SSS [psu] ssu_m(:,:) = ssu_m(:,:) * zcoef ! mean suface current [m/s] ssv_m(:,:) = ssv_m(:,:) * zcoef ! ssh_m(:,:) = ssh_m(:,:) * zcoef ! mean SSH [m] IF( lk_vvl ) e3t_m(:,:) = fse3t_m(:,:) * zcoef ! mean vertical scale factor [m] frq_m(:,:) = frq_m(:,:) * zcoef ! mean fraction of solar net radiation absorbed in the 1st T level [-] ! ENDIF ! ! ---------------------------------------- ! IF( lrst_oce ) THEN ! Write in the ocean restart file ! ! ! ---------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'sbc_ssm : sea surface mean fields written in ocean restart file ', & & 'at it= ', kt,' date= ', ndastp IF(lwp) WRITE(numout,*) '~~~~~~~' zf_sbc = REAL( nn_fsbc, wp ) IF(nn_timing == 2) CALL timing_start('iom_rstput') CALL iom_rstput( kt, nitrst, numrow, 'nn_fsbc', zf_sbc ) ! sbc frequency CALL iom_rstput( kt, nitrst, numrow, 'ssu_m' , ssu_m ) ! sea surface mean fields CALL iom_rstput( kt, nitrst, numrow, 'ssv_m' , ssv_m ) CALL iom_rstput( kt, nitrst, numrow, 'sst_m' , sst_m ) CALL iom_rstput( kt, nitrst, numrow, 'sss_m' , sss_m ) CALL iom_rstput( kt, nitrst, numrow, 'ssh_m' , ssh_m ) IF( lk_vvl ) CALL iom_rstput( kt, nitrst, numrow, 'e3t_m' , e3t_m ) CALL iom_rstput( kt, nitrst, numrow, 'frq_m' , frq_m ) IF(nn_timing == 2) CALL timing_stop('iom_rstput') ! ENDIF ! ENDIF ! IF( MOD( kt - 1 , nn_fsbc ) == 0 ) THEN ! Mean value at each nn_fsbc time-step ! CALL iom_put( 'ssu_m', ssu_m ) CALL iom_put( 'ssv_m', ssv_m ) CALL iom_put( 'sst_m', sst_m ) CALL iom_put( 'sss_m', sss_m ) CALL iom_put( 'ssh_m', ssh_m ) IF( lk_vvl ) CALL iom_put( 'e3t_m', e3t_m ) CALL iom_put( 'frq_m', frq_m ) ENDIF ! END SUBROUTINE sbc_ssm SUBROUTINE sbc_ssm_init !!---------------------------------------------------------------------- !! *** ROUTINE sbc_ssm_init *** !! !! ** Purpose : Initialisation of the sbc data !! !! ** Action : - read parameters !!---------------------------------------------------------------------- REAL(wp) :: zcoef, zf_sbc ! local scalar !!---------------------------------------------------------------------- IF( nn_fsbc == 1 ) THEN ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'sbc_ssm : sea surface mean fields, nn_fsbc=1 : instantaneous values' IF(lwp) WRITE(numout,*) '~~~~~~~ ' ! ELSE ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'sbc_ssm : sea surface mean fields' IF(lwp) WRITE(numout,*) '~~~~~~~ ' ! IF( ln_rstart .AND. iom_varid( numror, 'nn_fsbc', ldstop = .FALSE. ) > 0 ) THEN l_ssm_mean = .TRUE. IF(nn_timing == 2) CALL timing_start('iom_rstget') CALL iom_get( numror , 'nn_fsbc', zf_sbc ) ! sbc frequency of previous run CALL iom_get( numror, jpdom_autoglo, 'ssu_m' , ssu_m ) ! sea surface mean velocity (T-point) CALL iom_get( numror, jpdom_autoglo, 'ssv_m' , ssv_m ) ! " " velocity (V-point) CALL iom_get( numror, jpdom_autoglo, 'sst_m' , sst_m ) ! " " temperature (T-point) CALL iom_get( numror, jpdom_autoglo, 'sss_m' , sss_m ) ! " " salinity (T-point) CALL iom_get( numror, jpdom_autoglo, 'ssh_m' , ssh_m ) ! " " height (T-point) IF( lk_vvl ) CALL iom_get( numror, jpdom_autoglo, 'e3t_m', e3t_m ) ! fraction of solar net radiation absorbed in 1st T level IF( iom_varid( numror, 'frq_m', ldstop = .FALSE. ) > 0 ) THEN CALL iom_get( numror, jpdom_autoglo, 'frq_m' , frq_m ) ELSE frq_m(:,:) = 1._wp ! default definition ENDIF IF(nn_timing == 2) CALL timing_stop('iom_rstget') ! IF( zf_sbc /= REAL( nn_fsbc, wp ) ) THEN ! nn_fsbc has changed between 2 runs IF(lwp) WRITE(numout,*) '~~~~~~~ restart with a change in the frequency of mean ', & & 'from ', zf_sbc, ' to ', nn_fsbc zcoef = REAL( nn_fsbc - 1, wp ) / zf_sbc ssu_m(:,:) = zcoef * ssu_m(:,:) ssv_m(:,:) = zcoef * ssv_m(:,:) sst_m(:,:) = zcoef * sst_m(:,:) sss_m(:,:) = zcoef * sss_m(:,:) ssh_m(:,:) = zcoef * ssh_m(:,:) IF( lk_vvl ) e3t_m(:,:) = zcoef * fse3t_m(:,:) frq_m(:,:) = zcoef * frq_m(:,:) ELSE IF(lwp) WRITE(numout,*) '~~~~~~~ mean fields read in the ocean restart file' ENDIF ENDIF ENDIF ! IF( .NOT. l_ssm_mean ) THEN ! default initialisation. needed by lim_istate ! IF(lwp) WRITE(numout,*) ' default initialisation of ss?_m arrays' ssu_m(:,:) = ub(:,:,1) ssv_m(:,:) = vb(:,:,1) IF( ln_useCT ) THEN ; sst_m(:,:) = eos_pt_from_ct( tsn(:,:,1,jp_tem), tsn(:,:,1,jp_sal) ) ELSE ; sst_m(:,:) = tsn(:,:,1,jp_tem) ENDIF sss_m(:,:) = tsn(:,:,1,jp_sal) ssh_m(:,:) = sshn(:,:) IF( lk_vvl ) e3t_m(:,:) = fse3t_n(:,:,1) frq_m(:,:) = 1._wp ! ENDIF ! END SUBROUTINE sbc_ssm_init !!====================================================================== END MODULE sbcssm