MODULE diawri !!====================================================================== !! *** MODULE diawri *** !! Ocean diagnostics : write ocean output files !!===================================================================== !! History : OPA ! 1991-03 (M.-A. Foujols) Original code !! 4.0 ! 1991-11 (G. Madec) !! ! 1992-06 (M. Imbard) correction restart file !! ! 1992-07 (M. Imbard) split into diawri and rstwri !! ! 1993-03 (M. Imbard) suppress writibm !! ! 1998-01 (C. Levy) NETCDF format using ioipsl INTERFACE !! ! 1999-02 (E. Guilyardi) name of netCDF files + variables !! 8.2 ! 2000-06 (M. Imbard) Original code (diabort.F) !! NEMO 1.0 ! 2002-06 (A.Bozec, E. Durand) Original code (diainit.F) !! - ! 2002-09 (G. Madec) F90: Free form and module !! - ! 2002-12 (G. Madec) merge of diabort and diainit, F90 !! ! 2005-11 (V. Garnier) Surface pressure gradient organization !! 3.2 ! 2008-11 (B. Lemaire) creation from old diawri !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dia_wri : create the standart output files !! dia_wri_state : create an output NetCDF file for a single instantaeous ocean state and forcing fields !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE dynadv, ONLY: ln_dynadv_vec USE zdf_oce ! ocean vertical physics USE ldftra_oce ! ocean active tracers: lateral physics USE ldfdyn_oce ! ocean dynamics: lateral physics USE traldf_iso_grif, ONLY : psix_eiv, psiy_eiv USE sol_oce ! solver variables USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE icb_oce ! Icebergs USE icbdia ! Iceberg budgets USE sbcssr ! restoring term toward SST/SSS climatology USE phycst ! physical constants USE zdfmxl ! mixed layer USE dianam ! build name of file (routine) USE zdftke ! vertical physics: one-equation scheme USE zdfddm ! vertical physics: double diffusion USE diahth ! thermocline diagnostics USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE in_out_manager ! I/O manager USE diadimg ! dimg direct access file format output USE iom USE ioipsl USE dynspg_oce, ONLY: un_adv, vn_adv ! barotropic velocities USE insitu_tem, ONLY: insitu_t, theta2t #if defined key_lim2 USE limwri_2 #elif defined key_lim3 USE limwri #endif USE lib_mpp ! MPP library USE timing ! preformance summary USE wrk_nemo ! working array IMPLICIT NONE PRIVATE PUBLIC dia_wri ! routines called by step.F90 PUBLIC dia_wri_state PUBLIC dia_wri_alloc ! Called by nemogcm module INTEGER :: nid_T, nz_T, nh_T, ndim_T, ndim_hT ! grid_T file INTEGER :: nb_T , ndim_bT ! grid_T file INTEGER :: nid_U, nz_U, nh_U, ndim_U, ndim_hU ! grid_U file INTEGER :: nid_V, nz_V, nh_V, ndim_V, ndim_hV ! grid_V file INTEGER :: nid_W, nz_W, nh_W ! grid_W file INTEGER :: ndex(1) ! ??? INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_hT, ndex_hU, ndex_hV INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_T, ndex_U, ndex_V INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_bT !! * Substitutions # include "zdfddm_substitute.h90" # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION dia_wri_alloc() !!---------------------------------------------------------------------- INTEGER, DIMENSION(2) :: ierr !!---------------------------------------------------------------------- ierr = 0 ALLOCATE( ndex_hT(jpi*jpj) , ndex_T(jpi*jpj*jpk) , & & ndex_hU(jpi*jpj) , ndex_U(jpi*jpj*jpk) , & & ndex_hV(jpi*jpj) , ndex_V(jpi*jpj*jpk) , STAT=ierr(1) ) ! dia_wri_alloc = MAXVAL(ierr) IF( lk_mpp ) CALL mpp_sum( dia_wri_alloc ) ! END FUNCTION dia_wri_alloc #if defined key_dimgout !!---------------------------------------------------------------------- !! 'key_dimgout' DIMG output file !!---------------------------------------------------------------------- # include "diawri_dimg.h90" #else !!---------------------------------------------------------------------- !! Default option NetCDF output file !!---------------------------------------------------------------------- # if defined key_iomput !!---------------------------------------------------------------------- !! 'key_iomput' use IOM library !!---------------------------------------------------------------------- SUBROUTINE dia_wri( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE dia_wri *** !! !! ** Purpose : Standard output of opa: dynamics and tracer fields !! NETCDF format is used by default !! !! ** Method : use iom_put !!---------------------------------------------------------------------- !! INTEGER, INTENT( in ) :: kt ! ocean time-step index !! INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: jkbot ! REAL(wp) :: zztmp, zztmpx, zztmpy ! !! REAL(wp), POINTER, DIMENSION(:,:) :: z2d ! 2D workspace REAL(wp), POINTER, DIMENSION(:,:,:) :: z3d ! 3D workspace !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dia_wri') ! CALL wrk_alloc( jpi , jpj , z2d ) CALL wrk_alloc( jpi , jpj, jpk , z3d ) ! ! Output the initial state and forcings IF( ninist == 1 ) THEN CALL dia_wri_state( 'output.init', kt ) ninist = 0 ENDIF ! Output of initial vertical scale factor CALL iom_put("e3t_0", e3t_0(:,:,:) ) CALL iom_put("e3u_0", e3t_0(:,:,:) ) CALL iom_put("e3v_0", e3t_0(:,:,:) ) ! CALL iom_put( "e3t" , fse3t_n(:,:,:) ) CALL iom_put( "e3u" , fse3u_n(:,:,:) ) CALL iom_put( "e3v" , fse3v_n(:,:,:) ) CALL iom_put( "e3w" , fse3w_n(:,:,:) ) IF( iom_use("e3tdef") ) & CALL iom_put( "e3tdef" , ( ( fse3t_n(:,:,:) - e3t_0(:,:,:) ) / e3t_0(:,:,:) * 100 * tmask(:,:,:) ) ** 2 ) CALL iom_put("tpt_dep", fsdept_n(:,:,:) ) CALL iom_put("wpt_dep", fsdepw_n(:,:,:) ) CALL iom_put( "ssh" , sshn ) ! sea surface height CALL iom_put( "toce", tsn(:,:,:,jp_tem) ) ! 3D temperature CALL theta2t ! in-situ temperature conversion CALL iom_put( "tinsitu", insitu_t(:,:,:)) ! in-situ temperature CALL iom_put( "sst", tsn(:,:,1,jp_tem) ) ! surface temperature IF ( iom_use("sbt") ) THEN DO jj = 1, jpj DO ji = 1, jpi jkbot = mbkt(ji,jj) z2d(ji,jj) = tsn(ji,jj,jkbot,jp_tem) END DO END DO CALL iom_put( "sbt", z2d ) ! bottom temperature ENDIF CALL iom_put( "soce", tsn(:,:,:,jp_sal) ) ! 3D salinity CALL iom_put( "sss", tsn(:,:,1,jp_sal) ) ! surface salinity IF ( iom_use("sbs") ) THEN DO jj = 1, jpj DO ji = 1, jpi jkbot = mbkt(ji,jj) z2d(ji,jj) = tsn(ji,jj,jkbot,jp_sal) END DO END DO CALL iom_put( "sbs", z2d ) ! bottom salinity ENDIF IF ( iom_use("taubot") ) THEN ! bottom stress z2d(:,:) = 0._wp DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zztmpx = ( bfrua(ji ,jj) * un(ji ,jj,mbku(ji ,jj)) & & + bfrua(ji-1,jj) * un(ji-1,jj,mbku(ji-1,jj)) ) zztmpy = ( bfrva(ji, jj) * vn(ji,jj ,mbkv(ji,jj )) & & + bfrva(ji,jj-1) * vn(ji,jj-1,mbkv(ji,jj-1)) ) z2d(ji,jj) = rau0 * SQRT( zztmpx * zztmpx + zztmpy * zztmpy ) * tmask(ji,jj,1) ! ENDDO ENDDO CALL lbc_lnk( z2d, 'T', 1. ) CALL iom_put( "taubot", z2d ) ENDIF CALL iom_put( "uoce", un(:,:,:) ) ! 3D i-current CALL iom_put( "ssu", un(:,:,1) ) ! surface i-current IF ( iom_use("sbu") ) THEN DO jj = 1, jpj DO ji = 1, jpi jkbot = mbku(ji,jj) z2d(ji,jj) = un(ji,jj,jkbot) END DO END DO CALL iom_put( "sbu", z2d ) ! bottom i-current ENDIF #if defined key_dynspg_ts CALL iom_put( "ubar", un_adv(:,:) ) ! barotropic i-current #else CALL iom_put( "ubar", un_b(:,:) ) ! barotropic i-current #endif CALL iom_put( "voce", vn(:,:,:) ) ! 3D j-current CALL iom_put( "ssv", vn(:,:,1) ) ! surface j-current IF ( iom_use("sbv") ) THEN DO jj = 1, jpj DO ji = 1, jpi jkbot = mbkv(ji,jj) z2d(ji,jj) = vn(ji,jj,jkbot) END DO END DO CALL iom_put( "sbv", z2d ) ! bottom j-current ENDIF #if defined key_dynspg_ts CALL iom_put( "vbar", vn_adv(:,:) ) ! barotropic j-current #else CALL iom_put( "vbar", vn_b(:,:) ) ! barotropic j-current #endif CALL iom_put( "woce", wn ) ! vertical velocity IF( iom_use('w_masstr') .OR. iom_use('w_masstr2') ) THEN ! vertical mass transport & its square value ! Caution: in the VVL case, it only correponds to the baroclinic mass transport. z2d(:,:) = rau0 * e12t(:,:) DO jk = 1, jpk z3d(:,:,jk) = wn(:,:,jk) * z2d(:,:) END DO CALL lbc_lnk( z3d(:,:,:), 'W', 1. ) CALL iom_put( "w_masstr" , z3d ) IF( iom_use('w_masstr2') ) CALL iom_put( "w_masstr2", z3d(:,:,:) * z3d(:,:,:) ) ENDIF CALL iom_put( "avt" , avt ) ! T vert. eddy diff. coef. CALL iom_put( "avm" , avmu ) ! T vert. eddy visc. coef. IF( lk_zdftke ) THEN CALL iom_put( "tke" , en ) ! TKE budget: Turbulent Kinetic Energy CALL iom_put( "tke_niw" , e_niw ) ! TKE budget: Near-inertial waves ENDIF CALL iom_put( "avs" , fsavs(:,:,:) ) ! S vert. eddy diff. coef. (useful only with key_zdfddm) ! Log of eddy diff coef IF( iom_use('logavt') ) CALL iom_put( "logavt", LOG( MAX( 1.e-20_wp, avt (:,:,:) ) ) ) IF( iom_use('logavs') ) CALL iom_put( "logavs", LOG( MAX( 1.e-20_wp, fsavs(:,:,:) ) ) ) IF ( iom_use("sstgrad") .OR. iom_use("sstgrad2") ) THEN DO jj = 2, jpjm1 ! sst gradient DO ji = fs_2, fs_jpim1 ! vector opt. zztmp = tsn(ji,jj,1,jp_tem) zztmpx = ( tsn(ji+1,jj ,1,jp_tem) - zztmp ) / e1u(ji,jj) + ( zztmp - tsn(ji-1,jj ,1,jp_tem) ) / e1u(ji-1,jj ) zztmpy = ( tsn(ji ,jj+1,1,jp_tem) - zztmp ) / e2v(ji,jj) + ( zztmp - tsn(ji ,jj-1,1,jp_tem) ) / e2v(ji ,jj-1) z2d(ji,jj) = 0.25 * ( zztmpx * zztmpx + zztmpy * zztmpy ) & & * umask(ji,jj,1) * umask(ji-1,jj,1) * vmask(ji,jj,1) * umask(ji,jj-1,1) END DO END DO CALL lbc_lnk( z2d, 'T', 1. ) CALL iom_put( "sstgrad2", z2d ) ! square of module of sst gradient z2d(:,:) = SQRT( z2d(:,:) ) CALL iom_put( "sstgrad" , z2d ) ! module of sst gradient ENDIF ! clem: heat and salt content IF( iom_use("heatc") ) THEN z2d(:,:) = 0._wp DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi z2d(ji,jj) = z2d(ji,jj) + fse3t(ji,jj,jk) * tsn(ji,jj,jk,jp_tem) * tmask(ji,jj,jk) END DO END DO END DO CALL iom_put( "heatc", (rau0 * rcp) * z2d ) ! vertically integrated heat content (J/m2) ENDIF IF( iom_use("saltc") ) THEN z2d(:,:) = 0._wp DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi z2d(ji,jj) = z2d(ji,jj) + fse3t(ji,jj,jk) * tsn(ji,jj,jk,jp_sal) * tmask(ji,jj,jk) END DO END DO END DO CALL iom_put( "saltc", rau0 * z2d ) ! vertically integrated salt content (PSU*kg/m2) ENDIF ! IF ( iom_use("eken") ) THEN rke(:,:,jk) = 0._wp ! kinetic energy DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zztmp = 1._wp / ( e1e2t(ji,jj) * fse3t(ji,jj,jk) ) zztmpx = 0.5 * ( un(ji-1,jj,jk) * un(ji-1,jj,jk) * e2u(ji-1,jj) * fse3u(ji-1,jj,jk) & & + un(ji ,jj,jk) * un(ji ,jj,jk) * e2u(ji ,jj) * fse3u(ji ,jj,jk) ) & & * zztmp ! zztmpy = 0.5 * ( vn(ji,jj-1,jk) * vn(ji,jj-1,jk) * e1v(ji,jj-1) * fse3v(ji,jj-1,jk) & & + vn(ji,jj ,jk) * vn(ji,jj ,jk) * e1v(ji,jj ) * fse3v(ji,jj ,jk) ) & & * zztmp ! rke(ji,jj,jk) = 0.5_wp * ( zztmpx + zztmpy ) ! ENDDO ENDDO ENDDO CALL lbc_lnk( rke, 'T', 1. ) CALL iom_put( "eken", rke ) ENDIF ! CALL iom_put( "hdiv", hdivn ) ! Horizontal divergence ! IF( iom_use("u_masstr") .OR. iom_use("u_masstr_vint") .OR. iom_use("u_heattr") .OR. iom_use("u_salttr") ) THEN z3d(:,:,jpk) = 0.e0 z2d(:,:) = 0.e0 DO jk = 1, jpkm1 z3d(:,:,jk) = rau0 * un(:,:,jk) * e2u(:,:) * fse3u(:,:,jk) * umask(:,:,jk) z2d(:,:) = z2d(:,:) + z3d(:,:,jk) END DO CALL lbc_lnk( z3d(:,:,:), 'U', -1. ) CALL iom_put( "u_masstr", z3d ) ! mass transport in i-direction CALL lbc_lnk( z2d(:,:), 'U', -1. ) CALL iom_put( "u_masstr_vint", z2d ) ! mass transport in i-direction vertical sum ENDIF IF( iom_use("u_heattr") ) THEN z2d(:,:) = 0.e0 DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_tem) + tsn(ji+1,jj,jk,jp_tem) ) END DO END DO END DO CALL lbc_lnk( z2d, 'U', -1. ) CALL iom_put( "u_heattr", (0.5 * rcp) * z2d ) ! heat transport in i-direction ENDIF IF( iom_use("u_salttr") ) THEN z2d(:,:) = 0.e0 DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_sal) + tsn(ji+1,jj,jk,jp_sal) ) END DO END DO END DO CALL lbc_lnk( z2d, 'U', -1. ) CALL iom_put( "u_salttr", 0.5 * z2d ) ! heat transport in i-direction ENDIF IF( iom_use("v_masstr") .OR. iom_use("v_heattr") .OR. iom_use("v_salttr") ) THEN z3d(:,:,jpk) = 0.e0 DO jk = 1, jpkm1 z3d(:,:,jk) = rau0 * vn(:,:,jk) * e1v(:,:) * fse3v(:,:,jk) * vmask(:,:,jk) END DO CALL lbc_lnk( z3d(:,:,:), 'V', -1. ) CALL iom_put( "v_masstr", z3d ) ! mass transport in j-direction ENDIF IF( iom_use("v_heattr") ) THEN z2d(:,:) = 0.e0 DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_tem) + tsn(ji,jj+1,jk,jp_tem) ) END DO END DO END DO CALL lbc_lnk( z2d, 'V', -1. ) CALL iom_put( "v_heattr", (0.5 * rcp) * z2d ) ! heat transport in j-direction ENDIF IF( iom_use("v_salttr") ) THEN z2d(:,:) = 0.e0 DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_sal) + tsn(ji,jj+1,jk,jp_sal) ) END DO END DO END DO CALL lbc_lnk( z2d, 'V', -1. ) CALL iom_put( "v_salttr", 0.5 * z2d ) ! heat transport in j-direction ENDIF ! Vertical integral of temperature IF( iom_use("tosmint") ) THEN z2d(:,:)=0._wp DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + rau0 * fse3t(ji,jj,jk) * tsn(ji,jj,jk,jp_tem) END DO END DO END DO CALL lbc_lnk( z2d, 'T', -1. ) CALL iom_put( "tosmint", z2d ) ENDIF ! Vertical integral of salinity IF( iom_use("somint") ) THEN z2d(:,:)=0._wp DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + rau0 * fse3t(ji,jj,jk) * tsn(ji,jj,jk,jp_sal) END DO END DO END DO CALL lbc_lnk( z2d, 'T', -1. ) CALL iom_put( "somint", z2d ) ENDIF CALL iom_put( "bn2", rn2 ) !Brunt-Vaisala buoyancy frequency (N^2) ! CALL wrk_dealloc( jpi , jpj , z2d ) CALL wrk_dealloc( jpi , jpj, jpk , z3d ) ! IF( nn_timing == 1 ) CALL timing_stop('dia_wri') ! END SUBROUTINE dia_wri #else !!---------------------------------------------------------------------- !! Default option use IOIPSL library !!---------------------------------------------------------------------- SUBROUTINE dia_wri( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE dia_wri *** !! !! ** Purpose : Standard output of opa: dynamics and tracer fields !! NETCDF format is used by default !! !! ** Method : At the beginning of the first time step (nit000), !! define all the NETCDF files and fields !! At each time step call histdef to compute the mean if ncessary !! Each nwrite time step, output the instantaneous or mean fields !!---------------------------------------------------------------------- !! INTEGER, INTENT( in ) :: kt ! ocean time-step index !! LOGICAL :: ll_print = .FALSE. ! =T print and flush numout CHARACTER (len=40) :: clhstnam, clop, clmx ! local names INTEGER :: inum = 11 ! temporary logical unit INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: ierr ! error code return from allocation INTEGER :: iimi, iima, ipk, it, itmod, ijmi, ijma ! local integers INTEGER :: jn, ierror ! local integers REAL(wp) :: zsto, zout, zmax, zjulian, zdt ! local scalars !! REAL(wp), POINTER, DIMENSION(:,:) :: zw2d ! 2D workspace REAL(wp), POINTER, DIMENSION(:,:,:) :: zw3d ! 3D workspace !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dia_wri') ! CALL wrk_alloc( jpi , jpj , zw2d ) IF ( ln_traldf_gdia .OR. lk_vvl ) call wrk_alloc( jpi , jpj , jpk , zw3d ) ! ! Output the initial state and forcings IF( ninist == 1 ) THEN CALL dia_wri_state( 'output.init', kt ) ninist = 0 ENDIF ! ! 0. Initialisation ! ----------------- ! local variable for debugging ll_print = .FALSE. ll_print = ll_print .AND. lwp ! Define frequency of output and means zdt = rdt IF( nacc == 1 ) zdt = rdtmin clop = "x" ! no use of the mask value (require less cpu time, and otherwise the model crashes) #if defined key_diainstant zsto = nwrite * zdt clop = "inst("//TRIM(clop)//")" #else zsto=zdt clop = "ave("//TRIM(clop)//")" #endif zout = nwrite * zdt zmax = ( nitend - nit000 + 1 ) * zdt ! Define indices of the horizontal output zoom and vertical limit storage iimi = 1 ; iima = jpi ijmi = 1 ; ijma = jpj ipk = jpk ! define time axis it = kt itmod = kt - nit000 + 1 ! 1. Define NETCDF files and fields at beginning of first time step ! ----------------------------------------------------------------- IF( kt == nit000 ) THEN ! Define the NETCDF files (one per grid) ! Compute julian date from starting date of the run CALL ymds2ju( nyear, nmonth, nday, rdt, zjulian ) zjulian = zjulian - adatrj ! set calendar origin to the beginning of the experiment IF(lwp)WRITE(numout,*) IF(lwp)WRITE(numout,*) 'Date 0 used :', nit000, ' YEAR ', nyear, & & ' MONTH ', nmonth, ' DAY ', nday, 'Julian day : ', zjulian IF(lwp)WRITE(numout,*) ' indexes of zoom = ', iimi, iima, ijmi, ijma, & ' limit storage in depth = ', ipk ! WRITE root name in date.file for use by postpro IF(lwp) THEN CALL dia_nam( clhstnam, nwrite,' ' ) CALL ctl_opn( inum, 'date.file', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, numout, lwp, narea ) WRITE(inum,*) clhstnam CLOSE(inum) ENDIF ! Define the T grid FILE ( nid_T ) CALL dia_nam( clhstnam, nwrite, 'grid_T' ) IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & & nit000-1, zjulian, zdt, nh_T, nid_T, domain_id=nidom, snc4chunks=snc4set ) CALL histvert( nid_T, "deptht", "Vertical T levels", & ! Vertical grid: gdept & "m", ipk, gdept_1d, nz_T, "down" ) ! ! Index of ocean points CALL wheneq( jpi*jpj*ipk, tmask, 1, 1., ndex_T , ndim_T ) ! volume CALL wheneq( jpi*jpj , tmask, 1, 1., ndex_hT, ndim_hT ) ! surface ! IF( ln_icebergs ) THEN ! !! allocation cant go in dia_wri_alloc because ln_icebergs is only set after !! that routine is called from nemogcm, so do it here immediately before its needed ALLOCATE( ndex_bT(jpi*jpj*nclasses), STAT=ierror ) IF( lk_mpp ) CALL mpp_sum( ierror ) IF( ierror /= 0 ) THEN CALL ctl_stop('dia_wri: failed to allocate iceberg diagnostic array') RETURN ENDIF ! !! iceberg vertical coordinate is class number CALL histvert( nid_T, "class", "Iceberg class", & ! Vertical grid: class & "number", nclasses, class_num, nb_T ) ! !! each class just needs the surface index pattern ndim_bT = 3 DO jn = 1,nclasses ndex_bT((jn-1)*jpi*jpj+1:jn*jpi*jpj) = ndex_hT(1:jpi*jpj) ENDDO ! ENDIF ! Define the U grid FILE ( nid_U ) CALL dia_nam( clhstnam, nwrite, 'grid_U' ) IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename CALL histbeg( clhstnam, jpi, glamu, jpj, gphiu, & ! Horizontal grid: glamu and gphiu & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & & nit000-1, zjulian, zdt, nh_U, nid_U, domain_id=nidom, snc4chunks=snc4set ) CALL histvert( nid_U, "depthu", "Vertical U levels", & ! Vertical grid: gdept & "m", ipk, gdept_1d, nz_U, "down" ) ! ! Index of ocean points CALL wheneq( jpi*jpj*ipk, umask, 1, 1., ndex_U , ndim_U ) ! volume CALL wheneq( jpi*jpj , umask, 1, 1., ndex_hU, ndim_hU ) ! surface ! Define the V grid FILE ( nid_V ) CALL dia_nam( clhstnam, nwrite, 'grid_V' ) ! filename IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam CALL histbeg( clhstnam, jpi, glamv, jpj, gphiv, & ! Horizontal grid: glamv and gphiv & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & & nit000-1, zjulian, zdt, nh_V, nid_V, domain_id=nidom, snc4chunks=snc4set ) CALL histvert( nid_V, "depthv", "Vertical V levels", & ! Vertical grid : gdept & "m", ipk, gdept_1d, nz_V, "down" ) ! ! Index of ocean points CALL wheneq( jpi*jpj*ipk, vmask, 1, 1., ndex_V , ndim_V ) ! volume CALL wheneq( jpi*jpj , vmask, 1, 1., ndex_hV, ndim_hV ) ! surface ! Define the W grid FILE ( nid_W ) CALL dia_nam( clhstnam, nwrite, 'grid_W' ) ! filename IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & & nit000-1, zjulian, zdt, nh_W, nid_W, domain_id=nidom, snc4chunks=snc4set ) CALL histvert( nid_W, "depthw", "Vertical W levels", & ! Vertical grid: gdepw & "m", ipk, gdepw_1d, nz_W, "down" ) ! Declare all the output fields as NETCDF variables ! !!! nid_T : 3D CALL histdef( nid_T, "votemper", "Temperature" , "C" , & ! tn & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) CALL histdef( nid_T, "vosaline", "Salinity" , "PSU" , & ! sn & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) IF( lk_vvl ) THEN CALL histdef( nid_T, "vovvle3t", "Level thickness" , "m" ,& ! e3t_n & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) CALL histdef( nid_T, "vovvldep", "T point depth" , "m" ,& ! e3t_n & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) CALL histdef( nid_T, "vovvldef", "Squared level deformation" , "%^2" ,& ! e3t_n & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) ENDIF ! !!! nid_T : 2D CALL histdef( nid_T, "sosstsst", "Sea Surface temperature" , "C" , & ! sst & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sosaline", "Sea Surface Salinity" , "PSU" , & ! sss & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sossheig", "Sea Surface Height" , "m" , & ! ssh & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sowaflup", "Net Upward Water Flux" , "Kg/m2/s", & ! (emp-rnf) & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sorunoff", "River runoffs" , "Kg/m2/s", & ! runoffs & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sosfldow", "downward salt flux" , "PSU/m2/s", & ! sfx & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) IF( .NOT. lk_vvl ) THEN CALL histdef( nid_T, "sosst_cd", "Concentration/Dilution term on temperature" & ! emp * tsn(:,:,1,jp_tem) & , "KgC/m2/s", & ! sosst_cd & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sosss_cd", "Concentration/Dilution term on salinity" & ! emp * tsn(:,:,1,jp_sal) & , "KgPSU/m2/s",& ! sosss_cd & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) ENDIF CALL histdef( nid_T, "sohefldo", "Net Downward Heat Flux" , "W/m2" , & ! qns + qsr & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "soshfldo", "Shortwave Radiation" , "W/m2" , & ! qsr & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "somixhgt", "Turbocline Depth" , "m" , & ! hmld & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "somxl010", "Mixed Layer Depth 0.01" , "m" , & ! hmlp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "soicecov", "Ice fraction" , "[0,1]" , & ! fr_i & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sowindsp", "wind speed at 10m" , "m/s" , & ! wndm & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) ! IF( ln_icebergs ) THEN CALL histdef( nid_T, "calving" , "calving mass input" , "kg/s" , & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "calving_heat" , "calving heat flux" , "XXXX" , & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "berg_floating_melt" , "Melt rate of icebergs + bits" , "kg/m2/s", & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "berg_stored_ice" , "Accumulated ice mass by class" , "kg" , & & jpi, jpj, nh_T, nclasses , 1, nclasses , nb_T , 32, clop, zsto, zout ) IF( ln_bergdia ) THEN CALL histdef( nid_T, "berg_melt" , "Melt rate of icebergs" , "kg/m2/s", & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "berg_buoy_melt" , "Buoyancy component of iceberg melt rate" , "kg/m2/s", & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "berg_eros_melt" , "Erosion component of iceberg melt rate" , "kg/m2/s", & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "berg_conv_melt" , "Convective component of iceberg melt rate", "kg/m2/s", & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "berg_virtual_area" , "Virtual coverage by icebergs" , "m2" , & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "bits_src" , "Mass source of bergy bits" , "kg/m2/s", & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "bits_melt" , "Melt rate of bergy bits" , "kg/m2/s", & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "bits_mass" , "Bergy bit density field" , "kg/m2" , & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "berg_mass" , "Iceberg density field" , "kg/m2" , & & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "berg_real_calving" , "Calving into iceberg class" , "kg/s" , & & jpi, jpj, nh_T, nclasses , 1, nclasses , nb_T , 32, clop, zsto, zout ) ENDIF ENDIF IF( .NOT. ln_cpl ) THEN CALL histdef( nid_T, "sohefldp", "Surface Heat Flux: Damping" , "W/m2" , & ! qrp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sowafldp", "Surface Water Flux: Damping" , "Kg/m2/s", & ! erp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sosafldp", "Surface salt flux: damping" , "Kg/m2/s", & ! erp * sn & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) ENDIF IF( ln_cpl .AND. nn_ice <= 1 ) THEN CALL histdef( nid_T, "sohefldp", "Surface Heat Flux: Damping" , "W/m2" , & ! qrp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sowafldp", "Surface Water Flux: Damping" , "Kg/m2/s", & ! erp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sosafldp", "Surface salt flux: Damping" , "Kg/m2/s", & ! erp * sn & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) ENDIF clmx ="l_max(only(x))" ! max index on a period CALL histdef( nid_T, "sobowlin", "Bowl Index" , "W-point", & ! bowl INDEX & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clmx, zsto, zout ) #if defined key_diahth CALL histdef( nid_T, "sothedep", "Thermocline Depth" , "m" , & ! hth & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "so20chgt", "Depth of 20C isotherm" , "m" , & ! hd20 & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "so28chgt", "Depth of 28C isotherm" , "m" , & ! hd28 & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sohtc300", "Heat content 300 m" , "W" , & ! htc3 & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) #endif IF( ln_cpl .AND. nn_ice == 2 ) THEN CALL histdef( nid_T,"soicetem" , "Ice Surface Temperature" , "K" , & ! tn_ice & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T,"soicealb" , "Ice Albedo" , "[0,1]" , & ! alb_ice & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) ENDIF CALL histend( nid_T, snc4chunks=snc4set ) ! !!! nid_U : 3D CALL histdef( nid_U, "vozocrtx", "Zonal Current" , "m/s" , & ! un & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout ) IF( ln_traldf_gdia ) THEN CALL histdef( nid_U, "vozoeivu", "Zonal EIV Current" , "m/s" , & ! u_eiv & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout ) ELSE #if defined key_diaeiv CALL histdef( nid_U, "vozoeivu", "Zonal EIV Current" , "m/s" , & ! u_eiv & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout ) #endif END IF ! !!! nid_U : 2D CALL histdef( nid_U, "sozotaux", "Wind Stress along i-axis" , "N/m2" , & ! utau & jpi, jpj, nh_U, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) CALL histend( nid_U, snc4chunks=snc4set ) ! !!! nid_V : 3D CALL histdef( nid_V, "vomecrty", "Meridional Current" , "m/s" , & ! vn & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout ) IF( ln_traldf_gdia ) THEN CALL histdef( nid_V, "vomeeivv", "Meridional EIV Current" , "m/s" , & ! v_eiv & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout ) ELSE #if defined key_diaeiv CALL histdef( nid_V, "vomeeivv", "Meridional EIV Current" , "m/s" , & ! v_eiv & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout ) #endif END IF ! !!! nid_V : 2D CALL histdef( nid_V, "sometauy", "Wind Stress along j-axis" , "N/m2" , & ! vtau & jpi, jpj, nh_V, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) CALL histend( nid_V, snc4chunks=snc4set ) ! !!! nid_W : 3D CALL histdef( nid_W, "vovecrtz", "Vertical Velocity" , "m/s" , & ! wn & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) IF( ln_traldf_gdia ) THEN CALL histdef( nid_W, "voveeivw", "Vertical EIV Velocity" , "m/s" , & ! w_eiv & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) ELSE #if defined key_diaeiv CALL histdef( nid_W, "voveeivw", "Vertical EIV Velocity" , "m/s" , & ! w_eiv & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) #endif END IF CALL histdef( nid_W, "votkeavt", "Vertical Eddy Diffusivity" , "m2/s" , & ! avt & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) CALL histdef( nid_W, "votkeavm", "Vertical Eddy Viscosity" , "m2/s" , & ! avmu & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) IF( lk_zdfddm ) THEN CALL histdef( nid_W,"voddmavs","Salt Vertical Eddy Diffusivity" , "m2/s" , & ! avs & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) ENDIF ! !!! nid_W : 2D #if defined key_traldf_c2d CALL histdef( nid_W, "soleahtw", "lateral eddy diffusivity" , "m2/s" , & ! ahtw & jpi, jpj, nh_W, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) # if defined key_traldf_eiv CALL histdef( nid_W, "soleaeiw", "eddy induced vel. coeff. at w-point", "m2/s", & ! aeiw & jpi, jpj, nh_W, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) # endif #endif CALL histend( nid_W, snc4chunks=snc4set ) IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'End of NetCDF Initialization' IF(ll_print) CALL FLUSH(numout ) ENDIF ! 2. Start writing data ! --------------------- ! ndex(1) est utilise ssi l'avant dernier argument est different de ! la taille du tableau en sortie. Dans ce cas , l'avant dernier argument ! donne le nombre d'elements, et ndex la liste des indices a sortir IF( lwp .AND. MOD( itmod, nwrite ) == 0 ) THEN WRITE(numout,*) 'dia_wri : write model outputs in NetCDF files at ', kt, 'time-step' WRITE(numout,*) '~~~~~~ ' ENDIF IF( lk_vvl ) THEN CALL histwrite( nid_T, "votemper", it, tsn(:,:,:,jp_tem) * fse3t_n(:,:,:) , ndim_T , ndex_T ) ! heat content CALL histwrite( nid_T, "vosaline", it, tsn(:,:,:,jp_sal) * fse3t_n(:,:,:) , ndim_T , ndex_T ) ! salt content CALL histwrite( nid_T, "sosstsst", it, tsn(:,:,1,jp_tem) * fse3t_n(:,:,1) , ndim_hT, ndex_hT ) ! sea surface heat content CALL histwrite( nid_T, "sosaline", it, tsn(:,:,1,jp_sal) * fse3t_n(:,:,1) , ndim_hT, ndex_hT ) ! sea surface salinity content ELSE CALL histwrite( nid_T, "votemper", it, tsn(:,:,:,jp_tem) , ndim_T , ndex_T ) ! temperature CALL histwrite( nid_T, "vosaline", it, tsn(:,:,:,jp_sal) , ndim_T , ndex_T ) ! salinity CALL histwrite( nid_T, "sosstsst", it, tsn(:,:,1,jp_tem) , ndim_hT, ndex_hT ) ! sea surface temperature CALL histwrite( nid_T, "sosaline", it, tsn(:,:,1,jp_sal) , ndim_hT, ndex_hT ) ! sea surface salinity ENDIF IF( lk_vvl ) THEN zw3d(:,:,:) = ( ( fse3t_n(:,:,:) - e3t_0(:,:,:) ) / e3t_0(:,:,:) * 100 * tmask(:,:,:) ) ** 2 CALL histwrite( nid_T, "vovvle3t", it, fse3t_n (:,:,:) , ndim_T , ndex_T ) ! level thickness CALL histwrite( nid_T, "vovvldep", it, fsdept_n(:,:,:) , ndim_T , ndex_T ) ! t-point depth CALL histwrite( nid_T, "vovvldef", it, zw3d , ndim_T , ndex_T ) ! level thickness deformation ENDIF CALL histwrite( nid_T, "sossheig", it, sshn , ndim_hT, ndex_hT ) ! sea surface height CALL histwrite( nid_T, "sowaflup", it, ( emp-rnf ) , ndim_hT, ndex_hT ) ! upward water flux CALL histwrite( nid_T, "sorunoff", it, rnf , ndim_hT, ndex_hT ) ! river runoffs CALL histwrite( nid_T, "sosfldow", it, sfx , ndim_hT, ndex_hT ) ! downward salt flux ! (includes virtual salt flux beneath ice ! in linear free surface case) IF( .NOT. lk_vvl ) THEN zw2d(:,:) = emp (:,:) * tsn(:,:,1,jp_tem) CALL histwrite( nid_T, "sosst_cd", it, zw2d, ndim_hT, ndex_hT ) ! c/d term on sst zw2d(:,:) = emp (:,:) * tsn(:,:,1,jp_sal) CALL histwrite( nid_T, "sosss_cd", it, zw2d, ndim_hT, ndex_hT ) ! c/d term on sss ENDIF CALL histwrite( nid_T, "sohefldo", it, qns + qsr , ndim_hT, ndex_hT ) ! total heat flux CALL histwrite( nid_T, "soshfldo", it, qsr , ndim_hT, ndex_hT ) ! solar heat flux CALL histwrite( nid_T, "somixhgt", it, hmld , ndim_hT, ndex_hT ) ! turbocline depth CALL histwrite( nid_T, "somxl010", it, hmlp , ndim_hT, ndex_hT ) ! mixed layer depth CALL histwrite( nid_T, "soicecov", it, fr_i , ndim_hT, ndex_hT ) ! ice fraction CALL histwrite( nid_T, "sowindsp", it, wndm , ndim_hT, ndex_hT ) ! wind speed ! IF( ln_icebergs ) THEN ! CALL histwrite( nid_T, "calving" , it, berg_grid%calving , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "calving_heat" , it, berg_grid%calving_hflx , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "berg_floating_melt" , it, berg_grid%floating_melt, ndim_hT, ndex_hT ) ! CALL histwrite( nid_T, "berg_stored_ice" , it, berg_grid%stored_ice , ndim_bT, ndex_bT ) ! IF( ln_bergdia ) THEN CALL histwrite( nid_T, "berg_melt" , it, berg_melt , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "berg_buoy_melt" , it, buoy_melt , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "berg_eros_melt" , it, eros_melt , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "berg_conv_melt" , it, conv_melt , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "berg_virtual_area" , it, virtual_area , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "bits_src" , it, bits_src , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "bits_melt" , it, bits_melt , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "bits_mass" , it, bits_mass , ndim_hT, ndex_hT ) CALL histwrite( nid_T, "berg_mass" , it, berg_mass , ndim_hT, ndex_hT ) ! CALL histwrite( nid_T, "berg_real_calving" , it, real_calving , ndim_bT, ndex_bT ) ENDIF ENDIF IF( .NOT. ln_cpl ) THEN CALL histwrite( nid_T, "sohefldp", it, qrp , ndim_hT, ndex_hT ) ! heat flux damping CALL histwrite( nid_T, "sowafldp", it, erp , ndim_hT, ndex_hT ) ! freshwater flux damping IF( ln_ssr ) zw2d(:,:) = erp(:,:) * tsn(:,:,1,jp_sal) * tmask(:,:,1) CALL histwrite( nid_T, "sosafldp", it, zw2d , ndim_hT, ndex_hT ) ! salt flux damping ENDIF IF( ln_cpl .AND. nn_ice <= 1 ) THEN CALL histwrite( nid_T, "sohefldp", it, qrp , ndim_hT, ndex_hT ) ! heat flux damping CALL histwrite( nid_T, "sowafldp", it, erp , ndim_hT, ndex_hT ) ! freshwater flux damping IF( ln_ssr ) zw2d(:,:) = erp(:,:) * tsn(:,:,1,jp_sal) * tmask(:,:,1) CALL histwrite( nid_T, "sosafldp", it, zw2d , ndim_hT, ndex_hT ) ! salt flux damping ENDIF ! zw2d(:,:) = FLOAT( nmln(:,:) ) * tmask(:,:,1) ! CALL histwrite( nid_T, "sobowlin", it, zw2d , ndim_hT, ndex_hT ) ! ??? #if defined key_diahth CALL histwrite( nid_T, "sothedep", it, hth , ndim_hT, ndex_hT ) ! depth of the thermocline CALL histwrite( nid_T, "so20chgt", it, hd20 , ndim_hT, ndex_hT ) ! depth of the 20 isotherm CALL histwrite( nid_T, "so28chgt", it, hd28 , ndim_hT, ndex_hT ) ! depth of the 28 isotherm CALL histwrite( nid_T, "sohtc300", it, htc3 , ndim_hT, ndex_hT ) ! first 300m heaat content #endif IF( ln_cpl .AND. nn_ice == 2 ) THEN CALL histwrite( nid_T, "soicetem", it, tn_ice(:,:,1) , ndim_hT, ndex_hT ) ! surf. ice temperature CALL histwrite( nid_T, "soicealb", it, alb_ice(:,:,1), ndim_hT, ndex_hT ) ! ice albedo ENDIF CALL histwrite( nid_U, "vozocrtx", it, un , ndim_U , ndex_U ) ! i-current IF( ln_traldf_gdia ) THEN IF (.not. ALLOCATED(psix_eiv))THEN ALLOCATE( psix_eiv(jpi,jpj,jpk) , psiy_eiv(jpi,jpj,jpk) , STAT=ierr ) IF( lk_mpp ) CALL mpp_sum ( ierr ) IF( ierr > 0 ) CALL ctl_stop('STOP', 'diawri: unable to allocate psi{x,y}_eiv') psix_eiv(:,:,:) = 0.0_wp psiy_eiv(:,:,:) = 0.0_wp ENDIF DO jk=1,jpkm1 zw3d(:,:,jk) = (psix_eiv(:,:,jk+1) - psix_eiv(:,:,jk))/fse3u(:,:,jk) ! u_eiv = -dpsix/dz END DO zw3d(:,:,jpk) = 0._wp CALL histwrite( nid_U, "vozoeivu", it, zw3d, ndim_U , ndex_U ) ! i-eiv current ELSE #if defined key_diaeiv CALL histwrite( nid_U, "vozoeivu", it, u_eiv, ndim_U , ndex_U ) ! i-eiv current #endif ENDIF CALL histwrite( nid_U, "sozotaux", it, utau , ndim_hU, ndex_hU ) ! i-wind stress CALL histwrite( nid_V, "vomecrty", it, vn , ndim_V , ndex_V ) ! j-current IF( ln_traldf_gdia ) THEN DO jk=1,jpk-1 zw3d(:,:,jk) = (psiy_eiv(:,:,jk+1) - psiy_eiv(:,:,jk))/fse3v(:,:,jk) ! v_eiv = -dpsiy/dz END DO zw3d(:,:,jpk) = 0._wp CALL histwrite( nid_V, "vomeeivv", it, zw3d, ndim_V , ndex_V ) ! j-eiv current ELSE #if defined key_diaeiv CALL histwrite( nid_V, "vomeeivv", it, v_eiv, ndim_V , ndex_V ) ! j-eiv current #endif ENDIF CALL histwrite( nid_V, "sometauy", it, vtau , ndim_hV, ndex_hV ) ! j-wind stress CALL histwrite( nid_W, "vovecrtz", it, wn , ndim_T, ndex_T ) ! vert. current IF( ln_traldf_gdia ) THEN DO jk=1,jpk-1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zw3d(ji,jj,jk) = (psiy_eiv(ji,jj,jk) - psiy_eiv(ji,jj-1,jk))/e2v(ji,jj) + & & (psix_eiv(ji,jj,jk) - psix_eiv(ji-1,jj,jk))/e1u(ji,jj) ! w_eiv = dpsiy/dy + dpsiy/dx END DO END DO END DO zw3d(:,:,jpk) = 0._wp CALL histwrite( nid_W, "voveeivw", it, zw3d , ndim_T, ndex_T ) ! vert. eiv current ELSE # if defined key_diaeiv CALL histwrite( nid_W, "voveeivw", it, w_eiv , ndim_T, ndex_T ) ! vert. eiv current # endif ENDIF CALL histwrite( nid_W, "votkeavt", it, avt , ndim_T, ndex_T ) ! T vert. eddy diff. coef. CALL histwrite( nid_W, "votkeavm", it, avmu , ndim_T, ndex_T ) ! T vert. eddy visc. coef. IF( lk_zdfddm ) THEN CALL histwrite( nid_W, "voddmavs", it, fsavs(:,:,:), ndim_T, ndex_T ) ! S vert. eddy diff. coef. ENDIF #if defined key_traldf_c2d CALL histwrite( nid_W, "soleahtw", it, ahtw , ndim_hT, ndex_hT ) ! lateral eddy diff. coef. # if defined key_traldf_eiv CALL histwrite( nid_W, "soleaeiw", it, aeiw , ndim_hT, ndex_hT ) ! EIV coefficient at w-point # endif #endif ! 3. Close all files ! --------------------------------------- IF( kt == nitend ) THEN CALL histclo( nid_T ) CALL histclo( nid_U ) CALL histclo( nid_V ) CALL histclo( nid_W ) ENDIF ! CALL wrk_dealloc( jpi , jpj , zw2d ) IF ( ln_traldf_gdia .OR. lk_vvl ) call wrk_dealloc( jpi , jpj , jpk , zw3d ) ! IF( nn_timing == 1 ) CALL timing_stop('dia_wri') ! END SUBROUTINE dia_wri # endif #endif SUBROUTINE dia_wri_state( cdfile_name, kt ) !!--------------------------------------------------------------------- !! *** ROUTINE dia_wri_state *** !! !! ** Purpose : create a NetCDF file named cdfile_name which contains !! the instantaneous ocean state and forcing fields. !! Used to find errors in the initial state or save the last !! ocean state in case of abnormal end of a simulation !! !! ** Method : NetCDF files using ioipsl !! File 'output.init.nc' is created if ninist = 1 (namelist) !! File 'output.abort.nc' is created in case of abnormal job end !!---------------------------------------------------------------------- CHARACTER (len=* ), INTENT( in ) :: cdfile_name ! name of the file created INTEGER , INTENT( in ) :: kt ! ocean time-step index !! CHARACTER (len=32) :: clname CHARACTER (len=40) :: clop INTEGER :: id_i , nz_i, nh_i INTEGER, DIMENSION(1) :: idex ! local workspace REAL(wp) :: zsto, zout, zmax, zjulian, zdt !!---------------------------------------------------------------------- ! ! IF( nn_timing == 1 ) CALL timing_start('dia_wri_state') ! not sure this works for routines not called in first timestep ! 0. Initialisation ! ----------------- ! Define name, frequency of output and means clname = cdfile_name IF( .NOT. Agrif_Root() ) clname = TRIM(Agrif_CFixed())//'_'//TRIM(clname) zdt = rdt zsto = rdt clop = "inst(x)" ! no use of the mask value (require less cpu time) zout = rdt zmax = ( nitend - nit000 + 1 ) * zdt IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dia_wri_state : single instantaneous ocean state' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~ and forcing fields file created ' IF(lwp) WRITE(numout,*) ' and named :', clname, '.nc' ! 1. Define NETCDF files and fields at beginning of first time step ! ----------------------------------------------------------------- ! Compute julian date from starting date of the run CALL ymds2ju( nyear, nmonth, nday, rdt, zjulian ) ! time axis zjulian = zjulian - adatrj ! set calendar origin to the beginning of the experiment CALL histbeg( clname, jpi, glamt, jpj, gphit, & 1, jpi, 1, jpj, nit000-1, zjulian, zdt, nh_i, id_i, domain_id=nidom, snc4chunks=snc4set ) ! Horizontal grid : glamt and gphit CALL histvert( id_i, "deptht", "Vertical T levels", & ! Vertical grid : gdept "m", jpk, gdept_1d, nz_i, "down") ! Declare all the output fields as NetCDF variables CALL histdef( id_i, "vosaline", "Salinity" , "PSU" , & ! salinity & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "votemper", "Temperature" , "C" , & ! temperature & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "sossheig", "Sea Surface Height" , "m" , & ! ssh & jpi, jpj, nh_i, 1 , 1, 1 , nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "vozocrtx", "Zonal Current" , "m/s" , & ! zonal current & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "vomecrty", "Meridional Current" , "m/s" , & ! meridonal current & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "vovecrtz", "Vertical Velocity" , "m/s" , & ! vertical current & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "sowaflup", "Net Upward Water Flux" , "Kg/m2/S", & ! net freshwater & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "sohefldo", "Net Downward Heat Flux", "W/m2" , & ! net heat flux & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "soshfldo", "Shortwave Radiation" , "W/m2" , & ! solar flux & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "soicecov", "Ice fraction" , "[0,1]" , & ! fr_i & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "sozotaux", "Zonal Wind Stress" , "N/m2" , & ! i-wind stress & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "sometauy", "Meridional Wind Stress", "N/m2" , & ! j-wind stress & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) IF( lk_vvl ) THEN CALL histdef( id_i, "vovvldep", "T point depth" , "m" , & ! t-point depth & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "vovvle3t", "T point thickness" , "m" , & ! t-point depth & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) END IF #if defined key_lim2 CALL lim_wri_state_2( kt, id_i, nh_i ) #elif defined key_lim3 CALL lim_wri_state( kt, id_i, nh_i ) #else CALL histend( id_i, snc4chunks=snc4set ) #endif ! 2. Start writing data ! --------------------- ! idex(1) est utilise ssi l'avant dernier argument est diffferent de ! la taille du tableau en sortie. Dans ce cas , l'avant dernier argument ! donne le nombre d'elements, et idex la liste des indices a sortir idex(1) = 1 ! init to avoid compil warning ! Write all fields on T grid CALL histwrite( id_i, "votemper", kt, tsn(:,:,:,jp_tem), jpi*jpj*jpk, idex ) ! now temperature CALL histwrite( id_i, "vosaline", kt, tsn(:,:,:,jp_sal), jpi*jpj*jpk, idex ) ! now salinity CALL histwrite( id_i, "sossheig", kt, sshn , jpi*jpj , idex ) ! sea surface height CALL histwrite( id_i, "vozocrtx", kt, un , jpi*jpj*jpk, idex ) ! now i-velocity CALL histwrite( id_i, "vomecrty", kt, vn , jpi*jpj*jpk, idex ) ! now j-velocity CALL histwrite( id_i, "vovecrtz", kt, wn , jpi*jpj*jpk, idex ) ! now k-velocity CALL histwrite( id_i, "sowaflup", kt, (emp-rnf ) , jpi*jpj , idex ) ! freshwater budget CALL histwrite( id_i, "sohefldo", kt, qsr + qns , jpi*jpj , idex ) ! total heat flux CALL histwrite( id_i, "soshfldo", kt, qsr , jpi*jpj , idex ) ! solar heat flux CALL histwrite( id_i, "soicecov", kt, fr_i , jpi*jpj , idex ) ! ice fraction CALL histwrite( id_i, "sozotaux", kt, utau , jpi*jpj , idex ) ! i-wind stress CALL histwrite( id_i, "sometauy", kt, vtau , jpi*jpj , idex ) ! j-wind stress IF( lk_vvl ) THEN CALL histwrite( id_i, "vovvldep", kt, fsdept_n(:,:,:), jpi*jpj*jpk, idex )! T-cell depth CALL histwrite( id_i, "vovvle3t", kt, fse3t_n (:,:,:), jpi*jpj*jpk, idex )! T-cell thickness END IF ! 3. Close the file ! ----------------- CALL histclo( id_i ) #if ! defined key_iomput && ! defined key_dimgout IF( ninist /= 1 ) THEN CALL histclo( nid_T ) CALL histclo( nid_U ) CALL histclo( nid_V ) CALL histclo( nid_W ) ENDIF #endif ! IF( nn_timing == 1 ) CALL timing_stop('dia_wri_state') ! not sure this works for routines not called in first timestep ! END SUBROUTINE dia_wri_state !!====================================================================== END MODULE diawri