MODULE usrdef_hgr !!====================================================================== !! *** MODULE usrdef_hgr *** !! !! === GYRE configuration === !! !! User defined : mesh and Coriolis parameter of a user configuration !!====================================================================== !! History : 4.0 ! 2016-03 (S. Flavoni) !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! usr_def_hgr : initialize the horizontal mesh !!---------------------------------------------------------------------- USE dom_oce , ONLY: nimpp, njmpp ! ocean space and time domain USE par_oce ! ocean space and time domain USE phycst ! physical constants USE usrdef_nam ! ! USE in_out_manager ! I/O manager USE lib_mpp ! MPP library IMPLICIT NONE PRIVATE PUBLIC usr_def_hgr ! called in domhgr.F90 !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE usr_def_hgr( plamt , plamu , plamv , plamf , & ! geographic position (required) & pphit , pphiu , pphiv , pphif , & ! & kff , pff_f , pff_t , & ! Coriolis parameter (if domain not on the sphere) & pe1t , pe1u , pe1v , pe1f , & ! scale factors (required) & pe2t , pe2u , pe2v , pe2f , & ! & ke1e2u_v , pe1e2u , pe1e2v ) ! u- & v-surfaces (if gridsize reduction is used in strait(s)) !!---------------------------------------------------------------------- !! *** ROUTINE usr_def_hgr *** !! !! ** Purpose : user defined mesh and Coriolis parameter !! !! ** Method : set all intent(out) argument to a proper value !! !! Here GYRE configuration : !! Rectangular mid-latitude domain !! - with axes rotated by 45 degrees !! - a constant horizontal resolution of 106 km !! - on a beta-plane !! !! ** Action : - define longitude & latitude of t-, u-, v- and f-points (in degrees) !! - define coriolis parameter at f-point if the domain in not on the sphere (on beta-plane) !! - define i- & j-scale factors at t-, u-, v- and f-points (in meters) !! - define u- & v-surfaces (if gridsize reduction is used in some straits) (in m2) !!---------------------------------------------------------------------- REAL(wp), DIMENSION(:,:), INTENT(out) :: plamt, plamu, plamv, plamf ! longitude outputs [degrees] REAL(wp), DIMENSION(:,:), INTENT(out) :: pphit, pphiu, pphiv, pphif ! latitude outputs [degrees] INTEGER , INTENT(out) :: kff ! =1 Coriolis parameter computed here, =0 otherwise REAL(wp), DIMENSION(:,:), INTENT(out) :: pff_f, pff_t ! Coriolis factor at f-point [1/s] REAL(wp), DIMENSION(:,:), INTENT(out) :: pe1t, pe1u, pe1v, pe1f ! i-scale factors [m] REAL(wp), DIMENSION(:,:), INTENT(out) :: pe2t, pe2u, pe2v, pe2f ! j-scale factors [m] INTEGER , INTENT(out) :: ke1e2u_v ! =1 u- & v-surfaces computed here, =0 otherwise REAL(wp), DIMENSION(:,:), INTENT(out) :: pe1e2u, pe1e2v ! u- & v-surfaces (if reduction in strait) [m2] ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zlam1, zlam0, zcos_alpha, zim1 , zjm1 , ze1 , ze1deg, zf0 ! local scalars REAL(wp) :: zphi1, zphi0, zsin_alpha, zim05, zjm05, zbeta, znorme ! - - !!------------------------------------------------------------------------------- ! ! !== beta-plane with regular grid-spacing and rotated domain ==! (GYRE configuration) ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'usr_def_hgr : GYRE configuration (beta-plane with rotated regular grid-spacing)' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' ! ! ! !== grid point position ==! ! zlam1 = -85._wp ! position of gridpoint (i,j) = (1,jpjglo) zphi1 = 29._wp ! ze1 = 106000._wp / REAL( nn_GYRE , wp ) ! gridspacing in meters ! zsin_alpha = - SQRT( 2._wp ) * 0.5_wp ! angle: 45 degrees zcos_alpha = SQRT( 2._wp ) * 0.5_wp ze1deg = ze1 / (ra * rad) zlam0 = zlam1 + zcos_alpha * ze1deg * REAL( jpjglo-2 , wp ) zphi0 = zphi1 + zsin_alpha * ze1deg * REAL( jpjglo-2 , wp ) #if defined key_agrif ! ! Upper left longitude and latitude from parent: IF (.NOT.Agrif_root()) THEN zlam0 = zlam1 + Agrif_irhox() * REAL(Agrif_Parent(jpjglo)-2 , wp) * ze1deg * zcos_alpha & & + ( Agrif_Ix()*Agrif_irhox()-(0.5_wp+nbghostcells)) * ze1deg * zcos_alpha & & + ( Agrif_Iy()*Agrif_irhoy()-(0.5_wp+nbghostcells)) * ze1deg * zsin_alpha zphi0 = zphi1 + Agrif_irhoy() * REAL(Agrif_Parent(jpjglo)-2 , wp) * ze1deg * zsin_alpha & & - ( Agrif_Ix()*Agrif_irhox()-nbghostcells ) * ze1deg * zsin_alpha & & + ( Agrif_Iy()*Agrif_irhoy()-nbghostcells ) * ze1deg * zcos_alpha ENDIF #endif ! IF( ln_bench ) THEN ! benchmark: forced the resolution to be 106 km ze1 = 106000._wp ! but keep (lat,lon) at the right nn_GYRE resolution CALL ctl_warn( ' GYRE used as Benchmark: e1=e2=106km, no need to adjust rdt, ahm,aht ' ) ENDIF IF( nprint==1 .AND. lwp ) THEN WRITE(numout,*) 'ze1', ze1, 'cosalpha', zcos_alpha, 'sinalpha', zsin_alpha WRITE(numout,*) 'ze1deg', ze1deg, 'zlam0', zlam0, 'zphi0', zphi0 ENDIF ! DO jj = 1, jpj DO ji = 1, jpi zim1 = REAL( ji + nimpp - 1 ) - 1. ; zim05 = REAL( ji + nimpp - 1 ) - 1.5 zjm1 = REAL( jj + njmpp - 1 ) - 1. ; zjm05 = REAL( jj + njmpp - 1 ) - 1.5 ! !glamt(i,j) longitude at T-point !gphit(i,j) latitude at T-point plamt(ji,jj) = zlam0 + zim05 * ze1deg * zcos_alpha + zjm05 * ze1deg * zsin_alpha pphit(ji,jj) = zphi0 - zim05 * ze1deg * zsin_alpha + zjm05 * ze1deg * zcos_alpha ! !glamu(i,j) longitude at U-point !gphiu(i,j) latitude at U-point plamu(ji,jj) = zlam0 + zim1 * ze1deg * zcos_alpha + zjm05 * ze1deg * zsin_alpha pphiu(ji,jj) = zphi0 - zim1 * ze1deg * zsin_alpha + zjm05 * ze1deg * zcos_alpha ! !glamv(i,j) longitude at V-point !gphiv(i,j) latitude at V-point plamv(ji,jj) = zlam0 + zim05 * ze1deg * zcos_alpha + zjm1 * ze1deg * zsin_alpha pphiv(ji,jj) = zphi0 - zim05 * ze1deg * zsin_alpha + zjm1 * ze1deg * zcos_alpha ! !glamf(i,j) longitude at F-point !gphif(i,j) latitude at F-point plamf(ji,jj) = zlam0 + zim1 * ze1deg * zcos_alpha + zjm1 * ze1deg * zsin_alpha pphif(ji,jj) = zphi0 - zim1 * ze1deg * zsin_alpha + zjm1 * ze1deg * zcos_alpha END DO END DO ! ! !== Horizontal scale factors ==! (in meters) ! ! ! constant grid spacing pe1t(:,:) = ze1 ; pe2t(:,:) = ze1 pe1u(:,:) = ze1 ; pe2u(:,:) = ze1 pe1v(:,:) = ze1 ; pe2v(:,:) = ze1 pe1f(:,:) = ze1 ; pe2f(:,:) = ze1 ! ! ! NO reduction of grid size in some straits ke1e2u_v = 0 ! ==>> u_ & v_surfaces will be computed in dom_ghr routine pe1e2u(:,:) = 0._wp ! CAUTION: set to zero to avoid error with some compilers that pe1e2v(:,:) = 0._wp ! require an initialization of INTENT(out) arguments ! ! ! !== Coriolis parameter ==! kff = 1 ! indicate not to compute ff afterward ! zbeta = 2. * omega * COS( rad * zphi1 ) / ra ! beta at latitude zphi1 !SF we overwrite zphi0 (south point in latitude) used just above to define pphif (value of zphi0=15.5190567531966) !SF for computation of Coriolis we keep the parameter of Hazeleger, W., and S. S. Drijfhout, JPO 1998. zphi0 = 15._wp ! latitude of the most southern grid point zf0 = 2. * omega * SIN( rad * zphi0 ) ! compute f0 1st point south ! pff_f(:,:) = ( zf0 + zbeta * ABS( pphif(:,:) - zphi0 ) * rad * ra ) ! f = f0 +beta* y ( y=0 at south) pff_t(:,:) = ( zf0 + zbeta * ABS( pphit(:,:) - zphi0 ) * rad * ra ) ! f = f0 +beta* y ( y=0 at south) ! IF(lwp) WRITE(numout,*) ' beta-plane used. beta = ', zbeta, ' 1/(s.m)' ! END SUBROUTINE usr_def_hgr !!====================================================================== END MODULE usrdef_hgr