MODULE fldread !!====================================================================== !! *** MODULE fldread *** !! Ocean forcing: read input field for surface boundary condition !!===================================================================== !! History : 2.0 ! 2006-06 (S. Masson, G. Madec) Original code !! 3.0 ! 2008-05 (S. Alderson) Modified for Interpolation in memory from input grid to model grid !! 3.4 ! 2013-10 (D. Delrosso, P. Oddo) suppression of land point prior to interpolation !! ! 12-2015 (J. Harle) Adding BDY on-the-fly interpolation !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! fld_read : read input fields used for the computation of the surface boundary condition !! fld_init : initialization of field read !! fld_rec : determined the record(s) to be read !! fld_get : read the data !! fld_map : read global data from file and map onto local data using a general mapping (use for open boundaries) !! fld_rot : rotate the vector fields onto the local grid direction !! fld_clopn : update the data file name and close/open the files !! fld_fill : fill the data structure with the associated information read in namelist !! wgt_list : manage the weights used for interpolation !! wgt_print : print the list of known weights !! fld_weight : create a WGT structure and fill in data from file, restructuring as required !! apply_seaoverland : fill land with ocean values !! seaoverland : create shifted matrices for seaoverland application !! fld_interp : apply weights to input gridded data to create data on model grid !! ksec_week : function returning the first 3 letters of the first day of the weekly file !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE phycst ! physical constant USE sbc_oce ! surface boundary conditions : fields USE geo2ocean ! for vector rotation on to model grid ! USE in_out_manager ! I/O manager USE iom ! I/O manager library USE ioipsl , ONLY : ymds2ju, ju2ymds ! for calendar USE lib_mpp ! MPP library USE lbclnk ! ocean lateral boundary conditions (C1D case) IMPLICIT NONE PRIVATE PUBLIC fld_map ! routine called by tides_init PUBLIC fld_read, fld_fill ! called by sbc... modules PUBLIC fld_clopn TYPE, PUBLIC :: FLD_N !: Namelist field informations CHARACTER(len = 256) :: clname ! generic name of the NetCDF flux file REAL(wp) :: freqh ! frequency of each flux file CHARACTER(len = 34) :: clvar ! generic name of the variable in the NetCDF flux file LOGICAL :: ln_tint ! time interpolation or not (T/F) LOGICAL :: ln_clim ! climatology or not (T/F) CHARACTER(len = 8) :: cltype ! type of data file 'daily', 'monthly' or yearly' CHARACTER(len = 256) :: wname ! generic name of a NetCDF weights file to be used, blank if not CHARACTER(len = 34) :: vcomp ! symbolic component name if a vector that needs rotation ! ! a string starting with "U" or "V" for each component ! ! chars 2 onwards identify which components go together CHARACTER(len = 34) :: lname ! generic name of a NetCDF land/sea mask file to be used, blank if not ! ! 0=sea 1=land END TYPE FLD_N TYPE, PUBLIC :: FLD !: Input field related variables CHARACTER(len = 256) :: clrootname ! generic name of the NetCDF file CHARACTER(len = 256) :: clname ! current name of the NetCDF file REAL(wp) :: freqh ! frequency of each flux file CHARACTER(len = 34) :: clvar ! generic name of the variable in the NetCDF flux file LOGICAL :: ln_tint ! time interpolation or not (T/F) LOGICAL :: ln_clim ! climatology or not (T/F) CHARACTER(len = 8) :: cltype ! type of data file 'daily', 'monthly' or yearly' INTEGER :: num ! iom id of the jpfld files to be read INTEGER , DIMENSION(2) :: nrec_b ! before record (1: index, 2: second since Jan. 1st 00h of nit000 year) INTEGER , DIMENSION(2) :: nrec_a ! after record (1: index, 2: second since Jan. 1st 00h of nit000 year) REAL(wp) , ALLOCATABLE, DIMENSION(:,:,: ) :: fnow ! input fields interpolated to now time step REAL(wp) , ALLOCATABLE, DIMENSION(:,:,:,:) :: fdta ! 2 consecutive record of input fields CHARACTER(len = 256) :: wgtname ! current name of the NetCDF weight file acting as a key ! ! into the WGTLIST structure CHARACTER(len = 34) :: vcomp ! symbolic name for a vector component that needs rotation LOGICAL, DIMENSION(2) :: rotn ! flag to indicate whether before/after field has been rotated INTEGER :: nreclast ! last record to be read in the current file CHARACTER(len = 256) :: lsmname ! current name of the NetCDF mask file acting as a key ! ! ! ! Variables related to BDY INTEGER :: igrd ! grid type for bdy data INTEGER :: ibdy ! bdy set id number INTEGER, POINTER, DIMENSION(:) :: imap ! Array of integer pointers to 1D arrays LOGICAL :: ltotvel ! total velocity or not (T/F) LOGICAL :: lzint ! T if it requires a vertical interpolation END TYPE FLD !$AGRIF_DO_NOT_TREAT !! keep list of all weights variables so they're only read in once !! need to add AGRIF directives not to process this structure !! also need to force wgtname to include AGRIF nest number TYPE :: WGT !: Input weights related variables CHARACTER(len = 256) :: wgtname ! current name of the NetCDF weight file INTEGER , DIMENSION(2) :: ddims ! shape of input grid INTEGER , DIMENSION(2) :: botleft ! top left corner of box in input grid containing ! ! current processor grid INTEGER , DIMENSION(2) :: topright ! top right corner of box INTEGER :: jpiwgt ! width of box on input grid INTEGER :: jpjwgt ! height of box on input grid INTEGER :: numwgt ! number of weights (4=bilinear, 16=bicubic) INTEGER :: nestid ! for agrif, keep track of nest we're in INTEGER :: overlap ! =0 when cyclic grid has no overlapping EW columns ! ! =>1 when they have one or more overlapping columns ! ! =-1 not cyclic LOGICAL :: cyclic ! east-west cyclic or not INTEGER, DIMENSION(:,:,:), POINTER :: data_jpi ! array of source integers INTEGER, DIMENSION(:,:,:), POINTER :: data_jpj ! array of source integers REAL(wp), DIMENSION(:,:,:), POINTER :: data_wgt ! array of weights on model grid REAL(wp), DIMENSION(:,:,:), POINTER :: fly_dta ! array of values on input grid REAL(wp), DIMENSION(:,:,:), POINTER :: col ! temporary array for reading in columns END TYPE WGT INTEGER, PARAMETER :: tot_wgts = 20 TYPE( WGT ), DIMENSION(tot_wgts) :: ref_wgts ! array of wgts INTEGER :: nxt_wgt = 1 ! point to next available space in ref_wgts array REAL(wp), PARAMETER :: undeff_lsm = -999.00_wp !$AGRIF_END_DO_NOT_TREAT !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE fld_read( kt, kn_fsbc, sd, kit, kt_offset ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_read *** !! !! ** Purpose : provide at each time step the surface ocean fluxes !! (momentum, heat, freshwater and runoff) !! !! ** Method : READ each input fields in NetCDF files using IOM !! and intepolate it to the model time-step. !! Several assumptions are made on the input file: !! blahblahblah.... !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time step INTEGER , INTENT(in ) :: kn_fsbc ! sbc computation period (in time step) TYPE(FLD), INTENT(inout), DIMENSION(:) :: sd ! input field related variables INTEGER , INTENT(in ), OPTIONAL :: kit ! subcycle timestep for timesplitting option INTEGER , INTENT(in ), OPTIONAL :: kt_offset ! provide fields at time other than "now" ! ! kt_offset = -1 => fields at "before" time level ! ! kt_offset = +1 => fields at "after" time level ! ! etc. !! INTEGER :: itmp ! local variable INTEGER :: imf ! size of the structure sd INTEGER :: jf ! dummy indices INTEGER :: isecend ! number of second since Jan. 1st 00h of nit000 year at nitend INTEGER :: isecsbc ! number of seconds between Jan. 1st 00h of nit000 year and the middle of sbc time step INTEGER :: it_offset ! local time offset variable LOGICAL :: llnxtyr ! open next year file? LOGICAL :: llnxtmth ! open next month file? LOGICAL :: llstop ! stop is the file does not exist LOGICAL :: ll_firstcall ! true if this is the first call to fld_read for this set of fields REAL(wp) :: ztinta ! ratio applied to after records when doing time interpolation REAL(wp) :: ztintb ! ratio applied to before records when doing time interpolation CHARACTER(LEN=1000) :: clfmt ! write format !!--------------------------------------------------------------------- ll_firstcall = kt == nit000 IF( PRESENT(kit) ) ll_firstcall = ll_firstcall .and. kit == 1 IF ( nn_components == jp_iam_sas ) THEN ; it_offset = nn_fsbc ELSE ; it_offset = 0 ENDIF IF( PRESENT(kt_offset) ) it_offset = kt_offset ! Note that shifting time to be centrered in the middle of sbc time step impacts only nsec_* variables of the calendar IF( present(kit) ) THEN ! ignore kn_fsbc in this case isecsbc = nsec_year + nsec1jan000 + (kit+it_offset)*NINT( rdt/REAL(nn_baro,wp) ) ELSE ! middle of sbc time step isecsbc = nsec_year + nsec1jan000 + NINT(0.5 * REAL(kn_fsbc - 1,wp) * rdt) + it_offset * NINT(rdt) ENDIF imf = SIZE( sd ) ! IF( ll_firstcall ) THEN ! initialization DO jf = 1, imf IF( TRIM(sd(jf)%clrootname) == 'NOT USED' ) CYCLE CALL fld_init( kn_fsbc, sd(jf) ) ! read each before field (put them in after as they will be swapped) END DO IF( lwp ) CALL wgt_print() ! control print ENDIF ! ! ====================================== ! IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN ! update field at each kn_fsbc time-step ! ! ! ====================================== ! ! DO jf = 1, imf ! --- loop over field --- ! IF( TRIM(sd(jf)%clrootname) == 'NOT USED' ) CYCLE IF( isecsbc > sd(jf)%nrec_a(2) .OR. ll_firstcall ) THEN ! read/update the after data? sd(jf)%nrec_b(:) = sd(jf)%nrec_a(:) ! swap before record informations sd(jf)%rotn(1) = sd(jf)%rotn(2) ! swap before rotate informations IF( sd(jf)%ln_tint ) sd(jf)%fdta(:,:,:,1) = sd(jf)%fdta(:,:,:,2) ! swap before record field CALL fld_rec( kn_fsbc, sd(jf), kt_offset = it_offset, kit = kit ) ! update after record informations ! if kn_fsbc*rdt is larger than freqh (which is kind of odd), ! it is possible that the before value is no more the good one... we have to re-read it ! if before is not the last record of the file currently opened and after is the first record to be read ! in a new file which means after = 1 (the file to be opened corresponds to the current time) ! or after = nreclast + 1 (the file to be opened corresponds to a future time step) IF( .NOT. ll_firstcall .AND. sd(jf)%ln_tint .AND. sd(jf)%nrec_b(1) /= sd(jf)%nreclast & & .AND. MOD( sd(jf)%nrec_a(1), sd(jf)%nreclast ) == 1 ) THEN itmp = sd(jf)%nrec_a(1) ! temporary storage sd(jf)%nrec_a(1) = sd(jf)%nreclast ! read the last record of the file currently opened CALL fld_get( sd(jf) ) ! read after data sd(jf)%fdta(:,:,:,1) = sd(jf)%fdta(:,:,:,2) ! re-swap before record field sd(jf)%nrec_b(1) = sd(jf)%nrec_a(1) ! update before record informations sd(jf)%nrec_b(2) = sd(jf)%nrec_a(2) - NINT( sd(jf)%freqh * 3600. ) ! assume freq to be in hours in this case sd(jf)%rotn(1) = sd(jf)%rotn(2) ! update before rotate informations sd(jf)%nrec_a(1) = itmp ! move back to after record ENDIF CALL fld_clopn( sd(jf) ) ! Do we need to open a new year/month/week/day file? IF( sd(jf)%ln_tint ) THEN ! if kn_fsbc*rdt is larger than freqh (which is kind of odd), ! it is possible that the before value is no more the good one... we have to re-read it ! if before record is not just just before the after record... IF( .NOT. ll_firstcall .AND. MOD( sd(jf)%nrec_a(1), sd(jf)%nreclast ) /= 1 & & .AND. sd(jf)%nrec_b(1) /= sd(jf)%nrec_a(1) - 1 ) THEN sd(jf)%nrec_a(1) = sd(jf)%nrec_a(1) - 1 ! move back to before record CALL fld_get( sd(jf) ) ! read after data sd(jf)%fdta(:,:,:,1) = sd(jf)%fdta(:,:,:,2) ! re-swap before record field sd(jf)%nrec_b(1) = sd(jf)%nrec_a(1) ! update before record informations sd(jf)%nrec_b(2) = sd(jf)%nrec_a(2) - NINT( sd(jf)%freqh * 3600. ) ! assume freq to be in hours in this case sd(jf)%rotn(1) = sd(jf)%rotn(2) ! update before rotate informations sd(jf)%nrec_a(1) = sd(jf)%nrec_a(1) + 1 ! move back to after record ENDIF ENDIF ! temporal interpolation? ! do we have to change the year/month/week/day of the forcing field?? ! if we do time interpolation we will need to open next year/month/week/day file before the end of the current ! one. If so, we are still before the end of the year/month/week/day when calling fld_rec so sd(jf)%nrec_a(1) ! will be larger than the record number that should be read for current year/month/week/day ! do we need next file data? ! This applies to both cases with or without time interpolation IF( sd(jf)%nrec_a(1) > sd(jf)%nreclast ) THEN sd(jf)%nrec_a(1) = sd(jf)%nrec_a(1) - sd(jf)%nreclast ! IF( .NOT. ( sd(jf)%ln_clim .AND. sd(jf)%cltype == 'yearly' ) ) THEN ! close/open the current/new file llnxtmth = sd(jf)%cltype == 'monthly' .OR. nday == nmonth_len(nmonth) ! open next month file? llnxtyr = sd(jf)%cltype == 'yearly' .OR. (nmonth == 12 .AND. llnxtmth) ! open next year file? ! if the run finishes at the end of the current year/month/week/day, we will allow next ! year/month/week/day file to be not present. If the run continue further than the current ! year/month/week/day, next year/month/week/day file must exist isecend = nsec_year + nsec1jan000 + (nitend - kt) * NINT(rdt) ! second at the end of the run llstop = isecend > sd(jf)%nrec_a(2) ! read more than 1 record of next year ! we suppose that the date of next file is next day (should be ok even for weekly files...) CALL fld_clopn( sd(jf), nyear + COUNT((/llnxtyr /)) , & & nmonth + COUNT((/llnxtmth/)) - 12 * COUNT((/llnxtyr /)), & & nday + 1 - nmonth_len(nmonth) * COUNT((/llnxtmth/)), llstop ) IF( sd(jf)%num <= 0 .AND. .NOT. llstop ) THEN ! next year file does not exist CALL ctl_warn('next year/month/week/day file: '//TRIM(sd(jf)%clname)// & & ' not present -> back to current year/month/day') CALL fld_clopn( sd(jf) ) ! back to the current year/month/day sd(jf)%nrec_a(1) = sd(jf)%nreclast ! force to read the last record in the current year file ENDIF ENDIF ENDIF ! open need next file? ! read after data CALL fld_get( sd(jf) ) ENDIF ! read new data? END DO ! --- end loop over field --- ! CALL fld_rot( kt, sd ) ! rotate vector before/now/after fields if needed DO jf = 1, imf ! --- loop over field --- ! ! IF( TRIM(sd(jf)%clrootname) == 'NOT USED' ) CYCLE ! IF( sd(jf)%ln_tint ) THEN ! temporal interpolation IF(lwp .AND. kt - nit000 <= 100 ) THEN clfmt = "(' fld_read: var ', a, ' kt = ', i8, ' (', f9.4,' days), Y/M/D = ', i4.4,'/', i2.2,'/', i2.2," // & & "', records b/a: ', i6.4, '/', i6.4, ' (days ', f9.4,'/', f9.4, ')')" WRITE(numout, clfmt) TRIM( sd(jf)%clvar ), kt, REAL(isecsbc,wp)/rday, nyear, nmonth, nday, & & sd(jf)%nrec_b(1), sd(jf)%nrec_a(1), REAL(sd(jf)%nrec_b(2),wp)/rday, REAL(sd(jf)%nrec_a(2),wp)/rday WRITE(numout, *) ' it_offset is : ',it_offset ENDIF ! temporal interpolation weights ztinta = REAL( isecsbc - sd(jf)%nrec_b(2), wp ) / REAL( sd(jf)%nrec_a(2) - sd(jf)%nrec_b(2), wp ) ztintb = 1. - ztinta sd(jf)%fnow(:,:,:) = ztintb * sd(jf)%fdta(:,:,:,1) + ztinta * sd(jf)%fdta(:,:,:,2) ELSE ! nothing to do... IF(lwp .AND. kt - nit000 <= 100 ) THEN clfmt = "(' fld_read: var ', a, ' kt = ', i8,' (', f9.4,' days), Y/M/D = ', i4.4,'/', i2.2,'/', i2.2," // & & "', record: ', i6.4, ' (days ', f9.4, ' <-> ', f9.4, ')')" WRITE(numout, clfmt) TRIM(sd(jf)%clvar), kt, REAL(isecsbc,wp)/rday, nyear, nmonth, nday, & & sd(jf)%nrec_a(1), REAL(sd(jf)%nrec_b(2),wp)/rday, REAL(sd(jf)%nrec_a(2),wp)/rday ENDIF ENDIF ! IF( kt == nitend - kn_fsbc + 1 ) CALL iom_close( sd(jf)%num ) ! Close the input files END DO ! --- end loop over field --- ! ! ENDIF ! END SUBROUTINE fld_read SUBROUTINE fld_init( kn_fsbc, sdjf ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_init *** !! !! ** Purpose : - first call to fld_rec to define before values !! - if time interpolation, read before data !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kn_fsbc ! sbc computation period (in time step) TYPE(FLD), INTENT(inout) :: sdjf ! input field related variables !! LOGICAL :: llprevyr ! are we reading previous year file? LOGICAL :: llprevmth ! are we reading previous month file? LOGICAL :: llprevweek ! are we reading previous week file? LOGICAL :: llprevday ! are we reading previous day file? LOGICAL :: llprev ! llprevyr .OR. llprevmth .OR. llprevweek .OR. llprevday INTEGER :: idvar ! variable id INTEGER :: inrec ! number of record existing for this variable INTEGER :: iyear, imonth, iday ! first day of the current file in yyyy mm dd INTEGER :: isec_week ! number of seconds since start of the weekly file CHARACTER(LEN=1000) :: clfmt ! write format !!--------------------------------------------------------------------- ! llprevyr = .FALSE. llprevmth = .FALSE. llprevweek = .FALSE. llprevday = .FALSE. isec_week = 0 ! ! define record informations CALL fld_rec( kn_fsbc, sdjf, ldbefore = .TRUE. ) ! return before values in sdjf%nrec_a (as we will swap it later) ! ! Note that shifting time to be centrered in the middle of sbc time step impacts only nsec_* variables of the calendar ! IF( sdjf%ln_tint ) THEN ! we need to read the previous record and we will put it in the current record structure ! IF( sdjf%nrec_a(1) == 0 ) THEN ! we redefine record sdjf%nrec_a(1) with the last record of previous year file IF ( NINT(sdjf%freqh) == -12 ) THEN ! yearly mean IF( sdjf%cltype == 'yearly' ) THEN ! yearly file sdjf%nrec_a(1) = 1 ! force to read the unique record llprevyr = .NOT. sdjf%ln_clim ! use previous year file? ELSE CALL ctl_stop( "fld_init: yearly mean file must be in a yearly type of file: "//TRIM(sdjf%clrootname) ) ENDIF ELSEIF( NINT(sdjf%freqh) == -1 ) THEN ! monthly mean IF( sdjf%cltype == 'monthly' ) THEN ! monthly file sdjf%nrec_a(1) = 1 ! force to read the unique record llprevmth = .TRUE. ! use previous month file? llprevyr = llprevmth .AND. nmonth == 1 ! use previous year file? ELSE ! yearly file sdjf%nrec_a(1) = 12 ! force to read december mean llprevyr = .NOT. sdjf%ln_clim ! use previous year file? ENDIF ELSE ! higher frequency mean (in hours) IF ( sdjf%cltype == 'monthly' ) THEN ! monthly file sdjf%nrec_a(1) = NINT( 24. * REAL(nmonth_len(nmonth-1),wp) / sdjf%freqh )! last record of previous month llprevmth = .TRUE. ! use previous month file? llprevyr = llprevmth .AND. nmonth == 1 ! use previous year file? ELSEIF( sdjf%cltype(1:4) == 'week' ) THEN ! weekly file llprevweek = .TRUE. ! use previous week file? sdjf%nrec_a(1) = NINT( 24. * 7. / sdjf%freqh ) ! last record of previous week isec_week = NINT(rday) * 7 ! add a shift toward previous week ELSEIF( sdjf%cltype == 'daily' ) THEN ! daily file sdjf%nrec_a(1) = NINT( 24. / sdjf%freqh ) ! last record of previous day llprevday = .TRUE. ! use previous day file? llprevmth = llprevday .AND. nday == 1 ! use previous month file? llprevyr = llprevmth .AND. nmonth == 1 ! use previous year file? ELSE ! yearly file sdjf%nrec_a(1) = NINT( 24. * REAL(nyear_len(0),wp) / sdjf%freqh ) ! last record of previous year llprevyr = .NOT. sdjf%ln_clim ! use previous year file? ENDIF ENDIF ENDIF ! IF ( sdjf%cltype(1:4) == 'week' ) THEN isec_week = isec_week + ksec_week( sdjf%cltype(6:8) ) ! second since the beginning of the week llprevmth = isec_week > nsec_month ! longer time since the beginning of the week than the month llprevyr = llprevmth .AND. nmonth == 1 ENDIF llprev = llprevyr .OR. llprevmth .OR. llprevweek .OR. llprevday ! iyear = nyear - COUNT((/llprevyr /)) imonth = nmonth - COUNT((/llprevmth/)) + 12 * COUNT((/llprevyr /)) iday = nday - COUNT((/llprevday/)) + nmonth_len(nmonth-1) * COUNT((/llprevmth/)) - isec_week / NINT(rday) ! CALL fld_clopn( sdjf, iyear, imonth, iday, .NOT. llprev ) ! ! if previous year/month/day file does not exist, we switch to the current year/month/day IF( llprev .AND. sdjf%num <= 0 ) THEN CALL ctl_warn( 'previous year/month/week/day file: '//TRIM(sdjf%clrootname)// & & ' not present -> back to current year/month/week/day' ) ! we force to read the first record of the current year/month/day instead of last record of previous year/month/day llprev = .FALSE. sdjf%nrec_a(1) = 1 CALL fld_clopn( sdjf ) ENDIF ! IF( llprev ) THEN ! check if the record sdjf%nrec_a(1) exists in the file idvar = iom_varid( sdjf%num, sdjf%clvar ) ! id of the variable sdjf%clvar IF( idvar <= 0 ) RETURN inrec = iom_file( sdjf%num )%dimsz( iom_file( sdjf%num )%ndims(idvar), idvar ) ! size of the last dim of idvar sdjf%nrec_a(1) = MIN( sdjf%nrec_a(1), inrec ) ! make sure we select an existing record ENDIF ! ! read before data in after arrays(as we will swap it later) CALL fld_get( sdjf ) ! clfmt = "(' fld_init : time-interpolation for ', a, ' read previous record = ', i6, ' at time = ', f7.2, ' days')" IF(lwp) WRITE(numout, clfmt) TRIM(sdjf%clvar), sdjf%nrec_a(1), REAL(sdjf%nrec_a(2),wp)/rday ! ENDIF ! END SUBROUTINE fld_init SUBROUTINE fld_rec( kn_fsbc, sdjf, ldbefore, kit, kt_offset ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_rec *** !! !! ** Purpose : Compute !! if sdjf%ln_tint = .TRUE. !! nrec_a: record number and its time (nrec_b is obtained from nrec_a when swapping) !! if sdjf%ln_tint = .FALSE. !! nrec_a(1): record number !! nrec_b(2) and nrec_a(2): time of the beginning and end of the record !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kn_fsbc ! sbc computation period (in time step) TYPE(FLD), INTENT(inout) :: sdjf ! input field related variables LOGICAL , INTENT(in ), OPTIONAL :: ldbefore ! sent back before record values (default = .FALSE.) INTEGER , INTENT(in ), OPTIONAL :: kit ! index of barotropic subcycle ! ! used only if sdjf%ln_tint = .TRUE. INTEGER , INTENT(in ), OPTIONAL :: kt_offset ! Offset of required time level compared to "now" ! ! time level in units of time steps. ! LOGICAL :: llbefore ! local definition of ldbefore INTEGER :: iendrec ! end of this record (in seconds) INTEGER :: imth ! month number INTEGER :: ifreq_sec ! frequency mean (in seconds) INTEGER :: isec_week ! number of seconds since the start of the weekly file INTEGER :: it_offset ! local time offset variable REAL(wp) :: ztmp ! temporary variable !!---------------------------------------------------------------------- ! ! Note that shifting time to be centrered in the middle of sbc time step impacts only nsec_* variables of the calendar ! IF( PRESENT(ldbefore) ) THEN ; llbefore = ldbefore .AND. sdjf%ln_tint ! needed only if sdjf%ln_tint = .TRUE. ELSE ; llbefore = .FALSE. ENDIF ! IF ( nn_components == jp_iam_sas ) THEN ; it_offset = nn_fsbc ELSE ; it_offset = 0 ENDIF IF( PRESENT(kt_offset) ) it_offset = kt_offset IF( PRESENT(kit) ) THEN ; it_offset = ( kit + it_offset ) * NINT( rdt/REAL(nn_baro,wp) ) ELSE ; it_offset = it_offset * NINT( rdt ) ENDIF ! ! ! =========== ! IF ( NINT(sdjf%freqh) == -12 ) THEN ! yearly mean ! ! =========== ! ! IF( sdjf%ln_tint ) THEN ! time interpolation, shift by 1/2 record ! ! INT( ztmp ) ! /|\ ! 1 | *---- ! 0 |----( ! |----+----|--> time ! 0 /|\ 1 (nday/nyear_len(1)) ! | ! | ! forcing record : 1 ! ztmp = REAL( nsec_year, wp ) / ( REAL( nyear_len(1), wp ) * rday ) + 0.5 & & + REAL( it_offset, wp ) / ( REAL( nyear_len(1), wp ) * rday ) sdjf%nrec_a(1) = 1 + INT( ztmp ) - COUNT((/llbefore/)) ! swap at the middle of the year IF( llbefore ) THEN ; sdjf%nrec_a(2) = nsec1jan000 - (1 - INT(ztmp)) * NINT(0.5 * rday) * nyear_len(0) + & & INT(ztmp) * NINT( 0.5 * rday) * nyear_len(1) ELSE ; sdjf%nrec_a(2) = nsec1jan000 + (1 - INT(ztmp)) * NINT(0.5 * rday) * nyear_len(1) + & & INT(ztmp) * INT(rday) * nyear_len(1) + INT(ztmp) * NINT( 0.5 * rday) * nyear_len(2) ENDIF ELSE ! no time interpolation sdjf%nrec_a(1) = 1 sdjf%nrec_a(2) = NINT(rday) * nyear_len(1) + nsec1jan000 ! swap at the end of the year sdjf%nrec_b(2) = nsec1jan000 ! beginning of the year (only for print) ENDIF ! ! ! ============ ! ELSEIF( NINT(sdjf%freqh) == -1 ) THEN ! monthly mean ! ! ! ============ ! ! IF( sdjf%ln_tint ) THEN ! time interpolation, shift by 1/2 record ! ! INT( ztmp ) ! /|\ ! 1 | *---- ! 0 |----( ! |----+----|--> time ! 0 /|\ 1 (nday/nmonth_len(nmonth)) ! | ! | ! forcing record : nmonth ! ztmp = REAL( nsec_month, wp ) / ( REAL( nmonth_len(nmonth), wp ) * rday ) + 0.5 & & + REAL( it_offset, wp ) / ( REAL( nmonth_len(nmonth), wp ) * rday ) imth = nmonth + INT( ztmp ) - COUNT((/llbefore/)) IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nrec_a(1) = 1 + INT( ztmp ) - COUNT((/llbefore/)) ELSE ; sdjf%nrec_a(1) = imth ENDIF sdjf%nrec_a(2) = nmonth_half( imth ) + nsec1jan000 ! swap at the middle of the month ELSE ! no time interpolation IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nrec_a(1) = 1 ELSE ; sdjf%nrec_a(1) = nmonth ENDIF sdjf%nrec_a(2) = nmonth_end(nmonth ) + nsec1jan000 ! swap at the end of the month sdjf%nrec_b(2) = nmonth_end(nmonth-1) + nsec1jan000 ! beginning of the month (only for print) ENDIF ! ! ! ================================ ! ELSE ! higher frequency mean (in hours) ! ! ================================ ! ! ifreq_sec = NINT( sdjf%freqh * 3600. ) ! frequency mean (in seconds) IF( sdjf%cltype(1:4) == 'week' ) isec_week = ksec_week( sdjf%cltype(6:8) ) ! since the first day of the current week ! number of second since the beginning of the file IF( sdjf%cltype == 'monthly' ) THEN ; ztmp = REAL(nsec_month,wp) ! since the first day of the current month ELSEIF( sdjf%cltype(1:4) == 'week' ) THEN ; ztmp = REAL(isec_week ,wp) ! since the first day of the current week ELSEIF( sdjf%cltype == 'daily' ) THEN ; ztmp = REAL(nsec_day ,wp) ! since 00h of the current day ELSE ; ztmp = REAL(nsec_year ,wp) ! since 00h on Jan 1 of the current year ENDIF ztmp = ztmp + 0.5 * REAL(kn_fsbc - 1, wp) * rdt + REAL( it_offset, wp ) ! centrered in the middle of sbc time step ztmp = ztmp + 0.01 * rdt ! avoid truncation error IF( sdjf%ln_tint ) THEN ! time interpolation, shift by 1/2 record ! ! INT( ztmp/ifreq_sec + 0.5 ) ! /|\ ! 2 | *-----( ! 1 | *-----( ! 0 |--( ! |--+--|--+--|--+--|--> time ! 0 /|\ 1 /|\ 2 /|\ 3 (ztmp/ifreq_sec) ! | | | ! | | | ! forcing record : 1 2 3 ! ztmp= ztmp / REAL(ifreq_sec, wp) + 0.5 ELSE ! no time interpolation ! ! INT( ztmp/ifreq_sec ) ! /|\ ! 2 | *-----( ! 1 | *-----( ! 0 |-----( ! |--+--|--+--|--+--|--> time ! 0 /|\ 1 /|\ 2 /|\ 3 (ztmp/ifreq_sec) ! | | | ! | | | ! forcing record : 1 2 3 ! ztmp= ztmp / REAL(ifreq_sec, wp) ENDIF sdjf%nrec_a(1) = 1 + INT( ztmp ) - COUNT((/llbefore/)) ! record number to be read iendrec = ifreq_sec * sdjf%nrec_a(1) + nsec1jan000 ! end of this record (in second) ! add the number of seconds between 00h Jan 1 and the end of previous month/week/day (ok if nmonth=1) IF( sdjf%cltype == 'monthly' ) iendrec = iendrec + NINT(rday) * SUM(nmonth_len(1:nmonth -1)) IF( sdjf%cltype(1:4) == 'week' ) iendrec = iendrec + ( nsec_year - isec_week ) IF( sdjf%cltype == 'daily' ) iendrec = iendrec + NINT(rday) * ( nday_year - 1 ) IF( sdjf%ln_tint ) THEN sdjf%nrec_a(2) = iendrec - ifreq_sec / 2 ! swap at the middle of the record ELSE sdjf%nrec_a(2) = iendrec ! swap at the end of the record sdjf%nrec_b(2) = iendrec - ifreq_sec ! beginning of the record (only for print) ENDIF ! ENDIF ! IF( .NOT. sdjf%ln_tint ) sdjf%nrec_a(2) = sdjf%nrec_a(2) - 1 ! last second belongs to bext record : *----( ! END SUBROUTINE fld_rec SUBROUTINE fld_get( sdjf ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_get *** !! !! ** Purpose : read the data !!---------------------------------------------------------------------- TYPE(FLD) , INTENT(inout) :: sdjf ! input field related variables ! INTEGER :: ipk ! number of vertical levels of sdjf%fdta ( 2D: ipk=1 ; 3D: ipk=jpk ) INTEGER :: iw ! index into wgts array INTEGER :: ipdom ! index of the domain INTEGER :: idvar ! variable ID INTEGER :: idmspc ! number of spatial dimensions LOGICAL :: lmoor ! C1D case: point data !!--------------------------------------------------------------------- ! ipk = SIZE( sdjf%fnow, 3 ) ! IF( ASSOCIATED(sdjf%imap) ) THEN IF( sdjf%ln_tint ) THEN ; CALL fld_map( sdjf%num, sdjf%clvar, sdjf%fdta(:,:,:,2), sdjf%nrec_a(1), & & sdjf%imap, sdjf%igrd, sdjf%ibdy, sdjf%ltotvel, sdjf%lzint ) ELSE ; CALL fld_map( sdjf%num, sdjf%clvar, sdjf%fnow(:,:,: ), sdjf%nrec_a(1), & & sdjf%imap, sdjf%igrd, sdjf%ibdy, sdjf%ltotvel, sdjf%lzint ) ENDIF ELSE IF( LEN(TRIM(sdjf%wgtname)) > 0 ) THEN CALL wgt_list( sdjf, iw ) IF( sdjf%ln_tint ) THEN ; CALL fld_interp( sdjf%num, sdjf%clvar, iw, ipk, sdjf%fdta(:,:,:,2), & & sdjf%nrec_a(1), sdjf%lsmname ) ELSE ; CALL fld_interp( sdjf%num, sdjf%clvar, iw, ipk, sdjf%fnow(:,:,: ), & & sdjf%nrec_a(1), sdjf%lsmname ) ENDIF ELSE IF( SIZE(sdjf%fnow, 1) == jpi ) THEN ; ipdom = jpdom_data ELSE ; ipdom = jpdom_unknown ENDIF ! C1D case: If product of spatial dimensions == ipk, then x,y are of ! size 1 (point/mooring data): this must be read onto the central grid point idvar = iom_varid( sdjf%num, sdjf%clvar ) idmspc = iom_file ( sdjf%num )%ndims( idvar ) IF( iom_file( sdjf%num )%luld( idvar ) ) idmspc = idmspc - 1 lmoor = ( idmspc == 0 .OR. PRODUCT( iom_file( sdjf%num )%dimsz( 1:MAX(idmspc,1) ,idvar ) ) == ipk ) ! SELECT CASE( ipk ) CASE(1) IF( lk_c1d .AND. lmoor ) THEN IF( sdjf%ln_tint ) THEN CALL iom_get( sdjf%num, sdjf%clvar, sdjf%fdta(2,2,1,2), sdjf%nrec_a(1) ) CALL lbc_lnk( 'fldread', sdjf%fdta(:,:,1,2),'Z',1. ) ELSE CALL iom_get( sdjf%num, sdjf%clvar, sdjf%fnow(2,2,1 ), sdjf%nrec_a(1) ) CALL lbc_lnk( 'fldread', sdjf%fnow(:,:,1 ),'Z',1. ) ENDIF ELSE IF( sdjf%ln_tint ) THEN ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fdta(:,:,1,2), sdjf%nrec_a(1) ) ELSE ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fnow(:,:,1 ), sdjf%nrec_a(1) ) ENDIF ENDIF CASE DEFAULT IF (lk_c1d .AND. lmoor ) THEN IF( sdjf%ln_tint ) THEN CALL iom_get( sdjf%num, jpdom_unknown, sdjf%clvar, sdjf%fdta(2,2,:,2), sdjf%nrec_a(1) ) CALL lbc_lnk( 'fldread', sdjf%fdta(:,:,:,2),'Z',1. ) ELSE CALL iom_get( sdjf%num, jpdom_unknown, sdjf%clvar, sdjf%fnow(2,2,: ), sdjf%nrec_a(1) ) CALL lbc_lnk( 'fldread', sdjf%fnow(:,:,: ),'Z',1. ) ENDIF ELSE IF( sdjf%ln_tint ) THEN ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fdta(:,:,:,2), sdjf%nrec_a(1) ) ELSE ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fnow(:,:,: ), sdjf%nrec_a(1) ) ENDIF ENDIF END SELECT ENDIF ! sdjf%rotn(2) = .false. ! vector not yet rotated ! END SUBROUTINE fld_get SUBROUTINE fld_map( knum, cdvar, pdta, krec, kmap, kgrd, kbdy, ldtotvel, ldzint ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_map *** !! !! ** Purpose : read global data from file and map onto local data !! using a general mapping (for open boundaries) !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: knum ! stream number CHARACTER(LEN=*) , INTENT(in ) :: cdvar ! variable name REAL(wp), DIMENSION(:,:,:), INTENT( out) :: pdta ! bdy output field on model grid INTEGER , INTENT(in ) :: krec ! record number to read (ie time slice) INTEGER , DIMENSION(:) , INTENT(in ) :: kmap ! global-to-local bdy mapping indices ! optional variables used for vertical interpolation: INTEGER, OPTIONAL , INTENT(in ) :: kgrd ! grid type (t, u, v) INTEGER, OPTIONAL , INTENT(in ) :: kbdy ! bdy number LOGICAL, OPTIONAL , INTENT(in ) :: ldtotvel ! true if total ( = barotrop + barocline) velocity LOGICAL, OPTIONAL , INTENT(in ) :: ldzint ! true if 3D variable requires a vertical interpolation !! INTEGER :: ipi ! length of boundary data on local process INTEGER :: ipj ! length of dummy dimension ( = 1 ) INTEGER :: ipk ! number of vertical levels of pdta ( 2D: ipk=1 ; 3D: ipk=jpk ) INTEGER :: ipkb ! number of vertical levels in boundary data file INTEGER :: idvar ! variable ID INTEGER :: indims ! number of dimensions of the variable INTEGER, DIMENSION(4) :: idimsz ! size of variable dimensions REAL(wp) :: zfv ! fillvalue REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zz_read ! work space for global boundary data REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zdta_read ! work space local data requiring vertical interpolation REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zdta_read_z ! work space local data requiring vertical interpolation REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zdta_read_dz ! work space local data requiring vertical interpolation CHARACTER(LEN=1),DIMENSION(3) :: clgrid LOGICAL :: lluld ! is the variable using the unlimited dimension LOGICAL :: llzint ! local value of ldzint !!--------------------------------------------------------------------- ! clgrid = (/'t','u','v'/) ! ipi = SIZE( pdta, 1 ) ipj = SIZE( pdta, 2 ) ! must be equal to 1 ipk = SIZE( pdta, 3 ) ! llzint = .FALSE. IF( PRESENT(ldzint) ) llzint = ldzint ! idvar = iom_varid( knum, cdvar, kndims = indims, kdimsz = idimsz, lduld = lluld ) IF( indims == 4 .OR. ( indims == 3 .AND. .NOT. lluld ) ) THEN ; ipkb = idimsz(3) ! xy(zl)t or xy(zl) ELSE ; ipkb = 1 ! xy or xyt ENDIF ! ALLOCATE( zz_read( idimsz(1), idimsz(2), ipkb ) ) ! ++++++++ !!! this can be very big... ! IF( ipk == 1 ) THEN IF( ipkb /= 1 ) CALL ctl_stop( 'fld_map : we must have ipkb = 1 to read surface data' ) CALL iom_get ( knum, jpdom_unknown, cdvar, zz_read(:,:,1), krec ) ! call iom_get with a 2D file CALL fld_map_core( zz_read, kmap, pdta ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Do we include something here to adjust barotropic velocities ! ! in case of a depth difference between bdy files and ! ! bathymetry in the case ln_totvel = .false. and ipkb>0? ! ! [as the enveloping and parital cells could change H] ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ELSE ! CALL iom_get ( knum, jpdom_unknown, cdvar, zz_read(:,:,:), krec ) ! call iom_get with a 3D file ! IF( ipkb /= ipk .OR. llzint ) THEN ! boundary data not on model vertical grid : vertical interpolation ! IF( ipk == jpk .AND. iom_varid(knum,'gdep'//clgrid(kgrd)) /= -1 .AND. iom_varid(knum,'e3'//clgrid(kgrd)) /= -1 ) THEN ALLOCATE( zdta_read(ipi,ipj,ipkb), zdta_read_z(ipi,ipj,ipkb), zdta_read_dz(ipi,ipj,ipkb) ) CALL fld_map_core( zz_read, kmap, zdta_read ) CALL iom_get ( knum, jpdom_unknown, 'gdep'//clgrid(kgrd), zz_read ) ! read only once? Potential temporal evolution? CALL fld_map_core( zz_read, kmap, zdta_read_z ) CALL iom_get ( knum, jpdom_unknown, 'e3'//clgrid(kgrd), zz_read ) ! read only once? Potential temporal evolution? CALL fld_map_core( zz_read, kmap, zdta_read_dz ) CALL iom_getatt(knum, '_FillValue', zfv, cdvar=cdvar ) CALL fld_bdy_interp(zdta_read, zdta_read_z, zdta_read_dz, pdta, kgrd, kbdy, zfv, ldtotvel) DEALLOCATE( zdta_read, zdta_read_z, zdta_read_dz ) ELSE IF( ipk /= jpk ) CALL ctl_stop( 'fld_map : this should be an impossible case...' ) WRITE(ctmp1,*) 'fld_map : vertical interpolation for bdy variable '//TRIM(cdvar)//' requires ' IF( iom_varid(knum, 'gdep'//clgrid(kgrd)) == -1 ) CALL ctl_stop( ctmp1//'gdep'//clgrid(kgrd)//' variable' ) IF( iom_varid(knum, 'e3'//clgrid(kgrd)) == -1 ) CALL ctl_stop( ctmp1// 'e3'//clgrid(kgrd)//' variable' ) ENDIF ! ELSE ! bdy data assumed to be the same levels as bdy variables ! CALL fld_map_core( zz_read, kmap, pdta ) ! ENDIF ! ipkb /= ipk ENDIF ! ipk == 1 DEALLOCATE( zz_read ) END SUBROUTINE fld_map SUBROUTINE fld_map_core( pdta_read, kmap, pdta_bdy ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_map_core *** !! !! ** Purpose : inner core of fld_map !!---------------------------------------------------------------------- REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: pdta_read ! global boundary data INTEGER, DIMENSION(: ), INTENT(in ) :: kmap ! global-to-local bdy mapping indices REAL(wp), DIMENSION(:,:,:), INTENT( out) :: pdta_bdy ! bdy output field on model grid !! INTEGER, DIMENSION(3) :: idim_read, idim_bdy ! arrays dimensions INTEGER :: ji, jj, jk, jb ! loop counters INTEGER :: im1 !!--------------------------------------------------------------------- ! idim_read = SHAPE( pdta_read ) idim_bdy = SHAPE( pdta_bdy ) ! ! in all cases: idim_bdy(2) == 1 .AND. idim_read(1) * idim_read(2) == idim_bdy(1) ! structured BDY with rimwidth > 1 : idim_read(2) == rimwidth /= 1 ! structured BDY with rimwidth == 1 or unstructured BDY: idim_read(2) == 1 ! IF( idim_read(2) > 1 ) THEN ! structured BDY with rimwidth > 1 DO jk = 1, idim_bdy(3) DO jb = 1, idim_bdy(1) im1 = kmap(jb) - 1 jj = im1 / idim_read(1) + 1 ji = MOD( im1, idim_read(1) ) + 1 pdta_bdy(jb,1,jk) = pdta_read(ji,jj,jk) END DO END DO ELSE DO jk = 1, idim_bdy(3) DO jb = 1, idim_bdy(1) ! horizontal remap of bdy data on the local bdy pdta_bdy(jb,1,jk) = pdta_read(kmap(jb),1,jk) END DO END DO ENDIF END SUBROUTINE fld_map_core SUBROUTINE fld_bdy_interp(pdta_read, pdta_read_z, pdta_read_dz, pdta, kgrd, kbdy, pfv, ldtotvel) !!--------------------------------------------------------------------- !! *** ROUTINE fld_bdy_interp *** !! !! ** Purpose : on the fly vertical interpolation to allow the use of !! boundary data from non-native vertical grid !!---------------------------------------------------------------------- USE bdy_oce, ONLY: idx_bdy ! indexing for map <-> ij transformation REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: pdta_read ! data read in bdy file REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdta_read_z ! depth of the data read in bdy file REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdta_read_dz ! thickness of the levels in bdy file REAL(wp), DIMENSION(:,:,:), INTENT( out) :: pdta ! output field on model grid (2 dimensional) REAL(wp) , INTENT(in ) :: pfv ! fillvalue of the data read in bdy file LOGICAL , INTENT(in ) :: ldtotvel ! true if toal ( = barotrop + barocline) velocity INTEGER , INTENT(in ) :: kgrd ! grid type (t, u, v) INTEGER , INTENT(in ) :: kbdy ! bdy number !! INTEGER :: ipi ! length of boundary data on local process INTEGER :: ipkb ! number of vertical levels in boundary data file INTEGER :: jb, ji, jj, jk, jkb ! loop counters REAL(wp) :: zcoef REAL(wp) :: zl, zi, zh ! tmp variable for current depth and interpolation factor REAL(wp) :: zfv_alt, ztrans, ztrans_new ! fillvalue and alternative -ABS(pfv) REAL(wp), DIMENSION(jpk) :: zdepth, zdhalf ! level and half-level depth !!--------------------------------------------------------------------- ipi = SIZE( pdta, 1 ) ipkb = SIZE( pdta_read, 3 ) zfv_alt = -ABS(pfv) ! set _FillValue < 0 as we make use of MAXVAL and MAXLOC later ! WHERE( pdta_read == pfv ) pdta_read_z = zfv_alt ! safety: put fillvalue into external depth field so consistent with data pdta_read_dz = 0._wp ! safety: put 0._wp into external thickness factors to ensure transport is correct ENDWHERE DO jb = 1, ipi ji = idx_bdy(kbdy)%nbi(jb,kgrd) jj = idx_bdy(kbdy)%nbj(jb,kgrd) zh = SUM(pdta_read_dz(jb,1,:) ) ! ! Warnings to flag differences in the input and model topgraphy - is this useful/necessary? SELECT CASE( kgrd ) CASE(1) IF( ABS( (zh - ht_n(ji,jj)) / ht_n(ji,jj)) * tmask(ji,jj,1) > 0.01_wp ) THEN WRITE(ctmp1,"(I10.10)") jb CALL ctl_warn('fld_bdy_interp: T depths differ between grids at BDY point '//TRIM(ctmp1)//' by more than 1%') ! IF(lwp) WRITE(numout,*) 'DEPTHT', zh, sum(e3t_n(ji,jj,:), mask=tmask(ji,jj,:)==1), ht_n(ji,jj), jb, jb, ji, jj ENDIF CASE(2) IF( ABS( (zh - hu_n(ji,jj)) * r1_hu_n(ji,jj)) * umask(ji,jj,1) > 0.01_wp ) THEN WRITE(ctmp1,"(I10.10)") jb CALL ctl_warn('fld_bdy_interp: U depths differ between grids at BDY point '//TRIM(ctmp1)//' by more than 1%') ! IF(lwp) WRITE(numout,*) 'DEPTHU', zh, SUM(e3u_n(ji,jj,:), mask=umask(ji,jj,:)==1), SUM(umask(ji,jj,:)), & ! & hu_n(ji,jj), jb, jb, ji, jj, narea-1, pdta_read(jb,1,:) ENDIF CASE(3) IF( ABS( (zh - hv_n(ji,jj)) * r1_hv_n(ji,jj)) * vmask(ji,jj,1) > 0.01_wp ) THEN WRITE(ctmp1,"(I10.10)") jb CALL ctl_warn('fld_bdy_interp: V depths differ between grids at BDY point '//TRIM(ctmp1)//' by more than 1%') ENDIF END SELECT ! SELECT CASE( kgrd ) CASE(1) ! depth of T points: zdepth(:) = gdept_n(ji,jj,:) CASE(2) ! depth of U points: we must not use gdept_n as we don't want to do a communication ! --> copy what is done for gdept_n in domvvl... zdhalf(1) = 0.0_wp zdepth(1) = 0.5_wp * e3uw_n(ji,jj,1) DO jk = 2, jpk ! vertical sum ! zcoef = umask - wumask ! 0 everywhere tmask = wmask, ie everywhere expect at jk = mikt ! ! 1 everywhere from mbkt to mikt + 1 or 1 (if no isf) ! ! 0.5 where jk = mikt !!gm ??????? BUG ? gdept_n as well as gde3w_n does not include the thickness of ISF ?? zcoef = ( umask(ji,jj,jk) - wumask(ji,jj,jk) ) zdhalf(jk) = zdhalf(jk-1) + e3u_n(ji,jj,jk-1) zdepth(jk) = zcoef * ( zdhalf(jk ) + 0.5 * e3uw_n(ji,jj,jk)) & & + (1-zcoef) * ( zdepth(jk-1) + e3uw_n(ji,jj,jk)) END DO CASE(3) ! depth of V points: we must not use gdept_n as we don't want to do a communication ! --> copy what is done for gdept_n in domvvl... zdhalf(1) = 0.0_wp zdepth(1) = 0.5_wp * e3vw_n(ji,jj,1) DO jk = 2, jpk ! vertical sum ! zcoef = vmask - wvmask ! 0 everywhere tmask = wmask, ie everywhere expect at jk = mikt ! ! 1 everywhere from mbkt to mikt + 1 or 1 (if no isf) ! ! 0.5 where jk = mikt !!gm ??????? BUG ? gdept_n as well as gde3w_n does not include the thickness of ISF ?? zcoef = ( vmask(ji,jj,jk) - wvmask(ji,jj,jk) ) zdhalf(jk) = zdhalf(jk-1) + e3v_n(ji,jj,jk-1) zdepth(jk) = zcoef * ( zdhalf(jk ) + 0.5 * e3vw_n(ji,jj,jk)) & & + (1-zcoef) * ( zdepth(jk-1) + e3vw_n(ji,jj,jk)) END DO END SELECT ! DO jk = 1, jpk IF( zdepth(jk) < pdta_read_z(jb,1, 1) ) THEN ! above the first level of external data pdta(jb,1,jk) = pdta_read(jb,1,1) ELSEIF( zdepth(jk) > pdta_read_z(jb,1,ipkb) ) THEN ! below the last level of external data pdta(jb,1,jk) = pdta_read(jb,1,MAXLOC(pdta_read_z(jb,1,:),1)) ELSE ! inbetween: vertical interpolation between jkb & jkb+1 DO jkb = 1, ipkb-1 ! when gdept_n(jkb) < zdepth(jk) < gdept_n(jkb+1) IF( ( ( zdepth(jk) - pdta_read_z(jb,1,jkb) ) * ( zdepth(jk) - pdta_read_z(jb,1,jkb+1) ) <= 0._wp ) & & .AND. ( pdta_read_z(jb,1,jkb+1) /= zfv_alt) ) THEN ! linear interpolation between 2 levels zi = ( zdepth(jk) - pdta_read_z(jb,1,jkb) ) / ( pdta_read_z(jb,1,jkb+1) - pdta_read_z(jb,1,jkb) ) pdta(jb,1,jk) = pdta_read(jb,1,jkb) + ( pdta_read (jb,1,jkb+1) - pdta_read (jb,1,jkb) ) * zi ENDIF END DO ENDIF END DO ! jpk ! END DO ! ipi IF(kgrd == 2) THEN ! do we need to adjust the transport term? DO jb = 1, ipi ji = idx_bdy(kbdy)%nbi(jb,kgrd) jj = idx_bdy(kbdy)%nbj(jb,kgrd) zh = SUM(pdta_read_dz(jb,1,:) ) ztrans = 0._wp ztrans_new = 0._wp DO jkb = 1, ipkb ! calculate transport on input grid ztrans = ztrans + pdta_read(jb,1,jkb) * pdta_read_dz(jb, 1,jkb) ENDDO DO jk = 1, jpk ! calculate transport on model grid ztrans_new = ztrans_new + pdta(jb,1,jk ) * e3u_n(ji,jj,jk ) * umask(ji,jj,jk) ENDDO DO jk = 1, jpk ! make transport correction IF(ldtotvel) THEN ! bdy data are total velocity so adjust bt transport term to match input data pdta(jb,1,jk) = ( pdta(jb,1,jk) + ( ztrans - ztrans_new ) * r1_hu_n(ji,jj) ) * umask(ji,jj,jk) ELSE ! we're just dealing with bc velocity so bt transport term should sum to zero pdta(jb,1,jk) = pdta(jb,1,jk) + ( 0._wp - ztrans_new ) * r1_hu_n(ji,jj) * umask(ji,jj,jk) ENDIF ENDDO ENDDO ENDIF IF(kgrd == 3) THEN ! do we need to adjust the transport term? DO jb = 1, ipi ji = idx_bdy(kbdy)%nbi(jb,kgrd) jj = idx_bdy(kbdy)%nbj(jb,kgrd) zh = SUM(pdta_read_dz(jb,1,:) ) ztrans = 0._wp ztrans_new = 0._wp DO jkb = 1, ipkb ! calculate transport on input grid ztrans = ztrans + pdta_read(jb,1,jkb) * pdta_read_dz(jb, 1,jkb) ENDDO DO jk = 1, jpk ! calculate transport on model grid ztrans_new = ztrans_new + pdta(jb,1,jk ) * e3v_n(ji,jj,jk ) * vmask(ji,jj,jk) ENDDO DO jk = 1, jpk ! make transport correction IF(ldtotvel) THEN ! bdy data are total velocity so adjust bt transport term to match input data pdta(jb,1,jk) = ( pdta(jb,1,jk) + ( ztrans - ztrans_new ) * r1_hv_n(ji,jj) ) * vmask(ji,jj,jk) ELSE ! we're just dealing with bc velocity so bt transport term should sum to zero pdta(jb,1,jk) = pdta(jb,1,jk) + ( 0._wp - ztrans_new ) * r1_hv_n(ji,jj) * vmask(ji,jj,jk) ENDIF ENDDO ENDDO ENDIF END SUBROUTINE fld_bdy_interp SUBROUTINE fld_rot( kt, sd ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_rot *** !! !! ** Purpose : Vector fields may need to be rotated onto the local grid direction !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time step TYPE(FLD), DIMENSION(:), INTENT(inout) :: sd ! input field related variables ! INTEGER :: ju, jv, jk, jn ! loop indices INTEGER :: imf ! size of the structure sd INTEGER :: ill ! character length INTEGER :: iv ! indice of V component CHARACTER (LEN=100) :: clcomp ! dummy weight name REAL(wp), DIMENSION(jpi,jpj) :: utmp, vtmp ! temporary arrays for vector rotation !!--------------------------------------------------------------------- ! !! (sga: following code should be modified so that pairs arent searched for each time ! imf = SIZE( sd ) DO ju = 1, imf IF( TRIM(sd(ju)%clrootname) == 'NOT USED' ) CYCLE ill = LEN_TRIM( sd(ju)%vcomp ) DO jn = 2-COUNT((/sd(ju)%ln_tint/)), 2 IF( ill > 0 .AND. .NOT. sd(ju)%rotn(jn) ) THEN ! find vector rotations required IF( sd(ju)%vcomp(1:1) == 'U' ) THEN ! east-west component has symbolic name starting with 'U' ! look for the north-south component which has same symbolic name but with 'U' replaced with 'V' clcomp = 'V' // sd(ju)%vcomp(2:ill) ! works even if ill == 1 iv = -1 DO jv = 1, imf IF( TRIM(sd(jv)%clrootname) == 'NOT USED' ) CYCLE IF( TRIM(sd(jv)%vcomp) == TRIM(clcomp) ) iv = jv END DO IF( iv > 0 ) THEN ! fields ju and iv are two components which need to be rotated together DO jk = 1, SIZE( sd(ju)%fnow, 3 ) IF( sd(ju)%ln_tint )THEN CALL rot_rep( sd(ju)%fdta(:,:,jk,jn), sd(iv)%fdta(:,:,jk,jn), 'T', 'en->i', utmp(:,:) ) CALL rot_rep( sd(ju)%fdta(:,:,jk,jn), sd(iv)%fdta(:,:,jk,jn), 'T', 'en->j', vtmp(:,:) ) sd(ju)%fdta(:,:,jk,jn) = utmp(:,:) ; sd(iv)%fdta(:,:,jk,jn) = vtmp(:,:) ELSE CALL rot_rep( sd(ju)%fnow(:,:,jk ), sd(iv)%fnow(:,:,jk ), 'T', 'en->i', utmp(:,:) ) CALL rot_rep( sd(ju)%fnow(:,:,jk ), sd(iv)%fnow(:,:,jk ), 'T', 'en->j', vtmp(:,:) ) sd(ju)%fnow(:,:,jk ) = utmp(:,:) ; sd(iv)%fnow(:,:,jk ) = vtmp(:,:) ENDIF END DO sd(ju)%rotn(jn) = .TRUE. ! vector was rotated IF( lwp .AND. kt == nit000 ) WRITE(numout,*) & & 'fld_read: vector pair ('//TRIM(sd(ju)%clvar)//', '//TRIM(sd(iv)%clvar)//') rotated on to model grid' ENDIF ENDIF ENDIF END DO END DO ! END SUBROUTINE fld_rot SUBROUTINE fld_clopn( sdjf, kyear, kmonth, kday, ldstop ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_clopn *** !! !! ** Purpose : update the file name and close/open the files !!---------------------------------------------------------------------- TYPE(FLD) , INTENT(inout) :: sdjf ! input field related variables INTEGER, OPTIONAL, INTENT(in ) :: kyear ! year value INTEGER, OPTIONAL, INTENT(in ) :: kmonth ! month value INTEGER, OPTIONAL, INTENT(in ) :: kday ! day value LOGICAL, OPTIONAL, INTENT(in ) :: ldstop ! stop if open to read a non-existing file (default = .TRUE.) ! LOGICAL :: llprevyr ! are we reading previous year file? LOGICAL :: llprevmth ! are we reading previous month file? INTEGER :: iyear, imonth, iday ! first day of the current file in yyyy mm dd INTEGER :: isec_week ! number of seconds since start of the weekly file INTEGER :: indexyr ! year undex (O/1/2: previous/current/next) REAL(wp) :: zyear_len, zmonth_len ! length (days) of iyear and imonth ! CHARACTER(len = 256) :: clname ! temporary file name !!---------------------------------------------------------------------- IF( PRESENT(kyear) ) THEN ! use given values iyear = kyear imonth = kmonth iday = kday IF ( sdjf%cltype(1:4) == 'week' ) THEN ! find the day of the beginning of the week isec_week = ksec_week( sdjf%cltype(6:8) )- (86400 * 8 ) llprevmth = isec_week > nsec_month ! longer time since beginning of the week than the month llprevyr = llprevmth .AND. nmonth == 1 iyear = nyear - COUNT((/llprevyr /)) imonth = nmonth - COUNT((/llprevmth/)) + 12 * COUNT((/llprevyr /)) iday = nday + nmonth_len(nmonth-1) * COUNT((/llprevmth/)) - isec_week / NINT(rday) ENDIF ELSE ! use current day values IF ( sdjf%cltype(1:4) == 'week' ) THEN ! find the day of the beginning of the week isec_week = ksec_week( sdjf%cltype(6:8) ) ! second since the beginning of the week llprevmth = isec_week > nsec_month ! longer time since beginning of the week than the month llprevyr = llprevmth .AND. nmonth == 1 ELSE isec_week = 0 llprevmth = .FALSE. llprevyr = .FALSE. ENDIF iyear = nyear - COUNT((/llprevyr /)) imonth = nmonth - COUNT((/llprevmth/)) + 12 * COUNT((/llprevyr /)) iday = nday + nmonth_len(nmonth-1) * COUNT((/llprevmth/)) - isec_week / NINT(rday) ENDIF ! build the new filename if not climatological data clname=TRIM(sdjf%clrootname) ! ! note that sdjf%ln_clim is is only acting on the presence of the year in the file name IF( .NOT. sdjf%ln_clim ) THEN WRITE(clname, '(a,"_y",i4.4)' ) TRIM( sdjf%clrootname ), iyear ! add year IF( sdjf%cltype /= 'yearly' ) WRITE(clname, '(a,"m" ,i2.2)' ) TRIM( clname ), imonth ! add month ELSE ! build the new filename if climatological data IF( sdjf%cltype /= 'yearly' ) WRITE(clname, '(a,"_m",i2.2)' ) TRIM( sdjf%clrootname ), imonth ! add month ENDIF IF( sdjf%cltype == 'daily' .OR. sdjf%cltype(1:4) == 'week' ) & & WRITE(clname, '(a,"d" ,i2.2)' ) TRIM( clname ), iday ! add day ! IF( TRIM(clname) /= TRIM(sdjf%clname) .OR. sdjf%num == 0 ) THEN ! new file to be open ! sdjf%clname = TRIM(clname) IF( sdjf%num /= 0 ) CALL iom_close( sdjf%num ) ! close file if already open CALL iom_open( sdjf%clname, sdjf%num, ldstop = ldstop, ldiof = LEN(TRIM(sdjf%wgtname)) > 0 ) ! ! find the last record to be read -> update sdjf%nreclast indexyr = iyear - nyear + 1 zyear_len = REAL(nyear_len( indexyr ), wp) SELECT CASE ( indexyr ) CASE ( 0 ) ; zmonth_len = 31. ! previous year -> imonth = 12 CASE ( 1 ) ; zmonth_len = REAL(nmonth_len(imonth), wp) CASE ( 2 ) ; zmonth_len = 31. ! next year -> imonth = 1 END SELECT ! ! last record to be read in the current file IF ( sdjf%freqh == -12. ) THEN ; sdjf%nreclast = 1 ! yearly mean ELSEIF( sdjf%freqh == -1. ) THEN ! monthly mean IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nreclast = 1 ELSE ; sdjf%nreclast = 12 ENDIF ELSE ! higher frequency mean (in hours) IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nreclast = NINT( 24. * zmonth_len / sdjf%freqh ) ELSEIF( sdjf%cltype(1:4) == 'week' ) THEN ; sdjf%nreclast = NINT( 24. * 7. / sdjf%freqh ) ELSEIF( sdjf%cltype == 'daily' ) THEN ; sdjf%nreclast = NINT( 24. / sdjf%freqh ) ELSE ; sdjf%nreclast = NINT( 24. * zyear_len / sdjf%freqh ) ENDIF ENDIF ! ENDIF ! END SUBROUTINE fld_clopn SUBROUTINE fld_fill( sdf, sdf_n, cdir, cdcaller, cdtitle, cdnam, knoprint ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_fill *** !! !! ** Purpose : fill the data structure (sdf) with the associated information !! read in namelist (sdf_n) and control print !!---------------------------------------------------------------------- TYPE(FLD) , DIMENSION(:) , INTENT(inout) :: sdf ! structure of input fields (file informations, fields read) TYPE(FLD_N), DIMENSION(:) , INTENT(in ) :: sdf_n ! array of namelist information structures CHARACTER(len=*) , INTENT(in ) :: cdir ! Root directory for location of flx files CHARACTER(len=*) , INTENT(in ) :: cdcaller ! name of the calling routine CHARACTER(len=*) , INTENT(in ) :: cdtitle ! description of the calling routine CHARACTER(len=*) , INTENT(in ) :: cdnam ! name of the namelist from which sdf_n comes INTEGER , OPTIONAL, INTENT(in ) :: knoprint ! no calling routine information printed ! INTEGER :: jf ! dummy indices !!--------------------------------------------------------------------- ! DO jf = 1, SIZE(sdf) sdf(jf)%clrootname = sdf_n(jf)%clname IF( TRIM(sdf_n(jf)%clname) /= 'NOT USED' ) sdf(jf)%clrootname = TRIM( cdir )//sdf(jf)%clrootname sdf(jf)%clname = "not yet defined" sdf(jf)%freqh = sdf_n(jf)%freqh sdf(jf)%clvar = sdf_n(jf)%clvar sdf(jf)%ln_tint = sdf_n(jf)%ln_tint sdf(jf)%ln_clim = sdf_n(jf)%ln_clim sdf(jf)%cltype = sdf_n(jf)%cltype sdf(jf)%num = -1 sdf(jf)%wgtname = " " IF( LEN( TRIM(sdf_n(jf)%wname) ) > 0 ) sdf(jf)%wgtname = TRIM( cdir )//sdf_n(jf)%wname sdf(jf)%lsmname = " " IF( LEN( TRIM(sdf_n(jf)%lname) ) > 0 ) sdf(jf)%lsmname = TRIM( cdir )//sdf_n(jf)%lname sdf(jf)%vcomp = sdf_n(jf)%vcomp sdf(jf)%rotn(:) = .TRUE. ! pretend to be rotated -> won't try to rotate data before the first call to fld_get IF( sdf(jf)%cltype(1:4) == 'week' .AND. nn_leapy == 0 ) & & CALL ctl_stop('fld_clopn: weekly file ('//TRIM(sdf(jf)%clrootname)//') needs nn_leapy = 1') IF( sdf(jf)%cltype(1:4) == 'week' .AND. sdf(jf)%ln_clim ) & & CALL ctl_stop('fld_clopn: weekly file ('//TRIM(sdf(jf)%clrootname)//') needs ln_clim = .FALSE.') sdf(jf)%nreclast = -1 ! Set to non zero default value to avoid errors, is updated to meaningful value during fld_clopn sdf(jf)%igrd = 0 sdf(jf)%ibdy = 0 sdf(jf)%imap => NULL() sdf(jf)%ltotvel = .FALSE. sdf(jf)%lzint = .FALSE. END DO ! IF(lwp) THEN ! control print WRITE(numout,*) IF( .NOT.PRESENT( knoprint) ) THEN WRITE(numout,*) TRIM( cdcaller )//' : '//TRIM( cdtitle ) WRITE(numout,*) (/ ('~', jf = 1, LEN_TRIM( cdcaller ) ) /) ENDIF WRITE(numout,*) ' fld_fill : fill data structure with information from namelist '//TRIM( cdnam ) WRITE(numout,*) ' ~~~~~~~~' WRITE(numout,*) ' list of files and frequency (>0: in hours ; <0 in months)' DO jf = 1, SIZE(sdf) WRITE(numout,*) ' root filename: ' , TRIM( sdf(jf)%clrootname ), ' variable name: ', TRIM( sdf(jf)%clvar ) WRITE(numout,*) ' frequency: ' , sdf(jf)%freqh , & & ' time interp: ' , sdf(jf)%ln_tint , & & ' climatology: ' , sdf(jf)%ln_clim WRITE(numout,*) ' weights: ' , TRIM( sdf(jf)%wgtname ), & & ' pairing: ' , TRIM( sdf(jf)%vcomp ), & & ' data type: ' , sdf(jf)%cltype , & & ' land/sea mask:' , TRIM( sdf(jf)%lsmname ) call flush(numout) END DO ENDIF ! END SUBROUTINE fld_fill SUBROUTINE wgt_list( sd, kwgt ) !!--------------------------------------------------------------------- !! *** ROUTINE wgt_list *** !! !! ** Purpose : search array of WGTs and find a weights file entry, !! or return a new one adding it to the end if new entry. !! the weights data is read in and restructured (fld_weight) !!---------------------------------------------------------------------- TYPE( FLD ), INTENT(in ) :: sd ! field with name of weights file INTEGER , INTENT(inout) :: kwgt ! index of weights ! INTEGER :: kw, nestid ! local integer LOGICAL :: found ! local logical !!---------------------------------------------------------------------- ! !! search down linked list !! weights filename is either present or we hit the end of the list found = .FALSE. ! !! because agrif nest part of filenames are now added in iom_open !! to distinguish between weights files on the different grids, need to track !! nest number explicitly nestid = 0 #if defined key_agrif nestid = Agrif_Fixed() #endif DO kw = 1, nxt_wgt-1 IF( TRIM(ref_wgts(kw)%wgtname) == TRIM(sd%wgtname) .AND. & ref_wgts(kw)%nestid == nestid) THEN kwgt = kw found = .TRUE. EXIT ENDIF END DO IF( .NOT.found ) THEN kwgt = nxt_wgt CALL fld_weight( sd ) ENDIF ! END SUBROUTINE wgt_list SUBROUTINE wgt_print( ) !!--------------------------------------------------------------------- !! *** ROUTINE wgt_print *** !! !! ** Purpose : print the list of known weights !!---------------------------------------------------------------------- INTEGER :: kw ! !!---------------------------------------------------------------------- ! DO kw = 1, nxt_wgt-1 WRITE(numout,*) 'weight file: ',TRIM(ref_wgts(kw)%wgtname) WRITE(numout,*) ' ddims: ',ref_wgts(kw)%ddims(1),ref_wgts(kw)%ddims(2) WRITE(numout,*) ' numwgt: ',ref_wgts(kw)%numwgt WRITE(numout,*) ' jpiwgt: ',ref_wgts(kw)%jpiwgt WRITE(numout,*) ' jpjwgt: ',ref_wgts(kw)%jpjwgt WRITE(numout,*) ' botleft: ',ref_wgts(kw)%botleft WRITE(numout,*) ' topright: ',ref_wgts(kw)%topright IF( ref_wgts(kw)%cyclic ) THEN WRITE(numout,*) ' cyclical' IF( ref_wgts(kw)%overlap > 0 ) WRITE(numout,*) ' with overlap of ', ref_wgts(kw)%overlap ELSE WRITE(numout,*) ' not cyclical' ENDIF IF( ASSOCIATED(ref_wgts(kw)%data_wgt) ) WRITE(numout,*) ' allocated' END DO ! END SUBROUTINE wgt_print SUBROUTINE fld_weight( sd ) !!--------------------------------------------------------------------- !! *** ROUTINE fld_weight *** !! !! ** Purpose : create a new WGT structure and fill in data from file, !! restructuring as required !!---------------------------------------------------------------------- TYPE( FLD ), INTENT(in) :: sd ! field with name of weights file !! INTEGER :: jn ! dummy loop indices INTEGER :: inum ! local logical unit INTEGER :: id ! local variable id INTEGER :: ipk ! local vertical dimension INTEGER :: zwrap ! local integer LOGICAL :: cyclical ! CHARACTER (len=5) :: aname ! INTEGER , DIMENSION(:), ALLOCATABLE :: ddims INTEGER, DIMENSION(jpi,jpj) :: data_src REAL(wp), DIMENSION(jpi,jpj) :: data_tmp !!---------------------------------------------------------------------- ! IF( nxt_wgt > tot_wgts ) THEN CALL ctl_stop("fld_weight: weights array size exceeded, increase tot_wgts") ENDIF ! !! new weights file entry, add in extra information !! a weights file represents a 2D grid of a certain shape, so we assume that the current !! input data file is representative of all other files to be opened and processed with the !! current weights file !! open input data file (non-model grid) CALL iom_open( sd%clname, inum, ldiof = LEN(TRIM(sd%wgtname)) > 0 ) !! get dimensions IF ( SIZE(sd%fnow, 3) > 1 ) THEN ALLOCATE( ddims(4) ) ELSE ALLOCATE( ddims(3) ) ENDIF id = iom_varid( inum, sd%clvar, ddims ) !! close it CALL iom_close( inum ) !! now open the weights file CALL iom_open ( sd%wgtname, inum ) ! interpolation weights IF ( inum > 0 ) THEN !! determine whether we have an east-west cyclic grid !! from global attribute called "ew_wrap" in the weights file !! note that if not found, iom_getatt returns -999 and cyclic with no overlap is assumed !! since this is the most common forcing configuration CALL iom_getatt(inum, 'ew_wrap', zwrap) IF( zwrap >= 0 ) THEN cyclical = .TRUE. ELSE IF( zwrap == -999 ) THEN cyclical = .TRUE. zwrap = 0 ELSE cyclical = .FALSE. ENDIF ref_wgts(nxt_wgt)%ddims(1) = ddims(1) ref_wgts(nxt_wgt)%ddims(2) = ddims(2) ref_wgts(nxt_wgt)%wgtname = sd%wgtname ref_wgts(nxt_wgt)%overlap = zwrap ref_wgts(nxt_wgt)%cyclic = cyclical ref_wgts(nxt_wgt)%nestid = 0 #if defined key_agrif ref_wgts(nxt_wgt)%nestid = Agrif_Fixed() #endif !! weights file is stored as a set of weights (wgt01->wgt04 or wgt01->wgt16) !! for each weight wgtNN there is an integer array srcNN which gives the point in !! the input data grid which is to be multiplied by the weight !! they are both arrays on the model grid so the result of the multiplication is !! added into an output array on the model grid as a running sum !! two possible cases: bilinear (4 weights) or bicubic (16 weights) id = iom_varid(inum, 'src05', ldstop=.FALSE.) IF( id <= 0) THEN ref_wgts(nxt_wgt)%numwgt = 4 ELSE ref_wgts(nxt_wgt)%numwgt = 16 ENDIF ALLOCATE( ref_wgts(nxt_wgt)%data_jpi(jpi,jpj,4) ) ALLOCATE( ref_wgts(nxt_wgt)%data_jpj(jpi,jpj,4) ) ALLOCATE( ref_wgts(nxt_wgt)%data_wgt(jpi,jpj,ref_wgts(nxt_wgt)%numwgt) ) DO jn = 1,4 aname = ' ' WRITE(aname,'(a3,i2.2)') 'src',jn data_tmp(:,:) = 0 CALL iom_get ( inum, jpdom_data, aname, data_tmp(:,:) ) data_src(:,:) = INT(data_tmp(:,:)) ref_wgts(nxt_wgt)%data_jpj(:,:,jn) = 1 + (data_src(:,:)-1) / ref_wgts(nxt_wgt)%ddims(1) ref_wgts(nxt_wgt)%data_jpi(:,:,jn) = data_src(:,:) - ref_wgts(nxt_wgt)%ddims(1)*(ref_wgts(nxt_wgt)%data_jpj(:,:,jn)-1) END DO DO jn = 1, ref_wgts(nxt_wgt)%numwgt aname = ' ' WRITE(aname,'(a3,i2.2)') 'wgt',jn ref_wgts(nxt_wgt)%data_wgt(:,:,jn) = 0.0 CALL iom_get ( inum, jpdom_data, aname, ref_wgts(nxt_wgt)%data_wgt(:,:,jn) ) END DO CALL iom_close (inum) ! find min and max indices in grid ref_wgts(nxt_wgt)%botleft(1) = MINVAL(ref_wgts(nxt_wgt)%data_jpi(:,:,:)) ref_wgts(nxt_wgt)%botleft(2) = MINVAL(ref_wgts(nxt_wgt)%data_jpj(:,:,:)) ref_wgts(nxt_wgt)%topright(1) = MAXVAL(ref_wgts(nxt_wgt)%data_jpi(:,:,:)) ref_wgts(nxt_wgt)%topright(2) = MAXVAL(ref_wgts(nxt_wgt)%data_jpj(:,:,:)) ! and therefore dimensions of the input box ref_wgts(nxt_wgt)%jpiwgt = ref_wgts(nxt_wgt)%topright(1) - ref_wgts(nxt_wgt)%botleft(1) + 1 ref_wgts(nxt_wgt)%jpjwgt = ref_wgts(nxt_wgt)%topright(2) - ref_wgts(nxt_wgt)%botleft(2) + 1 ! shift indexing of source grid ref_wgts(nxt_wgt)%data_jpi(:,:,:) = ref_wgts(nxt_wgt)%data_jpi(:,:,:) - ref_wgts(nxt_wgt)%botleft(1) + 1 ref_wgts(nxt_wgt)%data_jpj(:,:,:) = ref_wgts(nxt_wgt)%data_jpj(:,:,:) - ref_wgts(nxt_wgt)%botleft(2) + 1 ! create input grid, give it a halo to allow gradient calculations ! SA: +3 stencil is a patch to avoid out-of-bound computation in some configuration. ! a more robust solution will be given in next release ipk = SIZE(sd%fnow, 3) ALLOCATE( ref_wgts(nxt_wgt)%fly_dta(ref_wgts(nxt_wgt)%jpiwgt+3, ref_wgts(nxt_wgt)%jpjwgt+3 ,ipk) ) IF( ref_wgts(nxt_wgt)%cyclic ) ALLOCATE( ref_wgts(nxt_wgt)%col(1,ref_wgts(nxt_wgt)%jpjwgt+3,ipk) ) ! nxt_wgt = nxt_wgt + 1 ! ELSE CALL ctl_stop( ' fld_weight : unable to read the file ' ) ENDIF DEALLOCATE (ddims ) ! END SUBROUTINE fld_weight SUBROUTINE apply_seaoverland( clmaskfile, zfieldo, jpi1_lsm, jpi2_lsm, jpj1_lsm, & & jpj2_lsm, itmpi, itmpj, itmpz, rec1_lsm, recn_lsm ) !!--------------------------------------------------------------------- !! *** ROUTINE apply_seaoverland *** !! !! ** Purpose : avoid spurious fluxes in coastal or near-coastal areas !! due to the wrong usage of "land" values from the coarse !! atmospheric model when spatial interpolation is required !! D. Delrosso INGV !!---------------------------------------------------------------------- INTEGER, INTENT(in ) :: itmpi,itmpj,itmpz ! lengths INTEGER, INTENT(in ) :: jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm ! temporary indices INTEGER, DIMENSION(3), INTENT(in ) :: rec1_lsm,recn_lsm ! temporary arrays for start and length REAL(wp),DIMENSION (:,:,:),INTENT(inout) :: zfieldo ! input/output array for seaoverland application CHARACTER (len=100), INTENT(in ) :: clmaskfile ! land/sea mask file name ! INTEGER :: inum,jni,jnj,jnz,jc ! local indices REAL(wp),DIMENSION (:,:,:),ALLOCATABLE :: zslmec1 ! local array for land point detection REAL(wp),DIMENSION (:,:), ALLOCATABLE :: zfieldn ! array of forcing field with undeff for land points REAL(wp),DIMENSION (:,:), ALLOCATABLE :: zfield ! array of forcing field !!--------------------------------------------------------------------- ! ALLOCATE ( zslmec1(itmpi,itmpj,itmpz), zfieldn(itmpi,itmpj), zfield(itmpi,itmpj) ) ! ! Retrieve the land sea mask data CALL iom_open( clmaskfile, inum ) SELECT CASE( SIZE(zfieldo(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),3) ) CASE(1) CALL iom_get( inum, jpdom_unknown, 'LSM', zslmec1(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,1), 1, rec1_lsm, recn_lsm) CASE DEFAULT CALL iom_get( inum, jpdom_unknown, 'LSM', zslmec1(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:), 1, rec1_lsm, recn_lsm) END SELECT CALL iom_close( inum ) ! DO jnz=1,rec1_lsm(3) !! Loop over k dimension ! DO jni = 1, itmpi !! copy the original field into a tmp array DO jnj = 1, itmpj !! substituting undeff over land points zfieldn(jni,jnj) = zfieldo(jni,jnj,jnz) IF( zslmec1(jni,jnj,jnz) == 1. ) zfieldn(jni,jnj) = undeff_lsm END DO END DO ! CALL seaoverland( zfieldn, itmpi, itmpj, zfield ) DO jc = 1, nn_lsm CALL seaoverland( zfield, itmpi, itmpj, zfield ) END DO ! ! Check for Undeff and substitute original values IF( ANY(zfield==undeff_lsm) ) THEN DO jni = 1, itmpi DO jnj = 1, itmpj IF( zfield(jni,jnj)==undeff_lsm ) zfield(jni,jnj) = zfieldo(jni,jnj,jnz) END DO END DO ENDIF ! zfieldo(:,:,jnz) = zfield(:,:) ! END DO !! End Loop over k dimension ! DEALLOCATE ( zslmec1, zfieldn, zfield ) ! END SUBROUTINE apply_seaoverland SUBROUTINE seaoverland( zfieldn, ileni, ilenj, zfield ) !!--------------------------------------------------------------------- !! *** ROUTINE seaoverland *** !! !! ** Purpose : create shifted matrices for seaoverland application !! D. Delrosso INGV !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: ileni,ilenj ! lengths REAL, DIMENSION (ileni,ilenj), INTENT(in ) :: zfieldn ! array of forcing field with undeff for land points REAL, DIMENSION (ileni,ilenj), INTENT( out) :: zfield ! array of forcing field ! REAL , DIMENSION (ileni,ilenj) :: zmat1, zmat2, zmat3, zmat4 ! local arrays REAL , DIMENSION (ileni,ilenj) :: zmat5, zmat6, zmat7, zmat8 ! - - REAL , DIMENSION (ileni,ilenj) :: zlsm2d ! - - REAL , DIMENSION (ileni,ilenj,8) :: zlsm3d ! - - LOGICAL, DIMENSION (ileni,ilenj,8) :: ll_msknan3d ! logical mask for undeff detection LOGICAL, DIMENSION (ileni,ilenj) :: ll_msknan2d ! logical mask for undeff detection !!---------------------------------------------------------------------- zmat8 = eoshift( zfieldn , SHIFT=-1 , BOUNDARY = (/zfieldn(:,1)/) , DIM=2 ) zmat1 = eoshift( zmat8 , SHIFT=-1 , BOUNDARY = (/zmat8(1,:)/) , DIM=1 ) zmat2 = eoshift( zfieldn , SHIFT=-1 , BOUNDARY = (/zfieldn(1,:)/) , DIM=1 ) zmat4 = eoshift( zfieldn , SHIFT= 1 , BOUNDARY = (/zfieldn(:,ilenj)/) , DIM=2 ) zmat3 = eoshift( zmat4 , SHIFT=-1 , BOUNDARY = (/zmat4(1,:)/) , DIM=1 ) zmat5 = eoshift( zmat4 , SHIFT= 1 , BOUNDARY = (/zmat4(ileni,:)/) , DIM=1 ) zmat6 = eoshift( zfieldn , SHIFT= 1 , BOUNDARY = (/zfieldn(ileni,:)/) , DIM=1 ) zmat7 = eoshift( zmat8 , SHIFT= 1 , BOUNDARY = (/zmat8(ileni,:)/) , DIM=1 ) ! zlsm3d = RESHAPE( (/ zmat1, zmat2, zmat3, zmat4, zmat5, zmat6, zmat7, zmat8 /), (/ ileni, ilenj, 8 /)) ll_msknan3d = .NOT.( zlsm3d == undeff_lsm ) ll_msknan2d = .NOT.( zfieldn == undeff_lsm ) ! FALSE where is Undeff (land) zlsm2d = SUM( zlsm3d, 3 , ll_msknan3d ) / MAX( 1 , COUNT( ll_msknan3d , 3 ) ) WHERE( COUNT( ll_msknan3d , 3 ) == 0._wp ) zlsm2d = undeff_lsm zfield = MERGE( zfieldn, zlsm2d, ll_msknan2d ) ! END SUBROUTINE seaoverland SUBROUTINE fld_interp( num, clvar, kw, kk, dta, & & nrec, lsmfile) !!--------------------------------------------------------------------- !! *** ROUTINE fld_interp *** !! !! ** Purpose : apply weights to input gridded data to create data !! on model grid !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: num ! stream number CHARACTER(LEN=*) , INTENT(in ) :: clvar ! variable name INTEGER , INTENT(in ) :: kw ! weights number INTEGER , INTENT(in ) :: kk ! vertical dimension of kk REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: dta ! output field on model grid INTEGER , INTENT(in ) :: nrec ! record number to read (ie time slice) CHARACTER(LEN=*) , INTENT(in ) :: lsmfile ! land sea mask file name ! INTEGER, DIMENSION(3) :: rec1, recn ! temporary arrays for start and length INTEGER, DIMENSION(3) :: rec1_lsm, recn_lsm ! temporary arrays for start and length in case of seaoverland INTEGER :: ii_lsm1,ii_lsm2,ij_lsm1,ij_lsm2 ! temporary indices INTEGER :: jk, jn, jm, jir, jjr ! loop counters INTEGER :: ni, nj ! lengths INTEGER :: jpimin,jpiwid ! temporary indices INTEGER :: jpimin_lsm,jpiwid_lsm ! temporary indices INTEGER :: jpjmin,jpjwid ! temporary indices INTEGER :: jpjmin_lsm,jpjwid_lsm ! temporary indices INTEGER :: jpi1,jpi2,jpj1,jpj2 ! temporary indices INTEGER :: jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm ! temporary indices INTEGER :: itmpi,itmpj,itmpz ! lengths REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: ztmp_fly_dta ! local array of values on input grid !!---------------------------------------------------------------------- ! !! for weighted interpolation we have weights at four corners of a box surrounding !! a model grid point, each weight is multiplied by a grid value (bilinear case) !! or by a grid value and gradients at the corner point (bicubic case) !! so we need to have a 4 by 4 subgrid surrounding each model point to cover both cases !! sub grid from non-model input grid which encloses all grid points in this nemo process jpimin = ref_wgts(kw)%botleft(1) jpjmin = ref_wgts(kw)%botleft(2) jpiwid = ref_wgts(kw)%jpiwgt jpjwid = ref_wgts(kw)%jpjwgt !! when reading in, expand this sub-grid by one halo point all the way round for calculating gradients rec1(1) = MAX( jpimin-1, 1 ) rec1(2) = MAX( jpjmin-1, 1 ) rec1(3) = 1 recn(1) = MIN( jpiwid+2, ref_wgts(kw)%ddims(1)-rec1(1)+1 ) recn(2) = MIN( jpjwid+2, ref_wgts(kw)%ddims(2)-rec1(2)+1 ) recn(3) = kk !! where we need to put it in the non-nemo grid fly_dta !! note that jpi1 and jpj1 only differ from 1 when jpimin and jpjmin are 1 !! (ie at the extreme west or south of the whole input grid) and similarly for jpi2 and jpj2 jpi1 = 2 + rec1(1) - jpimin jpj1 = 2 + rec1(2) - jpjmin jpi2 = jpi1 + recn(1) - 1 jpj2 = jpj1 + recn(2) - 1 IF( LEN( TRIM(lsmfile) ) > 0 ) THEN !! indeces for ztmp_fly_dta ! -------------------------- rec1_lsm(1)=MAX(rec1(1)-nn_lsm,1) ! starting index for enlarged external data, x direction rec1_lsm(2)=MAX(rec1(2)-nn_lsm,1) ! starting index for enlarged external data, y direction rec1_lsm(3) = 1 ! vertical dimension recn_lsm(1)=MIN(rec1(1)-rec1_lsm(1)+recn(1)+nn_lsm,ref_wgts(kw)%ddims(1)-rec1_lsm(1)) ! n points in x direction recn_lsm(2)=MIN(rec1(2)-rec1_lsm(2)+recn(2)+nn_lsm,ref_wgts(kw)%ddims(2)-rec1_lsm(2)) ! n points in y direction recn_lsm(3) = kk ! number of vertical levels in the input file ! Avoid out of bound jpimin_lsm = MAX( rec1_lsm(1)+1, 1 ) jpjmin_lsm = MAX( rec1_lsm(2)+1, 1 ) jpiwid_lsm = MIN( recn_lsm(1)-2,ref_wgts(kw)%ddims(1)-rec1(1)+1) jpjwid_lsm = MIN( recn_lsm(2)-2,ref_wgts(kw)%ddims(2)-rec1(2)+1) jpi1_lsm = 2+rec1_lsm(1)-jpimin_lsm jpj1_lsm = 2+rec1_lsm(2)-jpjmin_lsm jpi2_lsm = jpi1_lsm + recn_lsm(1) - 1 jpj2_lsm = jpj1_lsm + recn_lsm(2) - 1 itmpi=jpi2_lsm-jpi1_lsm+1 itmpj=jpj2_lsm-jpj1_lsm+1 itmpz=kk ALLOCATE(ztmp_fly_dta(itmpi,itmpj,itmpz)) ztmp_fly_dta(:,:,:) = 0.0 SELECT CASE( SIZE(ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),3) ) CASE(1) CALL iom_get( num, jpdom_unknown, clvar, ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,1), & & nrec, rec1_lsm, recn_lsm) CASE DEFAULT CALL iom_get( num, jpdom_unknown, clvar, ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:), & & nrec, rec1_lsm, recn_lsm) END SELECT CALL apply_seaoverland(lsmfile,ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:), & & jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm, & & itmpi,itmpj,itmpz,rec1_lsm,recn_lsm) ! Relative indeces for remapping ii_lsm1 = (rec1(1)-rec1_lsm(1))+1 ii_lsm2 = (ii_lsm1+recn(1))-1 ij_lsm1 = (rec1(2)-rec1_lsm(2))+1 ij_lsm2 = (ij_lsm1+recn(2))-1 ref_wgts(kw)%fly_dta(:,:,:) = 0.0 ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:) = ztmp_fly_dta(ii_lsm1:ii_lsm2,ij_lsm1:ij_lsm2,:) DEALLOCATE(ztmp_fly_dta) ELSE ref_wgts(kw)%fly_dta(:,:,:) = 0.0 SELECT CASE( SIZE(ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:),3) ) CASE(1) CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,1), nrec, rec1, recn) CASE DEFAULT CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:), nrec, rec1, recn) END SELECT ENDIF !! first four weights common to both bilinear and bicubic !! data_jpi, data_jpj have already been shifted to (1,1) corresponding to botleft !! note that we have to offset by 1 into fly_dta array because of halo dta(:,:,:) = 0.0 DO jk = 1,4 DO jn = 1, jpj DO jm = 1,jpi ni = ref_wgts(kw)%data_jpi(jm,jn,jk) nj = ref_wgts(kw)%data_jpj(jm,jn,jk) dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk) * ref_wgts(kw)%fly_dta(ni+1,nj+1,:) END DO END DO END DO IF (ref_wgts(kw)%numwgt .EQ. 16) THEN !! fix up halo points that we couldnt read from file IF( jpi1 == 2 ) THEN ref_wgts(kw)%fly_dta(jpi1-1,:,:) = ref_wgts(kw)%fly_dta(jpi1,:,:) ENDIF IF( jpi2 + jpimin - 1 == ref_wgts(kw)%ddims(1)+1 ) THEN ref_wgts(kw)%fly_dta(jpi2+1,:,:) = ref_wgts(kw)%fly_dta(jpi2,:,:) ENDIF IF( jpj1 == 2 ) THEN ref_wgts(kw)%fly_dta(:,jpj1-1,:) = ref_wgts(kw)%fly_dta(:,jpj1,:) ENDIF IF( jpj2 + jpjmin - 1 == ref_wgts(kw)%ddims(2)+1 .AND. jpj2 .lt. jpjwid+2 ) THEN ref_wgts(kw)%fly_dta(:,jpj2+1,:) = 2.0*ref_wgts(kw)%fly_dta(:,jpj2,:) - ref_wgts(kw)%fly_dta(:,jpj2-1,:) ENDIF !! if data grid is cyclic we can do better on east-west edges !! but have to allow for whether first and last columns are coincident IF( ref_wgts(kw)%cyclic ) THEN rec1(2) = MAX( jpjmin-1, 1 ) recn(1) = 1 recn(2) = MIN( jpjwid+2, ref_wgts(kw)%ddims(2)-rec1(2)+1 ) jpj1 = 2 + rec1(2) - jpjmin jpj2 = jpj1 + recn(2) - 1 IF( jpi1 == 2 ) THEN rec1(1) = ref_wgts(kw)%ddims(1) - ref_wgts(kw)%overlap SELECT CASE( SIZE( ref_wgts(kw)%col(:,jpj1:jpj2,:),3) ) CASE(1) CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,1), nrec, rec1, recn) CASE DEFAULT CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,:), nrec, rec1, recn) END SELECT ref_wgts(kw)%fly_dta(jpi1-1,jpj1:jpj2,:) = ref_wgts(kw)%col(1,jpj1:jpj2,:) ENDIF IF( jpi2 + jpimin - 1 == ref_wgts(kw)%ddims(1)+1 ) THEN rec1(1) = 1 + ref_wgts(kw)%overlap SELECT CASE( SIZE( ref_wgts(kw)%col(:,jpj1:jpj2,:),3) ) CASE(1) CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,1), nrec, rec1, recn) CASE DEFAULT CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,:), nrec, rec1, recn) END SELECT ref_wgts(kw)%fly_dta(jpi2+1,jpj1:jpj2,:) = ref_wgts(kw)%col(1,jpj1:jpj2,:) ENDIF ENDIF ! gradient in the i direction DO jk = 1,4 DO jn = 1, jpj DO jm = 1,jpi ni = ref_wgts(kw)%data_jpi(jm,jn,jk) nj = ref_wgts(kw)%data_jpj(jm,jn,jk) dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk+4) * 0.5 * & (ref_wgts(kw)%fly_dta(ni+2,nj+1,:) - ref_wgts(kw)%fly_dta(ni,nj+1,:)) END DO END DO END DO ! gradient in the j direction DO jk = 1,4 DO jn = 1, jpj DO jm = 1,jpi ni = ref_wgts(kw)%data_jpi(jm,jn,jk) nj = ref_wgts(kw)%data_jpj(jm,jn,jk) dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk+8) * 0.5 * & (ref_wgts(kw)%fly_dta(ni+1,nj+2,:) - ref_wgts(kw)%fly_dta(ni+1,nj,:)) END DO END DO END DO ! gradient in the ij direction DO jk = 1,4 DO jn = 1, jpj DO jm = 1,jpi ni = ref_wgts(kw)%data_jpi(jm,jn,jk) nj = ref_wgts(kw)%data_jpj(jm,jn,jk) dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk+12) * 0.25 * ( & (ref_wgts(kw)%fly_dta(ni+2,nj+2,:) - ref_wgts(kw)%fly_dta(ni ,nj+2,:)) - & (ref_wgts(kw)%fly_dta(ni+2,nj ,:) - ref_wgts(kw)%fly_dta(ni ,nj ,:))) END DO END DO END DO ! END IF ! END SUBROUTINE fld_interp FUNCTION ksec_week( cdday ) !!--------------------------------------------------------------------- !! *** FUNCTION kshift_week *** !! !! ** Purpose : return the first 3 letters of the first day of the weekly file !!--------------------------------------------------------------------- CHARACTER(len=*), INTENT(in) :: cdday ! first 3 letters of the first day of the weekly file !! INTEGER :: ksec_week ! output variable INTEGER :: ijul, ishift ! local integer CHARACTER(len=3),DIMENSION(7) :: cl_week !!---------------------------------------------------------------------- cl_week = (/"sun","sat","fri","thu","wed","tue","mon"/) DO ijul = 1, 7 IF( cl_week(ijul) == TRIM(cdday) ) EXIT END DO IF( ijul .GT. 7 ) CALL ctl_stop( 'ksec_week: wrong day for sdjf%cltype(6:8): '//TRIM(cdday) ) ! ishift = ijul * NINT(rday) ! ksec_week = nsec_week + ishift ksec_week = MOD( ksec_week, 7*NINT(rday) ) ! END FUNCTION ksec_week !!====================================================================== END MODULE fldread