MODULE usrdef_sbc !!====================================================================== !! *** MODULE usrdef_sbc *** !! !! === GYRE configuration === !! !! User defined : surface forcing of a user configuration !!====================================================================== !! History : 4.0 ! 2016-03 (S. Flavoni, G. Madec) user defined interface !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! usrdef_sbc : user defined surface bounday conditions in GYRE case !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce ! Surface boundary condition: ocean fields USE phycst ! physical constants ! USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_fortran ! IMPLICIT NONE PRIVATE PUBLIC usrdef_sbc_oce ! routine called in sbcmod module PUBLIC usrdef_sbc_ice_tau ! routine called by icestp.F90 for ice dynamics PUBLIC usrdef_sbc_ice_flx ! routine called by icestp.F90 for ice thermo !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE usrdef_sbc_oce( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE usrdef_sbc *** !! !! ** Purpose : provide at each time-step the GYRE surface boundary !! condition, i.e. the momentum, heat and freshwater fluxes. !! !! ** Method : analytical seasonal cycle for GYRE configuration. !! CAUTION : never mask the surface stress field ! !! !! ** Action : - set the ocean surface boundary condition, i.e. !! utau, vtau, taum, wndm, qns, qsr, emp, sfx !! !! Reference : Hazeleger, W., and S. Drijfhout, JPO, 30, 677-695, 2000. !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step !! INTEGER :: ji, jj ! dummy loop indices INTEGER :: zyear0 ! initial year INTEGER :: zmonth0 ! initial month INTEGER :: zday0 ! initial day INTEGER :: zday_year0 ! initial day since january 1st REAL(wp) :: ztau , ztau_sais ! wind intensity and of the seasonal cycle REAL(wp) :: ztime ! time in hour REAL(wp) :: ztimemax , ztimemin ! 21th June, and 21th decem. if date0 = 1st january REAL(wp) :: ztimemax1, ztimemin1 ! 21th June, and 21th decem. if date0 = 1st january REAL(wp) :: ztimemax2, ztimemin2 ! 21th June, and 21th decem. if date0 = 1st january REAL(wp) :: ztaun ! intensity REAL(wp) :: zemp_s, zemp_n, zemp_sais, ztstar REAL(wp) :: zcos_sais1, zcos_sais2, ztrp, zconv, t_star REAL(wp) :: zsumemp, zsurf REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3 REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient REAL(wp) :: ztx, zty, zmod, zcoef ! temporary variables REAL(wp) :: zyydd ! number of days in one year !!--------------------------------------------------------------------- zyydd = REAL(nyear_len(1),wp) ! ---------------------------- ! ! heat and freshwater fluxes ! ! ---------------------------- ! !same temperature, E-P as in HAZELEGER 2000 zyear0 = ndate0 / 10000 ! initial year zmonth0 = ( ndate0 - zyear0 * 10000 ) / 100 ! initial month zday0 = ndate0 - zyear0 * 10000 - zmonth0 * 100 ! initial day betwen 1 and 30 zday_year0 = ( zmonth0 - 1 ) * 30.+zday0 ! initial day betwen 1 and 360 ! current day (in hours) since january the 1st of the current year ztime = REAL( kt ) * rdt / (rmmss * rhhmm) & ! total incrementation (in hours) & - (nyear - 1) * rjjhh * zyydd ! minus years since beginning of experiment (in hours) ztimemax1 = ((5.*30.)+21.)* 24. ! 21th june at 24h in hours ztimemin1 = ztimemax1 + rjjhh * zyydd / 2 ! 21th december in hours ztimemax2 = ((6.*30.)+21.)* 24. ! 21th july at 24h in hours ztimemin2 = ztimemax2 - rjjhh * zyydd / 2 ! 21th january in hours ! ! NB: rjjhh * zyydd / 4 = one seasonal cycle in hours ! amplitudes zemp_S = 0.7 ! intensity of COS in the South zemp_N = 0.8 ! intensity of COS in the North zemp_sais = 0.1 zTstar = 28.3 ! intemsity from 28.3 a -5 deg ! 1/2 period between 21th June and 21th December and between 21th July and 21th January zcos_sais1 = COS( (ztime - ztimemax1) / (ztimemin1 - ztimemax1) * rpi ) zcos_sais2 = COS( (ztime - ztimemax2) / (ztimemax2 - ztimemin2) * rpi ) ztrp= - 40.e0 ! retroaction term on heat fluxes (W/m2/K) zconv = 3.16e-5 ! convertion factor: 1 m/yr => 3.16e-5 mm/s DO jj = 1, jpj DO ji = 1, jpi ! domain from 15 deg to 50 deg between 27 and 28 degC at 15N, -3 ! and 13 degC at 50N 53.5 + or - 11 = 1/4 period : ! 64.5 in summer, 42.5 in winter t_star = zTstar * ( 1. + 1. / 50. * zcos_sais2 ) & & * COS( rpi * (gphit(ji,jj) - 5.) & & / ( 53.5 * ( 1 + 11 / 53.5 * zcos_sais2 ) * 2.) ) ! 23.5 deg : tropics qsr (ji,jj) = 230 * COS( 3.1415 * ( gphit(ji,jj) - 23.5 * zcos_sais1 ) / ( 0.9 * 180 ) ) qns (ji,jj) = ztrp * ( tsb(ji,jj,1,jp_tem) - t_star ) - qsr(ji,jj) IF( gphit(ji,jj) >= 14.845 .AND. 37.2 >= gphit(ji,jj) ) THEN ! zero at 37.8 deg, max at 24.6 deg emp (ji,jj) = zemp_S * zconv & & * SIN( rpi / 2 * (gphit(ji,jj) - 37.2) / (24.6 - 37.2) ) & & * ( 1 - zemp_sais / zemp_S * zcos_sais1) ELSE emp (ji,jj) = - zemp_N * zconv & & * SIN( rpi / 2 * (gphit(ji,jj) - 37.2) / (46.8 - 37.2) ) & & * ( 1 - zemp_sais / zemp_N * zcos_sais1 ) ENDIF END DO END DO zsumemp = GLOB_SUM( 'usrdef_sbc', emp (:,:) ) zsurf = GLOB_SUM( 'usrdef_sbc', tmask(:,:,1) ) zsumemp = zsumemp / zsurf ! Default GYRE configuration ! freshwater (mass flux) and update of qns with heat content of emp emp (:,:) = emp(:,:) - zsumemp * tmask(:,:,1) ! freshwater flux (=0 in domain average) sfx (:,:) = 0.0_wp ! no salt flux qns (:,:) = qns(:,:) - emp(:,:) * sst_m(:,:) * rcp ! evap and precip are at SST ! ---------------------------- ! ! momentum fluxes ! ! ---------------------------- ! ! same wind as in Wico !test date0 : ndate0 = 010203 zyear0 = ndate0 / 10000 zmonth0 = ( ndate0 - zyear0 * 10000 ) / 100 zday0 = ndate0 - zyear0 * 10000 - zmonth0 * 100 !Calculates nday_year, day since january 1st zday_year0 = (zmonth0-1)*30.+zday0 !accumulates days of previous months of this year ! day (in hours) since january the 1st ztime = FLOAT( kt ) * rdt / (rmmss * rhhmm) & ! incrementation in hour & - (nyear - 1) * rjjhh * zyydd ! - nber of hours the precedent years ztimemax = ((5.*30.)+21.)* 24. ! 21th june in hours ztimemin = ztimemax + rjjhh * zyydd / 2 ! 21th december in hours ! ! NB: rjjhh * zyydd / 4 = 1 seasonal cycle in hours ! mean intensity at 0.105 ; srqt(2) because projected with 45deg angle ztau = 0.105 / SQRT( 2. ) ! seasonal oscillation intensity ztau_sais = 0.015 ztaun = ztau - ztau_sais * COS( (ztime - ztimemax) / (ztimemin - ztimemax) * rpi ) DO jj = 1, jpj DO ji = 1, jpi ! domain from 15deg to 50deg and 1/2 period along 14deg ! so 5/4 of half period with seasonal cycle utau(ji,jj) = - ztaun * SIN( rpi * (gphiu(ji,jj) - 15.) / (29.-15.) ) vtau(ji,jj) = ztaun * SIN( rpi * (gphiv(ji,jj) - 15.) / (29.-15.) ) END DO END DO ! module of wind stress and wind speed at T-point zcoef = 1. / ( zrhoa * zcdrag ) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vect. opt. ztx = utau(ji-1,jj ) + utau(ji,jj) zty = vtau(ji ,jj-1) + vtau(ji,jj) zmod = 0.5 * SQRT( ztx * ztx + zty * zty ) taum(ji,jj) = zmod wndm(ji,jj) = SQRT( zmod * zcoef ) END DO END DO CALL lbc_lnk_multi( 'usrdef_sbc', taum(:,:), 'T', 1. , wndm(:,:), 'T', 1. ) ! ---------------------------------- ! ! control print at first time-step ! ! ---------------------------------- ! IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*)'usrdef_sbc_oce : analytical surface fluxes for GYRE configuration' WRITE(numout,*)'~~~~~~~~~~~ ' WRITE(numout,*)' nyear = ', nyear WRITE(numout,*)' nmonth = ', nmonth WRITE(numout,*)' nday = ', nday WRITE(numout,*)' nday_year = ', nday_year WRITE(numout,*)' ztime = ', ztime WRITE(numout,*)' ztimemax = ', ztimemax WRITE(numout,*)' ztimemin = ', ztimemin WRITE(numout,*)' ztimemax1 = ', ztimemax1 WRITE(numout,*)' ztimemin1 = ', ztimemin1 WRITE(numout,*)' ztimemax2 = ', ztimemax2 WRITE(numout,*)' ztimemin2 = ', ztimemin2 WRITE(numout,*)' zyear0 = ', zyear0 WRITE(numout,*)' zmonth0 = ', zmonth0 WRITE(numout,*)' zday0 = ', zday0 WRITE(numout,*)' zday_year0 = ', zday_year0 WRITE(numout,*)' zyydd = ', zyydd WRITE(numout,*)' zemp_S = ', zemp_S WRITE(numout,*)' zemp_N = ', zemp_N WRITE(numout,*)' zemp_sais = ', zemp_sais WRITE(numout,*)' zTstar = ', zTstar WRITE(numout,*)' zsumemp = ', zsumemp WRITE(numout,*)' zsurf = ', zsurf WRITE(numout,*)' ztrp = ', ztrp WRITE(numout,*)' zconv = ', zconv WRITE(numout,*)' ndastp = ', ndastp WRITE(numout,*)' adatrj = ', adatrj ENDIF ! END SUBROUTINE usrdef_sbc_oce SUBROUTINE usrdef_sbc_ice_tau( kt ) INTEGER, INTENT(in) :: kt ! ocean time step END SUBROUTINE usrdef_sbc_ice_tau SUBROUTINE usrdef_sbc_ice_flx( kt, phs, phi ) INTEGER, INTENT(in) :: kt ! ocean time step REAL(wp), DIMENSION(:,:,:), INTENT(in) :: phs ! snow thickness REAL(wp), DIMENSION(:,:,:), INTENT(in) :: phi ! ice thickness END SUBROUTINE usrdef_sbc_ice_flx !!====================================================================== END MODULE usrdef_sbc