MODULE dynspg !!====================================================================== !! *** MODULE dynspg *** !! Ocean dynamics: surface pressure gradient control !!====================================================================== !! History : 1.0 ! 2005-12 (C. Talandier, G. Madec, V. Garnier) Original code !! 3.2 ! 2009-07 (R. Benshila) Suppression of rigid-lid option !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dyn_spg : update the dynamics trend with surface pressure gradient !! dyn_spg_init: initialization, namelist read, and parameters control !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE c1d ! 1D vertical configuration USE phycst ! physical constants USE sbc_oce ! surface boundary condition: ocean USE sbc_ice , ONLY : snwice_mass, snwice_mass_b USE sbcapr ! surface boundary condition: atmospheric pressure USE dynspg_exp ! surface pressure gradient (dyn_spg_exp routine) USE dynspg_ts ! surface pressure gradient (dyn_spg_ts routine) USE tide_mod ! USE trd_oce ! trends: ocean variables USE trddyn ! trend manager: dynamics ! USE prtctl ! Print control (prt_ctl routine) USE in_out_manager ! I/O manager USE lib_mpp ! MPP library USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC dyn_spg ! routine called by step module PUBLIC dyn_spg_init ! routine called by opa module INTEGER :: nspg = 0 ! type of surface pressure gradient scheme defined from lk_dynspg_... ! ! Parameter to control the surface pressure gradient scheme INTEGER, PARAMETER :: np_TS = 1 ! split-explicit time stepping (Time-Splitting) INTEGER, PARAMETER :: np_EXP = 0 ! explicit time stepping INTEGER, PARAMETER :: np_NO =-1 ! no surface pressure gradient, no scheme ! REAL(wp) :: zt0step ! Time of day at the beginning of the time step !! * Substitutions # include "do_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dyn_spg( kt, Kbb, Kmm, Krhs, puu, pvv, pssh, puu_b, pvv_b, Kaa ) !!---------------------------------------------------------------------- !! *** ROUTINE dyn_spg *** !! !! ** Purpose : compute surface pressure gradient including the !! atmospheric pressure forcing (ln_apr_dyn=T). !! !! ** Method : Two schemes: !! - explicit : the spg is evaluated at now !! - split-explicit : a time splitting technique is used !! !! ln_apr_dyn=T : the atmospheric pressure forcing is applied !! as the gradient of the inverse barometer ssh: !! apgu = - 1/rho0 di[apr] = 0.5*grav di[ssh_ib+ssh_ibb] !! apgv = - 1/rho0 dj[apr] = 0.5*grav dj[ssh_ib+ssh_ibb] !! Note that as all external forcing a time averaging over a two rn_Dt !! period is used to prevent the divergence of odd and even time step. !!---------------------------------------------------------------------- INTEGER , INTENT( in ) :: kt ! ocean time-step index INTEGER , INTENT( in ) :: Kbb, Kmm, Krhs, Kaa ! ocean time level indices REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation REAL(wp), DIMENSION(jpi,jpj,jpt) , INTENT(inout) :: pssh, puu_b, pvv_b ! SSH and barotropic velocities at main time levels ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: z2dt, zg_2, zintp, zgrho0r, zld ! local scalars REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zpice REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrdu, ztrdv !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('dyn_spg') ! IF( l_trddyn ) THEN ! temporary save of ta and sa trends ALLOCATE( ztrdu(jpi,jpj,jpk) , ztrdv(jpi,jpj,jpk) ) ztrdu(:,:,:) = puu(:,:,:,Krhs) ztrdv(:,:,:) = pvv(:,:,:,Krhs) ENDIF ! IF( ln_apr_dyn & ! atmos. pressure .OR. ( .NOT.ln_dynspg_ts .AND. (ln_tide_pot .AND. ln_tide) ) & ! tide potential (no time slitting) .OR. ln_ice_embd ) THEN ! embedded sea-ice ! DO_2D_00_00 spgu(ji,jj) = 0._wp spgv(ji,jj) = 0._wp END_2D ! IF( ln_apr_dyn .AND. .NOT.ln_dynspg_ts ) THEN !== Atmospheric pressure gradient (added later in time-split case) ==! zg_2 = grav * 0.5 DO_2D_00_00 spgu(ji,jj) = spgu(ji,jj) + zg_2 * ( ssh_ib (ji+1,jj) - ssh_ib (ji,jj) & & + ssh_ibb(ji+1,jj) - ssh_ibb(ji,jj) ) * r1_e1u(ji,jj) spgv(ji,jj) = spgv(ji,jj) + zg_2 * ( ssh_ib (ji,jj+1) - ssh_ib (ji,jj) & & + ssh_ibb(ji,jj+1) - ssh_ibb(ji,jj) ) * r1_e2v(ji,jj) END_2D ENDIF ! ! !== tide potential forcing term ==! IF( .NOT.ln_dynspg_ts .AND. ( ln_tide_pot .AND. ln_tide ) ) THEN ! N.B. added directly at sub-time-step in ts-case ! ! Update tide potential at the beginning of current time step zt0step = REAL(nsec_day, wp)-0.5_wp*rn_Dt CALL upd_tide(zt0step, Kmm) ! DO_2D_00_00 spgu(ji,jj) = spgu(ji,jj) + grav * ( pot_astro(ji+1,jj) - pot_astro(ji,jj) ) * r1_e1u(ji,jj) spgv(ji,jj) = spgv(ji,jj) + grav * ( pot_astro(ji,jj+1) - pot_astro(ji,jj) ) * r1_e2v(ji,jj) END_2D ! IF (ln_scal_load) THEN zld = rn_scal_load * grav DO_2D_00_00 spgu(ji,jj) = spgu(ji,jj) + zld * ( pssh(ji+1,jj,Kmm) - pssh(ji,jj,Kmm) ) * r1_e1u(ji,jj) spgv(ji,jj) = spgv(ji,jj) + zld * ( pssh(ji,jj+1,Kmm) - pssh(ji,jj,Kmm) ) * r1_e2v(ji,jj) END_2D ENDIF ENDIF ! IF( ln_ice_embd ) THEN !== embedded sea ice: Pressure gradient due to snow-ice mass ==! ALLOCATE( zpice(jpi,jpj) ) zintp = REAL( MOD( kt-1, nn_fsbc ) ) / REAL( nn_fsbc ) zgrho0r = - grav * r1_rho0 zpice(:,:) = ( zintp * snwice_mass(:,:) + ( 1.- zintp ) * snwice_mass_b(:,:) ) * zgrho0r DO_2D_00_00 spgu(ji,jj) = spgu(ji,jj) + ( zpice(ji+1,jj) - zpice(ji,jj) ) * r1_e1u(ji,jj) spgv(ji,jj) = spgv(ji,jj) + ( zpice(ji,jj+1) - zpice(ji,jj) ) * r1_e2v(ji,jj) END_2D DEALLOCATE( zpice ) ENDIF ! DO_3D_00_00( 1, jpkm1 ) puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + spgu(ji,jj) pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + spgv(ji,jj) END_3D ! !!gm add here a call to dyn_trd for ice pressure gradient, the surf pressure trends ???? ! ENDIF ! SELECT CASE ( nspg ) !== surface pressure gradient computed and add to the general trend ==! CASE ( np_EXP ) ; CALL dyn_spg_exp( kt, Kmm, puu, pvv, Krhs ) ! explicit CASE ( np_TS ) ; CALL dyn_spg_ts ( kt, Kbb, Kmm, Krhs, puu, pvv, pssh, puu_b, pvv_b, Kaa ) ! time-splitting END SELECT ! IF( l_trddyn ) THEN ! save the surface pressure gradient trends for further diagnostics ztrdu(:,:,:) = puu(:,:,:,Krhs) - ztrdu(:,:,:) ztrdv(:,:,:) = pvv(:,:,:,Krhs) - ztrdv(:,:,:) CALL trd_dyn( ztrdu, ztrdv, jpdyn_spg, kt, Kmm ) DEALLOCATE( ztrdu , ztrdv ) ENDIF ! ! print mean trends (used for debugging) IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=puu(:,:,:,Krhs), clinfo1=' spg - Ua: ', mask1=umask, & & tab3d_2=pvv(:,:,:,Krhs), clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) ! IF( ln_timing ) CALL timing_stop('dyn_spg') ! END SUBROUTINE dyn_spg SUBROUTINE dyn_spg_init !!--------------------------------------------------------------------- !! *** ROUTINE dyn_spg_init *** !! !! ** Purpose : Control the consistency between namelist options for !! surface pressure gradient schemes !!---------------------------------------------------------------------- INTEGER :: ioptio, ios ! local integers ! NAMELIST/namdyn_spg/ ln_dynspg_exp , ln_dynspg_ts, & & ln_bt_fw, ln_bt_av , ln_bt_auto , & & nn_e , rn_bt_cmax, nn_bt_flt, rn_bt_alpha !!---------------------------------------------------------------------- ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dyn_spg_init : choice of the surface pressure gradient scheme' WRITE(numout,*) '~~~~~~~~~~~~' ENDIF ! READ ( numnam_ref, namdyn_spg, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdyn_spg in reference namelist' ) ! READ ( numnam_cfg, namdyn_spg, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namdyn_spg in configuration namelist' ) IF(lwm) WRITE ( numond, namdyn_spg ) ! IF(lwp) THEN ! Namelist print WRITE(numout,*) ' Namelist : namdyn_spg ' WRITE(numout,*) ' Explicit free surface ln_dynspg_exp = ', ln_dynspg_exp WRITE(numout,*) ' Free surface with time splitting ln_dynspg_ts = ', ln_dynspg_ts ENDIF ! ! Control of surface pressure gradient scheme options nspg = np_NO ; ioptio = 0 IF( ln_dynspg_exp ) THEN ; nspg = np_EXP ; ioptio = ioptio + 1 ; ENDIF IF( ln_dynspg_ts ) THEN ; nspg = np_TS ; ioptio = ioptio + 1 ; ENDIF ! IF( ioptio > 1 ) CALL ctl_stop( 'Choose only one surface pressure gradient scheme' ) IF( ioptio == 0 ) CALL ctl_warn( 'NO surface pressure gradient trend in momentum Eqs.' ) IF( ln_dynspg_exp .AND. ln_isfcav ) & & CALL ctl_stop( ' dynspg_exp not tested with ice shelf cavity ' ) ! IF(lwp) THEN WRITE(numout,*) IF( nspg == np_EXP ) WRITE(numout,*) ' ==>>> explicit free surface' IF( nspg == np_TS ) WRITE(numout,*) ' ==>>> free surface with time splitting scheme' IF( nspg == np_NO ) WRITE(numout,*) ' ==>>> No surface surface pressure gradient trend in momentum Eqs.' ENDIF ! IF( nspg == np_TS ) THEN ! split-explicit scheme initialisation CALL dyn_spg_ts_init ! do it first: set nn_e used to allocate some arrays later on ENDIF ! END SUBROUTINE dyn_spg_init !!====================================================================== END MODULE dynspg