MODULE sbcwave !!====================================================================== !! *** MODULE sbcwave *** !! Wave module !!====================================================================== !! History : 3.3 ! 2011-09 (M. Adani) Original code: Drag Coefficient !! : 3.4 ! 2012-10 (M. Adani) Stokes Drift !! 3.6 ! 2014-09 (E. Clementi,P. Oddo) New Stokes Drift Computation !! - ! 2016-12 (G. Madec, E. Clementi) update Stoke drift computation !! + add sbc_wave_ini routine !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_stokes : calculate 3D Stokes-drift velocities !! sbc_wave : wave data from wave model in netcdf files !! sbc_wave_init : initialisation fo surface waves !!---------------------------------------------------------------------- USE phycst ! physical constants USE oce ! ocean variables USE sbc_oce ! Surface boundary condition: ocean fields USE zdf_oce, ONLY : ln_zdfswm USE bdy_oce ! open boundary condition variables USE domvvl ! domain: variable volume layers ! USE iom ! I/O manager library USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE fldread ! read input fields IMPLICIT NONE PRIVATE PUBLIC sbc_stokes ! routine called in sbccpl PUBLIC sbc_wstress ! routine called in sbcmod PUBLIC sbc_wave ! routine called in sbcmod PUBLIC sbc_wave_init ! routine called in sbcmod ! Variables checking if the wave parameters are coupled (if not, they are read from file) LOGICAL, PUBLIC :: cpl_hsig = .FALSE. LOGICAL, PUBLIC :: cpl_phioc = .FALSE. LOGICAL, PUBLIC :: cpl_sdrftx = .FALSE. LOGICAL, PUBLIC :: cpl_sdrfty = .FALSE. LOGICAL, PUBLIC :: cpl_wper = .FALSE. LOGICAL, PUBLIC :: cpl_wfreq = .FALSE. LOGICAL, PUBLIC :: cpl_wnum = .FALSE. LOGICAL, PUBLIC :: cpl_tauwoc = .FALSE. LOGICAL, PUBLIC :: cpl_tauw = .FALSE. LOGICAL, PUBLIC :: cpl_wdrag = .FALSE. INTEGER :: jpfld ! number of files to read for stokes drift INTEGER :: jp_usd ! index of stokes drift (i-component) (m/s) at T-point INTEGER :: jp_vsd ! index of stokes drift (j-component) (m/s) at T-point INTEGER :: jp_hsw ! index of significant wave hight (m) at T-point INTEGER :: jp_wmp ! index of mean wave period (s) at T-point INTEGER :: jp_wfr ! index of wave peak frequency (1/s) at T-point TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_cd ! structure of input fields (file informations, fields read) Drag Coefficient TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_sd ! structure of input fields (file informations, fields read) Stokes Drift TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_wn ! structure of input fields (file informations, fields read) wave number for Qiao TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_tauwoc ! structure of input fields (file informations, fields read) normalized wave stress into the ocean TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_tauw ! structure of input fields (file informations, fields read) ocean stress components from wave model REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: cdn_wave !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: hsw, wmp, wnum !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: wfreq !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tauoc_wave !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tauw_x, tauw_y !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tsd2d !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: div_sd !: barotropic stokes drift divergence REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: ut0sd, vt0sd !: surface Stokes drift velocities at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:,:) :: usd , vsd , wsd !: Stokes drift velocities at u-, v- & w-points, resp. !! * Substitutions # include "do_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_stokes( Kmm ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_stokes *** !! !! ** Purpose : compute the 3d Stokes Drift according to Breivik et al., !! 2014 (DOI: 10.1175/JPO-D-14-0020.1) !! !! ** Method : - Calculate Stokes transport speed !! - Calculate horizontal divergence !! - Integrate the horizontal divergenze from the bottom !! ** action !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: Kmm ! ocean time level index INTEGER :: jj, ji, jk ! dummy loop argument INTEGER :: ik ! local integer REAL(wp) :: ztransp, zfac, zsp0 REAL(wp) :: zdepth, zsqrt_depth, zexp_depth, z_two_thirds, zsqrtpi !sqrt of pi REAL(wp) :: zbot_u, zbot_v, zkb_u, zkb_v, zke3_u, zke3_v, zda_u, zda_v REAL(wp) :: zstokes_psi_u_bot, zstokes_psi_v_bot REAL(wp) :: zdep_u, zdep_v, zkh_u, zkh_v REAL(wp), DIMENSION(:,:) , ALLOCATABLE :: zk_t, zk_u, zk_v, zu0_sd, zv0_sd ! 2D workspace REAL(wp), DIMENSION(:,:) , ALLOCATABLE :: zstokes_psi_u_top, zstokes_psi_v_top ! 2D workspace REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ze3divh ! 3D workspace !!--------------------------------------------------------------------- ! ALLOCATE( ze3divh(jpi,jpj,jpk) ) ALLOCATE( zk_t(jpi,jpj), zk_u(jpi,jpj), zk_v(jpi,jpj), zu0_sd(jpi,jpj), zv0_sd(jpi,jpj) ) ! ! select parameterization for the calculation of vertical Stokes drift ! exp. wave number at t-point IF( ll_st_bv_li ) THEN ! (Eq. (19) in Breivik et al. (2014) ) zfac = 2.0_wp * rpi / 16.0_wp DO_2D_11_11 ! Stokes drift velocity estimated from Hs and Tmean ztransp = zfac * hsw(ji,jj)*hsw(ji,jj) / MAX( wmp(ji,jj), 0.0000001_wp ) ! Stokes surface speed tsd2d(ji,jj) = SQRT( ut0sd(ji,jj)*ut0sd(ji,jj) + vt0sd(ji,jj)*vt0sd(ji,jj)) ! Wavenumber scale zk_t(ji,jj) = ABS( tsd2d(ji,jj) ) / MAX( ABS( 5.97_wp*ztransp ), 0.0000001_wp ) END_2D DO_2D_10_10 zk_u(ji,jj) = 0.5_wp * ( zk_t(ji,jj) + zk_t(ji+1,jj) ) zk_v(ji,jj) = 0.5_wp * ( zk_t(ji,jj) + zk_t(ji,jj+1) ) ! zu0_sd(ji,jj) = 0.5_wp * ( ut0sd(ji,jj) + ut0sd(ji+1,jj) ) zv0_sd(ji,jj) = 0.5_wp * ( vt0sd(ji,jj) + vt0sd(ji,jj+1) ) END_2D ELSE IF( ll_st_peakfr ) THEN ! peak wave number calculated from the peak frequency received by the wave model DO_2D_11_11 zk_t(ji,jj) = ( 2.0_wp * rpi * wfreq(ji,jj) ) * ( 2.0_wp * rpi * wfreq(ji,jj) ) / grav END_2D DO_2D_10_10 zk_u(ji,jj) = 0.5_wp * ( zk_t(ji,jj) + zk_t(ji+1,jj) ) zk_v(ji,jj) = 0.5_wp * ( zk_t(ji,jj) + zk_t(ji,jj+1) ) ! zu0_sd(ji,jj) = 0.5_wp * ( ut0sd(ji,jj) + ut0sd(ji+1,jj) ) zv0_sd(ji,jj) = 0.5_wp * ( vt0sd(ji,jj) + vt0sd(ji,jj+1) ) END_2D ENDIF ! ! !== horizontal Stokes Drift 3D velocity ==! IF( ll_st_bv2014 ) THEN DO_3D_00_00( 1, jpkm1 ) zdep_u = 0.5_wp * ( gdept(ji,jj,jk,Kmm) + gdept(ji+1,jj,jk,Kmm) ) zdep_v = 0.5_wp * ( gdept(ji,jj,jk,Kmm) + gdept(ji,jj+1,jk,Kmm) ) ! zkh_u = zk_u(ji,jj) * zdep_u ! k * depth zkh_v = zk_v(ji,jj) * zdep_v ! ! Depth attenuation zda_u = EXP( -2.0_wp*zkh_u ) / ( 1.0_wp + 8.0_wp*zkh_u ) zda_v = EXP( -2.0_wp*zkh_v ) / ( 1.0_wp + 8.0_wp*zkh_v ) ! usd(ji,jj,jk) = zda_u * zu0_sd(ji,jj) * umask(ji,jj,jk) vsd(ji,jj,jk) = zda_v * zv0_sd(ji,jj) * vmask(ji,jj,jk) END_3D ELSE IF( ll_st_li2017 .OR. ll_st_peakfr ) THEN ALLOCATE( zstokes_psi_u_top(jpi,jpj), zstokes_psi_v_top(jpi,jpj) ) DO_2D_10_10 zstokes_psi_u_top(ji,jj) = 0._wp zstokes_psi_v_top(ji,jj) = 0._wp END_2D zsqrtpi = SQRT(rpi) z_two_thirds = 2.0_wp / 3.0_wp DO_3D_00_00( 1, jpkm1 ) zbot_u = ( gdepw(ji,jj,jk+1,Kmm) + gdepw(ji+1,jj,jk+1,Kmm) ) ! 2 * bottom depth zbot_v = ( gdepw(ji,jj,jk+1,Kmm) + gdepw(ji,jj+1,jk+1,Kmm) ) ! 2 * bottom depth zkb_u = zk_u(ji,jj) * zbot_u ! 2 * k * bottom depth zkb_v = zk_v(ji,jj) * zbot_v ! 2 * k * bottom depth ! zke3_u = MAX(1.e-8_wp, 2.0_wp * zk_u(ji,jj) * e3u(ji,jj,jk,Kmm)) ! 2k * thickness zke3_v = MAX(1.e-8_wp, 2.0_wp * zk_v(ji,jj) * e3v(ji,jj,jk,Kmm)) ! 2k * thickness ! Depth attenuation .... do u component first.. zdepth = zkb_u zsqrt_depth = SQRT(zdepth) zexp_depth = EXP(-zdepth) zstokes_psi_u_bot = 1.0_wp - zexp_depth & & - z_two_thirds * ( zsqrtpi*zsqrt_depth*zdepth*ERFC(zsqrt_depth) & & + 1.0_wp - (1.0_wp + zdepth)*zexp_depth ) zda_u = ( zstokes_psi_u_bot - zstokes_psi_u_top(ji,jj) ) / zke3_u zstokes_psi_u_top(ji,jj) = zstokes_psi_u_bot ! ... and then v component zdepth =zkb_v zsqrt_depth = SQRT(zdepth) zexp_depth = EXP(-zdepth) zstokes_psi_v_bot = 1.0_wp - zexp_depth & & - z_two_thirds * ( zsqrtpi*zsqrt_depth*zdepth*ERFC(zsqrt_depth) & & + 1.0_wp - (1.0_wp + zdepth)*zexp_depth ) zda_v = ( zstokes_psi_v_bot - zstokes_psi_v_top(ji,jj) ) / zke3_v zstokes_psi_v_top(ji,jj) = zstokes_psi_v_bot ! usd(ji,jj,jk) = zda_u * zu0_sd(ji,jj) * umask(ji,jj,jk) vsd(ji,jj,jk) = zda_v * zv0_sd(ji,jj) * vmask(ji,jj,jk) END_3D DEALLOCATE( zstokes_psi_u_top, zstokes_psi_v_top ) ENDIF CALL lbc_lnk_multi( 'sbcwave', usd, 'U', -1., vsd, 'V', -1. ) ! ! !== vertical Stokes Drift 3D velocity ==! ! DO_3D_01_01( 1, jpkm1 ) ze3divh(ji,jj,jk) = ( e2u(ji ,jj) * e3u(ji ,jj,jk,Kmm) * usd(ji ,jj,jk) & & - e2u(ji-1,jj) * e3u(ji-1,jj,jk,Kmm) * usd(ji-1,jj,jk) & & + e1v(ji,jj ) * e3v(ji,jj ,jk,Kmm) * vsd(ji,jj ,jk) & & - e1v(ji,jj-1) * e3v(ji,jj-1,jk,Kmm) * vsd(ji,jj-1,jk) ) * r1_e1e2t(ji,jj) END_3D ! CALL lbc_lnk( 'sbcwave', ze3divh, 'T', 1. ) ! IF( ln_linssh ) THEN ; ik = 1 ! none zero velocity through the sea surface ELSE ; ik = 2 ! w=0 at the surface (set one for all in sbc_wave_init) ENDIF DO jk = jpkm1, ik, -1 ! integrate from the bottom the hor. divergence (NB: at k=jpk w is always zero) wsd(:,:,jk) = wsd(:,:,jk+1) - ze3divh(:,:,jk) END DO ! IF( ln_bdy ) THEN DO jk = 1, jpkm1 wsd(:,:,jk) = wsd(:,:,jk) * bdytmask(:,:) END DO ENDIF ! !== Horizontal divergence of barotropic Stokes transport ==! div_sd(:,:) = 0._wp DO jk = 1, jpkm1 ! div_sd(:,:) = div_sd(:,:) + ze3divh(:,:,jk) END DO ! CALL iom_put( "ustokes", usd ) CALL iom_put( "vstokes", vsd ) CALL iom_put( "wstokes", wsd ) ! DEALLOCATE( ze3divh ) DEALLOCATE( zk_t, zk_u, zk_v, zu0_sd, zv0_sd ) ! END SUBROUTINE sbc_stokes SUBROUTINE sbc_wstress( ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_wstress *** !! !! ** Purpose : Updates the ocean momentum modified by waves !! !! ** Method : - Calculate u,v components of stress depending on stress !! model !! - Calculate the stress module !! - The wind module is not modified by waves !! ** action !!--------------------------------------------------------------------- INTEGER :: jj, ji ! dummy loop argument ! IF( ln_tauwoc ) THEN utau(:,:) = utau(:,:)*tauoc_wave(:,:) vtau(:,:) = vtau(:,:)*tauoc_wave(:,:) taum(:,:) = taum(:,:)*tauoc_wave(:,:) ENDIF ! IF( ln_tauw ) THEN DO_2D_10_10 ! Stress components at u- & v-points utau(ji,jj) = 0.5_wp * ( tauw_x(ji,jj) + tauw_x(ji+1,jj) ) vtau(ji,jj) = 0.5_wp * ( tauw_y(ji,jj) + tauw_y(ji,jj+1) ) ! ! Stress module at t points taum(ji,jj) = SQRT( tauw_x(ji,jj)*tauw_x(ji,jj) + tauw_y(ji,jj)*tauw_y(ji,jj) ) END_2D CALL lbc_lnk_multi( 'sbcwave', utau(:,:), 'U', -1. , vtau(:,:), 'V', -1. , taum(:,:) , 'T', -1. ) ENDIF ! END SUBROUTINE sbc_wstress SUBROUTINE sbc_wave( kt, Kmm ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_wave *** !! !! ** Purpose : read wave parameters from wave model in netcdf files. !! !! ** Method : - Read namelist namsbc_wave !! - Read Cd_n10 fields in netcdf files !! - Read stokes drift 2d in netcdf files !! - Read wave number in netcdf files !! - Compute 3d stokes drift using Breivik et al.,2014 !! formulation !! ** action !!--------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt ! ocean time step INTEGER, INTENT(in ) :: Kmm ! ocean time index !!--------------------------------------------------------------------- ! IF( ln_cdgw .AND. .NOT. cpl_wdrag ) THEN !== Neutral drag coefficient ==! CALL fld_read( kt, nn_fsbc, sf_cd ) ! read from external forcing cdn_wave(:,:) = sf_cd(1)%fnow(:,:,1) * tmask(:,:,1) ENDIF IF( ln_tauwoc .AND. .NOT. cpl_tauwoc ) THEN !== Wave induced stress ==! CALL fld_read( kt, nn_fsbc, sf_tauwoc ) ! read wave norm stress from external forcing tauoc_wave(:,:) = sf_tauwoc(1)%fnow(:,:,1) * tmask(:,:,1) ENDIF IF( ln_tauw .AND. .NOT. cpl_tauw ) THEN !== Wave induced stress ==! CALL fld_read( kt, nn_fsbc, sf_tauw ) ! read ocean stress components from external forcing (T grid) tauw_x(:,:) = sf_tauw(1)%fnow(:,:,1) * tmask(:,:,1) tauw_y(:,:) = sf_tauw(2)%fnow(:,:,1) * tmask(:,:,1) ENDIF IF( ln_sdw ) THEN !== Computation of the 3d Stokes Drift ==! ! IF( jpfld > 0 ) THEN ! Read from file only if the field is not coupled CALL fld_read( kt, nn_fsbc, sf_sd ) ! read wave parameters from external forcing IF( jp_hsw > 0 ) hsw (:,:) = sf_sd(jp_hsw)%fnow(:,:,1) * tmask(:,:,1) ! significant wave height IF( jp_wmp > 0 ) wmp (:,:) = sf_sd(jp_wmp)%fnow(:,:,1) * tmask(:,:,1) ! wave mean period IF( jp_wfr > 0 ) wfreq(:,:) = sf_sd(jp_wfr)%fnow(:,:,1) * tmask(:,:,1) ! Peak wave frequency IF( jp_usd > 0 ) ut0sd(:,:) = sf_sd(jp_usd)%fnow(:,:,1) * tmask(:,:,1) ! 2D zonal Stokes Drift at T point IF( jp_vsd > 0 ) vt0sd(:,:) = sf_sd(jp_vsd)%fnow(:,:,1) * tmask(:,:,1) ! 2D meridional Stokes Drift at T point ENDIF ! ! Read also wave number if needed, so that it is available in coupling routines IF( ln_zdfswm .AND. .NOT.cpl_wnum ) THEN CALL fld_read( kt, nn_fsbc, sf_wn ) ! read wave parameters from external forcing wnum(:,:) = sf_wn(1)%fnow(:,:,1) * tmask(:,:,1) ENDIF ! Calculate only if required fields have been read ! In coupled wave model-NEMO case the call is done after coupling ! IF( ( ll_st_bv_li .AND. jp_hsw>0 .AND. jp_wmp>0 .AND. jp_usd>0 .AND. jp_vsd>0 ) .OR. & & ( ll_st_peakfr .AND. jp_wfr>0 .AND. jp_usd>0 .AND. jp_vsd>0 ) ) CALL sbc_stokes( Kmm ) ! ENDIF ! END SUBROUTINE sbc_wave SUBROUTINE sbc_wave_init !!--------------------------------------------------------------------- !! *** ROUTINE sbc_wave_init *** !! !! ** Purpose : read wave parameters from wave model in netcdf files. !! !! ** Method : - Read namelist namsbc_wave !! - Read Cd_n10 fields in netcdf files !! - Read stokes drift 2d in netcdf files !! - Read wave number in netcdf files !! - Compute 3d stokes drift using Breivik et al.,2014 !! formulation !! ** action !!--------------------------------------------------------------------- INTEGER :: ierror, ios ! local integer INTEGER :: ifpr !! CHARACTER(len=100) :: cn_dir ! Root directory for location of drag coefficient files TYPE(FLD_N), ALLOCATABLE, DIMENSION(:) :: slf_i, slf_j ! array of namelist informations on the fields to read TYPE(FLD_N) :: sn_cdg, sn_usd, sn_vsd, & & sn_hsw, sn_wmp, sn_wfr, sn_wnum, & & sn_tauwoc, sn_tauwx, sn_tauwy ! informations about the fields to be read ! NAMELIST/namsbc_wave/ sn_cdg, cn_dir, sn_usd, sn_vsd, sn_hsw, sn_wmp, sn_wfr, & sn_wnum, sn_tauwoc, sn_tauwx, sn_tauwy !!--------------------------------------------------------------------- ! READ ( numnam_ref, namsbc_wave, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_wave in reference namelist' ) READ ( numnam_cfg, namsbc_wave, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_wave in configuration namelist' ) IF(lwm) WRITE ( numond, namsbc_wave ) ! IF( ln_cdgw ) THEN IF( .NOT. cpl_wdrag ) THEN ALLOCATE( sf_cd(1), STAT=ierror ) !* allocate and fill sf_wave with sn_cdg IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_wave structure' ) ! ALLOCATE( sf_cd(1)%fnow(jpi,jpj,1) ) IF( sn_cdg%ln_tint ) ALLOCATE( sf_cd(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_cd, (/ sn_cdg /), cn_dir, 'sbc_wave_init', 'Wave module ', 'namsbc_wave' ) ENDIF ALLOCATE( cdn_wave(jpi,jpj) ) ENDIF IF( ln_tauwoc ) THEN IF( .NOT. cpl_tauwoc ) THEN ALLOCATE( sf_tauwoc(1), STAT=ierror ) !* allocate and fill sf_wave with sn_tauwoc IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_wave structure' ) ! ALLOCATE( sf_tauwoc(1)%fnow(jpi,jpj,1) ) IF( sn_tauwoc%ln_tint ) ALLOCATE( sf_tauwoc(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_tauwoc, (/ sn_tauwoc /), cn_dir, 'sbc_wave_init', 'Wave module', 'namsbc_wave' ) ENDIF ALLOCATE( tauoc_wave(jpi,jpj) ) ENDIF IF( ln_tauw ) THEN IF( .NOT. cpl_tauw ) THEN ALLOCATE( sf_tauw(2), STAT=ierror ) !* allocate and fill sf_wave with sn_tauwx/y IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_tauw structure' ) ! ALLOCATE( slf_j(2) ) slf_j(1) = sn_tauwx slf_j(2) = sn_tauwy ALLOCATE( sf_tauw(1)%fnow(jpi,jpj,1) ) ALLOCATE( sf_tauw(2)%fnow(jpi,jpj,1) ) IF( slf_j(1)%ln_tint ) ALLOCATE( sf_tauw(1)%fdta(jpi,jpj,1,2) ) IF( slf_j(2)%ln_tint ) ALLOCATE( sf_tauw(2)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_tauw, (/ slf_j /), cn_dir, 'sbc_wave_init', 'read wave input', 'namsbc_wave' ) ENDIF ALLOCATE( tauw_x(jpi,jpj) ) ALLOCATE( tauw_y(jpi,jpj) ) ENDIF IF( ln_sdw ) THEN ! Find out how many fields have to be read from file if not coupled jpfld=0 jp_usd=0 ; jp_vsd=0 ; jp_hsw=0 ; jp_wmp=0 ; jp_wfr=0 IF( .NOT. cpl_sdrftx ) THEN jpfld = jpfld + 1 jp_usd = jpfld ENDIF IF( .NOT. cpl_sdrfty ) THEN jpfld = jpfld + 1 jp_vsd = jpfld ENDIF IF( .NOT. cpl_hsig .AND. ll_st_bv_li ) THEN jpfld = jpfld + 1 jp_hsw = jpfld ENDIF IF( .NOT. cpl_wper .AND. ll_st_bv_li ) THEN jpfld = jpfld + 1 jp_wmp = jpfld ENDIF IF( .NOT. cpl_wfreq .AND. ll_st_peakfr ) THEN jpfld = jpfld + 1 jp_wfr = jpfld ENDIF ! Read from file only the non-coupled fields IF( jpfld > 0 ) THEN ALLOCATE( slf_i(jpfld) ) IF( jp_usd > 0 ) slf_i(jp_usd) = sn_usd IF( jp_vsd > 0 ) slf_i(jp_vsd) = sn_vsd IF( jp_hsw > 0 ) slf_i(jp_hsw) = sn_hsw IF( jp_wmp > 0 ) slf_i(jp_wmp) = sn_wmp IF( jp_wfr > 0 ) slf_i(jp_wfr) = sn_wfr ALLOCATE( sf_sd(jpfld), STAT=ierror ) !* allocate and fill sf_sd with stokes drift IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_wave structure' ) ! DO ifpr= 1, jpfld ALLOCATE( sf_sd(ifpr)%fnow(jpi,jpj,1) ) IF( slf_i(ifpr)%ln_tint ) ALLOCATE( sf_sd(ifpr)%fdta(jpi,jpj,1,2) ) END DO ! CALL fld_fill( sf_sd, slf_i, cn_dir, 'sbc_wave_init', 'Wave module ', 'namsbc_wave' ) ENDIF ALLOCATE( usd (jpi,jpj,jpk), vsd (jpi,jpj,jpk), wsd(jpi,jpj,jpk) ) ALLOCATE( hsw (jpi,jpj) , wmp (jpi,jpj) ) ALLOCATE( wfreq(jpi,jpj) ) ALLOCATE( ut0sd(jpi,jpj) , vt0sd(jpi,jpj) ) ALLOCATE( div_sd(jpi,jpj) ) ALLOCATE( tsd2d (jpi,jpj) ) ut0sd(:,:) = 0._wp vt0sd(:,:) = 0._wp hsw(:,:) = 0._wp wmp(:,:) = 0._wp usd(:,:,:) = 0._wp vsd(:,:,:) = 0._wp wsd(:,:,:) = 0._wp ! Wave number needed only if ln_zdfswm=T IF( .NOT. cpl_wnum ) THEN ALLOCATE( sf_wn(1), STAT=ierror ) !* allocate and fill sf_wave with sn_wnum IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable toallocate sf_wave structure' ) ALLOCATE( sf_wn(1)%fnow(jpi,jpj,1) ) IF( sn_wnum%ln_tint ) ALLOCATE( sf_wn(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_wn, (/ sn_wnum /), cn_dir, 'sbc_wave', 'Wave module', 'namsbc_wave' ) ENDIF ALLOCATE( wnum(jpi,jpj) ) ENDIF ! END SUBROUTINE sbc_wave_init !!====================================================================== END MODULE sbcwave