MODULE agrif_oce_interp !!====================================================================== !! *** MODULE agrif_oce_interp *** !! AGRIF: interpolation package for the ocean dynamics (OPA) !!====================================================================== !! History : 2.0 ! 2002-06 (L. Debreu) Original cade !! 3.2 ! 2009-04 (R. Benshila) !! 3.6 ! 2014-09 (R. Benshila) !!---------------------------------------------------------------------- #if defined key_agrif !!---------------------------------------------------------------------- !! 'key_agrif' AGRIF zoom !!---------------------------------------------------------------------- !! Agrif_tra : !! Agrif_dyn : !! Agrif_ssh : !! Agrif_dyn_ts : !! Agrif_dta_ts : !! Agrif_ssh_ts : !! Agrif_avm : !! interpu : !! interpv : !!---------------------------------------------------------------------- USE par_oce USE oce USE dom_oce USE zdf_oce USE agrif_oce USE phycst USE dynspg_ts, ONLY: un_adv, vn_adv ! USE in_out_manager USE agrif_oce_sponge USE lib_mpp USE vremap USE lbclnk IMPLICIT NONE PRIVATE PUBLIC Agrif_dyn, Agrif_ssh, Agrif_dyn_ts, Agrif_dyn_ts_flux, Agrif_ssh_ts, Agrif_dta_ts PUBLIC Agrif_tra, Agrif_avm PUBLIC interpun , interpvn PUBLIC interptsn, interpsshn, interpavm PUBLIC interpunb, interpvnb , interpub2b, interpvb2b PUBLIC interpe3t, interpglamt, interpgphit PUBLIC interpht0, interpmbkt PUBLIC agrif_initts, agrif_initssh INTEGER :: bdy_tinterp = 0 !!---------------------------------------------------------------------- !! NEMO/NST 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE Agrif_tra !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_tra *** !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN ! Agrif_SpecialValue = 0._wp Agrif_UseSpecialValue = .TRUE. ! CALL Agrif_Bc_variable( tsn_id, procname=interptsn ) ! Agrif_UseSpecialValue = .FALSE. ! END SUBROUTINE Agrif_tra SUBROUTINE Agrif_dyn( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_DYN *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: ibdy1, jbdy1, ibdy2, jbdy2 REAL(wp), DIMENSION(jpi,jpj) :: zub, zvb !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN ! Agrif_SpecialValue = 0.0_wp Agrif_UseSpecialValue = ln_spc_dyn ! use_sign_north = .TRUE. sign_north = -1.0_wp CALL Agrif_Bc_variable( un_interp_id, procname=interpun ) CALL Agrif_Bc_variable( vn_interp_id, procname=interpvn ) use_sign_north = .FALSE. ! Agrif_UseSpecialValue = .FALSE. ! ! --- West --- ! IF( lk_west ) THEN ibdy1 = nn_hls + 2 ! halo + land + 1 ibdy2 = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells ! IF( .NOT.ln_dynspg_ts ) THEN ! Store transport DO ji = mi0(ibdy1), mi1(ibdy2) uu_b(ji,:,Krhs_a) = 0._wp DO jk = 1, jpkm1 DO jj = 1, jpj uu_b(ji,jj,Krhs_a) = uu_b(ji,jj,Krhs_a) + e3u(ji,jj,jk,Krhs_a) * uu(ji,jj,jk,Krhs_a) * umask(ji,jj,jk) END DO END DO DO jj = 1, jpj uu_b(ji,jj,Krhs_a) = uu_b(ji,jj,Krhs_a) * r1_hu(ji,jj,Krhs_a) END DO END DO ENDIF ! DO ji = mi0(ibdy1), mi1(ibdy2) zub(ji,:) = 0._wp ! Correct transport DO jk = 1, jpkm1 DO jj = 1, jpj zub(ji,jj) = zub(ji,jj) + e3u(ji,jj,jk,Krhs_a) * uu(ji,jj,jk,Krhs_a) * umask(ji,jj,jk) END DO END DO DO jj=1,jpj zub(ji,jj) = zub(ji,jj) * r1_hu(ji,jj,Krhs_a) END DO DO jk = 1, jpkm1 DO jj = 1, jpj uu(ji,jj,jk,Krhs_a) = ( uu(ji,jj,jk,Krhs_a) + uu_b(ji,jj,Krhs_a) - zub(ji,jj) ) * umask(ji,jj,jk) END DO END DO END DO ! IF( ln_dynspg_ts ) THEN ! Set tangential velocities to time splitting estimate DO ji = mi0(ibdy1), mi1(ibdy2) zvb(ji,:) = 0._wp DO jk = 1, jpkm1 DO jj = 1, jpj zvb(ji,jj) = zvb(ji,jj) + e3v(ji,jj,jk,Krhs_a) * vv(ji,jj,jk,Krhs_a) * vmask(ji,jj,jk) END DO END DO DO jj = 1, jpj zvb(ji,jj) = zvb(ji,jj) * r1_hv(ji,jj,Krhs_a) END DO DO jk = 1, jpkm1 DO jj = 1, jpj vv(ji,jj,jk,Krhs_a) = ( vv(ji,jj,jk,Krhs_a) + vv_b(ji,jj,Krhs_a) - zvb(ji,jj) )*vmask(ji,jj,jk) END DO END DO END DO ENDIF ! ENDIF ! --- East --- ! IF( lk_east) THEN ibdy1 = jpiglo - ( nn_hls + nbghostcells + 1) ! halo + land + nbghostcells ibdy2 = jpiglo - ( nn_hls + 2 ) ! halo + land + 1 ! IF( .NOT.ln_dynspg_ts ) THEN ! Store transport DO ji = mi0(ibdy1), mi1(ibdy2) uu_b(ji,:,Krhs_a) = 0._wp DO jk = 1, jpkm1 DO jj = 1, jpj uu_b(ji,jj,Krhs_a) = uu_b(ji,jj,Krhs_a) + e3u(ji,jj,jk,Krhs_a) * uu(ji,jj,jk,Krhs_a) * umask(ji,jj,jk) END DO END DO DO jj = 1, jpj uu_b(ji,jj,Krhs_a) = uu_b(ji,jj,Krhs_a) * r1_hu(ji,jj,Krhs_a) END DO END DO ENDIF ! DO ji = mi0(ibdy1), mi1(ibdy2) zub(ji,:) = 0._wp ! Correct transport DO jk = 1, jpkm1 DO jj = 1, jpj zub(ji,jj) = zub(ji,jj) + e3u(ji,jj,jk,Krhs_a) * uu(ji,jj,jk,Krhs_a) * umask(ji,jj,jk) END DO END DO DO jj=1,jpj zub(ji,jj) = zub(ji,jj) * r1_hu(ji,jj,Krhs_a) END DO DO jk = 1, jpkm1 DO jj = 1, jpj uu(ji,jj,jk,Krhs_a) = ( uu(ji,jj,jk,Krhs_a) + uu_b(ji,jj,Krhs_a) - zub(ji,jj) ) * umask(ji,jj,jk) END DO END DO END DO ! IF( ln_dynspg_ts ) THEN ! Set tangential velocities to time splitting estimate ibdy1 = jpiglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 ibdy2 = jpiglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO ji = mi0(ibdy1), mi1(ibdy2) zvb(ji,:) = 0._wp DO jk = 1, jpkm1 DO jj = 1, jpj zvb(ji,jj) = zvb(ji,jj) + e3v(ji,jj,jk,Krhs_a) * vv(ji,jj,jk,Krhs_a) * vmask(ji,jj,jk) END DO END DO DO jj = 1, jpj zvb(ji,jj) = zvb(ji,jj) * r1_hv(ji,jj,Krhs_a) END DO DO jk = 1, jpkm1 DO jj = 1, jpj vv(ji,jj,jk,Krhs_a) = ( vv(ji,jj,jk,Krhs_a) + vv_b(ji,jj,Krhs_a) - zvb(ji,jj) ) * vmask(ji,jj,jk) END DO END DO END DO ENDIF ! ENDIF ! --- South --- ! IF( lk_south ) THEN jbdy1 = nn_hls + 2 ! halo + land + 1 jbdy2 = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells ! IF( .NOT.ln_dynspg_ts ) THEN ! Store transport DO jj = mj0(jbdy1), mj1(jbdy2) vv_b(:,jj,Krhs_a) = 0._wp DO jk = 1, jpkm1 DO ji = 1, jpi vv_b(ji,jj,Krhs_a) = vv_b(ji,jj,Krhs_a) + e3v(ji,jj,jk,Krhs_a) * vv(ji,jj,jk,Krhs_a) * vmask(ji,jj,jk) END DO END DO DO ji=1,jpi vv_b(ji,jj,Krhs_a) = vv_b(ji,jj,Krhs_a) * r1_hv(ji,jj,Krhs_a) END DO END DO ENDIF ! DO jj = mj0(jbdy1), mj1(jbdy2) zvb(:,jj) = 0._wp ! Correct transport DO jk=1,jpkm1 DO ji=1,jpi zvb(ji,jj) = zvb(ji,jj) + e3v(ji,jj,jk,Krhs_a) * vv(ji,jj,jk,Krhs_a) * vmask(ji,jj,jk) END DO END DO DO ji = 1, jpi zvb(ji,jj) = zvb(ji,jj) * r1_hv(ji,jj,Krhs_a) END DO DO jk = 1, jpkm1 DO ji = 1, jpi vv(ji,jj,jk,Krhs_a) = ( vv(ji,jj,jk,Krhs_a) + vv_b(ji,jj,Krhs_a) - zvb(ji,jj) ) * vmask(ji,jj,jk) END DO END DO END DO ! IF( ln_dynspg_ts ) THEN ! Set tangential velocities to time splitting estimate DO jj = mj0(jbdy1), mj1(jbdy2) zub(:,jj) = 0._wp DO jk = 1, jpkm1 DO ji = 1, jpi zub(ji,jj) = zub(ji,jj) + e3u(ji,jj,jk,Krhs_a) * uu(ji,jj,jk,Krhs_a) * umask(ji,jj,jk) END DO END DO DO ji = 1, jpi zub(ji,jj) = zub(ji,jj) * r1_hu(ji,jj,Krhs_a) END DO DO jk = 1, jpkm1 DO ji = 1, jpi uu(ji,jj,jk,Krhs_a) = ( uu(ji,jj,jk,Krhs_a) + uu_b(ji,jj,Krhs_a) - zub(ji,jj) ) * umask(ji,jj,jk) END DO END DO END DO ENDIF ! ENDIF ! --- North --- ! IF( lk_north ) THEN jbdy1 = jpjglo - ( nn_hls + nbghostcells + 1) ! halo + land + nbghostcells jbdy2 = jpjglo - ( nn_hls + 2 ) ! halo + land + 1 ! IF( .NOT.ln_dynspg_ts ) THEN ! Store transport DO jj = mj0(jbdy1), mj1(jbdy2) vv_b(:,jj,Krhs_a) = 0._wp DO jk = 1, jpkm1 DO ji = 1, jpi vv_b(ji,jj,Krhs_a) = vv_b(ji,jj,Krhs_a) + e3v(ji,jj,jk,Krhs_a) * vv(ji,jj,jk,Krhs_a) * vmask(ji,jj,jk) END DO END DO DO ji=1,jpi vv_b(ji,jj,Krhs_a) = vv_b(ji,jj,Krhs_a) * r1_hv(ji,jj,Krhs_a) END DO END DO ENDIF ! DO jj = mj0(jbdy1), mj1(jbdy2) zvb(:,jj) = 0._wp ! Correct transport DO jk=1,jpkm1 DO ji=1,jpi zvb(ji,jj) = zvb(ji,jj) + e3v(ji,jj,jk,Krhs_a) * vv(ji,jj,jk,Krhs_a) * vmask(ji,jj,jk) END DO END DO DO ji = 1, jpi zvb(ji,jj) = zvb(ji,jj) * r1_hv(ji,jj,Krhs_a) END DO DO jk = 1, jpkm1 DO ji = 1, jpi vv(ji,jj,jk,Krhs_a) = ( vv(ji,jj,jk,Krhs_a) + vv_b(ji,jj,Krhs_a) - zvb(ji,jj) ) * vmask(ji,jj,jk) END DO END DO END DO ! IF( ln_dynspg_ts ) THEN ! Set tangential velocities to time splitting estimate jbdy1 = jpjglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 jbdy2 = jpjglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO jj = mj0(jbdy1), mj1(jbdy2) zub(:,jj) = 0._wp DO jk = 1, jpkm1 DO ji = 1, jpi zub(ji,jj) = zub(ji,jj) + e3u(ji,jj,jk,Krhs_a) * uu(ji,jj,jk,Krhs_a) * umask(ji,jj,jk) END DO END DO DO ji = 1, jpi zub(ji,jj) = zub(ji,jj) * r1_hu(ji,jj,Krhs_a) END DO DO jk = 1, jpkm1 DO ji = 1, jpi uu(ji,jj,jk,Krhs_a) = ( uu(ji,jj,jk,Krhs_a) + uu_b(ji,jj,Krhs_a) - zub(ji,jj) ) * umask(ji,jj,jk) END DO END DO END DO ENDIF ! ENDIF ! END SUBROUTINE Agrif_dyn SUBROUTINE Agrif_dyn_ts( jn ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_dyn_ts *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: jn !! INTEGER :: ji, jj INTEGER :: istart, iend, jstart, jend !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN ! !--- West ---! IF( lk_west ) THEN istart = nn_hls + 2 ! halo + land + 1 iend = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells DO ji = mi0(istart), mi1(iend) DO jj=1,jpj va_e(ji,jj) = vbdy(ji,jj) * hvr_e(ji,jj) ua_e(ji,jj) = ubdy(ji,jj) * hur_e(ji,jj) END DO END DO ENDIF ! !--- East ---! IF( lk_east ) THEN istart = jpiglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 iend = jpiglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO ji = mi0(istart), mi1(iend) DO jj=1,jpj va_e(ji,jj) = vbdy(ji,jj) * hvr_e(ji,jj) END DO END DO istart = jpiglo - ( nn_hls + nbghostcells + 1) ! halo + land + nbghostcells iend = jpiglo - ( nn_hls + 2 ) ! halo + land + 1 DO ji = mi0(istart), mi1(iend) DO jj=1,jpj ua_e(ji,jj) = ubdy(ji,jj) * hur_e(ji,jj) END DO END DO ENDIF ! !--- South ---! IF( lk_south ) THEN jstart = nn_hls + 2 ! halo + land + 1 jend = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells DO jj = mj0(jstart), mj1(jend) DO ji=1,jpi ua_e(ji,jj) = ubdy(ji,jj) * hur_e(ji,jj) va_e(ji,jj) = vbdy(ji,jj) * hvr_e(ji,jj) END DO END DO ENDIF ! !--- North ---! IF( lk_north ) THEN jstart = jpjglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 jend = jpjglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO jj = mj0(jstart), mj1(jend) DO ji=1,jpi ua_e(ji,jj) = ubdy(ji,jj) * hur_e(ji,jj) END DO END DO jstart = jpjglo - ( nn_hls + nbghostcells + 1) ! halo + land + nbghostcells jend = jpjglo - ( nn_hls + 2 ) ! halo + land + 1 DO jj = mj0(jstart), mj1(jend) DO ji=1,jpi va_e(ji,jj) = vbdy(ji,jj) * hvr_e(ji,jj) END DO END DO ENDIF ! END SUBROUTINE Agrif_dyn_ts SUBROUTINE Agrif_dyn_ts_flux( jn, zu, zv ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_dyn_ts_flux *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: jn REAL(wp), DIMENSION(jpi,jpj), INTENT(inout) :: zu, zv !! INTEGER :: ji, jj INTEGER :: istart, iend, jstart, jend !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN ! !--- West ---! IF( lk_west ) THEN istart = nn_hls + 2 ! halo + land + 1 iend = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells DO ji = mi0(istart), mi1(iend) DO jj=1,jpj zv(ji,jj) = vbdy(ji,jj) * e1v(ji,jj) zu(ji,jj) = ubdy(ji,jj) * e2u(ji,jj) END DO END DO ENDIF ! !--- East ---! IF( lk_east ) THEN istart = jpiglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 iend = jpiglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO ji = mi0(istart), mi1(iend) DO jj=1,jpj zv(ji,jj) = vbdy(ji,jj) * e1v(ji,jj) END DO END DO istart = jpiglo - ( nn_hls + nbghostcells + 1) ! halo + land + nbghostcells iend = jpiglo - ( nn_hls + 2 ) ! halo + land + 1 DO ji = mi0(istart), mi1(iend) DO jj=1,jpj zu(ji,jj) = ubdy(ji,jj) * e2u(ji,jj) END DO END DO ENDIF ! !--- South ---! IF( lk_south ) THEN jstart = nn_hls + 2 ! halo + land + 1 jend = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells DO jj = mj0(jstart), mj1(jend) DO ji=1,jpi zu(ji,jj) = ubdy(ji,jj) * e2u(ji,jj) zv(ji,jj) = vbdy(ji,jj) * e1v(ji,jj) END DO END DO ENDIF ! !--- North ---! IF( lk_north ) THEN jstart = jpjglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 jend = jpjglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO jj = mj0(jstart), mj1(jend) DO ji=1,jpi zu(ji,jj) = ubdy(ji,jj) * e2u(ji,jj) END DO END DO jstart = jpjglo - ( nn_hls + nbghostcells + 1) ! halo + land + nbghostcells jend = jpjglo - ( nn_hls + 2 ) ! halo + land + 1 DO jj = mj0(jstart), mj1(jend) DO ji=1,jpi zv(ji,jj) = vbdy(ji,jj) * e1v(ji,jj) END DO END DO ENDIF ! END SUBROUTINE Agrif_dyn_ts_flux SUBROUTINE Agrif_dta_ts( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_dta_ts *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt !! INTEGER :: ji, jj LOGICAL :: ll_int_cons !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN ! ll_int_cons = ln_bt_fw ! Assume conservative temporal integration in the forward case only ! ! Enforce volume conservation if no time refinement: IF ( Agrif_rhot()==1 ) ll_int_cons=.TRUE. ! ! Interpolate barotropic fluxes Agrif_SpecialValue = 0._wp Agrif_UseSpecialValue = ln_spc_dyn use_sign_north = .TRUE. sign_north = -1. ! ! Set bdy time interpolation stage to 0 (latter incremented locally do deal with corners) utint_stage(:,:) = 0 vtint_stage(:,:) = 0 ! IF( ll_int_cons ) THEN ! Conservative interpolation ! order matters here !!!!!! CALL Agrif_Bc_variable( ub2b_interp_id, calledweight=1._wp, procname=interpub2b ) ! Time integrated CALL Agrif_Bc_variable( vb2b_interp_id, calledweight=1._wp, procname=interpvb2b ) ! bdy_tinterp = 1 CALL Agrif_Bc_variable( unb_id , calledweight=1._wp, procname=interpunb ) ! After CALL Agrif_Bc_variable( vnb_id , calledweight=1._wp, procname=interpvnb ) ! bdy_tinterp = 2 CALL Agrif_Bc_variable( unb_id , calledweight=0._wp, procname=interpunb ) ! Before CALL Agrif_Bc_variable( vnb_id , calledweight=0._wp, procname=interpvnb ) ELSE ! Linear interpolation ! ubdy(:,:) = 0._wp ; vbdy(:,:) = 0._wp CALL Agrif_Bc_variable( unb_id, procname=interpunb ) CALL Agrif_Bc_variable( vnb_id, procname=interpvnb ) ENDIF Agrif_UseSpecialValue = .FALSE. use_sign_north = .FALSE. ! END SUBROUTINE Agrif_dta_ts SUBROUTINE Agrif_ssh( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_ssh *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! INTEGER :: ji, jj INTEGER :: istart, iend, jstart, jend !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN ! ! Linear time interpolation of sea level ! Agrif_SpecialValue = 0._wp Agrif_UseSpecialValue = .TRUE. CALL Agrif_Bc_variable(sshn_id, procname=interpsshn ) Agrif_UseSpecialValue = .FALSE. ! ! --- West --- ! IF(lk_west) THEN istart = nn_hls + 2 ! halo + land + 1 iend = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells DO ji = mi0(istart), mi1(iend) DO jj = 1, jpj ssh(ji,jj,Krhs_a) = hbdy(ji,jj) END DO END DO ENDIF ! ! --- East --- ! IF(lk_east) THEN istart = jpiglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 iend = jpiglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO ji = mi0(istart), mi1(iend) DO jj = 1, jpj ssh(ji,jj,Krhs_a) = hbdy(ji,jj) END DO END DO ENDIF ! ! --- South --- ! IF(lk_south) THEN jstart = nn_hls + 2 ! halo + land + 1 jend = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells DO jj = mj0(jstart), mj1(jend) DO ji = 1, jpi ssh(ji,jj,Krhs_a) = hbdy(ji,jj) END DO END DO ENDIF ! ! --- North --- ! IF(lk_north) THEN jstart = jpjglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 jend = jpjglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO jj = mj0(jstart), mj1(jend) DO ji = 1, jpi ssh(ji,jj,Krhs_a) = hbdy(ji,jj) END DO END DO ENDIF ! END SUBROUTINE Agrif_ssh SUBROUTINE Agrif_ssh_ts( jn ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_ssh_ts *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: jn !! INTEGER :: ji, jj INTEGER :: istart, iend, jstart, jend !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN ! ! --- West --- ! IF(lk_west) THEN istart = nn_hls + 2 ! halo + land + 1 iend = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells DO ji = mi0(istart), mi1(iend) DO jj = 1, jpj ssha_e(ji,jj) = hbdy(ji,jj) END DO END DO ENDIF ! ! --- East --- ! IF(lk_east) THEN istart = jpiglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 iend = jpiglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO ji = mi0(istart), mi1(iend) DO jj = 1, jpj ssha_e(ji,jj) = hbdy(ji,jj) END DO END DO ENDIF ! ! --- South --- ! IF(lk_south) THEN jstart = nn_hls + 2 ! halo + land + 1 jend = nn_hls + 1 + nbghostcells ! halo + land + nbghostcells DO jj = mj0(jstart), mj1(jend) DO ji = 1, jpi ssha_e(ji,jj) = hbdy(ji,jj) END DO END DO ENDIF ! ! --- North --- ! IF(lk_north) THEN jstart = jpjglo - ( nn_hls + nbghostcells ) ! halo + land + nbghostcells - 1 jend = jpjglo - ( nn_hls + 1 ) ! halo + land + 1 - 1 DO jj = mj0(jstart), mj1(jend) DO ji = 1, jpi ssha_e(ji,jj) = hbdy(ji,jj) END DO END DO ENDIF ! END SUBROUTINE Agrif_ssh_ts SUBROUTINE Agrif_avm !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_avm *** !!---------------------------------------------------------------------- REAL(wp) :: zalpha !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN ! zalpha = 1._wp ! JC: proper time interpolation impossible ! => use last available value from parent ! Agrif_SpecialValue = 0.e0 Agrif_UseSpecialValue = .TRUE. ! CALL Agrif_Bc_variable( avm_id, calledweight=zalpha, procname=interpavm ) ! Agrif_UseSpecialValue = .FALSE. ! END SUBROUTINE Agrif_avm SUBROUTINE interptsn( ptab, i1, i2, j1, j2, k1, k2, n1, n2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interptsn *** !!---------------------------------------------------------------------- REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,n1:n2), INTENT(inout) :: ptab INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2, n1, n2 LOGICAL , INTENT(in ) :: before ! INTEGER :: ji, jj, jk, jn ! dummy loop indices INTEGER :: N_in, N_out INTEGER :: item ! vertical interpolation: REAL(wp) :: zhtot REAL(wp), DIMENSION(k1:k2,1:jpts) :: tabin REAL(wp), DIMENSION(k1:k2) :: h_in, z_in REAL(wp), DIMENSION(1:jpk) :: h_out, z_out !!---------------------------------------------------------------------- IF( before ) THEN item = Kmm_a IF( l_ini_child ) Kmm_a = Kbb_a DO jn = 1,jpts DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk,jn) = ts(ji,jj,jk,jn,Kmm_a) END DO END DO END DO END DO IF( l_vremap .OR. l_ini_child) THEN ! Interpolate thicknesses ! Warning: these are masked, hence extrapolated prior interpolation. DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk,jpts+1) = tmask(ji,jj,jk) * e3t(ji,jj,jk,Kmm_a) END DO END DO END DO ! Extrapolate thicknesses in partial bottom cells: ! Set them to Agrif_SpecialValue (0.). Correct bottom thicknesses are retrieved later on IF (ln_zps) THEN DO jj=j1,j2 DO ji=i1,i2 jk = mbkt(ji,jj) ptab(ji,jj,jk,jpts+1) = 0._wp END DO END DO END IF ! Save ssh at last level: IF (.NOT.ln_linssh) THEN ptab(i1:i2,j1:j2,k2,jpts+1) = ssh(i1:i2,j1:j2,Kmm_a)*tmask(i1:i2,j1:j2,1) ELSE ptab(i1:i2,j1:j2,k2,jpts+1) = 0._wp END IF ENDIF Kmm_a = item ELSE item = Krhs_a IF( l_ini_child ) Krhs_a = Kbb_a IF( l_vremap .OR. l_ini_child ) THEN IF (ln_linssh) ptab(i1:i2,j1:j2,k2,n2) = 0._wp DO jj=j1,j2 DO ji=i1,i2 ts(ji,jj,:,:,Krhs_a) = 0. ! IF( l_ini_child) ts(ji,jj,:,:,Krhs_a) = ptab(ji,jj,:,1:jpts) N_in = mbkt_parent(ji,jj) zhtot = 0._wp DO jk=1,N_in !k2 = jpk of parent grid IF (jk==N_in) THEN h_in(jk) = ht0_parent(ji,jj) + ptab(ji,jj,k2,n2) - zhtot ELSE h_in(jk) = ptab(ji,jj,jk,n2) ENDIF zhtot = zhtot + h_in(jk) tabin(jk,:) = ptab(ji,jj,jk,n1:n2-1) END DO z_in(1) = 0.5_wp * h_in(1) - zhtot + ht0_parent(ji,jj) DO jk=2,N_in z_in(jk) = z_in(jk-1) + 0.5_wp * h_in(jk) END DO N_out = 0 DO jk=1,jpk ! jpk of child grid IF (tmask(ji,jj,jk) == 0._wp) EXIT N_out = N_out + 1 h_out(jk) = e3t(ji,jj,jk,Krhs_a) END DO z_out(1) = 0.5_wp * h_out(1) - SUM(h_out(1:N_out)) + ht_0(ji,jj) DO jk=2,N_out z_out(jk) = z_out(jk-1) + 0.5_wp * h_out(jk) END DO IF (N_in*N_out > 0) THEN IF( l_ini_child ) THEN CALL remap_linear(tabin(1:N_in,1:jpts),z_in(1:N_in),ts(ji,jj,1:N_out,1:jpts,Krhs_a), & & z_out(1:N_out),N_in,N_out,jpts) ELSE CALL reconstructandremap(tabin(1:N_in,1:jpts),h_in(1:N_in),ts(ji,jj,1:N_out,1:jpts,Krhs_a), & & h_out(1:N_out),N_in,N_out,jpts) ENDIF ENDIF END DO END DO Krhs_a = item ELSE DO jn=1, jpts ts(i1:i2,j1:j2,1:jpk,jn,Krhs_a)=ptab(i1:i2,j1:j2,1:jpk,jn)*tmask(i1:i2,j1:j2,1:jpk) END DO ENDIF ENDIF ! END SUBROUTINE interptsn SUBROUTINE interpsshn( ptab, i1, i2, j1, j2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpsshn *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! !!---------------------------------------------------------------------- ! IF( before) THEN ptab(i1:i2,j1:j2) = ssh(i1:i2,j1:j2,Kmm_a) ELSE hbdy(i1:i2,j1:j2) = ptab(i1:i2,j1:j2) * tmask(i1:i2,j1:j2,1) ENDIF ! END SUBROUTINE interpsshn SUBROUTINE interpun( ptab, i1, i2, j1, j2, k1, k2, m1, m2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpun *** !!--------------------------------------------- !! INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2,m1,m2 REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before !! INTEGER :: ji,jj,jk REAL(wp) :: zrhoy, zhtot ! vertical interpolation: REAL(wp), DIMENSION(k1:k2) :: tabin, h_in, z_in REAL(wp), DIMENSION(1:jpk) :: h_out, z_out INTEGER :: N_in, N_out,item REAL(wp) :: h_diff !!--------------------------------------------- ! IF (before) THEN item = Kmm_a IF( l_ini_child ) Kmm_a = Kbb_a DO jk=1,jpk DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk,1) = (e2u(ji,jj) * e3u(ji,jj,jk,Kmm_a) * uu(ji,jj,jk,Kmm_a)*umask(ji,jj,jk)) IF( l_vremap .OR. l_ini_child) THEN ! Interpolate thicknesses (masked for subsequent extrapolation) ptab(ji,jj,jk,2) = umask(ji,jj,jk) * e2u(ji,jj) * e3u(ji,jj,jk,Kmm_a) ENDIF END DO END DO END DO IF( l_vremap .OR. l_ini_child) THEN ! Extrapolate thicknesses in partial bottom cells: ! Set them to Agrif_SpecialValue (0.). Correct bottom thicknesses are retrieved later on IF (ln_zps) THEN DO jj=j1,j2 DO ji=i1,i2 jk = mbku(ji,jj) ptab(ji,jj,jk,2) = 0._wp END DO END DO END IF ! Save ssh at last level: ptab(i1:i2,j1:j2,k2,2) = 0._wp IF (.NOT.ln_linssh) THEN ! This vertical sum below should be replaced by the sea-level at U-points (optimization): DO jk=1,jpk ptab(i1:i2,j1:j2,k2,2) = ptab(i1:i2,j1:j2,k2,2) + e3u(i1:i2,j1:j2,jk,Kmm_a) * umask(i1:i2,j1:j2,jk) END DO ptab(i1:i2,j1:j2,k2,2) = ptab(i1:i2,j1:j2,k2,2) - hu_0(i1:i2,j1:j2) END IF ENDIF Kmm_a = item ! ELSE zrhoy = Agrif_rhoy() IF( l_vremap .OR. l_ini_child) THEN ! VERTICAL REFINEMENT BEGIN IF (ln_linssh) ptab(i1:i2,j1:j2,k2,2) = 0._wp DO ji=i1,i2 DO jj=j1,j2 uu(ji,jj,:,Krhs_a) = 0._wp N_in = mbku_parent(ji,jj) zhtot = 0._wp DO jk=1,N_in IF (jk==N_in) THEN h_in(jk) = hu0_parent(ji,jj) + ptab(ji,jj,k2,2) - zhtot ELSE h_in(jk) = ptab(ji,jj,jk,2)/(e2u(ji,jj)*zrhoy) ENDIF zhtot = zhtot + h_in(jk) IF( h_in(jk) .GT. 0. ) THEN tabin(jk) = ptab(ji,jj,jk,1)/(e2u(ji,jj)*zrhoy*h_in(jk)) ELSE tabin(jk) = 0. ENDIF END DO z_in(1) = 0.5_wp * h_in(1) - zhtot + hu0_parent(ji,jj) DO jk=2,N_in z_in(jk) = z_in(jk-1) + 0.5_wp * h_in(jk) END DO N_out = 0 DO jk=1,jpk IF (umask(ji,jj,jk) == 0) EXIT N_out = N_out + 1 h_out(N_out) = e3u(ji,jj,jk,Krhs_a) END DO z_out(1) = 0.5_wp * h_out(1) - SUM(h_out(1:N_out)) + hu_0(ji,jj) DO jk=2,N_out z_out(jk) = z_out(jk-1) + 0.5_wp * h_out(jk) END DO IF (N_in*N_out > 0) THEN IF( l_ini_child ) THEN CALL remap_linear (tabin(1:N_in),z_in(1:N_in),uu(ji,jj,1:N_out,Krhs_a),z_out(1:N_out),N_in,N_out,1) ELSE CALL reconstructandremap(tabin(1:N_in),h_in(1:N_in),uu(ji,jj,1:N_out,Krhs_a),h_out(1:N_out),N_in,N_out,1) ENDIF ENDIF END DO END DO ELSE DO jk = 1, jpkm1 DO jj=j1,j2 uu(i1:i2,jj,jk,Krhs_a) = ptab(i1:i2,jj,jk,1) / ( zrhoy * e2u(i1:i2,jj) * e3u(i1:i2,jj,jk,Krhs_a) ) END DO END DO ENDIF ENDIF ! END SUBROUTINE interpun SUBROUTINE interpvn( ptab, i1, i2, j1, j2, k1, k2, m1, m2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpvn *** !!---------------------------------------------------------------------- ! INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2,m1,m2 REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: ptab LOGICAL, INTENT(in) :: before ! INTEGER :: ji,jj,jk REAL(wp) :: zrhox ! vertical interpolation: REAL(wp), DIMENSION(k1:k2) :: tabin, h_in, z_in REAL(wp), DIMENSION(1:jpk) :: h_out, z_out INTEGER :: N_in, N_out, item REAL(wp) :: h_diff, zhtot !!--------------------------------------------- ! IF (before) THEN item = Kmm_a IF( l_ini_child ) Kmm_a = Kbb_a DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk,1) = (e1v(ji,jj) * e3v(ji,jj,jk,Kmm_a) * vv(ji,jj,jk,Kmm_a)*vmask(ji,jj,jk)) IF( l_vremap .OR. l_ini_child) THEN ! Interpolate thicknesses (masked for subsequent extrapolation) ptab(ji,jj,jk,2) = vmask(ji,jj,jk) * e1v(ji,jj) * e3v(ji,jj,jk,Kmm_a) ENDIF END DO END DO END DO IF( l_vremap .OR. l_ini_child) THEN ! Extrapolate thicknesses in partial bottom cells: ! Set them to Agrif_SpecialValue (0.). Correct bottom thicknesses are retrieved later on IF (ln_zps) THEN DO jj=j1,j2 DO ji=i1,i2 jk = mbkv(ji,jj) ptab(ji,jj,jk,2) = 0._wp END DO END DO END IF ! Save ssh at last level: ptab(i1:i2,j1:j2,k2,2) = 0._wp IF (.NOT.ln_linssh) THEN ! This vertical sum below should be replaced by the sea-level at V-points (optimization): DO jk=1,jpk ptab(i1:i2,j1:j2,k2,2) = ptab(i1:i2,j1:j2,k2,2) + e3v(i1:i2,j1:j2,jk,Kmm_a) * vmask(i1:i2,j1:j2,jk) END DO ptab(i1:i2,j1:j2,k2,2) = ptab(i1:i2,j1:j2,k2,2) - hv_0(i1:i2,j1:j2) END IF ENDIF item = Kmm_a ELSE zrhox = Agrif_rhox() IF( l_vremap .OR. l_ini_child ) THEN IF (ln_linssh) ptab(i1:i2,j1:j2,k2,2) = 0._wp DO jj=j1,j2 DO ji=i1,i2 vv(ji,jj,:,Krhs_a) = 0._wp N_in = mbkv_parent(ji,jj) zhtot = 0._wp DO jk=1,N_in IF (jk==N_in) THEN h_in(jk) = hv0_parent(ji,jj) + ptab(ji,jj,k2,2) - zhtot ELSE h_in(jk) = ptab(ji,jj,jk,2)/(e1v(ji,jj)*zrhox) ENDIF zhtot = zhtot + h_in(jk) IF( h_in(jk) .GT. 0. ) THEN tabin(jk) = ptab(ji,jj,jk,1)/(e1v(ji,jj)*zrhox*h_in(jk)) ELSE tabin(jk) = 0. ENDIF END DO z_in(1) = 0.5_wp * h_in(1) - zhtot + hv0_parent(ji,jj) DO jk=2,N_in z_in(jk) = z_in(jk-1) + 0.5_wp * h_in(jk) END DO N_out = 0 DO jk=1,jpk IF (vmask(ji,jj,jk) == 0) EXIT N_out = N_out + 1 h_out(N_out) = e3v(ji,jj,jk,Krhs_a) END DO z_out(1) = 0.5_wp * h_out(1) - SUM(h_out(1:N_out)) + hv_0(ji,jj) DO jk=2,N_out z_out(jk) = z_out(jk-1) + 0.5_wp * h_out(jk) END DO IF (N_in*N_out > 0) THEN IF( l_ini_child ) THEN CALL remap_linear (tabin(1:N_in),z_in(1:N_in),vv(ji,jj,1:N_out,Krhs_a),z_out(1:N_out),N_in,N_out,1) ELSE CALL reconstructandremap(tabin(1:N_in),h_in(1:N_in),vv(ji,jj,1:N_out,Krhs_a),h_out(1:N_out),N_in,N_out,1) ENDIF ENDIF END DO END DO ELSE DO jk = 1, jpkm1 vv(i1:i2,j1:j2,jk,Krhs_a) = ptab(i1:i2,j1:j2,jk,1) / ( zrhox * e1v(i1:i2,j1:j2) * e3v(i1:i2,j1:j2,jk,Krhs_a) ) END DO ENDIF ENDIF ! END SUBROUTINE interpvn SUBROUTINE interpunb( ptab, i1, i2, j1, j2, before) !!---------------------------------------------------------------------- !! *** ROUTINE interpunb *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! INTEGER :: ji, jj REAL(wp) :: zrhoy, zrhot, zt0, zt1, ztcoeff !!---------------------------------------------------------------------- ! IF( before ) THEN ptab(i1:i2,j1:j2) = e2u(i1:i2,j1:j2) * hu(i1:i2,j1:j2,Kmm_a) * uu_b(i1:i2,j1:j2,Kmm_a) ELSE zrhoy = Agrif_Rhoy() zrhot = Agrif_rhot() ! Time indexes bounds for integration zt0 = REAL(Agrif_NbStepint() , wp) / zrhot zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot ! DO ji = i1, i2 DO jj = j1, j2 IF ( utint_stage(ji,jj) < (bdy_tinterp + 1) ) THEN IF ( utint_stage(ji,jj) == 1 ) THEN ztcoeff = zrhot * ( zt1**2._wp * ( zt1 - 1._wp) & & - zt0**2._wp * ( zt0 - 1._wp) ) ELSEIF( utint_stage(ji,jj) == 2 ) THEN ztcoeff = zrhot * ( zt1 * ( zt1 - 1._wp)**2._wp & & - zt0 * ( zt0 - 1._wp)**2._wp ) ELSEIF( utint_stage(ji,jj) == 0 ) THEN ztcoeff = 1._wp ELSE ztcoeff = 0._wp ENDIF ! ubdy(ji,jj) = ubdy(ji,jj) + ztcoeff * ptab(ji,jj) ! IF (( utint_stage(ji,jj) == 2 ).OR.( utint_stage(ji,jj) == 0 )) THEN ubdy(ji,jj) = ubdy(ji,jj) / (zrhoy*e2u(ji,jj)) * umask(ji,jj,1) ENDIF ! utint_stage(ji,jj) = utint_stage(ji,jj) + 1 ENDIF END DO END DO END IF ! END SUBROUTINE interpunb SUBROUTINE interpvnb( ptab, i1, i2, j1, j2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpvnb *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! INTEGER :: ji, jj REAL(wp) :: zrhox, zrhot, zt0, zt1, ztcoeff !!---------------------------------------------------------------------- ! IF( before ) THEN ptab(i1:i2,j1:j2) = e1v(i1:i2,j1:j2) * hv(i1:i2,j1:j2,Kmm_a) * vv_b(i1:i2,j1:j2,Kmm_a) ELSE zrhox = Agrif_Rhox() zrhot = Agrif_rhot() ! Time indexes bounds for integration zt0 = REAL(Agrif_NbStepint() , wp) / zrhot zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot ! DO ji = i1, i2 DO jj = j1, j2 IF ( vtint_stage(ji,jj) < (bdy_tinterp + 1) ) THEN IF ( vtint_stage(ji,jj) == 1 ) THEN ztcoeff = zrhot * ( zt1**2._wp * ( zt1 - 1._wp) & & - zt0**2._wp * ( zt0 - 1._wp) ) ELSEIF( vtint_stage(ji,jj) == 2 ) THEN ztcoeff = zrhot * ( zt1 * ( zt1 - 1._wp)**2._wp & & - zt0 * ( zt0 - 1._wp)**2._wp ) ELSEIF( vtint_stage(ji,jj) == 0 ) THEN ztcoeff = 1._wp ELSE ztcoeff = 0._wp ENDIF ! vbdy(ji,jj) = vbdy(ji,jj) + ztcoeff * ptab(ji,jj) ! IF (( vtint_stage(ji,jj) == 2 ).OR.( vtint_stage(ji,jj) == 0 )) THEN vbdy(ji,jj) = vbdy(ji,jj) / (zrhox*e1v(ji,jj)) * vmask(ji,jj,1) ENDIF ! vtint_stage(ji,jj) = vtint_stage(ji,jj) + 1 ENDIF END DO END DO ENDIF ! END SUBROUTINE interpvnb SUBROUTINE interpub2b( ptab, i1, i2, j1, j2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpub2b *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! INTEGER :: ji,jj REAL(wp) :: zrhot, zt0, zt1, zat !!---------------------------------------------------------------------- IF( before ) THEN IF ( ln_bt_fw ) THEN ptab(i1:i2,j1:j2) = e2u(i1:i2,j1:j2) * ub2_b(i1:i2,j1:j2) ELSE ptab(i1:i2,j1:j2) = e2u(i1:i2,j1:j2) * un_adv(i1:i2,j1:j2) ENDIF ELSE zrhot = Agrif_rhot() ! Time indexes bounds for integration zt0 = REAL(Agrif_NbStepint() , wp) / zrhot zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot ! Polynomial interpolation coefficients: zat = zrhot * ( zt1**2._wp * (-2._wp*zt1 + 3._wp) & & - zt0**2._wp * (-2._wp*zt0 + 3._wp) ) ! ubdy(i1:i2,j1:j2) = zat * ptab(i1:i2,j1:j2) ! ! Update interpolation stage: utint_stage(i1:i2,j1:j2) = 1 ENDIF ! END SUBROUTINE interpub2b SUBROUTINE interpvb2b( ptab, i1, i2, j1, j2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpvb2b *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! INTEGER :: ji,jj REAL(wp) :: zrhot, zt0, zt1, zat !!---------------------------------------------------------------------- ! IF( before ) THEN IF ( ln_bt_fw ) THEN ptab(i1:i2,j1:j2) = e1v(i1:i2,j1:j2) * vb2_b(i1:i2,j1:j2) ELSE ptab(i1:i2,j1:j2) = e1v(i1:i2,j1:j2) * vn_adv(i1:i2,j1:j2) ENDIF ELSE zrhot = Agrif_rhot() ! Time indexes bounds for integration zt0 = REAL(Agrif_NbStepint() , wp) / zrhot zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot ! Polynomial interpolation coefficients: zat = zrhot * ( zt1**2._wp * (-2._wp*zt1 + 3._wp) & & - zt0**2._wp * (-2._wp*zt0 + 3._wp) ) ! vbdy(i1:i2,j1:j2) = zat * ptab(i1:i2,j1:j2) ! ! update interpolation stage: vtint_stage(i1:i2,j1:j2) = 1 ENDIF ! END SUBROUTINE interpvb2b SUBROUTINE interpe3t( ptab, i1, i2, j1, j2, k1, k2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpe3t *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2 REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! INTEGER :: ji, jj, jk !!---------------------------------------------------------------------- ! IF( before ) THEN ptab(i1:i2,j1:j2,k1:k2) = tmask(i1:i2,j1:j2,k1:k2) * e3t_0(i1:i2,j1:j2,k1:k2) ELSE ! DO jk = k1, k2 DO jj = j1, j2 DO ji = i1, i2 IF( ABS( ptab(ji,jj,jk) - tmask(ji,jj,jk) * e3t_0(ji,jj,jk) ) > 1.D-2) THEN WRITE(numout,*) ' Agrif error for e3t_0: parent , child, i, j, k ', & & ptab(ji,jj,jk), tmask(ji,jj,jk) * e3t_0(ji,jj,jk), & & mig0(ji), mig0(jj), jk ! kindic_agr = kindic_agr + 1 ENDIF END DO END DO END DO ! ENDIF ! END SUBROUTINE interpe3t SUBROUTINE interpglamt( ptab, i1, i2, j1, j2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpglamt *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp),DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! INTEGER :: ji, jj, jk REAL(wp):: ztst !!---------------------------------------------------------------------- ! IF( before ) THEN ptab(i1:i2,j1:j2) = glamt(i1:i2,j1:j2) ELSE ztst = MAXVAL(ABS(glamt(i1:i2,j1:j2)))*1.e-4 DO jj = j1, j2 DO ji = i1, i2 IF( ABS( ptab(ji,jj) - glamt(ji,jj) ) > ztst ) THEN WRITE(numout,*) ' Agrif error for glamt: parent, child, i, j ', ptab(ji,jj), glamt(ji,jj), mig0(ji), mig0(jj) ! kindic_agr = kindic_agr + 1 ENDIF END DO END DO ENDIF ! END SUBROUTINE interpglamt SUBROUTINE interpgphit( ptab, i1, i2, j1, j2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpgphit *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp),DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! INTEGER :: ji, jj, jk REAL(wp):: ztst !!---------------------------------------------------------------------- ! IF( before ) THEN ptab(i1:i2,j1:j2) = gphit(i1:i2,j1:j2) ELSE ztst = MAXVAL(ABS(gphit(i1:i2,j1:j2)))*1.e-4 DO jj = j1, j2 DO ji = i1, i2 IF( ABS( ptab(ji,jj) - gphit(ji,jj) ) > ztst ) THEN WRITE(numout,*) ' Agrif error for gphit: parent, child, i, j ', ptab(ji,jj), gphit(ji,jj), mig0(ji), mig0(jj) ! kindic_agr = kindic_agr + 1 ENDIF END DO END DO ENDIF ! END SUBROUTINE interpgphit SUBROUTINE interpavm( ptab, i1, i2, j1, j2, k1, k2, m1, m2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interavm *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2, m1, m2 REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! INTEGER :: ji, jj, jk INTEGER :: N_in, N_out REAL(wp), DIMENSION(k1:k2) :: tabin, z_in REAL(wp), DIMENSION(1:jpk) :: z_out !!---------------------------------------------------------------------- ! IF (before) THEN DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk,1) = avm_k(ji,jj,jk) END DO END DO END DO IF( l_vremap ) THEN ! Interpolate thicknesses ! Warning: these are masked, hence extrapolated prior interpolation. DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 ptab(ji,jj,jk,2) = tmask(ji,jj,jk) * e3t(ji,jj,jk,Kmm_a) END DO END DO END DO ! Extrapolate thicknesses in partial bottom cells: ! Set them to Agrif_SpecialValue (0.). Correct bottom thicknesses are retrieved later on IF (ln_zps) THEN DO jj=j1,j2 DO ji=i1,i2 jk = mbkt(ji,jj) ptab(ji,jj,jk,2) = 0._wp END DO END DO END IF ! Save ssh at last level: IF (.NOT.ln_linssh) THEN ptab(i1:i2,j1:j2,k2,2) = ssh(i1:i2,j1:j2,Kmm_a)*tmask(i1:i2,j1:j2,1) ELSE ptab(i1:i2,j1:j2,k2,2) = 0._wp END IF ENDIF ELSE IF( l_vremap ) THEN IF (ln_linssh) ptab(i1:i2,j1:j2,k2,2) = 0._wp avm_k(i1:i2,j1:j2,k1:k2) = 0._wp DO jj = j1, j2 DO ji =i1, i2 N_in = mbkt_parent(ji,jj) IF ( tmask(ji,jj,1) == 0._wp) N_in = 0 z_in(N_in+1) = ht0_parent(ji,jj) + ptab(ji,jj,k2,2) DO jk = N_in, 1, -1 ! Parent vertical grid z_in(jk) = z_in(jk+1) - ptab(ji,jj,jk,2) tabin(jk) = ptab(ji,jj,jk,1) END DO N_out = mbkt(ji,jj) DO jk = 1, N_out ! Child vertical grid z_out(jk) = gdepw(ji,jj,jk,Kmm_a) END DO IF (N_in*N_out > 0) THEN CALL remap_linear(tabin(1:N_in),z_in(1:N_in),avm_k(ji,jj,1:N_out),z_out(1:N_out),N_in,N_out,1) ENDIF END DO END DO ELSE avm_k(i1:i2,j1:j2,k1:k2) = ptab (i1:i2,j1:j2,k1:k2,1) ENDIF ENDIF ! END SUBROUTINE interpavm SUBROUTINE interpmbkt( ptab, i1, i2, j1, j2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpsshn *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! !!---------------------------------------------------------------------- ! IF( before) THEN ptab(i1:i2,j1:j2) = REAL(mbkt(i1:i2,j1:j2),wp) ELSE mbkt_parent(i1:i2,j1:j2) = NINT(ptab(i1:i2,j1:j2)) ENDIF ! END SUBROUTINE interpmbkt SUBROUTINE interpht0( ptab, i1, i2, j1, j2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpsshn *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! !!---------------------------------------------------------------------- ! IF( before) THEN ptab(i1:i2,j1:j2) = ht_0(i1:i2,j1:j2) ELSE ht0_parent(i1:i2,j1:j2) = ptab(i1:i2,j1:j2) ENDIF ! END SUBROUTINE interpht0 SUBROUTINE agrif_initts(tabres,i1,i2,j1,j2,k1,k2,m1,m2,before) INTEGER :: i1, i2, j1, j2, k1, k2, m1, m2 REAL(wp):: tabres(i1:i2,j1:j2,k1:k2,m1:m2) LOGICAL :: before INTEGER :: jm IF (before) THEN DO jm=1,jpts tabres(i1:i2,j1:j2,k1:k2,jm) = ts(i1:i2,j1:j2,k1:k2,jm,Kbb_a) END DO ELSE DO jm=1,jpts ts(i1:i2,j1:j2,k1:k2,jm,Kbb_a)=tabres(i1:i2,j1:j2,k1:k2,jm) END DO ENDIF END SUBROUTINE agrif_initts SUBROUTINE agrif_initssh( ptab, i1, i2, j1, j2, before ) !!---------------------------------------------------------------------- !! *** ROUTINE interpsshn *** !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before ! !!---------------------------------------------------------------------- ! IF( before) THEN ptab(i1:i2,j1:j2) = ssh(i1:i2,j1:j2,Kbb_a) ELSE ssh(i1:i2,j1:j2,Kbb_a) = ptab(i1:i2,j1:j2)*tmask(i1:i2,j1:j2,1) ENDIF ! END SUBROUTINE agrif_initssh #else !!---------------------------------------------------------------------- !! Empty module no AGRIF zoom !!---------------------------------------------------------------------- CONTAINS SUBROUTINE Agrif_OCE_Interp_empty WRITE(*,*) 'agrif_oce_interp : You should not have seen this print! error?' END SUBROUTINE Agrif_OCE_Interp_empty #endif !!====================================================================== END MODULE agrif_oce_interp