MODULE icesbc !!====================================================================== !! *** MODULE icesbc *** !! Sea-Ice : air-ice sbc fields !!===================================================================== !! History : 4.0 ! 2017-08 (C. Rousset) Original code !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube] !!---------------------------------------------------------------------- #if defined key_si3 !!---------------------------------------------------------------------- !! 'key_si3' : SI3 sea-ice model !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE ice ! sea-ice: variables USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE usrdef_sbc ! Surface boundary condition: user defined USE sbcblk ! Surface boundary condition: bulk USE sbccpl ! Surface boundary condition: coupled interface USE icealb ! sea-ice: albedo ! USE in_out_manager ! I/O manager USE iom ! I/O manager library USE lib_mpp ! MPP library USE lib_fortran ! fortran utilities (glob_sum + no signed zero) USE lbclnk ! lateral boundary conditions (or mpp links) USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC ice_sbc_tau ! called by icestp.F90 PUBLIC ice_sbc_flx ! called by icestp.F90 PUBLIC ice_sbc_init ! called by icestp.F90 !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/ICE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE ice_sbc_tau( kt, ksbc, utau_ice, vtau_ice ) !!------------------------------------------------------------------- !! *** ROUTINE ice_sbc_tau *** !! !! ** Purpose : provide surface boundary condition for sea ice (momentum) !! !! ** Action : It provides the following fields: !! utau_ice, vtau_ice : surface ice stress (U- & V-points) [N/m2] !!------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time step INTEGER , INTENT(in ) :: ksbc ! type of sbc flux REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: utau_ice, vtau_ice ! air-ice stress [N/m2] !! INTEGER :: ji, jj ! dummy loop index REAL(wp), DIMENSION(jpi,jpj) :: zutau_ice, zvtau_ice !!------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('ice_sbc') ! IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*)'ice_sbc_tau: Surface boundary condition for sea ice (momentum)' WRITE(numout,*)'~~~~~~~~~~~~~~~' ENDIF ! SELECT CASE( ksbc ) CASE( jp_usr ) ; CALL usrdef_sbc_ice_tau( kt ) ! user defined formulation CASE( jp_blk ) ; CALL blk_ice_tau ! Bulk formulation CASE( jp_purecpl ) ; CALL sbc_cpl_ice_tau( utau_ice , vtau_ice ) ! Coupled formulation END SELECT ! IF( ln_mixcpl) THEN ! Case of a mixed Bulk/Coupled formulation CALL sbc_cpl_ice_tau( zutau_ice , zvtau_ice ) DO jj = 2, jpjm1 DO ji = 2, jpim1 utau_ice(ji,jj) = utau_ice(ji,jj) * xcplmask(ji,jj,0) + zutau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) ) vtau_ice(ji,jj) = vtau_ice(ji,jj) * xcplmask(ji,jj,0) + zvtau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) ) END DO END DO CALL lbc_lnk_multi( 'icesbc', utau_ice, 'U', -1., vtau_ice, 'V', -1. ) ENDIF ! IF( ln_timing ) CALL timing_stop('ice_sbc') ! END SUBROUTINE ice_sbc_tau SUBROUTINE ice_sbc_flx( kt, ksbc ) !!------------------------------------------------------------------- !! *** ROUTINE ice_sbc_flx *** !! !! ** Purpose : provide surface boundary condition for sea ice (flux) !! !! ** Action : It provides the following fields used in sea ice model: !! emp_oce , emp_ice = E-P over ocean and sea ice [Kg/m2/s] !! sprecip = solid precipitation [Kg/m2/s] !! evap_ice = sublimation [Kg/m2/s] !! qsr_tot , qns_tot = solar & non solar heat flux (total) [W/m2] !! qsr_ice , qns_ice = solar & non solar heat flux over ice [W/m2] !! dqns_ice = non solar heat sensistivity [W/m2] !! qemp_oce, qemp_ice, qprec_ice, qevap_ice = sensible heat (associated with evap & precip) [W/m2] !! + some fields that are not used outside this module: !! qla_ice = latent heat flux over ice [W/m2] !! dqla_ice = latent heat sensistivity [W/m2] !! tprecip = total precipitation [Kg/m2/s] !! alb_ice = albedo above sea ice !!------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step INTEGER, INTENT(in) :: ksbc ! flux formulation (user defined, bulk or Pure Coupled) ! INTEGER :: ji, jj, jl ! dummy loop index REAL(wp) :: zmiss_val ! missing value retrieved from xios REAL(wp), DIMENSION(jpi,jpj,jpl) :: zalb_os, zalb_cs ! ice albedo under overcast/clear sky REAL(wp), DIMENSION(:,:) , ALLOCATABLE :: zalb, zmsk00 ! 2D workspace !!-------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('ice_sbc_flx') IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*)'ice_sbc_flx: Surface boundary condition for sea ice (flux)' WRITE(numout,*)'~~~~~~~~~~~~~~~' ENDIF ! get missing value from xml CALL iom_miss_val( "icetemp", zmiss_val ) ! --- cloud-sky and overcast-sky ice albedos --- ! CALL ice_alb( t_su, h_i, h_s, ln_pnd_alb, a_ip_frac, h_ip, zalb_cs, zalb_os ) ! albedo depends on cloud fraction because of non-linear spectral effects !!gm cldf_ice is a real, DOCTOR naming rule: start with cd means CHARACTER passed in argument ! alb_ice(:,:,:) = ( 1. - cldf_ice ) * zalb_cs(:,:,:) + cldf_ice * zalb_os(:,:,:) ! ! SELECT CASE( ksbc ) !== fluxes over sea ice ==! ! CASE( jp_usr ) !--- user defined formulation CALL usrdef_sbc_ice_flx( kt, h_s, h_i ) CASE( jp_blk ) !--- bulk formulation CALL blk_ice_flx ( t_su, h_s, h_i, alb_ice ) ! IF( ln_mixcpl ) CALL sbc_cpl_ice_flx( picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i ) IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist ) ! ! compute conduction flux and surface temperature (as in Jules surface module) IF( ln_cndflx .AND. .NOT.ln_cndemulate ) & & CALL blk_ice_qcn ( ln_virtual_itd, t_su, t_bo, h_s, h_i ) CASE ( jp_purecpl ) !--- coupled formulation CALL sbc_cpl_ice_flx( picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i ) IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist ) END SELECT !--- output ice albedo and surface albedo ---! IF( iom_use('icealb') .OR. iom_use('albedo') ) THEN ALLOCATE( zalb(jpi,jpj), zmsk00(jpi,jpj) ) WHERE( at_i_b < 1.e-03 ) zmsk00(:,:) = 0._wp zalb (:,:) = rn_alb_oce ELSEWHERE zmsk00(:,:) = 1._wp zalb (:,:) = SUM( alb_ice * a_i_b, dim=3 ) / at_i_b END WHERE ! ice albedo CALL iom_put( 'icealb' , zalb * zmsk00 + zmiss_val * ( 1._wp - zmsk00 ) ) ! ice+ocean albedo zalb(:,:) = SUM( alb_ice * a_i_b, dim=3 ) + rn_alb_oce * ( 1._wp - at_i_b ) CALL iom_put( 'albedo' , zalb ) DEALLOCATE( zalb, zmsk00 ) ENDIF ! IF( ln_timing ) CALL timing_stop('ice_sbc_flx') ! END SUBROUTINE ice_sbc_flx SUBROUTINE ice_flx_dist( ptn_ice, palb_ice, pqns_ice, pqsr_ice, pdqn_ice, pevap_ice, pdevap_ice, k_flxdist ) !!------------------------------------------------------------------- !! *** ROUTINE ice_flx_dist *** !! !! ** Purpose : update the ice surface boundary condition by averaging !! and/or redistributing fluxes on ice categories !! !! ** Method : average then redistribute !! !! ** Action : depends on k_flxdist !! = -1 Do nothing (needs N(cat) fluxes) !! = 0 Average N(cat) fluxes then apply the average over the N(cat) ice !! = 1 Average N(cat) fluxes then redistribute over the N(cat) ice !! using T-ice and albedo sensitivity !! = 2 Redistribute a single flux over categories !!------------------------------------------------------------------- INTEGER , INTENT(in ) :: k_flxdist ! redistributor REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: ptn_ice ! ice surface temperature REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: palb_ice ! ice albedo REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqns_ice ! non solar flux REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqsr_ice ! net solar flux REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdqn_ice ! non solar flux sensitivity REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pevap_ice ! sublimation REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdevap_ice ! sublimation sensitivity ! INTEGER :: jl ! dummy loop index ! REAL(wp), DIMENSION(jpi,jpj) :: z1_at_i ! inverse of concentration ! REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qsr_m ! Mean solar heat flux over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qns_m ! Mean non solar heat flux over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_evap_m ! Mean sublimation over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_dqn_m ! Mean d(qns)/dT over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_devap_m ! Mean d(evap)/dT over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zalb_m ! Mean albedo over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztem_m ! Mean temperature over all categories !!---------------------------------------------------------------------- ! WHERE ( at_i (:,:) > 0._wp ) ; z1_at_i(:,:) = 1._wp / at_i (:,:) ELSEWHERE ; z1_at_i(:,:) = 0._wp END WHERE SELECT CASE( k_flxdist ) !== averaged on all ice categories ==! ! CASE( 0 , 1 ) ! ALLOCATE( z_qns_m(jpi,jpj), z_qsr_m(jpi,jpj), z_dqn_m(jpi,jpj), z_evap_m(jpi,jpj), z_devap_m(jpi,jpj) ) ! z_qns_m (:,:) = SUM( a_i(:,:,:) * pqns_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) z_qsr_m (:,:) = SUM( a_i(:,:,:) * pqsr_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) z_dqn_m (:,:) = SUM( a_i(:,:,:) * pdqn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) z_evap_m (:,:) = SUM( a_i(:,:,:) * pevap_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) z_devap_m(:,:) = SUM( a_i(:,:,:) * pdevap_ice(:,:,:) , dim=3 ) * z1_at_i(:,:) DO jl = 1, jpl pqns_ice (:,:,jl) = z_qns_m (:,:) pqsr_ice (:,:,jl) = z_qsr_m (:,:) pdqn_ice (:,:,jl) = z_dqn_m (:,:) pevap_ice (:,:,jl) = z_evap_m(:,:) pdevap_ice(:,:,jl) = z_devap_m(:,:) END DO ! DEALLOCATE( z_qns_m, z_qsr_m, z_dqn_m, z_evap_m, z_devap_m ) ! END SELECT ! SELECT CASE( k_flxdist ) !== redistribution on all ice categories ==! ! CASE( 1 , 2 ) ! ALLOCATE( zalb_m(jpi,jpj), ztem_m(jpi,jpj) ) ! zalb_m(:,:) = SUM( a_i(:,:,:) * palb_ice(:,:,:) , dim=3 ) * z1_at_i(:,:) ztem_m(:,:) = SUM( a_i(:,:,:) * ptn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) DO jl = 1, jpl pqns_ice (:,:,jl) = pqns_ice (:,:,jl) + pdqn_ice (:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) ) pevap_ice(:,:,jl) = pevap_ice(:,:,jl) + pdevap_ice(:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) ) pqsr_ice (:,:,jl) = pqsr_ice (:,:,jl) * ( 1._wp - palb_ice(:,:,jl) ) / ( 1._wp - zalb_m(:,:) ) END DO ! DEALLOCATE( zalb_m, ztem_m ) ! END SELECT ! END SUBROUTINE ice_flx_dist SUBROUTINE ice_sbc_init !!------------------------------------------------------------------- !! *** ROUTINE ice_sbc_init *** !! !! ** Purpose : Physical constants and parameters linked to the ice dynamics !! !! ** Method : Read the namsbc namelist and check the ice-dynamic !! parameter values called at the first timestep (nit000) !! !! ** input : Namelist namsbc !!------------------------------------------------------------------- INTEGER :: ios, ioptio ! Local integer !! NAMELIST/namsbc/ rn_cio, rn_blow_s, nn_flxdist, ln_cndflx, ln_cndemulate !!------------------------------------------------------------------- ! REWIND( numnam_ice_ref ) ! Namelist namsbc in reference namelist : Ice dynamics READ ( numnam_ice_ref, namsbc, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in reference namelist' ) REWIND( numnam_ice_cfg ) ! Namelist namsbc in configuration namelist : Ice dynamics READ ( numnam_ice_cfg, namsbc, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc in configuration namelist' ) IF(lwm) WRITE( numoni, namsbc ) ! IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'ice_sbc_init: ice parameters for ice dynamics ' WRITE(numout,*) '~~~~~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namsbc:' WRITE(numout,*) ' drag coefficient for oceanic stress rn_cio = ', rn_cio WRITE(numout,*) ' coefficient for ice-lead partition of snowfall rn_blow_s = ', rn_blow_s WRITE(numout,*) ' Multicategory heat flux formulation nn_flxdist = ', nn_flxdist WRITE(numout,*) ' Use conduction flux as surface condition ln_cndflx = ', ln_cndflx WRITE(numout,*) ' emulate conduction flux ln_cndemulate = ', ln_cndemulate ENDIF ! IF(lwp) WRITE(numout,*) SELECT CASE( nn_flxdist ) ! SI3 Multi-category heat flux formulation CASE( -1 ) IF(lwp) WRITE(numout,*) ' SI3: use per-category fluxes (nn_flxdist = -1) ' CASE( 0 ) IF(lwp) WRITE(numout,*) ' SI3: use average per-category fluxes (nn_flxdist = 0) ' CASE( 1 ) IF(lwp) WRITE(numout,*) ' SI3: use average then redistribute per-category fluxes (nn_flxdist = 1) ' IF( ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in coupled mode must be /=1' ) CASE( 2 ) IF(lwp) WRITE(numout,*) ' SI3: Redistribute a single flux over categories (nn_flxdist = 2) ' IF( .NOT. ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in forced mode must be /=2' ) CASE DEFAULT CALL ctl_stop( 'ice_thd_init: SI3 option, nn_flxdist, should be between -1 and 2' ) END SELECT ! END SUBROUTINE ice_sbc_init #else !!---------------------------------------------------------------------- !! Default option : Empty module NO SI3 sea-ice model !!---------------------------------------------------------------------- #endif !!====================================================================== END MODULE icesbc