MODULE sbcabl !!====================================================================== !! *** MODULE sbcabl *** !! Ocean forcing: momentum, heat and freshwater flux formulation !! derived from an ABL model !!===================================================================== !! History : 4.0 ! 2019-03 (F. LemariƩ & G. Samson) Original code !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_abl_init : Initialization of ABL model based on namelist options !! sbc_abl : driver for the computation of momentum, heat and freshwater !! fluxes over ocean via the ABL model !!---------------------------------------------------------------------- USE abl ! ABL USE par_abl ! abl parameters USE ablmod USE ablrst USE phycst ! physical constants USE fldread ! read input fields USE sbc_oce ! Surface boundary condition: ocean fields USE sbcblk ! Surface boundary condition: bulk formulae USE sbcblk_phy ! Surface boundary condition: bulk formulae USE dom_oce, ONLY : tmask ! USE iom ! I/O manager library USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE lib_fortran ! to use key_nosignedzero USE timing ! Timing USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE prtctl ! Print control #if defined key_si3 USE ice , ONLY : u_ice, v_ice, tm_su, ato_i ! ato_i = total open water fractional area USE sbc_ice, ONLY : wndm_ice, utau_ice, vtau_ice #endif #if ! defined key_iomput USE diawri , ONLY : dia_wri_alloc_abl #endif IMPLICIT NONE PRIVATE PUBLIC sbc_abl_init ! routine called in sbcmod module PUBLIC sbc_abl ! routine called in sbcmod module !!---------------------------------------------------------------------- !! NEMO/OPA 3.7 , NEMO-consortium (2014) !! $Id: sbcabl.F90 6416 2016-04-01 12:22:17Z clem $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_abl_init !!--------------------------------------------------------------------- !! *** ROUTINE sbc_abl_init *** !! !! ** Purposes : - read namelist section namsbc_abl !! - initialize and check parameter values !! - initialize variables of ABL model !! !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk, jbak, jbak_dta ! dummy loop indices INTEGER :: ios, ierror, ioptio ! Local integer INTEGER :: inum, indims, idimsz(4), id CHARACTER(len=100) :: cn_dir, cn_dom ! Atmospheric grid directory REAL(wp) :: zcff,zcff1 LOGICAL :: lluldl NAMELIST/namsbc_abl/ cn_dir, cn_dom, cn_ablrst_in, cn_ablrst_out, & & cn_ablrst_indir, cn_ablrst_outdir, ln_rstart_abl, & & ln_hpgls_frc, ln_geos_winds, nn_dyn_restore, & & rn_ldyn_min , rn_ldyn_max, rn_ltra_min, rn_ltra_max, & & nn_amxl, rn_cm, rn_ct, rn_ce, rn_ceps, rn_Rod, rn_Ric, & & ln_smth_pblh !!--------------------------------------------------------------------- ! Namelist namsbc_abl in reference namelist : ABL parameters READ ( numnam_ref, namsbc_abl, IOSTAT = ios, ERR = 901 ) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_abl in reference namelist' ) ! Namelist namsbc_abl in configuration namelist : ABL parameters READ ( numnam_cfg, namsbc_abl, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_abl in configuration namelist' ) ! IF(lwm) WRITE( numond, namsbc_abl ) ! ! Check ABL mixing length option IF( nn_amxl < 0 .OR. nn_amxl > 2 ) & & CALL ctl_stop( 'abl_init : bad flag, nn_amxl must be 0, 1 or 2 ' ) ! ! Check ABL dyn restore option IF( nn_dyn_restore < 0 .OR. nn_dyn_restore > 2 ) & & CALL ctl_stop( 'abl_init : bad flag, nn_dyn_restore must be 0, 1 or 2 ' ) !!--------------------------------------------------------------------- !! Control prints !!--------------------------------------------------------------------- IF(lwp) THEN ! Control print (other namelist variable) WRITE(numout,*) WRITE(numout,*) ' ABL -- cn_dir = ', cn_dir WRITE(numout,*) ' ABL -- cn_dom = ', cn_dom IF( ln_hpgls_frc ) THEN WRITE(numout,*) ' ABL -- winds forced by large-scale pressure gradient' IF(ln_geos_winds) THEN ln_geos_winds = .FALSE. WRITE(numout,*) ' ABL -- geostrophic guide disabled (not compatible with ln_hpgls_frc = .T.)' END IF ELSE IF( ln_geos_winds ) THEN WRITE(numout,*) ' ABL -- winds forced by geostrophic winds' ELSE WRITE(numout,*) ' ABL -- Geostrophic winds and large-scale pressure gradient are ignored' END IF ! SELECT CASE ( nn_dyn_restore ) CASE ( 0 ) WRITE(numout,*) ' ABL -- No restoring for ABL winds' CASE ( 1 ) WRITE(numout,*) ' ABL -- Restoring of ABL winds only in the equatorial region ' CASE ( 2 ) WRITE(numout,*) ' ABL -- Restoring of ABL winds activated everywhere ' END SELECT ! IF( ln_smth_pblh ) WRITE(numout,*) ' ABL -- Smoothing of PBL height is activated' ! ENDIF !!--------------------------------------------------------------------- !! Convert nudging coefficient from hours to 1/sec !!--------------------------------------------------------------------- zcff = 1._wp / 3600._wp rn_ldyn_min = zcff / rn_ldyn_min rn_ldyn_max = zcff / rn_ldyn_max rn_ltra_min = zcff / rn_ltra_min rn_ltra_max = zcff / rn_ltra_max !!--------------------------------------------------------------------- !! ABL grid initialization !!--------------------------------------------------------------------- CALL iom_open( TRIM(cn_dir)//TRIM(cn_dom), inum ) id = iom_varid( inum, 'e3t_abl', kdimsz=idimsz, kndims=indims, lduld=lluldl ) jpka = idimsz(indims - COUNT( (/lluldl/) ) ) jpkam1 = jpka - 1 IF( abl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'abl_init : unable to allocate arrays' ) CALL iom_get( inum, jpdom_unknown, 'e3t_abl', e3t_abl(:) ) CALL iom_get( inum, jpdom_unknown, 'e3w_abl', e3w_abl(:) ) CALL iom_get( inum, jpdom_unknown, 'ght_abl', ght_abl(:) ) CALL iom_get( inum, jpdom_unknown, 'ghw_abl', ghw_abl(:) ) CALL iom_close( inum ) #if ! defined key_iomput IF( dia_wri_alloc_abl() /= 0 ) CALL ctl_stop( 'STOP', 'abl_init : unable to allocate arrays' ) #endif IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) ' sbc_abl_init : ABL Reference vertical grid' WRITE(numout,*) ' ~~~~~~~' WRITE(numout, "(9x,' level ght_abl ghw_abl e3t_abl e3w_abl ')" ) WRITE(numout, "(10x, i4, 4f9.2)" ) ( jk, ght_abl(jk), ghw_abl(jk), e3t_abl(jk), e3w_abl(jk), jk = 1, jpka ) END IF !!--------------------------------------------------------------------- !! Check TKE closure parameters !!--------------------------------------------------------------------- rn_Sch = rn_ce / rn_cm mxl_min = (avm_bak / rn_cm) / sqrt( tke_min ) IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) ' abl_zdf_tke : ABL TKE turbulent closure' WRITE(numout,*) ' ~~~~~~~~~~~' IF(nn_amxl==0) WRITE(numout,*) 'Deardorff 80 length-scale ' IF(nn_amxl==1) WRITE(numout,*) 'length-scale based on the distance to the PBL height ' WRITE(numout,*) ' Minimum value of atmospheric TKE = ',tke_min,' m^2 s^-2' WRITE(numout,*) ' Minimum value of atmospheric mixing length = ',mxl_min,' m' WRITE(numout,*) ' Constant for turbulent viscosity = ',rn_Cm WRITE(numout,*) ' Constant for turbulent diffusivity = ',rn_Ct WRITE(numout,*) ' Constant for Schmidt number = ',rn_Sch WRITE(numout,*) ' Constant for TKE dissipation = ',rn_Ceps END IF !!------------------------------------------------------------------------------------------- !! Compute parameters to build the vertical profile for the nudging term (used in abl_stp()) !!------------------------------------------------------------------------------------------- zcff1 = 1._wp / ( jp_bmax - jp_bmin )**3 ! for active tracers jp_alp3_tra = -2._wp * zcff1 * ( rn_ltra_max - rn_ltra_min ) jp_alp2_tra = 3._wp * zcff1 * (jp_bmax + jp_bmin) * ( rn_ltra_max - rn_ltra_min ) jp_alp1_tra = -6._wp * zcff1 * jp_bmax * jp_bmin * ( rn_ltra_max - rn_ltra_min ) jp_alp0_tra = zcff1 * ( rn_ltra_max * jp_bmin*jp_bmin * (3._wp*jp_bmax - jp_bmin) & & - rn_ltra_min * jp_bmax*jp_bmax * (3._wp*jp_bmin - jp_bmax) ) ! for dynamics jp_alp3_dyn = -2._wp * zcff1 * ( rn_ldyn_max - rn_ldyn_min ) jp_alp2_dyn = 3._wp * zcff1 * (jp_bmax + jp_bmin) * ( rn_ldyn_max - rn_ldyn_min ) jp_alp1_dyn = -6._wp * zcff1 * jp_bmax * jp_bmin * ( rn_ldyn_max - rn_ldyn_min ) jp_alp0_dyn = zcff1 * ( rn_ldyn_max * jp_bmin*jp_bmin * (3._wp*jp_bmax - jp_bmin) & & - rn_ldyn_min * jp_bmax*jp_bmax * (3._wp*jp_bmin - jp_bmax) ) jp_pblh_min = ghw_abl( 4) / jp_bmin !<-- at least 3 grid points at the bottom have value rn_ltra_min jp_pblh_max = ghw_abl(jpka-3) / jp_bmax !<-- at least 3 grid points at the top have value rn_ltra_max ! ABL timestep rDt_abl = nn_fsbc * rn_Dt ! Check parameters for dynamics zcff = ( jp_alp3_dyn * jp_bmin**3 + jp_alp2_dyn * jp_bmin**2 & & + jp_alp1_dyn * jp_bmin + jp_alp0_dyn ) * rDt_abl zcff1 = ( jp_alp3_dyn * jp_bmax**3 + jp_alp2_dyn * jp_bmax**2 & & + jp_alp1_dyn * jp_bmax + jp_alp0_dyn ) * rDt_abl IF(lwp) THEN IF(nn_dyn_restore > 0) THEN WRITE(numout,*) ' ABL Minimum value for dynamics restoring = ',zcff WRITE(numout,*) ' ABL Maximum value for dynamics restoring = ',zcff1 ! Check that restoring coefficients are between 0 and 1 IF( zcff1 - nn_fsbc > 0.001_wp .OR. zcff1 < 0._wp ) & & CALL ctl_stop( 'abl_init : wrong value for rn_ldyn_max' ) IF( zcff - nn_fsbc > 0.001_wp .OR. zcff < 0._wp ) & & CALL ctl_stop( 'abl_init : wrong value for rn_ldyn_min' ) IF( zcff > zcff1 ) & & CALL ctl_stop( 'abl_init : rn_ldyn_max must be smaller than rn_ldyn_min' ) END IF END IF ! Check parameters for active tracers zcff = ( jp_alp3_tra * jp_bmin**3 + jp_alp2_tra * jp_bmin**2 & & + jp_alp1_tra * jp_bmin + jp_alp0_tra ) * rDt_abl zcff1 = ( jp_alp3_tra * jp_bmax**3 + jp_alp2_tra * jp_bmax**2 & & + jp_alp1_tra * jp_bmax + jp_alp0_tra ) * rDt_abl IF(lwp) THEN WRITE(numout,*) ' ABL Minimum value for tracers restoring = ',zcff WRITE(numout,*) ' ABL Maximum value for tracers restoring = ',zcff1 ! Check that restoring coefficients are between 0 and 1 IF( zcff1 - nn_fsbc > 0.001_wp .OR. zcff1 < 0._wp ) & & CALL ctl_stop( 'abl_init : wrong value for rn_ltra_max' ) IF( zcff - nn_fsbc > 0.001_wp .OR. zcff < 0._wp ) & & CALL ctl_stop( 'abl_init : wrong value for rn_ltra_min' ) IF( zcff > zcff1 ) & & CALL ctl_stop( 'abl_init : rn_ltra_max must be smaller than rn_ltra_min' ) END IF !!------------------------------------------------------------------------------------------- !! Initialize Coriolis frequency, equatorial restoring and land/sea mask !!------------------------------------------------------------------------------------------- fft_abl(:,:) = 2._wp * omega * SIN( rad * gphit(:,:) ) ! Equatorial restoring IF( nn_dyn_restore == 1 ) THEN zcff = 2._wp * omega * SIN( rad * 90._wp ) !++ fmax rest_eq(:,:) = SIN( 0.5_wp*rpi*( (fft_abl(:,:) - zcff) / zcff ) )**8 !!GS: alternative shape !rest_eq(:,:) = SIN( 0.5_wp*rpi*(zcff - ABS(ff_t(:,:))) / (zcff - 3.e-5) )**8 !WHERE(ABS(ff_t(:,:)).LE.3.e-5) rest_eq(:,:) = 1._wp ELSE rest_eq(:,:) = 1._wp END IF ! T-mask msk_abl(:,:) = tmask(:,:,1) !!------------------------------------------------------------------------------------------- ! initialize 2D bulk fields AND 3D abl data CALL sbc_blk_init ! Initialize the time index for now time (nt_n) and after time (nt_a) nt_n = 1; nt_a = 2 ! initialize ABL from data or restart IF( ln_rstart_abl ) THEN CALL abl_rst_read ELSE CALL fld_read( nit000, nn_fsbc, sf ) ! input fields provided at the first time-step u_abl(:,:,:,nt_n ) = sf(jp_wndi)%fnow(:,:,:) v_abl(:,:,:,nt_n ) = sf(jp_wndj)%fnow(:,:,:) tq_abl(:,:,:,nt_n,jp_ta) = sf(jp_tair)%fnow(:,:,:) tq_abl(:,:,:,nt_n,jp_qa) = sf(jp_humi)%fnow(:,:,:) tke_abl(:,:,:,nt_n ) = tke_min avm_abl(:,:,: ) = avm_bak avt_abl(:,:,: ) = avt_bak mxl_abl(:,:,: ) = mxl_min pblh (:,: ) = ghw_abl( 3 ) !<-- assume that the pbl contains 3 grid points u_abl (:,:,:,nt_a ) = 0._wp v_abl (:,:,:,nt_a ) = 0._wp tq_abl (:,:,:,nt_a,: ) = 0._wp tke_abl(:,:,:,nt_a ) = 0._wp ENDIF END SUBROUTINE sbc_abl_init SUBROUTINE sbc_abl( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_abl *** !! !! ** Purpose : provide the momentum, heat and freshwater fluxes at !! the ocean surface from an ABL calculation at each oceanic time step !! !! ** Method : !! - Pre-compute part of turbulent fluxes in blk_oce_1 !! - Perform 1 time-step of the ABL model !! - Finalize flux computation in blk_oce_2 !! !! ** Outputs : - utau : i-component of the stress at U-point (N/m2) !! - vtau : j-component of the stress at V-point (N/m2) !! - taum : Wind stress module at T-point (N/m2) !! - wndm : Wind speed module at T-point (m/s) !! - qsr : Solar heat flux over the ocean (W/m2) !! - qns : Non Solar heat flux over the ocean (W/m2) !! - emp : evaporation minus precipitation (kg/m2/s) !! !!--------------------------------------------------------------------- INTEGER , INTENT(in) :: kt ! ocean time step !! REAL(wp), DIMENSION(jpi,jpj) :: zssq, zcd_du, zsen, zevp #if defined key_si3 REAL(wp), DIMENSION(jpi,jpj) :: zssqi, zcd_dui, zseni, zevpi #endif INTEGER :: jbak, jbak_dta, ji, jj !!--------------------------------------------------------------------- ! !!------------------------------------------------------------------------------------------- !! 1 - Read Atmospheric 3D data for large-scale forcing !!------------------------------------------------------------------------------------------- CALL fld_read( kt, nn_fsbc, sf ) ! input fields provided at the current time-step IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN !!------------------------------------------------------------------------------------------- !! 2 - Compute Cd x ||U||, Ch x ||U||, Ce x ||U||, and SSQ using now fields !!------------------------------------------------------------------------------------------- CALL blk_oce_1( kt, u_abl(:,:,2,nt_n ), v_abl(:,:,2,nt_n ), & ! <<= in & tq_abl(:,:,2,nt_n,jp_ta), tq_abl(:,:,2,nt_n,jp_qa), & ! <<= in & sf(jp_slp )%fnow(:,:,1) , sst_m, ssu_m, ssv_m , & ! <<= in & sf(jp_qsr )%fnow(:,:,1) , sf(jp_qlw )%fnow(:,:,1) , & ! <<= in & tsk_m, zssq, zcd_du, zsen, zevp ) ! =>> out #if defined key_si3 CALL blk_ice_1( u_abl(:,:,2,nt_n ), v_abl(:,:,2,nt_n ), & ! <<= in & tq_abl(:,:,2,nt_n,jp_ta), tq_abl(:,:,2,nt_n,jp_qa), & ! <<= in & sf(jp_slp)%fnow(:,:,1) , u_ice, v_ice, tm_su , & ! <<= in & pseni=zseni, pevpi=zevpi, pssqi=zssqi, pcd_dui=zcd_dui ) ! <<= out #endif !!------------------------------------------------------------------------------------------- !! 3 - Advance ABL variables from now (n) to after (n+1) !!------------------------------------------------------------------------------------------- CALL abl_stp( kt, tsk_m, ssu_m, ssv_m, zssq, & ! <<= in & sf(jp_wndi)%fnow(:,:,:), sf(jp_wndj)%fnow(:,:,:), & ! <<= in & sf(jp_tair)%fnow(:,:,:), sf(jp_humi)%fnow(:,:,:), & ! <<= in & sf(jp_slp )%fnow(:,:,1), & ! <<= in & sf(jp_hpgi)%fnow(:,:,:), sf(jp_hpgj)%fnow(:,:,:), & ! <<= in & zcd_du, zsen, zevp, & ! <=> in/out & wndm, utau, vtau, taum & ! =>> out #if defined key_si3 & , tm_su, u_ice, v_ice, zssqi, zcd_dui & ! <<= in & , zseni, zevpi, wndm_ice, ato_i & ! <<= in & , utau_ice, vtau_ice & ! =>> out #endif & ) !!------------------------------------------------------------------------------------------- !! 4 - Finalize flux computation using ABL variables at (n+1), nt_n corresponds to (n+1) since !! time swap is done in abl_stp !!------------------------------------------------------------------------------------------- CALL blk_oce_2( tq_abl(:,:,2,nt_n,jp_ta), & & sf(jp_qsr )%fnow(:,:,1) , sf(jp_qlw )%fnow(:,:,1), & & sf(jp_prec)%fnow(:,:,1) , sf(jp_snow)%fnow(:,:,1), & & tsk_m, zsen, zevp ) CALL abl_rst_opn( kt ) ! Open abl restart file (if necessary) IF( lrst_abl ) CALL abl_rst_write( kt ) ! -- abl restart file #if defined key_si3 ! Avoid a USE abl in icesbc module sf(jp_tair)%fnow(:,:,1) = tq_abl(:,:,2,nt_n,jp_ta); sf(jp_humi)%fnow(:,:,1) = tq_abl(:,:,2,nt_n,jp_qa) #endif END IF END SUBROUTINE sbc_abl !!====================================================================== END MODULE sbcabl