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Abstract / Résumé

The ocean engine of NEMO (Nucleus for European Modelling of the Ocean) is a pri-
mitive equation model adapted to regional and global ocean circulation problems. It is
intended to be a flexible tool for studying the ocean and its interactions with the others
components of the earth climate system (atmosphere, sea-ice, biogeochemical tracers, ...)
over a wide range of space and time scales. Prognostic variables are the three-dimensional
velocity field, a linear or non-linear sea surface height, the temperature and the salinity.
In the horizontal direction, the model uses a curvilinear orthogonal grid and in the verti-
cal direction, a full or partial step z-coordinate, or s-coordinate, or a mixture of the two.
The distribution of variables is a three-dimensional Arakawa C-type grid. Various phy-
sical choices are available to describe ocean physics, including TKE and KPP vertical
physics. Within NEMO, the ocean is interfaced with a sea-ice model (LIM v2 and v3),
passive tracer and biogeochemical models (TOP) and, via the OASIS coupler, with several
atmospheric general circulation models.

Le moteur océanique de NEMO (Nucleus for European Modelling of the Ocean) est
un modèle aux équations primitives de la circulation océanique régionale et globale. Il se
veut un outil flexible pour étudier sur un vaste spectre spatiotemporel l’océan et ses in-
teractions avec les autres composantes du système climatique terrestre (atmosphère, glace
de mer, traceurs biogéochimiques...). Les variables pronostiques sont le champ tridimen-
sionnel de vitesse, une hauteur de la mer linéaire ou non, la temperature et la salinité.
La distribution des variables se fait sur une grille C d’Arakawa tridimensionnelle utili-
sant une coordonnée verticale z à niveaux entiers ou partiels, ou une coordonnée s, ou
encore une combinaison des deux. Différents choix sont proposés pour décrire la phy-
sique océanique, incluant notamment des physiques verticales TKE et KPP. A travers
l’infrastructure NEMO, l’océan est interfacé avec un modèle de glace de mer, des modèles
biogéochimiques et de traceur passif, et, via le coupleur OASIS, à plusieurs modèles de
circulation générale atmosphérique.





Disclaimer

Like all components of NEMO, the ocean component is developed under the CECILL
license, which is a French adaptation of the GNU GPL (General Public License). Anyone
may use it freely for research purposes, and is encouraged to communicate back to the
NEMO team its own developments and improvements. The model and the present do-
cument have been made available as a service to the community. We cannot certify that
the code and its manual are free of errors. Bugs are inevitable and some have undoub-
tedly survived the testing phase. Users are encouraged to bring them to our attention. The
author assumes no responsibility for problems, errors, or incorrect usage of NEMO.

NEMO reference in papers and other publications is as follows :

Madec, G., and the NEMO team, 2008 : NEMO ocean engine. Note du Pôle de
modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619.

Additional information can be found on http ://www.nemo-ocean.eu/





1 Introduction

The Nucleus for European Modelling of the Ocean (NEMO ) is a framework of ocean
related engines, namely OPA 1 for the ocean dynamics and thermodynamics, LIM 2 for
the sea-ice dynamics and thermodynamics, TOP 3 for the biogeochemistry (both transport
(TRP) and sources minus sinks (LOBSTER, PISCES) 4. It is intended to be a flexible
tool for studying the ocean and its interactions with the other components of the earth
climate system (atmosphere, sea-ice, biogeochemical tracers, ...) over a wide range of
space and time scales. This documentation provides information about the physics repre-
sented by the ocean component of NEMO and the rationale for the choice of numerical
schemes and the model design. More specific information about running the model on
different computers, or how to set up a configuration, are found on the NEMO web site
(www.locean-ipsl.upmc.fr/NEMO).

The ocean component of NEMO has been developed from the OPA model, release 8.2,
described in ?. This model has been used for a wide range of applications, both regional or
global, as a forced ocean model and as a model coupled with the atmosphere. A complete
list of references is found on the NEMO web site.

This manual is organised in as follows. Chapter 2 presents the model basics, i.e.
the equations and their assumptions, the vertical coordinates used, and the subgrid scale
physics. This part deals with the continuous equations of the model (primitive equations,
with potential temperature, salinity and an equation of state). The equations are written
in a curvilinear coordinate system, with a choice of vertical coordinates (z or s, with the
rescaled height coordinate formulation z*, or s*). Momentum equations are formulated in
the vector invariant form or in the flux form. Dimensional units in the meter, kilogram,

1. OPA = Océan PArallélisé
2. LIM= Louvain)la-neuve Ice Model
3. TOP = Tracer in the Ocean Paradigm
4. Both LOBSTER and PISCES are not acronyms just name
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second (MKS) international system are used throughout.
The following chapters deal with the discrete equations. Chapter 4 presents the space

and time domain. The model is discretised on a staggered grid (Arakawa C grid) with mas-
king of land areas and uses a Leap-frog environment for time-stepping. Vertical discreti-
sation used depends on both how the bottom topography is represented and whether the
free surface is linear or not. Full step or partial step z-coordinate or s- (terrain-following)
coordinate is used with linear free surface (level position are then fixed in time). In non-
linear free surface, the corresponding rescaled height coordinate formulation (z* or s*)
is used (the level position then vary in time as a function of the sea surface heigh). The
following two chapters (5 and 6) describe the discretisation of the prognostic equations
for the active tracers and the momentum. Explicit, split-explicit and implicit free surface
formulations are implemented as well as rigid-lid case. A number of numerical schemes
are available for momentum advection, for the computation of the pressure gradients, as
well as for the advection of tracers (second or higher order advection schemes, including
positive ones).

Surface boundary conditions (chapter 7) can be implemented as prescribed fluxes, or
bulk formulations for the surface fluxes (wind stress, heat, freshwater). The model allows
penetration of solar radiation There is an optional geothermal heating at the ocean bottom.
Within the NEMO system the ocean model is interactively coupled with a sea ice model
(LIM) and with biogeochemistry models (PISCES, LOBSTER). Interactive coupling to
Atmospheric models is possible via the OASIS coupler [?].

Other model characteristics are the lateral boundary conditions (chapter 8). Global
configurations of the model make use of the ORCA tripolar grid, with special north fold
boundary condition. Free-slip or no-slip boundary conditions are allowed at land bounda-
ries. Closed basin geometries as well as periodic domains and open boundary conditions
are possible.

Physical parameterisations are described in chapters 9 and 10. The model includes an
implicit treatment of vertical viscosity and diffusivity. The lateral Laplacian and biharmo-
nic viscosity and diffusion can be rotated following a geopotential or neutral direction.
There is an optional eddy induced velocity [?] with a space and time variable coefficient
?. The model has vertical harmonic viscosity and diffusion with a space and time variable
coefficient, with options to compute the coefficients with ?, ?, or ? mixing schemes.

Specific online diagnostics (not documented yet) are available in the model : output
of all the tendencies of the momentum and tracers equations, output of tracers tendencies
averaged over the time evolving mixed layer.

The model is implemented in FORTRAN 90, with preprocessing (C-pre-processor). It
runs under UNIX. It is optimized for vector computers and parallelised by domain de-
composition with MPI. All input and output is done in NetCDF (Network Common Data
Format) with a optional direct access format for output. To ensure the clarity and reada-
bility of the code it is necessary to follow coding rules. The coding rules for OPA include
conventions for naming variables, with different starting letters for different types of va-
riables (real, integer, parameter. . . ). Those rules are presented in a document available on
the NEMO web site.
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The model is organized with a high internal modularity based on physics. For example,
each trend (i.e., a term in the RHS of the prognostic equation) for momentum and tra-
cers is computed in a dedicated module. To make it easier for the user to find his way
around the code, the module names follow a three-letter rule. For example, tradmp.F90 is
a module related to the TRAcers equation, computing the DaMPing. The complete list of
module names is presented in Appendix D. Furthermore, modules are organized in a few
directories that correspond to their category, as indicated by the first three letters of their
name.

The manual mirrors the organization of the model. After the presentation of the conti-
nuous equations (Chapter 2), the following chapters refer to specific terms of the equations
each associated with a group of modules .

Chapter 4 DOM model DOMain
Chapter 5 TRA TRAcer equations (potential temperature and salinity)
Chapter 6 DYN DYNamic equations (momentum)
Chapter 7 SBC Surface Boundary Conditions
Chapter 8 LBC Lateral Boundary Conditions
Chapter 9 LDF Lateral DiFfusion (parameterisations)
Chapter 10 ZDF Vertical DiFfusion
Chapter 11 ... Miscellaneous topics

In the current release (v3.0), the LBC directory does not yet exist. When created
LBC will contain the OBC directory (Open Boundary Condition), and the lbclnk.F90,
mppini.F90 and lib mpp.F90 modules.

Nota Bene :

OPA, like all research tools, is in perpetual evolution. The present document describes
the OPA version include in the release 3.2 of NEMO. This release differs significantly
from version 8, documented in ?. The main modifications are :
(1) transition to full native FORTRAN 90, deep code restructuring and drastic reduction of
CPP keys ;
(2) introduction of partial step representation of bottom topography [?] ;
(3) partial reactivation of a terrain-following vertical coordinate (s- and hybrid s-z) with
the addition of several options for pressure gradient computation 5 ;
(4) more choices for the treatment of the free surface : full explicit, split-explicit and
filtered.
(5) suppression of the rigid-lid option ;

5. Partial support of s-coordinate : there is presently no support for neutral physics in s- co-
ordinate and for the new options for horizontal pressure gradient computation with a non-linear
equation of state.
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(6) non linear free surface option (associated with the rescaled height coordinate z* or s) ;
(6) additional schemes for vector and flux forms of the momentum advection ;
(7) additional advection schemes for tracers ;
(8) implementation of the AGRIF package (Adaptative Grid Refinement in FORTRAN)
[?] ;
(9) online diagnostics : tracers trend in the mixed layer and vorticity balance ;
(10) rewriting of the I/O management with the use of an I/O server ;
(11) generalized ocean-ice-atmosphere-CO2 coupling interface, interfaced with OASIS 3
coupler.
(12) surface module (SBC) that simplify the way the ocean is forced and include two
bulk formulea (CLIO and CORE) and which includes an on-the-fly interpolation of input
forcing fields
(13) introduction of LIM 3, the new Louvain-la-Neuve sea-ice model (C-grid rheology
and new thermodynamics including bulk ice salinity) [??]

In addition, several minor modifications in the coding have been introduced with the
constant concern of improving performance on both scalar and vector computers.
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2.1 Primitive Equations

2.1.1 Vector Invariant Formulation
The ocean is a fluid that can be described to a good approximation by the primitive

equations, i.e. the Navier-Stokes equations along with a nonlinear equation of state which
couples the two active tracers (temperature and salinity) to the fluid velocity, plus the
following additional assumptions made from scale considerations :

(1) spherical earth approximation : the geopotential surfaces are assumed to be spheres
so that gravity (local vertical) is parallel to the earth’s radius

(2) thin-shell approximation : the ocean depth is neglected compared to the earth’s
radius

(3) turbulent closure hypothesis : the turbulent fluxes (which represent the effect of
small scale processes on the large-scale) are expressed in terms of large-scale features

(4) Boussinesq hypothesis : density variations are neglected except in their contribu-
tion to the buoyancy force

(5) Hydrostatic hypothesis : the vertical momentum equation is reduced to a balance
between the vertical pressure gradient and the buoyancy force (this removes convective
processes from the initial Navier-Stokes equations and so convective processes must be
parameterized instead)

(6) Incompressibility hypothesis : the three dimensional divergence of the velocity
vector is assumed to be zero.

Because the gravitational force is so dominant in the equations of large-scale mo-
tions, it is useful to choose an orthogonal set of unit vectors (i,j,k) linked to the earth such
that k is the local upward vector and (i,j) are two vectors orthogonal to k, i.e. tangent
to the geopotential surfaces. Let us define the following variables : U the vector velocity,
U = Uh+w k (the subscript h denotes the local horizontal vector, i.e. over the (i,j) plane),
T the potential temperature, S the salinity, ρ the in situ density. The vector invariant form
of the primitive equations in the (i,j,k) vector system provides the following six equa-
tions (namely the momentum balance, the hydrostatic equilibrium, the incompressibility
equation, the heat and salt conservation equations and an equation of state) :

∂Uh

∂t
= −

[
(∇×U)×U +

1
2
∇ (U2

)]

h

− f k×Uh − 1
ρo
∇hp+ DU + FU (2.1a)

∂p

∂z
= −ρ g (2.1b)

∇ ·U = 0 (2.1c)
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∂T

∂t
= −∇ · (T U) +DT + F T (2.1d)

∂S

∂t
= −∇ · (S U) +DS + FS (2.1e)

ρ = ρ (T, S, p) (2.1f)

where∇ is the generalised derivative vector operator in (i, j,k) directions, t is the time, z
is the vertical coordinate, ρ is the in situ density given by the equation of state (2.1f), ρo is
a reference density, p the pressure, f = 2Ω ·k is the Coriolis acceleration (where Ω is the
Earth’s angular velocity vector), and g is the gravitational acceleration. DU, DT and DS

are the parameterisations of small-scale physics for momentum, temperature and salinity,
and FU, F T and FS surface forcing terms. Their nature and formulation are discussed in
§2.5 and page §2.1.2.

.

2.1.2 Boundary Conditions
An ocean is bounded by complex coastlines, bottom topography at its base and an

air-sea or ice-sea interface at its top. These boundaries can be defined by two surfaces,
z = −H(i, j) and z = η(i, j, k, t), where H is the depth of the ocean bottom and η is
the height of the sea surface. Both H and η are usually referenced to a given surface,
z = 0, chosen as a mean sea surface (Fig. 2.1.2). Through these two boundaries, the
ocean can exchange fluxes of heat, fresh water, salt, and momentum with the solid earth,
the continental margins, the sea ice and the atmosphere. However, some of these fluxes are
so weak that even on climatic time scales of thousands of years they can be neglected. In
the following, we briefly review the fluxes exchanged at the interfaces between the ocean
and the other components of the earth system.

Land - ocean interface : the major flux between continental margins and the ocean is
a mass exchange of fresh water through river runoff. Such an exchange modifies
the sea surface salinity especially in the vicinity of major river mouths. It can be
neglected for short range integrations but has to be taken into account for long term
integrations as it influences the characteristics of water masses formed (especially
at high latitudes). It is required in order to close the water cycle of the climate
system. It is usually specified as a fresh water flux at the air-sea interface in the
vicinity of river mouths.

Solid earth - ocean interface : heat and salt fluxes through the sea floor are small, ex-
cept in special areas of little extent. They are usually neglected in the model 1. The

1. In fact, it has been shown that the heat flux associated with the solid Earth cooling (i.e.the
geothermal heating) is not negligible for the thermohaline circulation of the world ocean (see
5.4.3).
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η(i,j)

0

z

i, j

—H(i,j)

FIGURE 2.1 – The ocean is bounded by two surfaces, z = −H(i, j) and z =
η(i, j, k, t), where H is the depth of the sea floor and η the height of the sea
surface. Both H and η are referenced to z = 0.

boundary condition is thus set to no flux of heat and salt across solid boundaries.
For momentum, the situation is different. There is no flow across solid boundaries,
i.e. the velocity normal to the ocean bottom and coastlines is zero (in other words,
the bottom velocity is parallel to solid boundaries). This kinematic boundary condi-
tion can be expressed as :

w = −Uh · ∇h (H) (2.2)

In addition, the ocean exchanges momentum with the earth through frictional pro-
cesses. Such momentum transfer occurs at small scales in a boundary layer. It must
be parameterized in terms of turbulent fluxes using bottom and/or lateral boundary
conditions. Its specification depends on the nature of the physical parameterisation
used for DU in (2.1a). It is discussed in §2.5.1, page 29.

Atmosphere - ocean interface : the kinematic surface condition plus the mass flux of
fresh water PE (the precipitation minus evaporation budget) leads to :

w =
∂η

∂t
+ Uh|z=η · ∇h (η) + P −E (2.3)

The dynamic boundary condition, neglecting the surface tension (which removes
capillary waves from the system) leads to the continuity of pressure across the
interface z = η. The atmosphere and ocean also exchange horizontal momentum
(wind stress), and heat.

Sea ice - ocean interface : the ocean and sea ice exchange heat, salt, fresh water and
momentum. The sea surface temperature is constrained to be at the freezing point
at the interface. Sea ice salinity is very low (∼ 4− 6 psu) compared to those of the
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ocean (∼ 34 psu). The cycle of freezing/melting is associated with fresh water and
salt fluxes that cannot be neglected.
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2.2 The Horizontal Pressure Gradient

2.2.1 Pressure Formulation
The total pressure at a given depth z is composed of a surface pressure ps at a refe-

rence geopotential surface (z = 0) and a hydrostatic pressure ph such that : p(i, j, k, t) =
ps(i, j, t) + ph(i, j, k, t). The latter is computed by integrating (2.1b), assuming that pres-
sure in decibars can be approximated by depth in meters in (2.1f). The hydrostatic pressure
is then given by :

ph (i, j, z, t) =
∫ ς=0

ς=z
g ρ (T, S, ς) dς (2.4)

Two strategies can be considered for the surface pressure term : (a) introduce of a new
variable η, the free-surface elevation, for which a prognostic equation can be established
and solved ; (b) assume that the ocean surface is a rigid lid, on which the pressure (or its
horizontal gradient) can be diagnosed. When the former strategy is used, one solution of
the free-surface elevation consists of the excitation of external gravity waves. The flow
is barotropic and the surface moves up and down with gravity as the restoring force.
The phase speed of such waves is high (some hundreds of metres per second) so that
the time step would have to be very short if they were present in the model. The latter
strategy filters out these waves since the rigid lid approximation implies η = 0, i.e. the
sea surface is the surface z = 0. This well known approximation increases the surface
wave speed to infinity and modifies certain other longwave dynamics (e.g. barotropic
Rossby or planetary waves). The rigid-lid hypothesis is an obsolescent feature in modern
OGCMs. It has been available until the release 3.1 of NEMO , and it has been removed in
release 3.2 and followings. Only the free surface formulation is now described in the this
document (see the next sub-section).

2.2.2 Free Surface Formulation
In the free surface formulation, a variable η, the sea-surface height, is introduced

which describes the shape of the air-sea interface. This variable is solution of a prognostic
equation which is established by forming the vertical average of the kinematic surface
condition (2.2) :

∂η

∂t
= −D + P − E where D = ∇ · [(H + η) Uh

]
(2.5)

and using (2.1b) the surface pressure is given by : ps = ρ g η.
Allowing the air-sea interface to move introduces the external gravity waves (EGWs)

as a class of solution of the primitive equations. These waves are barotropic because of
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hydrostatic assumption, and their phase speed is quite high. Their time scale is short with
respect to the other processes described by the primitive equations.

Two choices can be made regarding the implementation of the free surface in the
model, depending on the physical processes of interest.
• If one is interested in EGWs, in particular the tides and their interaction with the

baroclinic structure of the ocean (internal waves) possibly in shallow seas, then a non
linear free surface is the most appropriate. This means that no approximation is made in
(2.5) and that the variation of the ocean volume is fully taken into account. Note that in
order to study the fast time scales associated with EGWs it is necessary to minimize time
filtering effects (use an explicit time scheme with very small time step, or a split-explicit
scheme with reasonably small time step, see §6.5.1 or §6.5.2.
• If one is not interested in EGW but rather sees them as high frequency noise, it

is possible to apply an explicit filter to slow down the fastest waves while not altering
the slow barotropic Rossby waves. If further, an approximative conservation of heat and
salt contents is sufficient for the problem solved, then it is sufficient to solve a linearized
version of (2.5), which still allows to take into account freshwater fluxes applied at the
ocean surface [?].

The filtering of EGWs in models with a free surface is usually a matter of discre-
tisation of the temporal derivatives, using the time splitting method [??] or the implicit
scheme [?]. In NEMO , we use a slightly different approach developed by ? : the damping
of EGWs is ensured by introducing an additional force in the momentum equation. (2.1a)
becomes :

∂Uh

∂t
= M− g∇ (ρ̃ η)− g Tc∇ (ρ̃ ∂tη) (2.6)

where Tc, is a parameter with dimensions of time which characterizes the force, ρ̃ = ρ/ρo
is the dimensionless density, and M represents the collected contributions of the Coriolis,
hydrostatic pressure gradient, non-linear and viscous terms in (2.1a).

The new force can be interpreted as a diffusion of vertically integrated volume flux
divergence. The time evolution of D is thus governed by a balance of two terms, −g A η
and g Tc AD, associated with a propagative regime and a diffusive regime in the temporal
spectrum, respectively. In the diffusive regime, the EGWs no longer propagate, i.e. they
are stationary and damped. The diffusion regime applies to the modes shorter than Tc. For
longer ones, the diffusion term vanishes. Hence, the temporally unresolved EGWs can
be damped by choosing Tc > ∆t. ? demonstrate that (2.6) can be integrated with a leap
frog scheme except the additional term which has to be computed implicitly. This is not
surprising since the use of a large time step has a necessarily numerical cost. Two gains
arise in comparison with the previous formulations. Firstly, the damping of EGWs can be
quantified through the magnitude of the additional term. Secondly, the numerical scheme
does not need any tuning. Numerical stability is ensured as soon as Tc > ∆t.

When the variations of free surface elevation are small compared to the thickness of
the first model layer, the free surface equation (2.5) can be linearized. As emphasized by ?
the linearization of (2.5) has consequences on the conservation of salt in the model. With
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the nonlinear free surface equation, the time evolution of the total salt content is

∂

∂t

∫

Dη

S dv =
∫

S

S (−∂η
∂t
−D + P − E) ds (2.7)

where S is the salinity, and the total salt is integrated over the whole ocean volume Dη

bounded by the time-dependent free surface. The right hand side (which is an integral
over the free surface) vanishes when the nonlinear equation (2.5) is satisfied, so that the
salt is perfectly conserved. When the free surface equation is linearized, ? show that the
total salt content integrated in the fixed volume D (bounded by the surface z = 0) is no
longer conserved :

∂

∂t

∫

D

S dv = −
∫

S

S
∂η

∂t
ds (2.8)

The right hand side of (2.8) is small in equilibrium solutions [?]. It can be significant
when the freshwater forcing is not balanced and the globally averaged free surface is
drifting. An increase in sea surface height η results in a decrease of the salinity in the
fixed volume D. Even in that case though, the total salt integrated in the variable volume
Dη varies much less, since (2.8) can be rewritten as

∂

∂t

∫

Dη

S dv =
∂

∂t



∫

D

S dv +
∫

S

Sη ds


 =

∫

S

η
∂S

∂t
ds (2.9)

Although the total salt content is not exactly conserved with the linearized free sur-
face, its variations are driven by correlations of the time variation of surface salinity with
the sea surface height, which is a negligible term. This situation contrasts with the case
of the rigid lid approximation in which case freshwater forcing is represented by a virtual
salt flux, leading to a spurious source of salt at the ocean surface [??].
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2.3 Curvilinear z-coordinate System

2.3.1 Tensorial Formalism
In many ocean circulation problems, the flow field has regions of enhanced dyna-

mics (i.e. surface layers, western boundary currents, equatorial currents, or ocean fronts).
The representation of such dynamical processes can be improved by specifically increa-
sing the model resolution in these regions. As well, it may be convenient to use a lateral
boundary-following coordinate system to better represent coastal dynamics. Moreover,
the common geographical coordinate system has a singular point at the North Pole that
cannot be easily treated in a global model without filtering. A solution consists of introdu-
cing an appropriate coordinate transformation that shifts the singular point onto land [??].
As a consequence, it is important to solve the primitive equations in various curvilinear
coordinate systems. An efficient way of introducing an appropriate coordinate transform
can be found when using a tensorial formalism. This formalism is suited to any multidi-
mensional curvilinear coordinate system. Ocean modellers mainly use three-dimensional
orthogonal grids on the sphere (spherical earth approximation), with preservation of the
local vertical. Here we give the simplified equations for this particular case. The general
case is detailed by ? in their survey of the conservation laws of fluid dynamics.

Let (i,j,k) be a set of orthogonal curvilinear coordinates on the sphere associated with
the positively oriented orthogonal set of unit vectors (i,j,k) linked to the earth such that
k is the local upward vector and (i,j) are two vectors orthogonal to k, i.e. along geopo-
tential surfaces (Fig.2.3.1). Let (λ, ϕ, z) be the geographical coordinate system in which
a position is defined by the latitude ϕ(i, j), the longitude λ(i, j) and the distance from
the centre of the earth a + z(k) where a is the earth’s radius and z the altitude above a
reference sea level (Fig.2.3.1). The local deformation of the curvilinear coordinate system
is given by e1, e2 and e3, the three scale factors :

e1 = (a+ z)

[(
∂λ

∂i
cosϕ

)2

+
(
∂ϕ

∂i

)2
]1/2

e2 = (a+ z)

[(
∂λ

∂j
cosϕ

)2

+
(
∂ϕ

∂j

)2
]1/2

e3 =
(
∂z

∂k

)

(2.10)

Since the ocean depth is far smaller than the earth’s radius, a + z, can be replaced
by a in (2.10) (thin-shell approximation). The resulting horizontal scale factors e1, e2 are
independent of k while the vertical scale factor is a single function of k as k is parallel
to z. The scalar and vector operators that appear in the primitive equations (Eqs. (2.1a) to
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k
z

i

λ

j
ϕ

FIGURE 2.2 – the geographical coordinate system (λ, ϕ, z) and the curvilinear
coordinate system (i,j,k).

(2.1f)) can be written in the tensorial form, invariant in any orthogonal horizontal curvili-
near coordinate system transformation :

∇q =
1
e1

∂q

∂i
i +

1
e2

∂q

∂j
j +

1
e3

∂q

∂k
k (2.11a)

∇ ·A =
1

e1 e2

[
∂ (e2 a1)

∂i
+
∂ (e1 a2)

∂j

]
+

1
e3

[
∂a3

∂k

]
(2.11b)

∇× A =
[

1
e2

∂a3

∂j
− 1

e3

∂a2

∂k

]
i +
[

1
e3

∂a1

∂k
− 1
e1

∂a3

∂i

]
j

+
1
e1e2

[
∂ (e2a2)
∂i

− ∂ (e1a1)
∂j

]
k

(2.11c)

∆q = ∇ · (∇q) (2.11d)

∆A = ∇ (∇ ·A)−∇× (∇×A) (2.11e)

where q is a scalar quantity and A = (a1, a2, a3) a vector in the (i, j, k) coordinate
system.
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2.3.2 Continuous Model Equations
In order to express the Primitive Equations in tensorial formalism, it is necessary to

compute the horizontal component of the non-linear and viscous terms of the equation
using (2.11a)) to (2.11e). Let us set U = (u, v,w) = Uh +w k, the velocity in the (i, j, k)
coordinate system and define the relative vorticity ζ and the divergence of the horizontal
velocity field χ, by :

ζ =
1
e1e2

[
∂ (e2 v)
∂i

− ∂ (e1 u)
∂j

]
(2.12)

χ =
1
e1e2

[
∂ (e2 u)
∂i

+
∂ (e1 v)
∂j

]
(2.13)

Using the fact that the horizontal scale factors e1 and e2 are independent of k and that
e3 is a function of the single variable k, the nonlinear term of (2.1a) can be transformed
as follows :
[
(∇×U)×U +

1
2
∇ (U2

)]

h

=



[

1
e3
∂u
∂k − 1

e1
∂w
∂i

]
w − ζ v

ζ u−
[

1
e2
∂w
∂j − 1

e3
∂v
∂k

]
w


+

1
2




1
e1

∂(u2+v2+w2)
∂i

1
e2

∂(u2+v2+w2)
∂j




=
( −ζ v
ζ u

)
+

1
2




1
e1

∂(u2+v2)
∂i

1
e2

∂(u2+v2)
∂j


+

1
e3

(
w ∂u

∂k

w ∂v
∂k

)
−
(

w
e1
∂w
∂i − 1

2e1
∂w2

∂i
w
e2
∂w
∂j − 1

2e2
∂w2

∂j

)

The last term of the right hand side is obviously zero, and thus the nonlinear term of
(2.1a) is written in the (i, j, k) coordinate system :

[
(∇×U)×U +

1
2
∇ (U2

)]

h

= ζ k×Uh +
1
2
∇h
(
U2
h

)
+

1
e3
w
∂Uh

∂k
(2.14)

This is the so-called vector invariant form of the momentum advection term. For some
purposes, it can be advantageous to write this term in the so-called flux form, i.e. to write
it as the divergence of fluxes. For example, the first component of (2.14) (the i-component)
is transformed as follows :
[
(∇× U)× U + 1

2∇
(
U2
)]
i

= −ζ v + 1
2 e1

∂(u2+v2)
∂i + 1

e3
w ∂u

∂k

= 1
e1 e2

(
−v ∂(e2 v)

∂i + v ∂(e1 u)
∂j

)
+ 1

e1e2

(
+e2 u

∂u
∂i + e2 v

∂v
∂i

)
+ 1

e3

(
w ∂u

∂k

)

= 1
e1 e2

{
−
(
v2 ∂e2

∂i + e2 v
∂v
∂i

)
+
(
∂(e1 u v)

∂j − e1 u
∂v
∂j

)

+
(
∂(e2uu)

∂i − u∂(e2u)
∂i

)
+ e2v

∂v
∂i

}
+ 1

e3

(
∂(wu)
∂k − u∂w∂k

)
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= 1
e1 e2

(
∂(e2 uu)

∂i + ∂(e1 u v)
∂j

)
+ 1

e3

∂(wu)
∂k

+ 1
e1e2

(
−u
(
∂(e1v)
∂j − v ∂e1

∂j

)
− u∂(e2u)

∂i

)
− 1

e3
∂w
∂k u+ 1

e1e2

(
−v2 ∂e2

∂i

)

= ∇ · (Uu)− (∇ ·U) u+ 1
e1e2

(
−v2 ∂e2

∂i + uv ∂e1∂j

)

as∇ ·U = 0 (incompressibility) it comes :

= ∇ · (Uu) + 1
e1e2

(
v ∂e2

∂i − u ∂e1
∂j

)
(−v)

The flux form of the momentum advection term is therefore given by :
[
(∇×U)×U +

1
2
∇ (U2

)]

h

= ∇ ·
(

Uu
U v

)
+

1
e1e2

(
v
∂e2

∂i
− u∂e1

∂j

)
k×Uh (2.15)

The flux form has two terms, the first one is expressed as the divergence of momentum
fluxes (hence the flux form name given to this formulation) and the second one is due to
the curvilinear nature of the coordinate system used. The latter is called the metric term
and can be viewed as a modification of the Coriolis parameter :

f → f +
1

e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

)
(2.16)

Note that in the case of geographical coordinate, i.e. when (i, j) → (λ, ϕ) and
(e1, e2) → (a cosϕ, a), we recover the commonly used modification of the Coriolis pa-
rameter f → f + (u/a) tanϕ.

To sum up, the curvilinear z-coordinate equations solved by the ocean model can be
written in the following tensorial formalism :

• Vector invariant form of the momentum equations :

∂u

∂t
= + (ζ + f) v − 1

2 e1

∂

∂i

(
u2 + v2

)− 1
e3
w
∂u

∂k

− 1
e1

∂

∂i

(
ps + ph
ρo

)
+DU

u + FU
u

∂v

∂t
= − (ζ + f) u− 1

2 e2

∂

∂j

(
u2 + v2

)− 1
e3
w
∂v

∂k

− 1
e2

∂

∂j

(
ps + ph
ρo

)
+DU

v + FU
v

(2.17a)
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• flux form of the momentum equations :

∂u

∂t
= +

(
f +

1
e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

))
v

− 1
e1 e2

(
∂ (e2 uu)

∂i
+
∂ (e1 v u)

∂j

)
− 1
e3

∂ (wu)
∂k

− 1
e1

∂

∂i

(
ps + ph
ρo

)
+DU

u + FU
u (2.18a)

∂v

∂t
= −

(
f +

1
e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

))
u

1
e1 e2

(
∂ (e2 u v)

∂i
+
∂ (e1 v v)

∂j

)
− 1
e3

∂ (w v)
∂k

− 1
e2

∂

∂j

(
ps + ph
ρo

)
+DU

v + FU
v (2.18b)

where ζ, the relative vorticity, is given by (2.12) and ps, the surface pressure, is given by :

ps =




ρ g η standard free surface

ρ g η + ρo µ
∂η

∂t
filtered free surface

(2.19)

with η is solution of (2.5)
The vertical velocity and the hydrostatic pressure are diagnosed from the following

equations :
∂w

∂k
= −χ e3 (2.20)

∂ph
∂k

= −ρ g e3 (2.21)

where the divergence of the horizontal velocity, χ is given by (2.13).

• tracer equations :

∂T

∂t
= − 1

e1e2

[
∂ (e2T u)

∂i
+
∂ (e1T v)

∂j

]
− 1
e3

∂ (T w)
∂k

+DT + F T (2.22)

∂S

∂t
= − 1

e1e2

[
∂ (e2S u)

∂i
+
∂ (e1S v)

∂j

]
− 1
e3

∂ (S w)
∂k

+DS + FS (2.23)

ρ = ρ (T, S, z(k)) (2.24)

The expression of DU , DS and DT depends on the subgrid scale parameterisation
used. It will be defined in §2.5.1. The nature and formulation of FU, F T and FS , the
surface forcing terms, are discussed in Chapter 7.
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2.4 Curvilinear generalised vertical coordinate System
The ocean domain presents a huge diversity of situation in the vertical. First the ocean

surface is a time dependent surface (moving surface). Second the ocean floor depends
on the geographical position, varying from more than 6,000 meters in abyssal trenches
to zero at the coast. Last but not least, the ocean stratification exerts a strong barrier to
vertical motions and mixing. Therefore, in order to represent the ocean with respect to the
first point a space and time dependent vertical coordinate that follows the variation of the
sea surface height e.g. an z*-coordinate ; for the second point, a space variation to fit the
change of bottom topography e.g. a terrain-following or σ-coordinate ; and for the third
point, one will be tempted to use a space and time dependent coordinate that follows the
isopycnal surfaces, e.g. an isopycnic coordinate.

In order to satisfy two or more constrains one can even be tempted to mixed these
coordinate systems, as in HYCOM (mixture of z-coordinate at the surface, isopycnic
coordinate in the ocean interior and σ at the ocean bottom) [?] or OPA (mixture of z-
coordinate in vicinity the surface and steep topography areas and σ-coordinate elsewhere)
[?] among others.

In fact one is totally free to choose any space and time vertical coordinate by introdu-
cing an arbitrary vertical coordinate :

s = s(i, j, k, t) (2.25)

with the restriction that the above equation gives a single-valued monotonic relationship
between s and k, when i, j and t are held fixed. (2.25) is a transformation from the
(i, j, k, t) coordinate system with independent variables into the (i, j, s, t) generalised
coordinate system with s depending on the other three variables through (2.25). This
so-called generalised vertical coordinate [?] is in fact an Arbitrary Lagrangian–Eulerian
(ALE) coordinate. Indeed, choosing an expression for s is an arbitrary choice that deter-
mines which part of the vertical velocity (defined from a fixed referential) will cross the
levels (Eulerian part) and which part will be used to move them (Lagrangian part). The
coordinate is also sometime referenced as an adaptive coordinate [?], since the coordi-
nate system is adapted in the course of the simulation. Its most often used implementation
is via an ALE algorithm, in which a pure lagrangian step is followed by regridding and
remapping steps, the later step implicitly embedding the vertical advection [???]. Here
we follow the [?] strategy : a regridding step (an update of the vertical coordinate) follo-
wed by an eulerian step with an explicit computation of vertical advection relative to the
moving s-surfaces.

A key point here is that the s-coordinate depends on (i, j) ==¿ horizontal pressure
gradient...



2.4. Curvilinear generalised vertical coordinate System 23

the generalized vertical coordinates used in ocean modelling are not orthogonal, which
contrasts with many other applications in mathematical physics. Hence, it is useful to keep
in mind the following properties that may seem odd on initial encounter.

the horizontal velocity in ocean models measures motions in the horizontal plane, per-
pendicular to the local gravitational field. That is, horizontal velocity is mathematically the
same regardless the vertical coordinate, be it geopotential, isopycnal, pressure, or terrain
following. The key motivation for maintaining the same horizontal velocity component is
that the hydrostatic and geostrophic balances are dominant in the large-scale ocean. Use
of an alternative quasi-horizontal velocity, for example one oriented parallel to the genera-
lized surface, would lead to unacceptable numerical errors. Correspondingly, the vertical
direction is anti-parallel to the gravitational force in all of the coordinate systems. We do
not choose the alternative of a quasi-vertical direction oriented normal to the surface of a
constant generalized vertical coordinate.

It is the method used to measure transport across the generalized vertical coordinate
surfaces which differs between the vertical coordinate choices. That is, computation of
the dia-surface velocity component represents the fundamental distinction between the
various coordinates. In some models, such as geopotential, pressure, and terrain following,
this transport is typically diagnosed from volume or mass conservation. In other models,
such as isopycnal layered models, this transport is prescribed based on assumptions about
the physical processes producing a flux across the layer interfaces.

In this section we first establish the PE in the generalised vertical s-coordinate, then
we discuss the particular cases available in NEMO , namely z, z*, s, and z̃.

2.4.1 The s-coordinate Formulation
Starting from the set of equations established in §2.3 for the special case k = z

and thus e3 = 1, we introduce an arbitrary vertical coordinate s = s(i, j, k, t), which
includes z-, z*- and σ−coordinates as special cases (s = z, s = z*, and s = σ = z/H
or = z/ (H + η), resp.). A formal derivation of the transformed equations is given in
Appendix A. Let us define the vertical scale factor by e3 = ∂sz (e3 is now a function of
(i, j, k, t) ), and the slopes in the (i,j) directions between s− and z−surfaces by :

σ1 =
1
e1

∂z

∂i

∣∣∣∣
s

, and σ2 =
1
e2

∂z

∂j

∣∣∣∣
s

(2.26)

We also introduce ω, a dia-surface velocity component, defined as the velocity relative to
the moving s-surfaces and normal to them :

ω = w − e3
∂s

∂t
− σ1 u− σ2 v (2.27)

The equations solved by the ocean model (2.1) in s−coordinate can be written as
follows :
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* momentum equation :

1
e3

∂ (e3 u)
∂t

= + (ζ + f) v − 1
2 e1

∂

∂i

(
u2 + v2

)− 1
e3
ω
∂u

∂k

− 1
e1

∂

∂i

(
ps + ph
ρo

)
+ g

ρ

ρo
σ1 +DU

u + FU
u (2.28)

1
e3

∂ (e3 v)
∂t

= − (ζ + f) u− 1
2 e2

∂

∂j

(
u2 + v2

)− 1
e3
ω
∂v

∂k

− 1
e2

∂

∂j

(
ps + ph
ρo

)
+ g

ρ

ρo
σ2 +DU

v + FU
v (2.29)

where the relative vorticity, ζ, the surface pressure gradient, and the hydrostatic pressure
have the same expressions as in z-coordinates although they do not represent exactly the
same quantities. ω is provided by the continuity equation (see Appendix A) :

∂e3

∂t
+ e3 χ+

∂ω

∂s
= 0 with χ =

1
e1e2e3

[
∂ (e2e3 u)

∂i
+
∂ (e1e3 v)

∂j

]
(2.30)

* tracer equations :

1
e3

∂ (e3 T )
∂t

= − 1
e1e2e3

[
∂ (e2e3 uT )

∂i
+
∂ (e1e3 v T )

∂j

]

− 1
e3

∂ (T ω)
∂k

+DT + FS (2.31)

1
e3

∂ (e3 S)
∂t

= − 1
e1e2e3

[
∂ (e2e3 uS)

∂i
+
∂ (e1e3 v S)

∂j

]

− 1
e3

∂ (S ω)
∂k

+DS + FS (2.32)

The equation of state has the same expression as in z-coordinate, and similar expres-
sions are used for mixing and forcing terms.

2.4.2 Curvilinear z*–coordinate System
In that case, the free surface equation is nonlinear, and the variations of volume are

fully taken into account. These coordinates systems is presented in a report [?] available
on the NEMO web site.

The z* coordinate approach is an unapproximated, non-linear free surface implemen-
tation which allows one to deal with large amplitude free-surface variations relative to the
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vertical resolution [?]. In the z* formulation, the variation of the column thickness due
to sea-surface undulations is not concentrated in the surface level, as in the z-coordinate
formulation, but is equally distributed over the full water column. Thus vertical levels na-
turally follow sea-surface variations, with a linear attenuation with depth, as illustrated
by figure fig.1c . Note that with a flat bottom, such as in fig.1c, the bottom-following z
coordinate and z* are equivalent. The definition and modified oceanic equations for the
rescaled vertical coordinate z*, including the treatment of fresh-water flux at the surface,
are detailed in Adcroft and Campin (2004). The major points are summarized here. The
position ( z*) and vertical discretization (z*) are expressed as :

H + z* = (H + z)/r and δz* = δz/r with r =
H + η

H
(2.33)

Since the vertical displacement of the free surface is incorporated in the vertical coordi-
nate z*, the upper and lower boundaries are at fixed z* position, z* = 0 and z* = −H
respectively. Also the divergence of the flow field is no longer zero as shown by the conti-

(a) (b) (c)
FIGURE 2.3 – (a) z-coordinate in linear free-surface case ; (b) z−coordinate in
non-linear free surface case (c) re-scaled height coordinate (become popular as
the z*-coordinate [?] ).
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nuity equation :
∂r

∂t
= ∇z* · (r Uh) (r w*) = 0

To overcome problems with vanishing surface and/or bottom cells, we consider the
zstar coordinate

z? = H

(
z − η
H + η

)
(2.34)

This coordinate is closely related to the ”eta” coordinate used in many atmospheric
models (see Black (1994) for a review of eta coordinate atmospheric models). It was ori-
ginally used in ocean models by Stacey et al. (1995) for studies of tides next to shelves,
and it has been recently promoted by Adcroft and Campin (2004) for global climate mo-
delling.

The surfaces of constant z? are quasi-horizontal. Indeed, the z? coordinate reduces to
z when η is zero. In general, when noting the large differences between undulations of
the bottom topography versus undulations in the surface height, it is clear that surfaces
constant z? are very similar to the depth surfaces. These properties greatly reduce diffi-
culties of computing the horizontal pressure gradient relative to terrain following sigma
models discussed in §2.4.3. Additionally, since z? when η = 0, no flow is spontaneously
generated in an unforced ocean starting from rest, regardless the bottom topography. This
behaviour is in contrast to the case with ”s”-models, where pressure gradient errors in the
presence of nontrivial topographic variations can generate nontrivial spontaneous flow
from a resting state, depending on the sophistication of the pressure gradient solver. The
quasi-horizontal nature of the coordinate surfaces also facilitates the implementation of
neutral physics parameterizations in z? models using the same techniques as in z-models
(see Chapters 13-16 of ?) for a discussion of neutral physics in z-models, as well as Sec-
tion §9.2 in this document for treatment in NEMO ).

The range over which z? varies is time independent −H ≤ z? ≤ 0. Hence, all cells
remain nonvanishing, so long as the surface height maintains η >?H . This is a minor
constraint relative to that encountered on the surface height when using s = z or s = z−η.

Because z? has a time independent range, all grid cells have static increments ds, and
the sum of the ver tical increments yields the time independent ocean depth The z? coordi-
nate is therefore invisible to undulations of the free surface, since it moves along with the
free surface. This proper ty means that no spurious ver tical transpor t is induced across
surfaces of constant z? by the motion of external gravity waves. Such spurious transpor
t can be a problem in z-models, especially those with tidal forcing. Quite generally, the
time independent range for the z? coordinate is a very convenient proper ty that allows for
a nearly arbitrary ver tical resolution even in the presence of large amplitude fluctuations
of the surface height, again so long as η > −H .
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2.4.3 Curvilinear Terrain-following s–coordinate
Introduction

Several important aspects of the ocean circulation are influenced by bottom topo-
graphy. Of course, the most important is that bottom topography determines deep ocean
sub-basins, barriers, sills and channels that strongly constrain the path of water masses,
but more subtle effects exist. For example, the topographic β-effect is usually larger than
the planetary one along continental slopes. Topographic Rossby waves can be excited and
can interact with the mean current. In the z−coordinate system presented in the previous
section (§2.3), z−surfaces are geopotential surfaces. The bottom topography is discreti-
sed by steps. This often leads to a misrepresentation of a gradually sloping bottom and
to large localized depth gradients associated with large localized vertical velocities. The
response to such a velocity field often leads to numerical dispersion effects. One solution
to strongly reduce this error is to use a partial step representation of bottom topography
instead of a full step one ?. Another solution is to introduce a terrain-following coordinate
system (hereafter s−coordinate)

The s-coordinate avoids the discretisation error in the depth field since the layers of
computation are gradually adjusted with depth to the ocean bottom. Relatively small to-
pographic features as well as gentle, large-scale slopes of the sea floor in the deep ocean,
which would be ignored in typical z-model applications with the largest grid spacing
at greatest depths, can easily be represented (with relatively low vertical resolution). A
terrain-following model (hereafter s−model) also facilitates the modelling of the boun-
dary layer flows over a large depth range, which in the framework of the z-model would
require high vertical resolution over the whole depth range. Moreover, with a s-coordinate
it is possible, at least in principle, to have the bottom and the sea surface as the only
boundaries of the domain (nomore lateral boundary condition to specify). Nevertheless,
a s-coordinate also has its drawbacks. Perfectly adapted to a homogeneous ocean, it has
strong limitations as soon as stratification is introduced. The main two problems come
from the truncation error in the horizontal pressure gradient and a possibly increased dia-
pycnal diffusion. The horizontal pressure force in s-coordinate consists of two terms (see
Appendix A),

∇p|z = ∇p|s −
∂p

∂s
∇z|s (2.35)

The second term in (2.35) depends on the tilt of the coordinate surface and introduces
a truncation error that is not present in a z-model. In the special case of a σ−coordinate
(i.e. a depth-normalised coordinate system σ = z/H), ? and ? have given estimates of the
magnitude of this truncation error. It depends on topographic slope, stratification, hori-
zontal and vertical resolution, the equation of state, and the finite difference scheme. This
error limits the possible topographic slopes that a model can handle at a given horizontal
and vertical resolution. This is a severe restriction for large-scale applications using realis-
tic bottom topography. The large-scale slopes require high horizontal resolution, and the
computational cost becomes prohibitive. This problem can be at least partially overcome
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by mixing s-coordinate and step-like representation of bottom topography [???]. Howe-
ver, the definition of the model domain vertical coordinate becomes then a non-trivial
thing for a realistic bottom topography : a envelope topography is defined in s-coordinate
on which a full or partial step bottom topography is then applied in order to adjust the
model depth to the observed one (see §4.3.

For numerical reasons a minimum of diffusion is required along the coordinate sur-
faces of any finite difference model. It causes spurious diapycnal mixing when coordinate
surfaces do not coincide with isoneutral surfaces. This is the case for a z-model as well
as for a s-model. However, density varies more strongly on s−surfaces than on horizontal
surfaces in regions of large topographic slopes, implying larger diapycnal diffusion in a
s-model than in a z-model. Whereas such a diapycnal diffusion in a z-model tends to wea-
ken horizontal density (pressure) gradients and thus the horizontal circulation, it usually
reinforces these gradients in a s-model, creating spurious circulation. For example, ima-
gine an isolated bump of topography in an ocean at rest with a horizontally uniform stra-
tification. Spurious diffusion along s-surfaces will induce a bump of isoneutral surfaces
over the topography, and thus will generate there a baroclinic eddy. In contrast, the ocean
will stay at rest in a z-model. As for the truncation error, the problem can be reduced by
introducing the terrain-following coordinate below the strongly stratified portion of the
water column (i.e. the main thermocline) [?]. An alternate solution consists of rotating
the lateral diffusive tensor to geopotential or to isoneutral surfaces (see §2.5.2. Unfortu-
nately, the slope of isoneutral surfaces relative to the s-surfaces can very large, strongly
exceeding the stability limit of such a operator when it is discretized (see Chapter 9).

The s−coordinates introduced here [??] differ mainly in two aspects from similar
models : it allows a representation of bottom topography with mixed full or partial step-
like/terrain following topography ; It also offers a completely general transformation, s =
s(i, j, z) for the vertical coordinate.
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2.4.4 Curvilinear z̃–coordinate
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2.5 Subgrid Scale Physics
The primitive equations describe the behaviour of a geophysical fluid at space and

time scales larger than a few kilometres in the horizontal, a few meters in the vertical and
a few minutes. They are usually solved at larger scales : the specified grid spacing and
time step of the numerical model. The effects of smaller scale motions (coming from the
advective terms in the Navier-Stokes equations) must be represented entirely in terms of
large-scale patterns to close the equations. These effects appear in the equations as the
divergence of turbulent fluxes (i.e. fluxes associated with the mean correlation of small
scale perturbations). Assuming a turbulent closure hypothesis is equivalent to choose a
formulation for these fluxes. It is usually called the subgrid scale physics. It must be
emphasized that this is the weakest part of the primitive equations, but also one of the
most important for long-term simulations as small scale processes in fine balance the
surface input of kinetic energy and heat.

The control exerted by gravity on the flow induces a strong anisotropy between the
lateral and vertical motions. Therefore subgrid-scale physics DU, DS and DT in (2.1a),
(2.1d) and (2.1e) are divided into a lateral part DlU, DlS and DlT and a vertical part DvU ,
DvS and DvT . The formulation of these terms and their underlying physics are briefly
discussed in the next two subsections.

2.5.1 Vertical Subgrid Scale Physics
The model resolution is always larger than the scale at which the major sources of

vertical turbulence occur (shear instability, internal wave breaking...). Turbulent motions
are thus never explicitly solved, even partially, but always parameterized. The vertical
turbulent fluxes are assumed to depend linearly on the gradients of large-scale quantities
(for example, the turbulent heat flux is given by T ′w′ = −AvT∂zT , where AvT is an
eddy coefficient). This formulation is analogous to that of molecular diffusion and dis-
sipation. This is quite clearly a necessary compromise : considering only the molecular
viscosity acting on large scale severely underestimates the role of turbulent diffusion and
dissipation, while an accurate consideration of the details of turbulent motions is simply
impractical. The resulting vertical momentum and tracer diffusive operators are of second
order :

DvU =
∂

∂z

(
Avm

∂Uh

∂z

)
,

DvT =
∂

∂z

(
AvT

∂T

∂z

)
, DvS =

∂

∂z

(
AvT

∂S

∂z

) (2.36)

where Avm and AvT are the vertical eddy viscosity and diffusivity coefficients, respecti-
vely. At the sea surface and at the bottom, turbulent fluxes of momentum, heat and salt
must be specified (see Chap. 7 and 10 and §5.5). All the vertical physics is embedded in
the specification of the eddy coefficients. They can be assumed to be either constant, or
function of the local fluid properties (e.g. Richardson number, Brunt-Vaisälä frequency...),
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or computed from a turbulent closure model. The choices available in NEMO are discus-
sed in §10).

2.5.2 Lateral Diffusive and Viscous Operators Formulation
Lateral turbulence can be roughly divided into a mesoscale turbulence associated with

eddies (which can be solved explicitly if the resolution is sufficient since their underlying
physics are included in the primitive equations), and a sub mesoscale turbulence which
is never explicitly solved even partially, but always parameterized. The formulation of
lateral eddy fluxes depends on whether the mesoscale is below or above the grid-spacing
(i.e. the model is eddy-resolving or not).

In non-eddy-resolving configurations, the closure is similar to that used for the ver-
tical physics. The lateral turbulent fluxes are assumed to depend linearly on the lateral
gradients of large-scale quantities. The resulting lateral diffusive and dissipative operators
are of second order. Observations show that lateral mixing induced by mesoscale turbu-
lence tends to be along isopycnal surfaces (or more precisely neutral surfaces ?) rather
than across them. As the slope of neutral surfaces is small in the ocean, a common ap-
proximation is to assume that the ‘lateral’ direction is the horizontal, i.e. the lateral mixing
is performed along geopotential surfaces. This leads to a geopotential second order ope-
rator for lateral subgrid scale physics. This assumption can be relaxed : the eddy-induced
turbulent fluxes can be better approached by assuming that they depend linearly on the
gradients of large-scale quantities computed along neutral surfaces. In such a case, the
diffusive operator is an isoneutral second order operator and it has components in the
three space directions. However, both horizontal and isoneutral operators have no effect
on mean (i.e. large scale) potential energy whereas potential energy is a main source of
turbulence (through baroclinic instabilities). ? have proposed a parameterisation of mesos-
cale eddy-induced turbulence which associates an eddy-induced velocity to the isoneutral
diffusion. Its mean effect is to reduce the mean potential energy of the ocean. This leads to
a formulation of lateral subgrid-scale physics made up of an isoneutral second order ope-
rator and an eddy induced advective part. In all these lateral diffusive formulations, the
specification of the lateral eddy coefficients remains the problematic point as there is no
really satisfactory formulation of these coefficients as a function of large-scale features.

In eddy-resolving configurations, a second order operator can be used, but usually a
more scale selective one (biharmonic operator) is preferred as the grid-spacing is usually
not small enough compared to the scale of the eddies. The role devoted to the subgrid-
scale physics is to dissipate the energy that cascades toward the grid scale and thus ensures
the stability of the model while not interfering with the solved mesoscale activity. Another
approach is becoming more and more popular : instead of specifying explicitly a sub-grid
scale term in the momentum and tracer time evolution equations, one uses a advective
scheme which is diffusive enough to maintain the model stability. It must be emphasised
that then, all the sub-grid scale physics is in this case include in the formulation of the
advection scheme.

All these parameterisations of subgrid scale physics present advantages and draw-
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backs. There are not all available in NEMO . In the z-coordinate formulation, five op-
tions are offered for active tracers (temperature and salinity) : second order geopotential
operator, second order isoneutral operator, ? parameterisation, fourth order geopotential
operator, and various slightly diffusive advection schemes. The same options are available
for momentum, except ? parameterisation which only involves tracers. In the s-coordinate
formulation, additional options are offered for tracers : second order operator acting along
s−surfaces, and for momentum : fourth order operator acting along s−surfaces (see §9).

lateral second order tracer diffusive operator

The lateral second order tracer diffusive operator is defined by (see Appendix B) :

DlT = ∇.
(
AlT < ∇T

)
with < =




1 0 −r1

0 1 −r2

−r1 −r2 r2
1 + r2

2


 (2.37)

where r1 and r2 are the slopes between the surface along which the diffusive operator acts
and the model level (e.g. z- or s-surfaces). Note that the formulation (2.37) is exact for the
rotation between geopotential and s-surfaces, while it is only an approximation for the ro-
tation between isoneutral and z- or s-surfaces. Indeed, in the latter case, two assumptions
are made to simplify (2.37) [?]. First, the horizontal contribution of the dianeutral mixing
is neglected since the ratio between iso and dia-neutral diffusive coefficients is known to
be several orders of magnitude smaller than unity. Second, the two isoneutral directions
of diffusion are assumed to be independent since the slopes are generally less than 10−2

in the ocean (see Appendix B).
For geopotential diffusion, r1 and r2 are the slopes between the geopotential and com-

putational surfaces : in z-coordinates they are zero (r1 = r2 = 0) while in s-coordinate
(including z* case) they are equal to σ1 and σ2, respectively (see (2.26) ).

For isoneutral diffusion r1 and r2 are the slopes between the isoneutral and computa-
tional surfaces. Therefore, they have a same expression in z- and s-coordinates :

r1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

, r1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

(2.38)

When the Eddy Induced Velocity parametrisation (eiv) [?] is used, an additional tracer
advection is introduced in combination with the isoneutral diffusion of tracers :

DlT = ∇ ·
(
AlT < ∇T

)
+∇ · (U∗ T ) (2.39)

where U∗ = (u∗, v∗, w∗) is a non-divergent, eddy-induced transport velocity. This velo-
city field is defined by :

u∗ = +
1
e3

∂

∂k

[
Aeiv r̃1

]

v∗ = +
1
e3

∂

∂k

[
Aeiv r̃2

]

w∗ = − 1
e1e2

[
∂

∂i

(
Aeiv e2 r̃1

)
+

∂

∂j

(
Aeiv e1 r̃2

)]
(2.40)
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where Aeiv is the eddy induced velocity coefficient (or equivalently the isoneutral thick-
ness diffusivity coefficient), and r̃1 and r̃2 are the slopes between isoneutral and geopo-
tential surfaces and thus depends on the coordinate considered :

r̃n =

{
rn in z-coordinate
rn + σn in z* and s-coordinates

where n = 1, 2 (2.41)

The normal component of the eddy induced velocity is zero at all the boundaries. This
can be achieved in a model by tapering either the eddy coefficient or the slopes to zero in
the vicinity of the boundaries. The latter strategy is used in NEMO (cf. Chap. 9).

lateral fourth order tracer diffusive operator

The lateral fourth order tracer diffusive operator is defined by :

DlT = ∆
(
AlT ∆T

)
where DlT = ∆

(
AlT ∆T

)
(2.42)

It is the second order operator given by (2.37) applied twice with the eddy diffusion
coefficient correctly placed.

lateral second order momentum diffusive operator

The second order momentum diffusive operator along z- or s-surfaces is found by
applying (2.11e) to the horizontal velocity vector (see Appendix B) :

DlU = ∇h
(
Almχ

)
− ∇h ×

(
Alm ζ k

)

=




1
e1

∂
(
Almχ

)

∂i
− 1
e2e3

∂
(
Alm e3ζ

)

∂j

1
e2

∂
(
Almχ

)

∂j
+

1
e1e3

∂
(
Alm e3ζ

)

∂i




(2.43)

Such a formulation ensures a complete separation between the vorticity and horizontal
divergence fields (see Appendix C). Unfortunately, it is not available for geopotential
diffusion in s−coordinates and for isoneutral diffusion in both z- and s-coordinates (i.e.
when a rotation is required). In these two cases, the u and v−fields are considered as
independent scalar fields, so that the diffusive operator is given by :

DlU
u = ∇. (< ∇u)

DlU
v = ∇. (< ∇v)

(2.44)

where < is given by (2.37). It is the same expression as those used for diffusive operator
on tracers. It must be emphasised that such a formulation is only exact in a Cartesian
coordinate system, i.e. on a f− or β−plane, not on the sphere. It is also a very good
approximation in vicinity of the Equator in a geographical coordinate system [?].
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lateral fourth order momentum diffusive operator

As for tracers, the fourth order momentum diffusive operator along z or s-surfaces
is a re-entering second order operator (2.43) or (2.43) with the eddy viscosity coefficient
correctly placed :

geopotential diffusion in z-coordinate :

DlU = ∇h
{
∇h.

[
Alm∇h (χ)

] }

+∇h ×
{

k · ∇ ×
[
Alm∇h × (ζ k)

] } (2.45)

geopotential diffusion in s-coordinate :



DlU
u = ∆

(
Alm ∆u

)

DlU
v = ∆

(
Alm ∆v

) where ∆ (•) = ∇ · (<∇(•)) (2.46)



3 Time Domain (STP)

Contents
3.1 Time stepping environment . . . . . . . . . . . . . . . . . . 36
3.2 Non-Diffusive Part — Leapfrog Scheme . . . . . . . . . . . 36
3.3 Diffusive Part — Forward or Backward Scheme . . . . . . 37
3.4 Hydrostatic Pressure Gradient — semi-implicit scheme . . 38
3.5 The Modified Leapfrog – Asselin Filter scheme . . . . . . . 40
3.6 Start/Restart strategy . . . . . . . . . . . . . . . . . . . . . 42



36 Time Domain (STP)

Having defined the continuous equations in Chap. 2, we need now to choose a time
discretization. In the present chapter, we provide a general description of the NEMO time
stepping strategy and the consequences for the order in which the equations are solved.

3.1 Time stepping environment
The time stepping used in NEMO is a three level scheme that can be represented as

follows :
xt+∆t = xt−∆t + 2 ∆t RHSt−∆t, t, t+∆t

x (3.1)

where x stands for u, v, T or S ; RHS is the Right-Hand-Side of the corresponding time
evolution equation ; ∆t is the time step ; and the superscripts indicate the time at which a
quantity is evaluated. Each term of the RHS is evaluated at a specific time step depending
on the physics with which it is associated.

The choice of the time step used for this evaluation is discussed below as well as the
implications for starting or restarting a model simulation. Note that the time stepping cal-
culation is generally performed in a single operation. With such a complex and nonlinear
system of equations it would be dangerous to let a prognostic variable evolve in time for
each term separately.

The three level scheme requires three arrays for each prognostic variable. For each
variable x there is xb (before), xn (now) and xa. The third array, although referred to as
xa (after) in the code, is usually not the variable at the after time step ; but rather it is used
to store the time derivative (RHS in (3.1)) prior to time-stepping the equation. Generally,
the time stepping is performed once at each time step in the tranxt.F90 and dynnxt.F90
modules, except when using implicit vertical diffusion or calculating sea surface height in
which case time-splitting options are used.

3.2 Non-Diffusive Part — Leapfrog Scheme
The time stepping used for processes other than diffusion is the well-known leapfrog

scheme [?]. This scheme is widely used for advection processes in low-viscosity fluids. It
is a time centred scheme, i.e. the RHS in (3.1) is evaluated at time step t, the now time
step. It may be used for momentum and tracer advection, pressure gradient, and Corio-
lis terms, but not for diffusion terms. It is an efficient method that achieves second-order
accuracy with just one right hand side evaluation per time step. Moreover, it does not ar-
tificially damp linear oscillatory motion nor does it produce instability by amplifying the
oscillations. These advantages are somewhat diminished by the large phase-speed error of
the leapfrog scheme, and the unsuitability of leapfrog differencing for the representation
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of diffusion and Rayleigh damping processes. However, the scheme allows the coexis-
tence of a numerical and a physical mode due to its leading third order dispersive error. In
other words a divergence of odd and even time steps may occur. To prevent it, the leapfrog
scheme is often used in association with a Robert-Asselin time filter (hereafter the LF-RA
scheme). This filter, first designed by ? and more comprehensively studied by ?, is a kind
of laplacian diffusion in time that mixes odd and even time steps :

xtF = xt + γ
[
xt−∆t
F − 2xt + xt+∆t

]
(3.2)

where the subscript F denotes filtered values and γ is the Asselin coefficient. γ is initiali-
zed as rn atfp (namelist parameter). Its default value is rn atfp=10−3 (see § 3.5), causing
only a weak dissipation of high frequency motions ([?]). The addition of a time filter de-
grades the accuracy of the calculation from second to first order. However, the second
order truncation error is proportional to γ, which is small compared to 1. Therefore, the
LF-RA is a quasi second order accurate scheme. The LF-RA scheme is preferred to other
time differencing schemes such as predictor corrector or trapezoidal schemes, because
the user has an explicit and simple control of the magnitude of the time diffusion of the
scheme. When used with the 2nd order space centred discretisation of the advection terms
in the momentum and tracer equations, LF-RA avoids implicit numerical diffusion : dif-
fusion is set explicitly by the user through the Robert-Asselin filter parameter and the
viscosity and diffusion coefficients.

3.3 Diffusive Part — Forward or Backward Scheme
The leapfrog differencing scheme is unsuitable for the representation of diffusion and

damping processes. For a tendancy Dx, representing a diffusion term or a restoring term
to a tracer climatology (when present, see § 5.6), a forward time differencing scheme is
used :

xt+∆t = xt−∆t + 2 ∆t Dx
t−∆t (3.3)

This is diffusive in time and conditionally stable. The conditions for stability of second
and fourth order horizontal diffusion schemes are [?] :

Ah <





e2

8 ∆t
laplacian diffusion

e4

64 ∆t
bilaplacian diffusion

(3.4)

where e is the smallest grid size in the two horizontal directions and Ah is the mixing
coefficient. The linear constraint (3.4) is a necessary condition, but not sufficient. If it is
not satisfied, even mildly, then the model soon becomes wildly unstable. The instability
can be removed by either reducing the length of the time steps or reducing the mixing
coefficient.

For the vertical diffusion terms, a forward time differencing scheme can be used, but
usually the numerical stability condition imposes a strong constraint on the time step. Two
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solutions are available in NEMO to overcome the stability constraint : (a) a forward time
differencing scheme using a time splitting technique (ln zdfexp=.true.) or (b) a backward
(or implicit) time differencing scheme (ln zdfexp=.false.). In (a), the master time step ∆t
is cut into N fractional time steps so that the stability criterion is reduced by a factor of
N . The computation is performed as follows :

xt−∆t
∗ = xt−∆t

x
t−∆t+L 2∆t

N∗ = x
t−∆t+(L−1) 2∆t

N∗ +
2∆t
N

DFt−∆t+(L−1) 2∆t
N for L = 1 to N

xt+∆t = xt+∆t
∗

(3.5)

with DF a vertical diffusion term. The number of fractional time steps, N , is given by
setting nn zdfexp, (namelist parameter). The scheme (b) is unconditionally stable but dif-
fusive. It can be written as follows :

xt+∆t = xt−∆t + 2 ∆t RHSt+∆t
x (3.6)

This scheme is rather time consuming since it requires a matrix inversion, but it be-
comes attractive since a value of 3 or more is needed for N in the forward time differencing
scheme. For example, the finite difference approximation of the temperature equation is :

T (k)t+1 − T (k)t−1

2 ∆t
≡ RHS +

1
e3t
δk

[
AvTw
e3w

δk+1/2

[
T t+1

]]
(3.7)

where RHS is the right hand side of the equation except for the vertical diffusion term.
why change from T to u in the following equation ? We rewrite (3.6) as :

−c(k + 1) ut+1(k + 1) + d(k) ut+1(k)− c(k) ut+1(k − 1) ≡ b(k) (3.8)

where

c(k) = Avmw (k) / e3uw(k)
d(k) = e3u(k) / (2∆t) + ck + ck+1

b(k) = e3u(k)
(
ut−1(k) / (2∆t) + RHS

)

(3.8) is a linear system of equations with an associated matrix which is tridiagonal.
Moreover, c(k) and d(k) are positive and the diagonal term is greater than the sum of the
two extra-diagonal terms, therefore a special adaptation of the Gauss elimination proce-
dure is used to find the solution (see for example ?).

3.4 Hydrostatic Pressure Gradient — semi-implicit scheme
The range of stability of the Leap-Frog scheme can be extended by a factor of two

by introducing a semi-implicit computation of the hydrostatic pressure gradient term [?].
Instead of evaluating the pressure at t, a linear combination of values at t − ∆t, t and
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FIGURE 3.1 – Sketch of the leapfrog time stepping sequence in NEMO from ?. The
use of a semi-implicit computation of the hydrostatic pressure gradient requires
the tracer equation to be stepped forward prior to the momentum equation. The
need for knowledge of the vertical scale factor (here denoted as h) requires the
sea surface height and the continuity equation to be stepped forward prior to the
computation of the tracer equation. Note that the method for the evaluation of the
surface pressure gradient ∇ps is not presented here (see § 6.5).
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t + ∆t is used (see § 6.4.4). This technique, controlled by the nn dynhpg rst namelist
parameter, does not introduce a significant additional computational cost when tracers
and thus density is time stepped before the dynamics. This time step ordering is used in
NEMO (Fig.3.4).

This technique, used in several GCMs (NEMO , POP or MOM for instance), makes
the Leap-Frog scheme as efficient 1 as the Forward-Backward scheme used in MOM [?]
and more efficient than the LF-AM3 scheme (leapfrog time stepping combined with a
third order Adams-Moulton interpolation for the predictor phase) used in ROMS [?].

In fact, this technique is efficient when the physical phenomenon that limits the time-
step is internal gravity waves (IGWs). Indeed, it is equivalent to applying a time filter to
the pressure gradient to eliminate high frequency IGWs. Obviously, the doubling of the
time-step is achievable only if no other factors control the time-step, such as the stability
limits associated with advection, diffusion or Coriolis terms. For example, it is useless
in low resolution global ocean configurations, since inertial oscillations in the vicinity of
the North Pole are the limiting factor for the time step. It is also often useless in very
high resolution configurations where strong currents and small grid cells exert the stron-
gest constraint on the time step. not sure ”useless” is the right word here. ”valueless”,
”inefficient” ?

3.5 The Modified Leapfrog – Asselin Filter scheme
Significant changes have been introduced by ? in the LF-RA scheme in order to ensure

tracer conservation and to allow the use of a much smaller value of the Asselin filter
parameter. The modifications affect both the forcing and filtering treatments in the LF-
RA scheme.

In a classical LF-RA environment, the forcing term is centred in time, i.e. it is time-
stepped over a 2∆t period : xt = xt + 2∆tQt where Q is the filtered forcing applied to
x, and the filter is given by (3.2). In the modified LF-RA environment, these two formu-
lations have been replaced by :

xt+∆t = xt−∆t + ∆t
(
Qt−∆t/2 +Qt+∆t/2

)
(3.9)

xtF = xt + γ
[
xt−∆t
F − 2xt + xt+∆t

]
− γ∆t

[
Qt+∆t/2 −Qt−∆t/2

]
(3.10)

Q(t)=f(x(t-dt),x(t),x(t+dt)), Q(t-dt/2) ?
The change in the forcing formulation given by (3.9) (see Fig.3.5) has a significant

effect : the forcing term no longer excites the divergence of odd and even time steps [?].
This property improves the LF-RA scheme in two respects. First, the LF-RA becomes a
truly quasi-second order scheme. Indeed, (3.9) used in combination with a careful treat-
ment of static instability (§10.2.2) and of the TKE physics (§10.1.4), the two other main
sources of time step divergence, allows a reduction by two orders of magnitude of the

1. The efficiency is defined as the maximum allowed Courant number of the time stepping
scheme divided by the number of computations of the right-hand side per time step.
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Asselin filter parameter. Second, the LF-RA can now ensure the local and global conser-
vation of tracers. Indeed, time filtering is no longer required on the forcing part. but Q is
described above as the forcing part ! The influence of the forcing in the Asselin filter can
be removed by adding a new term in the filter (last term in (3.10) compared to (3.2)). Since
the filtering of the forcing was the source of non-conservation in the LF-RA scheme, it
becomes conservative [?].

Note that the forcing is now provided at the middle of a time step : Qt+∆t/2 is the
forcing applied over the [t, t + ∆t] time interval. This and the change in the time filter,
(3.10), allows an exact evaluation of the contribution due to the forcing term between any
two time steps, even if separated by only ∆t since the time filter is no longer applied to
the forcing term.

two methods in caption sound the same

3.6 Start/Restart strategy
!-----------------------------------------------------------------------
&namrun ! parameters of the run
!-----------------------------------------------------------------------

nn_no = 0 ! job number
cn_exp = "ORCA2" ! experience name
nn_it000 = 1 ! first time step
nn_itend = 315 ! last time step (std 5475)
nn_date0 = 010101 ! initial calendar date yymmdd (used if nrstdt=1)
nn_leapy = 0 ! Leap year calendar (1) or not (0)
nn_istate = 0 ! output the initial state (1) or not (0)
nn_stock = 5475 ! frequency of creation of a restart file (modulo referenced to 1)
nn_write = 5475 ! frequency of write in the output file (modulo referenced to nit000)
ln_dimgnnn = .false. ! DIMG file format: 1 file for all processors (F) or by processor (T)
ln_mskland = .false. ! mask land points in NetCDF outputs (costly: + ˜15%)
ln_clobber = .false. ! clobber (overwrite) an existing file
nn_chunksz = 0 ! chunksize (bytes) for NetCDF file (working only with iom_nf90 routines)
ln_rstart = .false. ! start from rest (F) or from a restart file (T)
nn_rstctl = 0 ! restart control = 0 nit000 is not compared to the restart file value

! = 1 use ndate0 in namelist (not the value in the restart file)
! = 2 calendar parameters read in the restart file

cn_ocerst_in = "restart" ! suffix of ocean restart name (input)
cn_ocerst_out = "restart" ! suffix of ocean restart name (output)

/

The first time step of this three level scheme when starting from initial conditions is a
forward step (Euler time integration) :

x1 = x0 + ∆t RHS0 (3.11)

This is done simply by keeping the leapfrog environment but setting all x0 (before) and
x1/2 (now) fields equal at the first time step.

It is also possible to restart from a previous computation, by using a restart file. The
restart strategy is designed to ensure perfect restartability of the code : the user should
obtain the same results to machine precision either by running the model for 2N time
steps in one go, or by performing two consecutive experiments of N steps with a restart.
This requires saving two time levels and many auxiliary data in the restart files in machine
precision.

Note that when a semi-implicit scheme is used to evaluate the hydrostatic pressure
gradient (see §6.4.4), an extra three-dimensional field has to be added to the restart file to
ensure an exact restartability. This is done optionally via the namelist parameter nn dynhpg rst,
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Q1/2               +           Q3/2 Q5/2               +           Q7/2

0 1 2 3 4 5

FIGURE 3.2 – Illustration of forcing integration methods. ”Traditional” formu-
lation (top) where a centred forcing is applied over a 2∆t period and modified
formulation (bottom) where a mean forcing over the two successive time step is
applied over a 2∆t period.

so that the size of the restart file can be reduced when restartability is not a key issue (ope-
rational oceanography or in ensemble simulations for seasonal forecasting).

Note the size of the time step used, ∆t, is also saved in the restart file. When restarting,
if the the time step has been changed, a restart using an Euler time stepping scheme is
imposed.
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FIGURE 4.1 – Arrangement of variables. t indicates scalar points where tempe-
rature, salinity, density, pressure and horizontal divergence are defined. (u,v,w)
indicates vector points, and f indicates vorticity points where both relative and
planetary vorticities are defined

Having defined the continuous equations in Chap. 2 and chosen a time discretization
Chap. 3, we need to choose a discretization on a grid, and numerical algorithms. In the
present chapter, we provide a general description of the staggered grid used in NEMO , and
other information relevant to the main directory routines as well as the DOM (DOMain)
directory.
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4.1 Fundamentals of the Discretisation

4.1.1 Arrangement of Variables
The numerical techniques used to solve the Primitive Equations in this model are

based on the traditional, centred second-order finite difference approximation. Special
attention has been given to the homogeneity of the solution in the three space directions.
The arrangement of variables is the same in all directions. It consists of cells centred on
scalar points (t, S, p, ρ) with vector points (u, v, w) defined in the centre of each face
of the cells (Fig. 4.1.1). This is the generalisation to three dimensions of the well-known
“C” grid in Arakawa’s classification [?]. The relative and planetary vorticity, ζ and f , are
defined in the centre of each vertical edge and the barotropic stream function ψ is defined
at horizontal points overlying the ζ and f -points.

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by the
transformation that gives (λ ,ϕ ,z) as a function of (i, j, k). The grid-points are located
at integer or integer and a half value of (i, j, k) as indicated on Table 4.1.1. In all the
following, subscripts u, v, w, f , uw, vw or fw indicate the position of the grid-point
where the scale factors are defined. Each scale factor is defined as the local analytical
value provided by (2.10). As a result, the mesh on which partial derivatives ∂

∂λ ,
∂
∂ϕ , and

∂
∂z are evaluated is a uniform mesh with a grid size of unity. Discrete partial derivatives are
formulated by the traditional, centred second order finite difference approximation while
the scale factors are chosen equal to their local analytical value. An important point here is
that the partial derivative of the scale factors must be evaluated by centred finite difference
approximation, not from their analytical expression. This preserves the symmetry of the
discrete set of equations and therefore satisfies many of the continuous properties (see
Appendix C). A similar, related remark can be made about the domain size : when needed,
an area, volume, or the total ocean depth must be evaluated as the sum of the relevant scale
factors (see (4.8)) in the next section).

4.1.2 Discrete Operators
Given the values of a variable q at adjacent points, the differencing and averaging

operators at the midpoint between them are :

δi[q] = q(i+ 1/2)− q(i− 1/2) (4.1a)

q i = {q(i+ 1/2) + q(i− 1/2)} / 2 (4.1b)

Similar operators are defined with respect to i + 1/2, j, j + 1/2, k, and k + 1/2.
Following (2.11a) and (2.11d), the gradient of a variable q defined at a t-point has its
three components defined at u-, v- and w-points while its Laplacien is defined at t-point.
These operators have the following discrete forms in the curvilinear s-coordinate system :

∇q ≡ 1
e1u

δi+1/2[q] i +
1
e2v

δj+1/2[q] j +
1
e3w

δk+1/2[q] k (4.2)
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T i j k
u i+ 1/2 j k
v i j + 1/2 k
w i j k + 1/2
f i+ 1/2 j + 1/2 k
uw i+ 1/2 j k + 1/2
vw i j + 1/2 k + 1/2
fw i+ 1/2 j + 1/2 k + 1/2

TABLE 4.1 – Location of grid-points as a function of integer or integer and a half
value of the column, line or level. This indexing is only used for the writing of the
semi- discrete equation. In the code, the indexing uses integer values only and has
a reverse direction in the vertical (see §4.1.3)

∆q ≡ 1
e1t e2t e3t

(
δi

[
e2u e3u

e1u
δi+1/2[q]

]
+ δj

[
e1v e3v

e2v
δj+1/2[q]

] )

+
1
e3t
δk

[
1
e3w

δk+1/2[q]
]

(4.3)

Following (2.11c) and (2.11b), a vector A = (a1, a2, a3) defined at vector points
(u, v, w) has its three curl components defined at vw-, uw, and f -points, and its diver-
gence defined at t-points :

∇×A ≡ 1
e2v e3vw

(
δj+1/2 [e3w a3]− δk+1/2 [e2v a2]

)
i (4.4)

+ 1
e2u e3uw

(
δk+1/2 [e1u a1]− δi+1/2 [e3w a3]

)
j (4.5)

+ 1
e1f e2f

(
δi+1/2 [e2v a2]− δj+1/2 [e1u a1]

)
k (4.6)

∇ ·A =
1

e1t e2t e3t
(δi [e2u e3u a1] + δj [e1v e3v a2]) +

1
e3t
δk [a3] (4.7)

In the special case of a pure z-coordinate system, (4.3) and (4.7) can be simplified.
In this case, the vertical scale factor becomes a function of the single variable k and thus
does not depend on the horizontal location of a grid point. For example (4.7) reduces to :

∇ ·A =
1

e1t e2t
(δi [e2u a1] + δj [e1v a2]) +

1
e3t
δk [a3]

The vertical average over the whole water column denoted by an overbar becomes for
a quantity q which is a masked field (i.e. equal to zero inside solid area) :

q̄ =
1
H

∫ ko

kb
q e3q dk ≡ 1

Hq

∑

k

q e3q (4.8)
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where Hq is the ocean depth, which is the masked sum of the vertical scale factors at
q points, kb and ko are the bottom and surface k-indices, and the symbol ko refers to a
summation over all grid points of the same type in the direction indicated by the subscript
(here k).

In continuous form, the following properties are satisfied :

∇×∇q = 0 (4.9)

∇ · (∇×A) = 0 (4.10)

It is straightforward to demonstrate that these properties are verified locally in discrete
form as soon as the scalar q is taken at t-points and the vector A has its components defined
at vector points (u, v, w).

Let a and b be two fields defined on the mesh, with value zero inside continental area.
Using integration by parts it can be shown that the differencing operators (δi, δj and δk)
are anti-symmetric linear operators, and further that the averaging operators · i, · k and
· k) are symmetric linear operators, i.e.

∑

i

ai δi [b] ≡ −
∑

i

δi+1/2 [a] bi+1/2 (4.11)

∑

i

ai b
i ≡

∑

i

a i+1/2 bi+1/2 (4.12)

In other words, the adjoint of the differencing and averaging operators are δ∗i = δi+1/2

and ( · i)∗ = · i+1/2, respectively. These two properties will be used extensively in the
Appendix C to demonstrate integral conservative properties of the discrete formulation
chosen.

4.1.3 Numerical Indexing
The array representation used in the FORTRAN code requires an integer indexing

while the analytical definition of the mesh (see §4.1.1) is associated with the use of integer
values for t-points and both integer and integer and a half values for all the other points.
Therefore a specific integer indexing must be defined for points other than t-points (i.e.
velocity and vorticity grid-points). Furthermore, the direction of the vertical indexing has
been changed so that the surface level is at k = 1.

Horizontal Indexing

The indexing in the horizontal plane has been chosen as shown in Fig.4.1.3. For an
increasing i index (j index), the t-point and the eastward u-point (northward v-point)
have the same index (see the dashed area in Fig.4.1.3). A t-point and its nearest northeast
f -point have the same i-and j-indices.
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FIGURE 4.2 – Horizontal integer indexing used in the FORTRAN code. The dashed
area indicates the cell in which variables contained in arrays have the same i- and
j-indices

Vertical Indexing

In the vertical, the chosen indexing requires special attention since the k-axis is re-
orientated downward in the FORTRAN code compared to the indexing used in the semi-
discrete equations and given in §4.1.1. The sea surface corresponds to the w-level k = 1
which is the same index as t-level just below (Fig.4.1.3). The last w-level (k = jpk)



4.1. Fundamentals of the Discretisation 49

w

w
T1

1

k

2

jpk
jpk-1

jpk-1
jpk-2

jpk-2

jpk

LEVELS

k
k+1 w

T

w
T

w
T

T

w

w

w
T

w
T

w
T

w
T

T

w

FIGURE 4.3 – Vertical integer indexing used in the FORTRAN code. Note that
the k-axis is orientated downward. The dashed area indicates the cell in which
variables contained in arrays have the same k-index.

either corresponds to the ocean floor or is inside the bathymetry while the last t-level is
always inside the bathymetry (Fig.4.1.3). Note that for an increasing k index, a w-point
and the t-point just below have the same k index, in opposition to what is done in the
horizontal plane where it is the t-point and the nearest velocity points in the direction of
the horizontal axis that have the same i or j index (compare the dashed area in Fig.4.1.3
and 4.1.3). Since the scale factors are chosen to be strictly positive, a minus sign appears
in the FORTRAN code before all the vertical derivatives of the discrete equations given in
this documentation.
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Domain Size

The total size of the computational domain is set by the parameters jpiglo, jpjglo
and jpk in the i, j and k directions respectively. They are given as parameters in the
par oce.F90 module 1. The use of parameters rather than variables (together with dynamic
allocation of arrays) was chosen because it ensured that the compiler would optimize
the executable code efficiently, especially on vector machines (optimization may be less
efficient when the problem size is unknown at the time of compilation). Nevertheless, it is
possible to set up the code with full dynamical allocation by using the AGRIF packaged
[?]. Note that are other parameters in par oce.F90 that refer to the domain size. The two
parameters jpidta and jpjdta may be larger than jpiglo, jpjglo when the user wants to
use only a sub-region of a given configuration. This is the ”zoom” capability described
in §11.3. In most applications of the model, jpidta = jpiglo, jpjdta = jpjglo, and
jpizoom = jpjzoom = 1. Parameters jpi and jpj refer to the size of each processor
subdomain when the code is run in parallel using domain decomposition (key mpp mpi
defined, see §8.3).

4.2 Domain : Horizontal Grid (mesh) (domhgr.F90 module)

4.2.1 Coordinates and scale factors

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by the
transformation that gives (λ, ϕ, z) as a function of (i, j, k). The grid-points are located
at integer or integer and a half values of as indicated in Table 4.1.1. The associated scale
factors are defined using the analytical first derivative of the transformation (2.10). These
definitions are done in two modules, domhgr.F90 and domzgr.F90, which provide the
horizontal and vertical meshes, respectively. This section deals with the horizontal mesh
parameters.

In a horizontal plane, the location of all the model grid points is defined from the ana-
lytical expressions of the longitude λ and latitude ϕ as a function of (i, j). The horizontal
scale factors are calculated using (2.10). For example, when the longitude and latitude are
function of a single value (i and j, respectively) (geographical configuration of the mesh),
the horizontal mesh definition reduces to define the wanted λ(i), ϕ(j), and their deriva-
tives λ′(i) ϕ′(j) in the domhgr.F90 module. The model computes the grid-point positions

1. When a specific configuration is used (ORCA2 global ocean, etc...) the parameter are ac-
tually defined in additional files introduced by par oce.F90 module via CPP include command.
For example, ORCA2 parameters are set in par ORCA R2.h90 file
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and scale factors in the horizontal plane as follows :

λt ≡ glamt = λ(i) ϕt ≡ gphit = ϕ(j)
λu ≡ glamu = λ(i+ 1/2) ϕu ≡ gphiu = ϕ(j)
λv ≡ glamv = λ(i) ϕv ≡ gphiv = ϕ(j + 1/2)
λf ≡ glamf = λ(i+ 1/2) ϕf ≡ gphif = ϕ(j + 1/2)

e1t ≡ e1t = ra|λ′(i) cosϕ(j)| e2t ≡ e2t = ra|ϕ′(j)|
e1u ≡ e1t = ra|λ′(i+ 1/2) cosϕ(j)| e2u ≡ e2t = ra|ϕ′(j)|
e1v ≡ e1t = ra|λ′(i) cosϕ(j + 1/2)| e2v ≡ e2t = ra|ϕ′(j + 1/2)|
e1f ≡ e1t = ra|λ′(i+ 1/2) cosϕ(j + 1/2)| e2f ≡ e2t = ra|ϕ′(j + 1/2)|

where the last letter of each computational name indicates the grid point considered and ra
is the earth radius (defined in phycst.F90 along with all universal constants). Note that the
horizontal position of and scale factors at w-points are exactly equal to those of t-points,
thus no specific arrays are defined at w-points.

Note that the definition of the scale factors (i.e. as the analytical first derivative of the
transformation that gives (λ, ϕ, z) as a function of (i, j, k)) is specific to the NEMO model
[?]. As an example, e1t is defined locally at a t-point, whereas many other models on a C
grid choose to define such a scale factor as the distance between the U -points on each side
of the t-point. Relying on an analytical transformation has two advantages : firstly, there
is no ambiguity in the scale factors appearing in the discrete equations, since they are first
introduced in the continuous equations ; secondly, analytical transformations encourage
good practice by the definition of smoothly varying grids (rather than allowing the user to
set arbitrary jumps in thickness between adjacent layers) [?]. An example of the effect of
such a choice is shown in Fig. 4.2.1.

4.2.2 Choice of horizontal grid
The user has three options available in defining a horizontal grid, which involve the

parameter jphgr mesh of the par oce.F90 module.

jphgr mesh=0 The most general curvilinear orthogonal grids. The coordinates and their
first derivatives with respect to i and j are provided in a input file (coordinates.nc),
read in hgr read subroutine of the domhgr module.

jphgr mesh=1 to 5 A few simple analytical grids are provided (see below). For other
analytical grids, the domhgr.F90 module must be modified by the user.

There are two simple cases of geographical grids on the sphere. With jphgr mesh=1,
the grid (expressed in degrees) is regular in space, with grid sizes specified by parameters
ppe1 deg and ppe2 deg, respectively. Such a geographical grid can be very anisotropic at
high latitudes because of the convergence of meridians (the zonal scale factors e1 become
much smaller than the meridional scale factors e2). The Mercator grid (jphgr mesh=4)
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FIGURE 4.4 – Comparison of (a) traditional definitions of grid-point position and
grid-size in the vertical, and (b) analytically derived grid-point position and scale
factors. For both grids here, the same w-point depth has been chosen but in (a) the
t-points are set half way between w-points while in (b) they are defined from an
analytical function : z(k) = 5 (i− 1/2)3 − 45 (i− 1/2)2 + 140 (i− 1/2)− 150.
Note the resulting difference between the value of the grid-size ∆k and those of
the scale factor ek.

avoids this anisotropy by refining the meridional scale factors in the same way as the
zonal ones. In this case, meridional scale factors and latitudes are calculated analytically
using the formulae appropriate for a Mercator projection, based on ppe1 deg which is a
reference grid spacing at the equator (this applies even when the geographical equator
is situated outside the model domain). In these two cases (jphgr mesh=1 or 4), the grid
position is defined by the longitude and latitude of the south-westernmost point (ppglamt0
and ppgphi0). Note that for the Mercator grid the user need only provide an approximate
starting latitude : the real latitude will be recalculated analytically, in order to ensure that
the equator corresponds to line passing through t- and u-points.

Rectangular grids ignoring the spherical geometry are defined with jphgr mesh = 2,
3, 5. The domain is either an f -plane (jphgr mesh = 2, Coriolis factor is constant) or a
beta-plane (jphgr mesh = 3, the Coriolis factor is linear in the j-direction). The grid size
is uniform in meter in each direction, and given by the parameters ppe1 m and ppe2 m
respectively. The zonal grid coordinate (glam arrays) is in kilometers, starting at zero with
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the first t-point. The meridional coordinate (gphi. arrays) is in kilometers, and the second
t-point corresponds to coordinate gphit = 0. The input parameter ppglam0 is ignored.
ppgphi0 is used to set the reference latitude for computation of the Coriolis parameter.
In the case of the beta plane, ppgphi0 corresponds to the center of the domain. Finally,
the special case jphgr mesh=5 corresponds to a beta plane in a rotated domain for the
GYRE configuration, representing a classical mid-latitude double gyre system. The rota-
tion allows us to maximize the jet length relative to the gyre areas (and the number of grid
points).

The choice of the grid must be consistent with the boundary conditions specified by
the parameter jperio (see §8).

4.2.3 Output Grid files
All the arrays relating to a particular ocean model configuration (grid-point position,

scale factors, masks) can be saved in files if nn msh 6= 0 (namelist parameter). This
can be particularly useful for plots and off-line diagnostics. In some cases, the user may
choose to make a local modification of a scale factor in the code. This is the case in global
configurations when restricting the width of a specific strait (usually a one-grid-point strait
that happens to be too wide due to insufficient model resolution). An example is Gibraltar
Strait in the ORCA2 configuration. When such modifications are done, the output grid
written when nn msh 6= 0 is no more equal to the input grid.

4.3 Domain : Vertical Grid (domzgr.F90 module)

!-----------------------------------------------------------------------
&namzgr ! vertical coordinate
!-----------------------------------------------------------------------

ln_zco = .false. ! z-coordinate - full steps (T/F) ("key_zco" may also be defined)
ln_zps = .true. ! z-coordinate - partial steps (T/F)
ln_sco = .false. ! s- or hybrid z-s-coordinate (T/F)

/

!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

nn_bathy = 1 ! compute (=0) or read(=1) the bathymetry file
nn_closea = 0 ! closed seas and lakes are removed (=0) or kept (=1) from the ORCA domain
nn_msh = 0 ! create (=1) a mesh file (coordinates, scale factors, masks) or not (=0)
rn_e3zps_min= 20. ! the thickness of the partial step is set larger than the minimum
rn_e3zps_rat= 0.1 ! of e3zps_min and e3zps_rat * e3t (N.B. 0<e3zps_rat<1)

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nacc=0) ==> 5760
nn_baro = 64 ! number of barotropic time step (for the split explicit algorithm) ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nacc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nacc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nacc=1)

/

In the vertical, the model mesh is determined by four things : (1) the bathymetry given
in meters ; (2) the number of levels of the model (jpk) ; (3) the analytical transformation
z(i, j, k) and the vertical scale factors (derivatives of the transformation) ; and (4) the
masking system, i.e. the number of wet model levels at each (i, j) column of points.
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FIGURE 4.5 – The ocean bottom as seen by the model : (a) z-coordinate with
full step, (b) z-coordinate with partial step, (c) s-coordinate : terrain following
representation, (d) hybrid s−z coordinate, (e) hybrid s−z coordinate with partial
step, and (f) same as (e) but with variable volume associated with the non-linear
free surface. Note that the variable volume option (key vvl) can be used with any
of the 5 coordinates (a) to (e).

The choice of a vertical coordinate, even if it is made through a namelist parameter,
must be done once of all at the beginning of an experiment. It is not intended as an option
which can be enabled or disabled in the middle of an experiment. Three main choices are
offered (Fig. 4.3a to c) : z-coordinate with full step bathymetry (ln zco=true), z-coordinate
with partial step bathymetry (ln zps=true), or generalized, s-coordinate (ln sco=true). Hy-
bridation of the three main coordinates are available : s−z or s−zps coordinate (Fig. 4.3d
and 4.3e). When using the variable volume option key vvl) (i.e. non-linear free surface),
the coordinate follow the time-variation of the free surface so that the transformation is
time dependent : z(i, j, k, t) (Fig. 4.3f). This option can be used with full step bathymetry
or s-coordinate (hybride and partial step coordinates have not yet been tested in NEMO
v2.3).

Contrary to the horizontal grid, the vertical grid is computed in the code and no pro-
vision is made for reading it from a file. The only input file is the bathymetry (in meters)
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(bathy meter.nc) 2. After reading the bathymetry, the algorithm for vertical grid definition
differs between the different options :

zco set a reference coordinate transformation z0(k), and set z(i, j, k, t) = z0(k).

zps set a reference coordinate transformation z0(k), and calculate the thickness of the
deepest level at each (i, j) point using the bathymetry, to obtain the final three-
dimensional depth and scale factor arrays.

sco smooth the bathymetry to fulfil the hydrostatic consistency criteria and set the three-
dimensional transformation.

s-z and s-zps smooth the bathymetry to fulfil the hydrostatic consistency criteria and set
the three-dimensional transformation z(i, j, k), and possibly introduce masking of
extra land points to better fit the original bathymetry file

Generally, the arrays describing the grid point depths and vertical scale factors are
three dimensional arrays (i, j, k). In the special case of z-coordinates with full step bot-
tom topography, it is possible to define those arrays as one-dimensional, in order to save
memory. This is performed by defining the key zco C-Pre-Processor (CPP) key. To im-
prove the code readability while providing this flexibility, the vertical coordinate and scale
factors are defined as functions of (i, j, k) with ”fs” as prefix (examples : fsdeptht, fse3t,
etc) that can be either three-dimensional arrays, or a one dimensional array when key zco
is defined. These functions are defined in the file domzgr substitute.h90 of the DOM di-
rectory. They are used throughout the code, and replaced by the corresponding arrays at
the time of pre-processing (CPP capability).

4.3.1 Meter Bathymetry
Three options are possible for defining the bathymetry, according to the namelist va-

riable nn bathy :

nn bathy = 0 a flat-bottom domain is defined. The total depth zw(jpk) is given by the
coordinate transformation. The domain can either be a closed basin or a periodic
channel depending on the parameter jperio.

nn bathy = -1 a domain with a bump of topography one third of the domain width at the
central latitude. This is meant for the ”EEL-R5” configuration, a periodic or open
boundary channel with a seamount.

nn bathy = 1 read a bathymetry. The bathy meter.nc file (Netcdf format) provides the
ocean depth (positive, in meters) at each grid point of the model grid. The bathyme-
try is usually built by interpolating a standard bathymetry product (e.g. ETOPO2)
onto the horizontal ocean mesh. Defining the bathymetry also defines the coastline :
where the bathymetry is zero, no model levels are defined (all levels are masked).

2. N.B. in full step z-coordinate, a bathy level.nc file can replace the bathy meter.nc file, so
that the computation of the number of wet ocean point in each water column is by-passed
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FIGURE 4.6 – Default vertical mesh for ORCA2 : 30 ocean levels (L30). Vertical
level functions for (a) T-point depth and (b) the associated scale factor as compu-
ted from (4.13) using (4.14) in z-coordinate.

When a global ocean is coupled to an atmospheric model it is better to represent all
large water bodies (e.g, great lakes, Caspian sea...) even if the model resolution does not
allow their communication with the rest of the ocean. This is unnecessary when the ocean
is forced by fixed atmospheric conditions, so these seas can be removed from the ocean
domain. The user has the option to set the bathymetry in closed seas to zero (see §11.2),
but the code has to be adapted to the user’s configuration.
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4.3.2 z-coordinate (ln zco=.true. or key zco) and reference coordinate
The reference coordinate transformation z0(k) defines the arrays gdept0 and gdepw0

for t- and w-points, respectively. As indicated on Fig.4.1.3 jpk is the number of w-levels.
gdepw0(1) is the ocean surface. There are at most jpk-1 t-points inside the ocean, the
additional t-point at jk = jpk is below the sea floor and is not used. The vertical loca-
tion of w- and t-levels is defined from the analytic expression of the depth z0(k) whose
analytical derivative with respect to k provides the vertical scale factors. The user must
provide the analytical expression of both z0 and its first derivative with respect to k. This
is done in routine domzgr.F90 through statement functions, using parameters provided in
the par oce.h90 file.

It is possible to define a simple regular vertical grid by giving zero stretching (ppacr=0).
In that case, the parameters jpk (number of w-levels) and pphmax (total ocean depth in
meters) fully define the grid.

For climate-related studies it is often desirable to concentrate the vertical resolution
near the ocean surface. The following function is proposed as a standard for a z-coordinate
(with either full or partial steps) :

z0(k) = hsur − h0 k − h1 log [ cosh ((k − hth)/hcr) ]

e0
3(k) = |−h0 − h1 tanh ((k − hth)/hcr)|

(4.13)

where k = 1 to jpk for w-levels and k = 1 to k = 1 for T−levels. Such an expression
allows us to define a nearly uniform vertical location of levels at the ocean top and bottom
with a smooth hyperbolic tangent transition in between (Fig. 4.3.2).

The most used vertical grid for ORCA2 has 10 m (500 m) resolution in the surface
(bottom) layers and a depth which varies from 0 at the sea surface to a minimum of
−5000 m. This leads to the following conditions :

e3(1 + 1/2) = 10.
e3(jpk − 1/2) = 500.

z(1) = 0.
z(jpk) = −5000.

(4.14)

With the choice of the stretching hcr = 3 and the number of levels jpk=31, the four
coefficients hsur, h0, h1, and hth in (4.13) have been determined such that (4.14) is sa-
tisfied, through an optimisation procedure using a bisection method. For the first standard
ORCA2 vertical grid this led to the following values : hsur = 4762.96, h0 = 255.58, h1 =
245.5813, and hth = 21.43336. The resulting depths and scale factors as a function of the
model levels are shown in Fig. 4.3.2 and given in Table 4.3.2. Those values correspond to
the parameters ppsur, ppa0, ppa1, ppkth in the parameter file par oce.F90.

Rather than entering parameters hsur, h0, and h1 directly, it is possible to recalculate
them. In that case the user sets ppsur=ppa0=ppa1=pp to be computed, in par oce.F90,
and specifies instead the four following parameters :

– ppacr=hcr : stretching factor (nondimensional). The larger ppacr, the smaller the
stretching. Values from 3 to 10 are usual.
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– ppkth=hth : is approximately the model level at which maximum stretching occurs
(nondimensional, usually of order 1/2 or 2/3 of jpk)

– ppdzmin : minimum thickness for the top layer (in meters)
– pphmax : total depth of the ocean (meters).

As an example, for the 45 layers used in the DRAKKAR configuration those parameters
are : jpk=46, ppacr=9, ppkth=23.563, ppdzmin=6m, pphmax=5750m.

4.3.3 z-coordinate with partial step (ln zps=.true.)
!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

nn_bathy = 1 ! compute (=0) or read(=1) the bathymetry file
nn_closea = 0 ! closed seas and lakes are removed (=0) or kept (=1) from the ORCA domain
nn_msh = 0 ! create (=1) a mesh file (coordinates, scale factors, masks) or not (=0)
rn_e3zps_min= 20. ! the thickness of the partial step is set larger than the minimum
rn_e3zps_rat= 0.1 ! of e3zps_min and e3zps_rat * e3t (N.B. 0<e3zps_rat<1)

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nacc=0) ==> 5760
nn_baro = 64 ! number of barotropic time step (for the split explicit algorithm) ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nacc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nacc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nacc=1)

/

In z-coordinate partial step, the depths of the model levels are defined by the reference
analytical function z0(k) as described in the previous section, except in the bottom layer.
The thickness of the bottom layer is allowed to vary as a function of geographical location
(λ, ϕ) to allow a better representation of the bathymetry, especially in the case of small
slopes (where the bathymetry varies by less than one level thickness from one grid point
to the next). The reference layer thicknesses e0

3t have been defined in the absence of bathy-
metry. With partial steps, layers from 1 to jpk-2 can have a thickness smaller than e3t(jk).
The model deepest layer (jpk-1) is allowed to have either a smaller or larger thickness
than e3t(jpk) : the maximum thickness allowed is 2 ∗ e3t(jpk − 1). This has to be kept
in mind when specifying the maximum depth pphmax in partial steps : for example, with
pphmax= 5750 m for the DRAKKAR 45 layer grid, the maximum ocean depth allowed
is actually 6000 m (the default thickness e3t(jpk− 1) being 250 m). Two variables in the
namdom namelist are used to define the partial step vertical grid. The mimimum water
thickness (in meters) allowed for a cell partially filled with bathymetry at level jk is the
minimum of rn e3zps min (thickness in meters, usually 20 m) or e3t(jk) ∗ rn e3zps rat
(a fraction, usually 10%, of the default thickness e3t(jk)).

Add a figure here of pstep especially at last ocean level

4.3.4 s-coordinate (ln sco=true)
!-----------------------------------------------------------------------
&namzgr_sco ! s-coordinate or hybrid z-s-coordinate
!-----------------------------------------------------------------------

rn_sbot_min = 300. ! minimum depth of s-bottom surface (>0) (m)
rn_sbot_max = 5250. ! maximum depth of s-bottom surface (= ocean depth) (>0) (m)
rn_theta = 6.0 ! surface control parameter (0<=theta<=20)
rn_thetb = 0.75 ! bottom control parameter (0<=thetb<= 1)
rn_rmax = 0.15 ! maximum cut-off r-value allowed (0<r_max<1)
ln_s_sigma = .false. ! hybrid s-sigma coordinates
rn_bb = 0.8 ! stretching with s-sigma
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LEVEL gdept gdepw e3t e3w
1 5.00 0.00 10.00 10.00
2 15.00 10.00 10.00 10.00
3 25.00 20.00 10.00 10.00
4 35.01 30.00 10.01 10.00
5 45.01 40.01 10.01 10.01
6 55.03 50.02 10.02 10.02
7 65.06 60.04 10.04 10.03
8 75.13 70.09 10.09 10.06
9 85.25 80.18 10.17 10.12

10 95.49 90.35 10.33 10.24
11 105.97 100.69 10.65 10.47
12 116.90 111.36 11.27 10.91
13 128.70 122.65 12.47 11.77
14 142.20 135.16 14.78 13.43
15 158.96 150.03 19.23 16.65
16 181.96 169.42 27.66 22.78
17 216.65 197.37 43.26 34.30
18 272.48 241.13 70.88 55.21
19 364.30 312.74 116.11 90.99
20 511.53 429.72 181.55 146.43
21 732.20 611.89 261.03 220.35
22 1033.22 872.87 339.39 301.42
23 1405.70 1211.59 402.26 373.31
24 1830.89 1612.98 444.87 426.00
25 2289.77 2057.13 470.55 459.47
26 2768.24 2527.22 484.95 478.83
27 3257.48 3011.90 492.70 489.44
28 3752.44 3504.46 496.78 495.07
29 4250.40 4001.16 498.90 498.02
30 4749.91 4500.02 500.00 499.54
31 5250.23 5000.00 500.56 500.33

TABLE 4.2 – Default vertical mesh in z-coordinate for 30 layers ORCA2 configu-
ration as computed from (4.13) using the coefficients given in (4.14)
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FIGURE 4.7 – Examples of the stretching function applied to a sea mont ; from
left to right : surface, surface and bottom, and bottom intensified resolutions

rn_hc = 150.0 ! critical depth with s-sigma
/

In s-coordinate (key sco is defined), the depth and thickness of the model levels are de-
fined from the product of a depth field and either a stretching function or its derivative,
respectively :

z(k) = h(i, j) z0(k)
e3(k) = h(i, j) z′0(k)

(4.15)

where h is the depth of the last w-level (z0(k)) defined at the t-point location in the
horizontal and z0(k) is a function which varies from 0 at the sea surface to 1 at the
ocean bottom. The depth field h is not necessary the ocean depth, since a mixed step-like
and bottom-following representation of the topography can be used (Fig. 4.3d-e). In the
example provided (zgr sco routine, see domzgr.F90) h is a smooth envelope bathymetry
and steps are used to represent sharp bathymetric gradients.

A new flexible stretching function, modified from ? is provided as an example :

z = hc + (h− hc) cs)

c(s) =
[tanh (θ (s+ b))− tanh (θ b)]

2 sinh (θ)
(4.16)

where hc is the thermocline depth and θ and b are the surface and bottom control parame-
ters such that 0 6 θ 6 20, and 0 6 b 6 1. b has been designed to allow surface and/or
bottom increase of the vertical resolution (Fig. 4.3.4).

4.3.5 z∗- or s∗-coordinate (add key vvl)
This option is described in the Report by Levier et al. (2007), available on the NEMO

web site.
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4.3.6 level bathymetry and mask
Whatever the vertical coordinate used, the model offers the possibility of representing

the bottom topography with steps that follow the face of the model cells (step like topo-
graphy) [?]. The distribution of the steps in the horizontal is defined in a 2D integer array,
mbathy, which gives the number of ocean levels (i.e. those that are not masked) at each
t-point. mbathy is computed from the meter bathymetry using the definiton of gdept as
the number of t-points which gdept ≤ bathy.

Modifications of the model bathymetry are performed in the bat ctl routine (see domzgr.F90
module) after mbathy is computed. Isolated grid points that do not communicate with ano-
ther ocean point at the same level are eliminated.

From the mbathy array, the mask fields are defined as follows :

tmask(i, j, k) =

{
1 if k ≤ mbathy(i, j)
0 if k ≤ mbathy(i, j)

umask(i, j, k) = tmask(i, j, k) ∗ tmask(i+ 1, j, k)
vmask(i, j, k) = tmask(i, j, k) ∗ tmask(i, j + 1, k)
fmask(i, j, k) = tmask(i, j, k) ∗ tmask(i+ 1, j, k)

∗ tmask(i, j, k) ∗ tmask(i+ 1, j, k)

Note that wmask is not defined as it is exactly equal to tmask with the numerical
indexing used (§ 4.1.3). Moreover, the specification of closed lateral boundaries requires
that at least the first and last rows and columns of the mbathy array are set to zero. In the
particular case of an east-west cyclical boundary condition, mbathy has its last column
equal to the second one and its first column equal to the last but one (and so too the mask
arrays) (see § 8.2).
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Using the representation described in Chap. 4, several semi-discrete space forms of
the tracer equations are available depending on the vertical coordinate used and on the
physics used. In all the equations presented here, the masking has been omitted for sim-
plicity. One must be aware that all the quantities are masked fields and that each time a
mean or difference operator is used, the resulting field is multiplied by a mask.

The two active tracers are potential temperature and salinity. Their prognostic equa-
tions can be summarized as follows :

NXT = ADV + LDF + ZDF + SBC (+QSR) (+BBC) (+BBL) (+DMP)

NXT stands for next, referring to the time-stepping. From left to right, the terms on the
rhs of the tracer equations are the advection (ADV), the lateral diffusion (LDF), the verti-
cal diffusion (ZDF), the contributions from the external forcings (SBC : Surface Boundary
Condition, QSR : penetrative Solar Radiation, and BBC : Bottom Boundary Condition),
the contribution from the bottom boundary Layer (BBL) parametrisation, and an inter-
nal damping (DMP) term. The terms QSR, BBC, BBL and DMP are optional. The ex-
ternal forcings and parameterisations require complex inputs and complex calculations
(e.g. bulk formulae, estimation of mixing coefficients) that are carried out in the SBC,
LDF and ZDF modules and described in chapters §7, §9 and §10, respectively. Note that
tranpc.F90, the non-penetrative convection module, although (temporarily) located in the
NEMO/OPA/TRA directory, is described with the model vertical physics (ZDF).

In the present chapter we also describe the diagnostic equations used to compute the
sea-water properties (density, Brunt-Vaisälä frequency, specific heat and freezing point)
although the associated modules (i.e. eosbn2.F90, ocfzpt.F90 and phycst.F90) are (tem-
porarily) located in the NEMO/OPA directory.

The different options available to the user are managed by namelist logical or CPP
keys. For each equation term ttt, the namelist logicals are ln trattt xxx, where xxx is a 3
or 4 letter acronym accounting for each optional scheme. The CPP key (when it exists) is
key trattt. The corresponding code can be found in the trattt or trattt xxx module, in the
NEMO/OPA/TRA directory.

The user has the option of extracting each tendency term on the rhs of the tracer
equation for output (key trdtra is defined), as described in Chap. 11.
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5.1 Tracer Advection (traadv.F90)
!-----------------------------------------------------------------------
&namtra_adv ! advection scheme for tracer
!-----------------------------------------------------------------------

ln_traadv_cen2 = .false. ! 2nd order centered scheme
ln_traadv_tvd = .true. ! TVD scheme
ln_traadv_muscl = .false. ! MUSCL scheme
ln_traadv_muscl2 = .false. ! MUSCL2 scheme + cen2 at boundaries
ln_traadv_ubs = .false. ! UBS scheme

/

The advection tendency of a tracer in flux form is the divergence of the advective
fluxes. Its discrete expression is given by :

ADVτ = − 1
bt

( δi [e2u e3u u τu] + δj [e1v e3v v τv] )− 1
e3t

δk [w τw] (5.1)

where τ is either T or S, and bt = e1t e2t e3t is the volume of T -cells. In pure z-coordinate
(key zco is defined), it reduces to :

ADVτ = − 1
e1t e2t

( δi [e2u u τu] + δj [e1v v τv] )− 1
e3t
δk [w τw] (5.2)

since the vertical scale factors are functions of k only, and thus e3u = e3v = e3t. The flux
form in (5.1) requires implicitly the use of the continuity equation. Indeed, it is obtained
by using the following equality : ∇ · (U T) = U · ∇T which results from the use of the
continuity equation, ∇ · U = 0 or ∂te3 + e3 ∇ · U = 0 in constant (default option) or
variable (key vvl defined) volume case, respectively. Therefore it is of paramount impor-
tance to design the discrete analogue of the advection tendency so that it is consistent with
the continuity equation in order to enforce the conservation properties of the continuous
equations. In other words, by substituting τ by 1 in (5.1) we recover the discrete form of
the continuity equation which is used to calculate the vertical velocity.

The key difference between the advection schemes used in NEMO is the choice made
in space and time interpolation to define the value of the tracer at the velocity points
(Fig. 5.1).

Along solid lateral and bottom boundaries a zero tracer flux is naturally specified,
since the normal velocity is zero there. At the sea surface the boundary condition depends
on the type of sea surface chosen :

linear free surface : the first level thickness is constant in time : the vertical boundary
condition is applied at the fixed surface z = 0 rather than on the moving surface
z = η. There is a non-zero advective flux which is set for all advection schemes as
τw|k=1/2 = Tk=1, i.e. the product of surface velocity (at z = 0) by the first level
tracer value.

non-linear free surface : (key vvl is defined) convergence/divergence in the first ocean
level moves the free surface up/down. There is no tracer advection through it so
that the advective fluxes through the surface are also zero
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FIGURE 5.1 – Schematic representation of some ways used to evaluate the tracer
value at u-point and the amount of tracer exchanged between two neighbouring
grid points. Upsteam biased scheme (ups) : the upstream value is used and the
black area is exchanged. Piecewise parabolic method (ppm) : a parabolic interpo-
lation is used and the black and dark grey areas are exchanged. Monotonic ups-
tream scheme for conservative laws (muscl) : a parabolic interpolation is used and
black, dark grey and grey areas are exchanged. Second order scheme (cen2) : the
mean value is used and black, dark grey, grey and light grey areas are exchanged.
Note that this illustration does not include the flux limiter used in ppm and muscl
schemes.

In all cases, this boundary condition retains local conservation of tracer. Global conser-
vation is obtained in both rigid-lid and non-linear free surface cases, but not in the linear
free surface case. Nevertheless, in the latter case, it is achieved to a good approximation
since the non-conservative term is the product of the time derivative of the tracer and the
free surface height, two quantities that are not correlated (see §2.2.2, and also ???).

The velocity field that appears in (5.1) and (5.2) is the centred (now) eulerian ocean
velocity (see Chap. 6). When eddy induced velocity (eiv) parameterisation is used it is the
now effective velocity (i.e. the sum of the eulerian and eiv velocities) which is used.

The choice of an advection scheme is made in the nam traadv namelist, by setting to
true one and only one of the logicals ln traadv xxx. The corresponding code can be found
in the traadv xxx.F90 module, where xxx is a 3 or 4 letter acronym corresponding to each
scheme. Details of the advection schemes are given below. The choice of an advection
scheme is a complex matter which depends on the model physics, model resolution, type
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of tracer, as well as the issue of numerical cost.
Note that (1) cen2, cen4 and TVD schemes require an explicit diffusion operator while

the other schemes are diffusive enough so that they do not require additional diffusion ;
(2) cen2, cen4, MUSCL2, and UBS are not positive schemes 1 , implying that false ex-
trema are permitted. Their use is not recommended on passive tracers ; (3) It is highly
recommended that the same advection-diffusion scheme is used on both active and pas-
sive tracers. Indeed, if a source or sink of a passive tracer depends on an active one, the
difference of treatment of active and passive tracers can create very nice-looking frontal
structures that are pure numerical artefacts.

5.1.1 2nd order centred scheme (cen2) (ln traadv cen2=true)
In the centred second order formulation, the tracer at velocity points is evaluated as

the mean of the two neighbouring T -point values. For example, in the i-direction :

τ cen2
u = T

i+1/2 (5.3)

The scheme is non diffusive (i.e. it conserves the tracer variance, τ2) but dispersive
(i.e. it may create false extrema). It is therefore notoriously noisy and must be used in
conjunction with an explicit diffusion operator to produce a sensible solution. The asso-
ciated time-stepping is performed using a leapfrog scheme in conjunction with an Asselin
time-filter, so T in (5.3) is the now tracer value. The centered second order advection is
computed in the traadv cen2.F90 module. In this module, it is also proposed to combine
the cen2 scheme with an upstream scheme in specific areas which requires a strong diffu-
sion in order to avoid the generation of false extrema. These areas are the vicinity of large
river mouths, some straits with coarse resolution, and the vicinity of ice cover area (i.e.
when the ocean temperature is close to the freezing point).

Note that using the cen2 scheme, the overall tracer advection is of second order accu-
racy since both (5.1) and (5.3) have this order of accuracy. Note also that

5.1.2 4nd order centred scheme (cen4) (ln traadv cen4=true)
In the 4th order formulation (to be implemented), tracer values are evaluated at velo-

city points as a 4th order interpolation, and thus uses the four neighbouring T -points. For
example, in the i-direction :

τ cen4
u = T − 1

6
δi
[
δi+1/2[T ]

] i+1/2

(5.4)

Strictly speaking, the cen4 scheme is not a 4th order advection scheme but a 4th

order evaluation of advective fluxes, since the divergence of advective fluxes (5.1) is kept
at 2nd order. The phrase “4th order scheme” used in oceanographic literature is usually

1. negative values can appear in an initially strictly positive tracer field which is advected
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associated with the scheme presented here. Introducing a true 4th order advection scheme
is feasible but, for consistency reasons, it requires changes in the discretisation of the
tracer advection together with changes in both the continuity equation and the momentum
advection terms.

A direct consequence of the pseudo-fourth order nature of the scheme is that it is not
non-diffusive, i.e. the global variance of a tracer is not preserved using cen4. Furthermore,
it must be used in conjunction with an explicit diffusion operator to produce a sensible
solution. The time-stepping is also performed using a leapfrog scheme in conjunction with
an Asselin time-filter, so T in (5.4) is the now tracer.

At a T -grid cell adjacent to a boundary (coastline, bottom and surface), an additional
hypothesis must be made to evaluate τ cen4

u . This hypothesis usually reduces the order
of the scheme. Here we choose to set the gradient of T across the boundary to zero.
Alternative conditions can be specified, such as a reduction to a second order scheme for
these near boundary grid points.

5.1.3 Total Variance Dissipation scheme (TVD) (ln traadv tvd=true)

In the Total Variance Dissipation (TVD) formulation, the tracer at velocity points is
evaluated using a combination of an upstream and a centred scheme. For example, in the
i-direction :

τupsu =

{
Ti+1 if ui+1/2 < 0
Ti if ui+1/2 ≥ 0

τ tvdu = τupsu + cu
(
τ cen2
u − τupsu

)
(5.5)

where cu is a flux limiter function taking values between 0 and 1. There exist many ways
to define cu, each correcponding to a different total variance decreasing scheme. The one
chosen in NEMO is described in ?. cu only departs from 1 when the advective term pro-
duces a local extremum in the tracer field. The resulting scheme is quite expensive but
positive. It can be used on both active and passive tracers. This scheme is tested and com-
pared with MUSCL and the MPDATA scheme in ? ; note that in this paper it is referred to
as ”FCT” (Flux corrected transport) rather than TVD. The TVD scheme is computed in
the traadv tvd.F90 module.

For stability reasons (see §??), in (5.5) τ cen2
u is evaluated using the now tracer while

τupsu is evaluated using the before tracer. In other words, the advective part of the scheme
is time stepped with a leap-frog scheme while a forward scheme is used for the diffusive
part.
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5.1.4 Monotone Upstream Scheme for Conservative Laws (MUSCL)
(ln traadv muscl=T)

The Monotone Upstream Scheme for Conservative Laws (MUSCL) has been imple-
mented by ?. In its formulation, the tracer at velocity points is evaluated assuming a linear
tracer variation between two T -points (Fig.5.1). For example, in the i-direction :

τmusu =





τi +
1
2

(
1− ui+1/2 ∆t

e1u

)
∂̃iτ if ui+1/2 > 0

τi+1/2 +
1
2

(
1 +

ui+1/2 ∆t
e1u

)
∂̃i+1/2τ if ui+1/2 < 0

(5.6)

where ∂̃iτ is the slope of the tracer on which a limitation is imposed to ensure the positive
character of the scheme.

The time stepping is performed using a forward scheme, that is the before tracer field
is used to evaluate τmusu .

For an ocean grid point adjacent to land and where the ocean velocity is directed to-
ward land, two choices are available : an upstream flux (ln traadv muscl=true) or a second
order flux (ln traadv muscl2=true). Note that the latter choice does not ensure the positive
character of the scheme. Only the former can be used on both active and passive tracers.
The two MUSCL schemes are computed in the traadv tvd.F90 and traadv tvd2.F90 mo-
dules.

5.1.5 Upstream-Biased Scheme (UBS) (ln traadv ubs=true)
The UBS advection scheme is an upstream-biased third order scheme based on an

upstream-biased parabolic interpolation. It is also known as the Cell Averaged QUICK
scheme (Quadratic Upstream Interpolation for Convective Kinematics). For example, in
the i-direction :

τubsu = T
i+1/2 − 1

6

{
τ”i if ui+1/2 > 0

τ”i+1 if ui+1/2 < 0
(5.7)

where τ”i = δi
[
δi+1/2 [τ ]

]
.

This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error [?]. The
overall performance of the advection scheme is similar to that reported in ?. It is a rela-
tively good compromise between accuracy and smoothness. It is not a positive scheme,
meaning that false extrema are permitted, but the amplitude of such are significantly re-
duced over the centred second order method. Nevertheless it is not recommended that it
should be applied to a passive tracer that requires positivity.

The intrinsic diffusion of UBS makes its use risky in the vertical direction where the
control of artificial diapycnal fluxes is of paramount importance. Therefore the vertical
flux is evaluated using the TVD scheme when ln traadv ubs=true.
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For stability reasons (see §??), in (5.7), the first term (which corresponds to a second
order centred scheme) is evaluated using the now tracer (centred in time) while the se-
cond term (which is the diffusive part of the scheme), is evaluated using the before tracer
(forward in time). This choice is discussed by ? in the context of the QUICK advection
scheme. UBS and QUICK schemes only differ by one coefficient. Replacing 1/6 with 1/8
in (5.7) leads to the QUICK advection scheme [?]. This option is not available through a
namelist parameter, since the 1/6 coefficient is hard coded. Nevertheless it is quite easy to
make the substitution in the traadv ubs.F90 module and obtain a QUICK scheme.

Note that :
(1) When a high vertical resolutionO(1m) is used, the model stability can be control-

led by vertical advection (not vertical diffusion which is usually solved using an implicit
scheme). Computer time can be saved by using a time-splitting technique on vertical ad-
vection. Such a technique has been implemented and validated in ORCA05 with 301
levels. It is not available in the current reference version.

(2) In a forthcoming release four options will be available for the vertical component
used in the UBS scheme. τubsw will be evaluated using either (a) a centred 2nd order
scheme, or (b) a TVD scheme, or (c) an interpolation based on conservative parabolic
splines following the ? implementation of UBS in ROMS, or (d) a UBS. The 3rd case has
dispersion properties similar to an eighth-order accurate conventional scheme.

(3) It is straightforward to rewrite (5.7) as follows :

τubsu = τ cen4
u +

1
12

{
+ τ”i if ui+1/2 > 0

− τ”i+1 if ui+1/2 < 0
(5.8)

or equivalently

ui+1/2 τ
ubs
u = ui+1/2 T −

1
6
δi
[
δi+1/2[T ]

] i+1/2

− 1
2
|u|i+1/2

1
6
δi+1/2[τ”i] (5.9)

(5.8) has several advantages. Firstly, it clearly reveals that the UBS scheme is based on
the fourth order scheme to which an upstream-biased diffusion term is added. Secondly,
this emphasises that the 4th order part (as well as the 2nd order part as stated above)
has to be evaluated at the now time step using (5.7). Thirdly, the diffusion term is in
fact a biharmonic operator with an eddy coefficient which is simply proportional to the
velocity : Almu = − 1

12 e1u
3 |u|. Note that NEMO v2.3 still uses (5.7), not (5.8). This

should be changed in forthcoming release.

5.1.6 QUICKEST scheme (QCK) (ln traadv qck=true)
The Quadratic Upstream Interpolation for Convective Kinematics with Estimated

Streaming Terms (QUICKEST) scheme proposed by ? is the third order Godunov scheme.
It is associated with the ULTIMATE QUICKEST limiter [?]. It has been implemented in
NEMO by G. Reffray (MERCATOR-ocean) and can be found in the traadv qck.F90 mo-
dule. The resulting scheme is quite expensive but positive. It can be used on both active
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and passive tracers. Nevertheless, the intrinsic diffusion of QCK makes its use risky in
the vertical direction where the control of artificial diapycnal fluxes is of paramount im-
portance. Therefore the vertical flux is evaluated using the CEN2 scheme. This no more
ensure the positivity of the scheme. The use of TVD in the vertical direction as for the
UBS case should be implemented to maintain the property.

5.1.7 Piecewise Parabolic Method (PPM) (ln traadv ppm=true)
The Piecewise Parabolic Method (PPM) proposed by Colella and Woodward (1984)

is based on a quadradic piecewise rebuilding. Like the QCK scheme, it is associated with
the ULTIMATE QUICKEST limiter [?]. It has been implemented in NEMO by G. Reffray
(MERCATOR-ocean) but is not yet offered in the reference version 3.0.

5.2 Tracer Lateral Diffusion (traldf.F90)
!-----------------------------------------------------------------------
&namtra_ldf ! lateral diffusion scheme for tracer
!-----------------------------------------------------------------------

! Type of the operator :
ln_traldf_lap = .true. ! laplacian operator
ln_traldf_bilap = .false. ! bilaplacian operator

! Direction of action :
ln_traldf_level = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential) (require "key_ldfslp" when ln_sco=T)
ln_traldf_iso = .true. ! iso-neutral (require "key_ldfslp")

! Coefficient
rn_aht_0 = 2000. ! horizontal eddy diffusivity for tracers [m2/s]
rn_ahtb_0 = 0. ! background eddy diffusivity for ldf_iso [m2/s]
rn_aeiv_0 = 2000. ! eddy induced velocity coefficient [m2/s] (require "key_traldf_eiv")

/

The options available for lateral diffusion are a laplacian (rotated or not) or a bihar-
monic operator, the latter being more scale-selective (more diffusive at small scales). The
specification of eddy diffusivity coefficients (either constant or variable in space and time)
as well as the computation of the slope along which the operators act, are performed in
the ldftra.F90 and ldfslp.F90 modules, respectively. This is described in Chap. 9. The la-
teral diffusion of tracers is evaluated using a forward scheme, i.e. the tracers appearing in
its expression are the before tracers in time, except for the pure vertical component that
appears when a rotation tensor is used. This latter term is solved implicitly together with
the vertical diffusion term (see §??).

5.2.1 Iso-level laplacian operator (lap) (ln traldf lap=true)
A laplacian diffusion operator (i.e. a harmonic operator) acting along the model sur-

faces is given by :

DlT
T =

1
btT

(
δi

[
AlTu

e2u e3u

e1u
δi+1/2[T ]

]
+ δj

[
AlTv

e1v e3v

e2v
δj+1/2[T ]

] )
(5.10)

where bt=e1t e2t e3t is the volume of T -cells. It can be found in the traadv lap.F90 mo-
dule.
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This lateral operator is computed in traldf lap.F90. It is a horizontal operator (i.e.
acting along geopotential surfaces) in the z-coordinate with or without partial step, but
is simply an iso-level operator in the s-coordinate. It is thus used when, in addition
to ln traldf lap=true, we have ln traldf level=true, or ln traldf hor=ln zco=true. In both
cases, it significantly contributes to diapycnal mixing. It is therefore not recommended.

Note that (a) In pure z-coordinate (key zco is defined), e3u=e3v=e3t, so that the ver-
tical scale factors disappear from (5.10) ; (b) In partial step z-coordinate (ln zps=true),
tracers in horizontally adjacent cells are located at different depths in the vicinity of the
bottom. In this case, horizontal derivatives in (5.10) at the bottom level require a specific
treatment. They are calculated in the zpshde.F90 module, described in §5.9.

5.2.2 Rotated laplacian operator (iso) (ln traldf lap=true)
The general form of the second order lateral tracer subgrid scale physics (2.36) takes

the following semi-discrete space form in z- and s-coordinates :

DlT
T =

1
bt

{
δi

[
AlTu

(
e2u e3u

e1u
δi+1/2[T ]− e2u r1u δk+1/2[T ]

i+1/2,k
)]

+ δj

[
AlTv

(
e1v e3v

e2v
δj+1/2[T ]− e1v r2v δk+1/2[T ]

j+1/2,k
)]

+ δk

[
AlTw

(
− e2w r1w δi+1/2[T ]

i,k+1/2

− e1w r2w δj+1/2[T ]
j,k+1/2

+
e1w e2w

e3w

(
r2

1w + r2
2w

)
δk+1/2[T ]

)] }

(5.11)

where bt=e1t e2t e3t is the volume of T -cells, r1 and r2 are the slopes between the surface
of computation (z- or s-surfaces) and the surface along which the diffusion operator acts
(i.e. horizontal or iso-neutral surfaces). It is thus used when, in addition to ln traldf lap=
true, we have ln traldf iso=true, or both ln traldf hor=true and ln zco=true. The way these
slopes are evaluated is given in §9.2. At the surface, bottom and lateral boundaries, the
turbulent fluxes of heat and salt are set to zero using the mask technique (see §8.1).

The operator in (5.11) involves both lateral and vertical derivatives. For numerical sta-
bility, the vertical second derivative must be solved using the same implicit time scheme as
that used in the vertical physics (see §5.3). For computer efficiency reasons, this term is not
computed in the traldf iso.F90 module, but in the trazdf.F90 module where, if iso-neutral
mixing is used, the vertical mixing coefficient is simply increased by e1w e2w

e3w

(
r2

1w + r2
2w

)
.

This formulation conserves the tracer but does not ensure the decrease of the tracer
variance. Nevertheless the treatment performed on the slopes (see §9) allows the model
to run safely without any additional background horizontal diffusion [?]. An alternative
scheme developed by ? which preserves both tracer and its variance is currently been
tested in NEMO . It should be available in a forthcoming release.
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Note that in the partial step z-coordinate (ln zps=true), the horizontal derivatives at the
bottom level in (5.11) require a specific treatment. They are calculated in module zpshde,
described in §5.9.

5.2.3 Iso-level bilaplacian operator (bilap) (ln traldf bilap=true)
The lateral fourth order bilaplacian operator on tracers is obtained by applying (5.10)

twice. The operator requires an additional assumption on boundary conditions : both first
and third derivative terms normal to the coast are set to zero. It is used when, in addi-
tion to ln traldf bilap=true, we have ln traldf level=true, or both ln traldf hor=true and
ln zco=false. In both cases, it can contribute diapycnal mixing, although less than in the
laplacian case. It is therefore not recommended.

Note that in the code, the bilaplacian routine does not call the laplacian routine twice
but is rather a separate routine that can be found in the traldf bilap.F90 module. This is
due to the fact that we introduce the eddy diffusivity coefficient, A, in the operator as :
∇ ·∇ (A∇ · ∇T ), instead of −∇ · a∇ (∇ · a∇T ) where a =

√
|A| and A < 0. This was

a mistake : both formulations ensure the total variance decrease, but the former requires a
larger number of code-lines. It will be corrected in a forthcoming release.

5.2.4 Rotated bilaplacian operator (bilapg) (ln traldf bilap=true)
The lateral fourth order operator formulation on tracers is obtained by applying (5.11)

twice. It requires an additional assumption on boundary conditions : first and third deriva-
tive terms normal to the coast, the bottom and the surface are set to zero. It can be found
in the traldf bilapg.F90.

It is used when, in addition to ln traldf bilap=true, we have ln traldf iso= .true, or
both ln traldf hor=true and ln zco=true. Nevertheless, this rotated bilaplacian operator
has never been seriously tested. No warranties that it is neither free of bugs or correctly
formulated. Moreover, the stability range of such an operator will be probably quite nar-
row, requiring a significantly smaller time-step than the one used on unrotated operator.

5.3 Tracer Vertical Diffusion (trazdf.F90)
!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/
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The formulation of the vertical subgrid scale tracer physics is the same for all the
vertical coordinates, and is based on a laplacian operator. The vertical diffusion operator
given by (2.36) takes the following semi-discrete space form :

DvT
T =

1
e3t

δk

[
AvTw
e3w

δk+1/2[T ]
]

DvS
T =

1
e3t

δk

[
AvSw
e3w

δk+1/2[S]
] (5.12)

where AvTw and AvSw are the vertical eddy diffusivity coefficients on temperature and sa-
linity, respectively. Generally, AvTw = AvSw except when double diffusive mixing is para-
meterised (i.e. key zdfddm is defined). The way these coefficients are evaluated is given
in §10 (ZDF). Furthermore, when iso-neutral mixing is used, both mixing coefficients are
increased by e1w e2w

e3w

(
r2

1w + r2
2w

)
to account for the vertical second derivative of (5.11).

At the surface and bottom boundaries, the turbulent fluxes of heat and salt must be
specified. At the surface they are prescribed from the surface forcing and added in a dedi-
cated routine (see §5.4.1), whilst at the bottom they are set to zero for heat and salt unless
a geothermal flux forcing is prescribed as a bottom boundary condition (see §5.4.3).

The large eddy coefficient found in the mixed layer together with high vertical resolu-
tion implies that in the case of explicit time stepping (ln zdfexp=true) there would be too
restrictive a constraint on the time step. Therefore, the default implicit time stepping is pre-
ferred for the vertical diffusion since it overcomes the stability constraint. A forward time
differencing scheme (ln zdfexp=true) using a time splitting technique (nn zdfexp > 1)
is provided as an alternative. Namelist variables ln zdfexp and nn zdfexp apply to both
tracers and dynamics.

5.4 External Forcing

5.4.1 Surface boundary condition (trasbc.F90)
The surface boundary condition for tracers is implemented in a separate module

(trasbc.F90) instead of entering as a boundary condition on the vertical diffusion ope-
rator (as in the case of momentum). This has been found to enhance readability of the
code. The two formulations are completely equivalent ; the forcing terms in trasbc are the
surface fluxes divided by the thickness of the top model layer.

Due to interactions and mass exchange with other media (i.e. atmosphere, sea-ice,
land), the change in the heat and salt content of the surface layer of the ocean is due both
to the heat and salt fluxes crossing the sea surface and not linked with Fmass, the water
exchange with the other media, and to the heat and salt content of this water exchange. In a
forcoming release, these two parts, computed in the surface module (SBC), will included
directly in Qns, the surface heat flux and Fsalt, the surface salt flux. This change will
provide a same forcing formulation for any tracers (including temperature and salinity).
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In the current version, the situation is a little bit more complicated. The surface mo-
dule (sbcmod.F90, see §7) provides the following forcing fields (used on tracers) :
• Qns,the non solar part of the net surface heat flux that cross the sea surface (dif-

ference between the total surface heat flux and the fraction of the short wave flux that
penetrates into the water column, see §5.4.2)
• emp, the mass flux exchanged with the atmosphere (evaporation minus precipitation)
• empS , an equivalent mass flux taking into account the effect of ice-ocean mass

exchanged
• rnf, the mass flux associated with runoff (see §7.6 for further detail of how it acts on

temperature and salinity tendencies)
The empS field is not simply the budget evaporation-precipitation+freezing-melting

because the sea-ice is not currently embedded in the ocean but levitates above it. There
is not mass exchanged between the sea-ice and the ocean. Instead we only take into ac-
count the salt flux link to the fact that sea-ice has a non-sero salinity, and the concen-
tration/dilution effect due to the freezing/melting (F/M) process. These two parts of the
forcing are then converted into a equivalent mass flux given by empS − emp. As a result
of this mess, the surface boundary condition on temperature and salinity is applied as
follows :

In the nonlinear free surface case (key vvl is defined, lk vvl=true) :

F T =
1

ρo Cp e3t|k=1

(Qns − emp Cp T |k=1)
t

FS =
1

ρo e3t|k=1

((empS − emp) S|k=1)
t

(5.13)

In the linear free surface case (key vvl not defined, , lk vvl=false) :

F T =
1

ρo Cp e3t|k=1

Qns
t

FS =
1

ρo e3t|k=1

(empS S|k=1)
t

(5.14)

where xt means that x is averaged over two consecutive time step (t−∆t/2 and t+∆t/2).
Such a time averaged prevents the excitation of the divergence of odd and even time step
(see §3).

The two set of equations, (5.13) and (5.14), are obtained by assuming that the tempe-
rature of precipitation and evaporation are equal to the ocean surface temperature while
their salinity is zero. Therefore, the heat content of emp budget must be added to the
temperature equation in variable volume case, while it does not appear in constant vo-
lume. Similarly, the emp budget affects the ocean surface salinity in constant volume case
(through the concentration dilution effect) while it does not appears explicitly in variable
volume as salinity change will be induced by volume change. In both constant and va-
riable volume, surface salinity will change with ice-ocean salt flux and F/M flux without
mass exchanges (empS − emp).
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Note that concentration/dilution effect due to F/M is computed using a constant ice
salinity as well as a constant ocean salinity. This approximation suppresses the correlation
between SSS and F/M flux, allowing the ice-ocean salt exchanges to be conservative.
Indeed, if this approximation is not made, even if the F/M budget is zero on average over
the whole ocean domain and over the seasonal cycle, the associated salt flux is not, since
sea-surface salinity and F/M flux are intrinsically correlated (high SSS are found where
freezing is strong whilst low SSS is usually associated with high melting areas.

Even using this approximation, an exact conservation of heat and salt content is only
achieved in the variable volume case. In the constant volume case, there is a small un-
balance associated with the product (∂tη − emp) ∗ SSS. Nevertheless, the salt content
variation is quite small and will not induce a long term drift as there is no physical reason
that (∂tη− emp) and SSS are correlated [?]. Note that, while quite small, the unbalance in
constant volume case is larger than the unbalance associated with the Asselin time filter
[?]. This is the reason why the modified filter is not applied in constant volume case.

5.4.2 Solar Radiation Penetration (traqsr.F90)
!-----------------------------------------------------------------------
&namtra_qsr ! penetrative solar radiation
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interpol. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_chl = ’chlorophyll’, -1. , ’CHLA’ , .true. , .true. , ’yearly’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the runoff files
ln_traqsr = .true. ! Light penetration (T) or not (F)
ln_qsr_rgb = .true. ! RGB (Red-Green-Blue) light penetration
ln_qsr_2bd = .false. ! 2 bands light penetration
ln_qsr_bio = .false. ! bio-model light penetration
nn_chldta = 0 ! RGB : Chl data (=1) or cst value (=0)
rn_abs = 0.58 ! RGB & 2 bands: fraction of light (rn_si1)
rn_si0 = 0.35 ! RGB & 2 bands: shortess depth of extinction
rn_si1 = 23.0 ! 2 bands: longest depth of extinction
rn_si2 = 62.0 ! 3 bands: longest depth of extinction (for blue waveband & 0.01 mg/m2 Chl)

/

When the penetrative solar radiation option is used (ln flxqsr=true), the solar radiation
penetrates the top few 10 meters of the ocean, otherwise all the heat flux is absorbed in
the first ocean level (ln flxqsr=false). Thus, in the former case a term is added to the
time evolution equation of temperature (2.1d) whilst the surface boundary condition is
modified to take into account only the non-penetrative part of the surface heat flux :

∂T

∂t
= . . .+

1
ρoCp e3

∂I

∂k

Qns = QTotal −Qsr
(5.15)

whereQsr is the penetrative part of the surface heat flux (i.e. the shortwave radiation) and
I is the downward irradiance (I|z=η = Qsr). The additional term in (5.15) is discretized
as follows :

1
ρoCp e3

∂I

∂k
≡ 1
ρoCp e3t

δk [Iw] (5.16)

The shortwave radiation, Qsr, consists of energy distributed across a wide spectral
range. The ocean is strongly absorbing for wavelengths longer than 700 nm and these
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wavelengths contribute to heating the upper few 10 centimetres. The fraction of Qsr that
resides in these almost non-penetrative wavebands, R, is ∼ 58% (specified through na-
melist parameter rn abs). It is assumed to penetrate the ocean following a decreasing
exponential profile, with an e-folding depth scale, ξ0, of a few 10 centimetres (typically
ξ0 = 0.35 m set as rn si0 in the namtra qsr namlist). For shorter wavelengths (400-
700 nm), the ocean is more transparent, and solar energy propagates to depths where it
contributes to a penetrating flux of solar energy and thus to local heating below the surface.
The way this second part of the solar energy penetrates in the ocean depends on which
formulation is chosen. In the simple 2-wavebands light penetration (ln qsr 2bd=true) a
chlorophyll-independent monochromatic formulation is also chosen for the shorter wave-
lengths, leading to the following expression [?] :

I(z) = Qsr

[
Re−z/ξ0 + (1−R) e−z/ξ1

]
(5.17)

where ξ1 is the second extinction length scales associated with the shorter wavebands. It
is usually chosen to be 23 m through rn si0 namelist parameter. The set of default values
(ξ0, ξ1, R) corresponds to a Type I water in Jerlov’s (1968) classification (oligotrophic
waters).

Such assumptions have been shown to provide a very crude and simplistic represen-
tation of observed light penetration profiles (?, see also Fig.5.4.2). Light absorption in the
ocean depends on the particules concentration and it is spectrally selective. ? has shown
that an accurate representation of light penetration can be provided by a 61 waveband for-
mulation. Unfortunately, such a model is very computationally expensive. Thus, ? have
constructed a simplified version of this formulation in which visible light is splitted into
three wavebands : blue (400-500 nm), green (500-600 nm) and red (600-700nm). For each
wave-band, the chlorophyll-dependant attenuation coefficient is fitted to the coefficients
computed from the full spectral model of ? (as modified by ?) assuming the same power-
law expression. As shown on Fig.5.4.2, this formulation, called RGB (Reed-Green-Blue),
reproduces quite closely the light penetration profiles predicted by the full spectal model
with much faster computing efficiently, in contrast with the 2-bands formulation.

The RGB formulation is used when ln qsr rgb=true. The RGB attenuation coeffi-
cients (i.e. the inverse of the extinction length scales) are tabulated over 61 nonuni-
form chlorophyll classes ranging from 0.01 to 10 g.Chl/L (see the routine trc oce rgb
in trc oce.F90 module). Three type of chlorophyll can be used in the RGB formulation :
(1) a constant 0.05 g.Chl/L value everywhere (nn chdta=0) ; (2) observed time varying
chlorophyll (nn chdta=0) ; (3) simulated time varying chlorophyll by TOP biogeochemi-
cal model (ln qsr bio=true). In the later case, the RGB formulation is used to calculated
both the phytoplankton light limitation in PISCES or LOBSTER and the oceanic heating
rate.

The trend in (5.16) associated with the penetration of the solar radiation is added to
the temperature trend, and the surface heat flux is modified in routine traqsr.F90.

When z-coordinate is preferred to s-coordinate, the depth of w−levels does not signi-
ficantly vary with location. The level at which the light has been totally absorbed (i.e. it
is less than the computer precision) is computed once, and the trend associated with the
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FIGURE 5.2 – Penetration profile of the Downward solar irradiance calculated
by four models. Two wavebands chlorophyll-independant formulation (blue), a
chlorophyll-dependant monochromatic formulation (green), 4 waveband RGB
formulation (red), 61 waveband Morel (1988) formulation (black) for a chloro-
phyll concentration of (a) Chl=0.05 mg/m3 and (b) Chl=0.5 mg/m3. From ?.

penetration of the solar radiation is only added until that level. Finally, note that when the
ocean is shallow (< 200 m), part of the solar radiation can reach the ocean floor. In this
case, we have chosen that all remaining radiation is absorbed in the last ocean level (i.e.
I is masked).
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FIGURE 5.3 – Geothermal Heat flux (in mW.m−2) used by ?. It is inferred from
the age of the sea floor and the formulae of ?.

5.4.3 Bottom Boundary Condition (trabbc.F90 - key bbc)

Usually it is assumed that there is no exchange of heat or salt through the ocean bot-
tom, i.e. a no flux boundary condition is applied on active tracers at the bottom. This is the
default option in NEMO , and it is implemented using the masking technique. However,
there is a non-zero heat flux across the seafloor that is associated with solid earth cooling.
This flux is weak compared to surface fluxes (a mean global value of ∼ 0.1 W/m2 [?]),
but it is systematically positive and acts on the densest water masses. Taking this flux
into account in a global ocean model increases the deepest overturning cell (i.e. the one
associated with the Antarctic Bottom Water) by a few Sverdrups [?].

The presence or not of geothermal heating is controlled by the namelist parameter
nn geoflx. When this parameter is set to 1, a constant geothermal heating is introduced
whose value is given by the nn geoflx cst, which is also a namelist parameter. When it is
set to 2, a spatially varying geothermal heat flux is introduced which is provided in the
geothermal heating.nc NetCDF file (Fig.5.4.3).

5.5 Bottom Boundary Layer (trabbl.F90 - key trabbl)
!-----------------------------------------------------------------------
&nambbl ! bottom boundary layer scheme
!-----------------------------------------------------------------------

nn_bbl_ldf = 1 ! diffusive bbl (=1) or not (=0)
nn_bbl_adv = 0 ! advective bbl (=1/2) or not (=0)
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rn_ahtbbl = 1000. ! lateral mixing coefficient in the bbl [m2/s]
rn_gambbl = 10. ! advective bbl coefficient [s]
/

In a z-coordinate configuration, the bottom topography is represented by a series of
discrete steps. This is not adequate to represent gravity driven downslope flows. Such
flows arise either downstream of sills such as the Strait of Gibraltar or Denmark Strait,
where dense water formed in marginal seas flows into a basin filled with less dense water,
or along the continental slope when dense water masses are formed on a continental shelf.
The amount of entrainment that occurs in these gravity plumes is critical in determining
the density and volume flux of the densest waters of the ocean, such as Antarctic Bot-
tom Water, or North Atlantic Deep Water. z-coordinate models tend to overestimate the
entrainment, because the gravity flow is mixed down vertically by convection as it goes
”downstairs” following the step topography, sometimes over a thickness much larger than
the thickness of the observed gravity plume. A similar problem occurs in the s-coordinate
when the thickness of the bottom level varies in large proportions downstream of a sill
[?], and the thickness of the plume is not resolved.

The idea of the bottom boundary layer (BBL) parameterisation, first introduced by ?,
is to allow a direct communication between two adjacent bottom cells at different levels,
whenever the densest water is located above the less dense water. The communication can
be by a diffusive (diffusive BBL), advective fluxes (advective BBL), or both. In the current
implementation of the BBL, only the tracers are modified, not the velocities. Furthermore,
it only connects ocean bottom cells, and therefore does not include one of the improvment
introduced by ?.

5.5.1 Diffusive Bottom Boundary layer (nn bbl ldf=1)
When applying sigma-diffusion (key trabbl defined and nn bbl ldf set to 1), the dif-

fusive flux between two adjacent cells living at the ocean bottom is given by

Fσ = Aσl ∇σT (5.18)

with ∇σ the lateral gradient operator taken between bottom cells, and Aσl the lateral dif-
fusivity in the BBL. Following ?, the latter is prescribed with a spatial dependence, e.g.
in the conditional form

Aσl (i, j, t) =





Abbl if ∇σρ · ∇H < 0

0 otherwise
(5.19)

where Abbl is the BBL diffusivity coefficient, given by the namelist parameter rn ahtbbl
and usually set to a value much larger than the one used on lateral mixing in open ocean.
The constraint in (5.19) implies that sigma-like diffusion only occurs when density above
the sea floor, at the top of the slope, is larger than in the deeper ocean (see green arrow in
Fig.5.5.2). In practice, this constraint is applied separately in the two horizontal directions,
and the density gradient in (5.19) is evaluated with the log gradient formulation :

∇σρ/ρ = α∇σT + β∇σS (5.20)
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FIGURE 5.4 – Advective/diffusive Bottom Boundary Layer. The BBl paramete-
risation is activated when ρikup is larger than ρi+1

kdnw. Red arrows indicate the ad-
ditional overturning circulation due to the advective BBL. The transport of the
downsloping flow is defined either as the transport of the bottom ocean cell (black
arrow), or as a function of the along slope density gradient. The green arrow in-
dicates the diffusive BBL flux connecting directly kup and kdwn ocean bottom
cells. connection

where ρ, α and β are function of T σ, Sσ,Hσ, the along bottom mean temperature, salinity
and depth, respectively.

5.5.2 Advective Bottom Boundary Layer (nn bbl adv= 1 or 2)
When applying an advective BBL (nn bbl adv = 1 or 2), an overturning circulation is

added which connects two adjacent bottom grid-points only if dense water overlies less
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dense water on the slope. The density difference causes dense water to move down the
slope.

nn bbl adv = 1 : the downsloping velocity is chosen to be the Eulerian ocean velo-
city just above the topographic step (see black arrow in Fig.5.5.2) [?]. It is a conditional
advection, that is, advection is allowed only if dense water overlies less dense water on
the slope (i.e. ∇σρ · ∇H < 0) and if the velocity is directed towards greater depth (i.e.
U · ∇H > 0).

nn bbl adv = 2 : the downsloping velocity is chosen to be proportional to ∆ρ, the den-
sity difference between the top and down cell densities [?]. The advection is allowed only
if dense water overlies less dense water on the slope (i.e.∇σρ·∇H < 0). For example, the
resulting transport of the downsloping flow, here in the i-direction (Fig.5.5.2), is simply
given by the following expression :

utrbbl = γ g
∆ρ
ρo
e1u min

(
e3ukup, e3ukdwn

)
(5.21)

where γ, expressed in second, is the coefficient of proportionality provided as rn gambbl,
a namelist parameter, and kup and kdwn are the vertical index of the top and bottom cells,
respectively. The parameter γ should take a different value for each bathymetric step. But,
for simplicity, and because no direct estimation of this parameter is available, a uniform
value has been retained. The possible values for γ range between 1 and 10 s [?].

The scalar properties are advected by this additional transport (utrbbl, v
tr
bbl) using the

upwind scheme. Such a diffusive advective scheme has been chosen to mimic the entrain-
ment between the downsloping plume and the surrounding water at intermediate depth.
The entrainment is replaced by the vertical mixing included in the advection scheme. Let
us consider as an example the case display in Fig.5.5.2 where the density at level (i, kup)
is larger than the one at level (i, kdwn). The advective BBL scheme modifies the tracer
time tendency of the ocean cells near the topographic step by the downsloping flow (5.22),
the horizontal (5.23) and the upward (5.24) return flows as follows :

∂tT
do
kdw ≡ ∂tT dokdw +

utrbbl
bt
do
kdw

(
T shkup − T dokdw

)
(5.22)

∂tT
sh
kup ≡ ∂tT shkup +

utrbbl
bt
sh
kup

(
T dokup − T shkup

)
(5.23)

and for k = kdw − 1, ..., kup :

∂tT
do
k ≡ ∂tSdok +

utrbbl
bt
do
k

(
T dok+1 − T shk

)
(5.24)

where bt is the T -cell volume.
Note that the BBL transport, (utrbbl, v

tr
bbl), is available in the model outputs. It has to be

used to compute the effective velocity as well as the effective overturning circulation.
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5.6 Tracer damping (tradmp.F90)
!-----------------------------------------------------------------------
&namtra_dmp ! tracer: T & S newtonian damping (’key_tradmp’)
!-----------------------------------------------------------------------

nn_hdmp = -1 ! horizontal shape =-1, damping in Med and Red Seas only
! =XX, damping poleward of XX degrees (XX>0)
! + F(distance-to-coast) + Red and Med Seas

nn_zdmp = 1 ! vertical shape =0 damping throughout the water column
! =1 no damping in the mixing layer (kz criteria)
! =2 no damping in the mixed layer (rho crieria)

rn_surf = 50. ! surface time scale of damping [days]
rn_bot = 360. ! bottom time scale of damping [days]
rn_dep = 800. ! depth of transition between rn_surf and rn_bot [meters]
nn_file = 1 ! create a damping.coeff NetCDF file (=1) or not (=0)

/

In some applications it can be useful to add a Newtonian damping term into the tem-
perature and salinity equations :

∂T

∂t
= · · · − γ (T − To)

∂S

∂t
= · · · − γ (S − So)

(5.25)

where γ is the inverse of a time scale, and To and So are given temperature and salinity
fields (usually a climatology). The restoring term is added when key tradmp is defined.
It also requires that both key temdta and key saldta are defined (i.e. that To and So are
read). The restoring coefficient So is a three-dimensional array initialized by the user in
routine dtacof also located in module tradmp.F90.

The two main cases in which (5.25) is used are (a) the specification of the boundary
conditions along artificial walls of a limited domain basin and (b) the computation of the
velocity field associated with a given T -S field (for example to build the initial state of a
prognostic simulation, or to use the resulting velocity field for a passive tracer study). The
first case applies to regional models that have artificial walls instead of open boundaries. In
the vicinity of these walls, So takes large values (equivalent to a time scale of a few days)
whereas it is zero in the interior of the model domain. The second case corresponds to the
use of the robust diagnostic method [?]. It allows us to find the velocity field consistent
with the model dynamics whilst having a T -S field close to a given climatological field
(To − So). The time scale associated with So is generally not a constant but spatially
varying in order to respect other properties. For example, it is usually set to zero in the
mixed layer (defined either on a density or So criterion) [?] and in the equatorial region
[???] since these two regions have a short time scale of adjustment ; while smaller So are
used in the deep ocean where the typical time scale is long [?]. In addition the time scale
is reduced (even to zero) along the western boundary to allow the model to reconstruct its
own western boundary structure in equilibrium with its physics. The choice of the shape
of the Newtonian damping is controlled by two namelist parameters nn zdmp. The former
allows to specified the width of the equatorial band in which no damping is applied as
well as a decrease in vicinity of the coast and a damping everywhere in the Red and Med
Seas, whereas the latter set a damping acting in the mixed layer or not. The time scale
associated with the damping depends on the depth as a hyperbolic tangent, with rn surf
as surface value, rn bot as bottom value and a transition depth of rn dep.
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The robust diagnostic method is very efficient in preventing temperature drift in inter-
mediate waters but it produces artificial sources of heat and salt within the ocean. It also
has undesirable effects on the ocean convection. It tends to prevent deep convection and
subsequent deep-water formation, by stabilising the water column too much.

An example of the computation of γ for a robust diagnostic experiment with the
ORCA2 model is provided in the tradmp.F90 module (subroutines dtacof and cofdis
which compute the coefficient and the distance to the bathymetry, respectively). These
routines are provided as examples and can be customised by the user.

5.7 Tracer time evolution (tranxt.F90)
!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

nn_bathy = 1 ! compute (=0) or read(=1) the bathymetry file
nn_closea = 0 ! closed seas and lakes are removed (=0) or kept (=1) from the ORCA domain
nn_msh = 0 ! create (=1) a mesh file (coordinates, scale factors, masks) or not (=0)
rn_e3zps_min= 20. ! the thickness of the partial step is set larger than the minimum
rn_e3zps_rat= 0.1 ! of e3zps_min and e3zps_rat * e3t (N.B. 0<e3zps_rat<1)

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nacc=0) ==> 5760
nn_baro = 64 ! number of barotropic time step (for the split explicit algorithm) ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nacc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nacc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nacc=1)

/

The general framework for tracer time stepping is a modified leap-frog scheme [?],
i.e. a three level centred time scheme associated with a Asselin time filter (cf. §3.5) :

(e3tT )t+∆t = (e3tT )t−∆t
f +2 ∆t et3t RHSt

(e3tT )tf = (e3tT )t +γ
[
(e3tT )t−∆t

f − 2(e3tT )t + (e3tT )t+∆t
]

−γ∆t
[
Qt+∆t/2 −Qt−∆t/2

]
(5.26)

where RHS is the right hand side of the temperature equation, the subscript f denotes
filtered values, γ is the Asselin coefficient, and S is the total forcing applied on T (i.e.
fluxes plus content in mass exchanges). γ is initialized as rn atfp (namelist parameter).
Its default value is rn atfp=10−3. Note that the forcing correction term in the filter is not
applied in linear free surface (lk vvl=false) (see §5.4.1. Not also that in constant volume
case, the time stepping is performed on T , not on its content, e3tT .

When the vertical mixing is solved implicitly, the update of the next tracer fields
is done in module trazdf.F90. In this case only the swapping of arrays and the Asselin
filtering is done in the tranxt.F90 module.

In order to prepare for the computation of the next time step, a swap of tracer arrays
is performed : T t−∆t = T t and T t = Tf .
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5.8 Equation of State (eosbn2.F90)
!-----------------------------------------------------------------------
&nameos ! ocean physical parameters
!-----------------------------------------------------------------------

nn_eos = 0 ! type of equation of state and Brunt-Vaisala frequency
! = 0, UNESCO (formulation of Jackett and McDougall (1994) and of McDougall (1987) )
! = 1, linear: rho(T) = rau0 * ( 1.028 - ralpha * T )
! = 2, linear: rho(T,S) = rau0 * ( rbeta * S - ralpha * T )

rn_alpha = 2.e-4 ! thermal expension coefficient (neos= 1 or 2)
rn_beta = 0.001 ! saline expension coefficient (neos= 2)

/

5.8.1 Equation of State (nn eos = 0, 1 or 2)
It is necessary to know the equation of state for the ocean very accurately to deter-

mine stability properties (especially the Brunt-Vaisälä frequency), particularly in the deep
ocean. The ocean seawater volumic mass, ρ, abusively called density, is a non linear empi-
rical function of in situ temperature, salinity and pressure. The reference equation of state
is that defined by the Joint Panel on Oceanographic Tables and Standards [?]. It was the
standard equation of state used in early releases of OPA. However, even though this com-
putation is fully vectorised, it is quite time consuming (15 to 20% of the total CPU time)
since it requires the prior computation of the in situ temperature from the model potential
temperature using the [?] polynomial for adiabatic lapse rate and a 4th order Runge-Kutta
integration scheme. Since OPA6, we have used the ? equation of state for seawater instead.
It allows the computation of the in situ ocean density directly as a function of potential
temperature relative to the surface (an NEMO variable), the practical salinity (another
NEMO variable) and the pressure (assuming no pressure variation along geopotential sur-
faces, i.e. the pressure in decibars is approximated by the depth in meters). Both the ? and
? equations of state have exactly the same except that the values of the various coefficients
have been adjusted by ? in order to directly use the potential temperature instead of the in
situ one. This reduces the CPU time of the in situ density computation to about 3% of the
total CPU time, while maintaining a quite accurate equation of state.

In the computer code, a true density anomaly, da = ρ/ρo − 1, is computed, with
ρo a reference volumic mass. Called rau0 in the code, ρo is defined in phycst.F90, and
a value of 1, 035 Kg/m3. This is a sensible choice for the reference density used in a
Boussinesq ocean climate model, as, with the exception of only a small percentage of the
ocean, density in the World Ocean varies by no more than 2% from 1, 035 kg/m3 [?].

The default option (namelist parameter nn eos=0) is the ? equation of state. Its use is
highly recommended. However, for process studies, it is often convenient to use a linear
approximation of the density. With such an equation of state there is no longer a distinc-
tion between in situ and potential density and both cabbeling and thermobaric effects are
removed. Two linear formulations are available : a function of T only (nn eos=1) and a
function of both T and S (nn eos=2) :

da(T ) = ρ(T )/ρo − 1 = 0.0285− α T
da(T, S) = ρ(T, S)/ρo − 1 = β S − α T (5.27)

where α and β are the thermal and haline expansion coefficients, and ρo, the reference
volumic mass, rau0. (α and β can be modified through the rn alpha and rn beta namelist
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parameters). Note that when da is a function of T only (nn eos=1), the salinity is a passive
tracer and can be used as such.

5.8.2 Brunt-Vaisälä Frequency (nn eos = 0, 1 or 2)
An accurate computation of the ocean stability (i.e. ofN , the brunt-Vaisälä frequency)

is of paramount importance as it is used in several ocean parameterisations (namely TKE,
KPP, Richardson number dependent vertical diffusion, enhanced vertical diffusion, non-
penetrative convection, iso-neutral diffusion). In particular, one must be aware that N2

has to be computed with an in situ reference. The expression for N2 depends on the type
of equation of state used (nn eos namelist parameter).

For nn eos=0 (? equation of state), the ? polynomial expression is used (with the
pressure in decibar approximated by the depth in meters) :

N2 =
g

e3w
β
(
α/β δk+1/2[T ]− δk+1/2[S]

)
(5.28)

where α and β are the thermal and haline expansion coefficients. They are a function of
T
k+1/2

, S̃ = S
k+1/2 − 35., and zw, with T the potential temperature and S̃ a salinity

anomaly. Note that both α and β depend on potential temperature and salinity which are
averaged at w-points prior to the computation instead of being computed at T -points and
then averaged to w-points.

When a linear equation of state is used (nn eos=1 or 2, (5.28) reduces to :

N2 =
g

e3w

(
β δk+1/2[S]− α δk+1/2[T ]

)
(5.29)

where α and β are the constant coefficients used to defined the linear equation of state
(5.27).

5.8.3 Specific Heat (phycst.F90)
The specific heat of sea water, Cp, is a function of temperature, salinity and pressure

[?]. It is only used in the model to convert surface heat fluxes into surface temperature
increase and so the pressure dependence is neglected. The dependence on T and S is
weak. For example, with S = 35 psu,Cp increases from 3989 to 4002 when T varies from
-2 ˚C to 31 ˚C. Therefore, Cp has been chosen as a constant : Cp = 4.103 J Kg−1 ˚K−1.
Its value is set in phycst.F90 module.

5.8.4 Freezing Point of Seawater
The freezing point of seawater is a function of salinity and pressure [?] :

Tf (S, p) =
(
−0.0575 + 1.710523 10−3

√
S − 2.154996 10−4 S

)
S

−7.53 10−3 p
(5.30)



5.9. Horizontal Derivative in zps-coordinate (zpshde) 87

(5.30) is only used to compute the potential freezing point of sea water (i.e. referenced
to the surface p = 0), thus the pressure dependent terms in (5.30) (last term) have been
dropped. The freezing point is computed through tfreez, a FORTRAN function that can be
found in eosbn2.F90.

5.9 Horizontal Derivative in zps-coordinate (zpshde.F90)
With partial bottom cells (ln zps=true), in general, tracers in horizontally adjacent

cells live at different depths. Horizontal gradients of tracers are needed for horizontal dif-
fusion (traldf.F90 module) and for the hydrostatic pressure gradient (dynhpg.F90 module)
to be active. Before taking horizontal gradients between the tracers next to the bottom, a
linear interpolation in the vertical is used to approximate the deeper tracer as if it actually
lived at the depth of the shallower tracer point (Fig. 5.9). For example, for temperature in
the i-direction the needed interpolated temperature, T̃ , is :

T̃ =





T i+1 −
(
ei+1

3w − ei3w
)

ei+1
3w

δkT
i+1 if ei+1

3w ≥ ei3w

T i +

(
ei+1

3w − ei3w
)

ei3w
δkT

i+1 if ei+1
3w < ei3w

and the resulting forms for the horizontal difference and the horizontal average value of
T at a U -point are :

δi+1/2T =





T̃ − T i if ei+1
3w ≥ ei3w

T i+1 − T̃ if ei+1
3w < ei3w

T
i+1/2 =





(T̃ − T i)/2 if ei+1
3w ≥ ei3w

(T i+1 − T̃ )/2 if ei+1
3w < ei3w

(5.31)

The computation of horizontal derivative of tracers as well as of density is performed
once for all at each time step in zpshde.F90 module and stored in shared arrays to be used
when needed. It has to be emphasized that the procedure used to compute the interpolated
density, ρ̃, is not the same as that used for T and S. Instead of forming a linear approxima-
tion of density, we compute ρ̃ from the interpolated values of T and S, and the pressure
at a u-point (in the equation of state pressure is approximated by depth, see §5.8.1 ) :

ρ̃ = ρ(T̃ , S̃, zu) where zu = min
(
zi+1
T , ziT

)
(5.32)

This is a much better approximation as the variation of ρ with depth (and thus pres-
sure) is highly non-linear with a true equation of state and thus is badly approximated with
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FIGURE 5.5 – Discretisation of the horizontal difference and average of tracers
in the z-partial step coordinate (ln zps=true) in the case (e3wi+1

k − e3wik) > 0.
A linear interpolation is used to estimate T̃ i+1

k , the tracer value at the depth of
the shallower tracer point of the two adjacent bottom T -points. The horizontal
difference is then given by : δi+1/2Tk = T̃ i+1

k − T i
k and the average by : T

i+1/2

k =

(T̃
i+1/2
k − T i

k )/2.
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a linear interpolation. This approximation is used to compute both the horizontal pressure
gradient (§6.4) and the slopes of neutral surfaces (§9.2)

Note that in almost all the advection schemes presented in this Chapter, both averaging
and differencing operators appear. Yet (5.31) has not been used in these schemes : in
contrast to diffusion and pressure gradient computations, no correction for partial steps
is applied for advection. The main motivation is to preserve the domain averaged mean
variance of the advected field when using the 2nd order centred scheme. Sensitivity of the
advection schemes to the way horizontal averages are performed in the vicinity of partial
cells should be further investigated in the near future.
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Using the representation described in Chapter 4, several semi-discrete space forms of
the dynamical equations are available depending on the vertical coordinate used and on
the conservation properties of the vorticity term. In all the equations presented here, the
masking has been omitted for simplicity. One must be aware that all the quantities are
masked fields and that each time an average or difference operator is used, the resulting
field is multiplied by a mask.

The prognostic ocean dynamics equation can be summarized as follows :

NXT =
(

VOR + KEG + ZAD
COR + ADV

)
+ HPG + SPG + LDF + ZDF

NXT stands for next, referring to the time-stepping. The first group of terms on the rhs of
the this equation corresponds to the Coriolis and advection terms that are decomposed into
a vorticity part (VOR), a kinetic energy part (KEG) and, either a vertical advection part
(ZAD) in the vector invariant formulation, or a Coriolis and advection part (COR+ADV)
in the flux formulation. The terms following these are the pressure gradient contributions
(HPG, Hydrostatic Pressure Gradient, and SPG, Surface Pressure Gradient) ; and contri-
butions from lateral diffusion (LDF) and vertical diffusion (ZDF), which are added to the
rhs in the dynldf.F90 and dynzdf.F90 modules. The vertical diffusion term includes the
surface and bottom stresses. The external forcings and parameterisations require complex
inputs (surface wind stress calculation using bulk formulae, estimation of mixing coeffi-
cients) that are carried out in modules SBC, LDF and ZDF and are described in Chapters
7, 9 and 10, respectively.

In the present chapter we also describe the diagnostic equations used to compute
the horizontal divergence, curl of the velocities (divcur module) and the vertical velocity
(wzvmod module).

The different options available to the user are managed by namelist variables. For term
ttt in the momentum equations, the logical namelist variables are ln dynttt xxx, where xxx
is a 3 or 4 letter acronym corresponding to each optional scheme. If a CPP key is used
for this term its name is key ttt. The corresponding code can be found in the dynttt xxx
module in the DYN directory, and it is usually computed in the dyn ttt xxx subroutine.

The user has the option of extracting and outputting each tendency term from the 3D
momentum equations (key trddyn defined), as described in Chap.11. Furthermore, the
tendency terms associated with the 2D barotropic vorticity balance (when key trdvor is
defined) can be derived from the 3D terms.
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6.1 Sea surface height and diagnostic variables (η, ζ , χ,
w)

6.1.1 Horizontal divergence and relative vorticity (divcur.F90)
The vorticity is defined at an f -point (i.e. corner point) as follows :

ζ =
1

e1f e2f

(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
(6.1)

The horizontal divergence is defined at a T -point. It is given by :

χ =
1

e1t e2t e3t
(δi [e2u e3u u] + δj [e1v e3v v]) (6.2)

Note that in the z-coordinate with full step (when key zco is defined), e3u=e3v=e3f

so that these metric terms cancel in (6.2).
Note also that although the vorticity has the same discrete expression in z- and s-

coordinates, its physical meaning is not identical. ζ is a pseudo vorticity along s-surfaces
(only pseudo because (u, v) are still defined along geopotential surfaces, but are not ne-
cessarily defined at the same depth).

The vorticity and divergence at the before step are used in the computation of the ho-
rizontal diffusion of momentum. Note that because they have been calculated prior to the
Asselin filtering of the before velocities, the before vorticity and divergence arrays must
be included in the restart file to ensure perfect restartability. The vorticity and divergence
at the now time step are used for the computation of the nonlinear advection and of the
vertical velocity respectively.

6.1.2 Horizontal divergence and relative vorticity (sshwzv.F90)
The sea surface height is given by :

∂η

∂t
≡ 1
e1te2t

∑

k

(δi [e2u e3u u] + δj [e1v e3v v])− emp
ρw

≡
∑

k

χ e3t − emp
ρw

(6.3)

where emp is the surface freshwater budget (evaporation minus precipitation), expressed
in Kg/m2/s (which is equal to mm/s), and ρw=1,000 Kg/m3 is the density of pure water.
If river runoff is expressed as a surface freshwater flux (see §7) then emp can be written
as the evaporation minus precipitation, minus the river runoff. The sea-surface height is
evaluated using exactly the same time stepping scheme as the tracer equation (5.26) : a
leapfrog scheme in combination with an Asselin time filter, i.e. the velocity appearing in
(6.3) is centred in time (now velocity). This is of paramount importance. Replacing T by
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the number 1 in the tracer equation and summing over the water column must lead to the
sea surface height equation otherwise tracer content will not be conserved ??.

The vertical velocity is computed by an upward integration of the horizontal diver-
gence starting at the bottom, taking into account the change of the thickness of the levels :





w|3/2 = 0

w|k+1/2 = w|k−1/2 + e3t χ|k −
et+1

3t − et−1
3t

2∆t

(6.4)

should e3t involve k in this equation ?
In the case of a non-linear free surface (key vvl), the top vertical velocity is−emp/ρw,

as changes in the divergence of the barotropic transport are absorbed into the change of
the level thicknesses, re-orientated downward. In the case of a linear free surface, the time
derivative in (6.4) disappears. The upper boundary condition applies at a fixed level z = 0.
The top vertical velocity is thus equal to the divergence of the barotropic transport (i.e.
the first term in the right-hand-side of (6.3)).

Note also that whereas the vertical velocity has the same discrete expression in z-
and s-coordinates, its physical meaning is not the same : in the second case, w is the
velocity normal to the s-surfaces. Note also that the k-axis is re-orientated downwards in
the FORTRAN code compared to the indexing used in the semi-discrete equations such as
(6.4) (see §4.1.3).

6.2 Coriolis and Advection : vector invariant form
!-----------------------------------------------------------------------
&namdyn_adv ! formulation of the momentum advection
!-----------------------------------------------------------------------

ln_dynadv_vec = .true. ! vector form (T) or flux form (F)
ln_dynadv_cen2= .false. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme

/

The vector invariant form of the momentum equations is the one most often used
in applications of the NEMO ocean model. The flux form option (see next section) has
been present since version 2. Coriolis and momentum advection terms are evaluated using
a leapfrog scheme, i.e. the velocity appearing in these expressions is centred in time
(now velocity). At the lateral boundaries either free slip, no slip or partial slip boundary
conditions are applied following Chap.8.

6.2.1 Vorticity term (dynvor.F90)
!-----------------------------------------------------------------------
&namdyn_vor ! option of physics/algorithm (not control by CPP keys)
!-----------------------------------------------------------------------

ln_dynvor_ene = .false. ! enstrophy conserving scheme
ln_dynvor_ens = .false. ! energy conserving scheme
ln_dynvor_mix = .false. ! mixed scheme
ln_dynvor_een = .true. ! energy & enstrophy scheme

/

Four discretisations of the vorticity term (ln dynvor xxx=true) are available : conser-
ving potential enstrophy of horizontally non-divergent flow (ENS scheme) ; conserving
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horizontal kinetic energy (ENE scheme) ; conserving potential enstrophy for the rela-
tive vorticity term and horizontal kinetic energy for the planetary vorticity term (MIX
scheme) ; or conserving both the potential enstrophy of horizontally non-divergent flow
and horizontal kinetic energy (ENE scheme) (see Appendix ??). The vorticity terms are
given below for the general case, but note that in the full step z-coordinate (key zco is
defined), e3u=e3v=e3f so that the vertical scale factors disappear. The vorticity terms are
all computed in dedicated routines that can be found in the dynvor.F90 module.

Enstrophy conserving scheme (ln dynvor ens=true)

In the enstrophy conserving case (ENS scheme), the discrete formulation of the vorti-
city term provides a global conservation of the enstrophy ([(ζ+f)/e3f ]2 in s-coordinates)
for a horizontally non-divergent flow (i.e. χ=0), but does not conserve the total kinetic
energy. It is given by :





+
1
e1u

(
ζ + f

e3f

) i

(e1v e3v v)
i,j+1/2

− 1
e2v

(
ζ + f

e3f

) j

(e2u e3u u)
i+1/2,j

(6.5)

Energy conserving scheme (ln dynvor ene=true)

The kinetic energy conserving scheme (ENE scheme) conserves the global kinetic
energy but not the global enstrophy. It is given by :





+
1
e1u

(
ζ + f

e3f

)
(e1v e3v v)

i+1/2
j

− 1
e2v

(
ζ + f

e3f

)
(e2u e3u u)

j+1/2
i

(6.6)

Mixed energy/enstrophy conserving scheme (ln dynvor mix=true)

For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of the
two previous schemes is used. It consists of the ENS scheme (C.13) for the relative vorti-
city term, and of the ENE scheme (6.6) applied to the planetary vorticity term.





+
1
e1u

(
ζ

e3f

) i

(e1v e3v v)
i,j+1/2

− 1
e1u

(
f

e3f

)
(e1v e3v v)

i+1/2
j

− 1
e2v

(
ζ

e3f

)j
(e2u e3u u)

i+1/2,j
+

1
e2v

(
f

e3f

)
(e2u e3u u)

j+1/2
i

(6.7)
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Energy and enstrophy conserving scheme (ln dynvor een=true)

In both the ENS and ENE schemes, it is apparent that the combination of i and j
averages of the velocity allows for the presence of grid point oscillation structures that will
be invisible to the operator. These structures are computational modes that will be at least
partly damped by the momentum diffusion operator (i.e. the subgrid-scale advection),
but not by the resolved advection term. The ENS and ENE schemes therefore do not
contribute to any grid point noise in the horizontal velocity field. Such noise would result
in more noise in the vertical velocity field, an undesirable feature. This is a well-known
characteristic of C-grid discretization where u and v are located at different grid points,
a price worth paying to avoid a double averaging in the pressure gradient term as in the
B-grid.

A very nice solution to the problem of double averaging was proposed by ?. The idea
is to get rid of the double averaging by considering triad combinations of vorticity. It is
noteworthy that this solution is conceptually quite similar to the one proposed by [?] for
the discretization of the iso-neutral diffusion operator.

The ? vorticity advection scheme for a single layer is modified for spherical coordi-
nates as described by ? to obtain the EEN scheme. First consider the discrete expression
of the potential vorticity, q, defined at an f -point :

q =
ζ + f

e3f
(6.8)

where the relative vorticity is defined by (6.1), the Coriolis parameter is given by f =
2 Ω sinϕf and the layer thickness at f -points is :

e3f = e3t
i+1/2,j+1/2 (6.9)

Note that a key point in (6.9) is that the averaging in the i- and j- directions uses the
masked vertical scale factor but is always divided by 4, not by the sum of the masks at the
four T -points. This preserves the continuity of e3f when one or more of the neighbouring
e3t tends to zero and extends by continuity the value of e3f into the land areas. This feature
is essential for the z-coordinate with partial steps.

Next, the vorticity triads, ijQ
ip
jp

can be defined at a T -point as the following triad
combinations of the neighbouring potential vorticities defined at f-points (Fig. 6.2.1) :

j
iQ

ip
jp

=
1
12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(6.10)

where the indices ip and kp take the values : ip = −1/2 or 1/2 and jp = −1/2 or 1/2.
Finally, the vorticity terms are represented as :





+q e3 v ≡ +
1
e1u

∑

ip, kp

i+1/2−ip
j Qipjp (e1v e3v v)i+1/2−ip

j+jp

−q e3 u ≡ − 1
e2v

∑

ip, kp

i
j+1/2−jpQ

ip
jp

(e2u e3u u)i+ipj+1/2−jp

(6.11)
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FIGURE 6.1 – Triads used in the energy and enstrophy conserving scheme (een)
for u-component (upper panel) and v-component (lower panel).

This EEN scheme in fact combines the conservation properties of the ENS and ENE
schemes. It conserves both total energy and potential enstrophy in the limit of horizontally
nondivergent flow (i.e. χ=0) (see Appendix ??). Applied to a realistic ocean configura-
tion, it has been shown that it leads to a significant reduction of the noise in the vertical
velocity field [?]. Furthermore, used in combination with a partial steps representation of
bottom topography, it improves the interaction between current and topography, leading
to a larger topostrophy of the flow [??].
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6.2.2 Kinetic Energy Gradient term (dynkeg.F90)
As demonstrated in Appendix C, there is a single discrete formulation of the kinetic

energy gradient term that, together with the formulation chosen for the vertical advection
(see below), conserves the total kinetic energy :





− 1
2 e1u

δi+1/2

[
u2

i
+ v2

j
]

− 1
2 e2v

δj+1/2

[
u2

i
+ v2

j
] (6.12)

6.2.3 Vertical advection term (dynzad.F90)
The discrete formulation of the vertical advection, together with the formulation cho-

sen for the gradient of kinetic energy (KE) term, conserves the total kinetic energy. Indeed,
the change of KE due to the vertical advection is exactly balanced by the change of KE
due to the gradient of KE (see Appendix C).





− 1
e1u e2u e3u

e1t e2t w i+1/2 δk+1/2 [u]
k

− 1
e1v e2v e3v

e1t e2t w j+1/2 δk+1/2 [u]
k

(6.13)

6.3 Coriolis and Advection : flux form
!-----------------------------------------------------------------------
&namdyn_adv ! formulation of the momentum advection
!-----------------------------------------------------------------------

ln_dynadv_vec = .true. ! vector form (T) or flux form (F)
ln_dynadv_cen2= .false. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme

/

In the flux form (as in the vector invariant form), the Coriolis and momentum ad-
vection terms are evaluated using a leapfrog scheme, i.e. the velocity appearing in their
expressions is centred in time (now velocity). At the lateral boundaries either free slip, no
slip or partial slip boundary conditions are applied following Chap.8.

6.3.1 Coriolis plus curvature metric terms (dynvor.F90)
In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis para-

meter has been modified to account for the ”metric” term. This altered Coriolis parameter
is thus discretised at f -points. It is given by :

f +
1
e1e2

(
v
∂e2

∂i
− u∂e1

∂j

)

≡ f +
1

e1fe2f

(
vi+1/2δi+1/2 [e2u]− uj+1/2δj+1/2 [e1u]

)
(6.14)
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Any of the (C.13), (6.6) and (C.15) schemes can be used to compute the product of
the Coriolis parameter and the vorticity. However, the energy-conserving scheme (C.15)
has exclusively been used to date. This term is evaluated using a leapfrog scheme, i.e. the
velocity is centred in time (now velocity).

6.3.2 Flux form Advection term (dynadv.F90)
The discrete expression of the advection term is given by :





1
e1u e2u e3u

(
δi+1/2

[
e2u e3u u

i ut
]

+ δj

[
e1u e3u v

i+1/2 uf

]

+δk
[
e1w e2w w

i+1/2 uuw

])

1
e1v e2v e3v

(
δi

[
e2u e3u u

j+1/2 vf

]
+ δj+1/2

[
e1u e3u v

i vt
]

+δk
[
e1w e2w w

j+1/2 vvw

])

(6.15)

Two advection schemes are available : a 2nd order centered finite difference scheme,
CEN2, or a 3rd order upstream biased scheme, UBS. The latter is described in ?. The
schemes are selected using the namelist logicals ln dynadv cen2 and ln dynadv ubs. In
flux form, the schemes differ by the choice of a space and time interpolation to define
the value of u and v at the centre of each face of u- and v-cells, i.e. at the T -, f -, and
uw-points for u and at the f -, T - and vw-points for v.

2nd order centred scheme (cen2) (ln dynadv cen2=true)

In the centered 2nd order formulation, the velocity is evaluated as the mean of the two
neighbouring points :

{
ucen2
T = ui ucen2

F = uj+1/2 ucen2
uw = uk+1/2

vcen2
F = vi+1/2 vcen2

F = vj vcen2
vw = vk+1/2

(6.16)

The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive (i.e. it
may create false extrema). It is therefore notoriously noisy and must be used in conjunc-
tion with an explicit diffusion operator to produce a sensible solution. The associated
time-stepping is performed using a leapfrog scheme in conjunction with an Asselin time-
filter, so u and v are the now velocities.

Upstream Biased Scheme (UBS) (ln dynadv ubs=true)

The UBS advection scheme is an upstream biased third order scheme based on an
upstream-biased parabolic interpolation. For example, the evaluation of uubsT is done as
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follows :

uubsT = ui − 1
6

{
u”i−1/2 if e2u e3u u

i > 0
u”i+1/2 if e2u e3u u

i < 0
(6.17)

where u”i+1/2 = δi+1/2 [δi [u]]. This results in a dissipatively dominant (i.e. hyper-
diffusive) truncation error [?]. The overall performance of the advection scheme is similar
to that reported in ?. It is a relatively good compromise between accuracy and smooth-
ness. It is not a positive scheme, meaning that false extrema are permitted. But the ampli-
tudes of the false extrema are significantly reduced over those in the centred second order
method. As the scheme already includes a diffusion component, it can be used without
explicit lateral diffusion on momentum (i.e. ln dynldf lap=ln dynldf bilap=false), and it
is recommended to do so.

The UBS scheme is not used in all directions. In the vertical, the centred 2nd order
evaluation of the advection is preferred, i.e. uubsuw and uubsvw in (6.16) are used. UBS is
diffusive and is associated with vertical mixing of momentum.

For stability reasons, the first term in (6.17), which corresponds to a second order
centred scheme, is evaluated using the now velocity (centred in time), while the second
term, which is the diffusion part of the scheme, is evaluated using the before velocity
(forward in time). This is discussed by ? in the context of the Quick advection scheme.

Note that the UBS and QUICK (Quadratic Upstream Interpolation for Convective Ki-
nematics) schemes only differ by one coefficient. Replacing 1/6 by 1/8 in (6.17) leads
to the QUICK advection scheme [?]. This option is not available through a namelist pa-
rameter, since the 1/6 coefficient is hard coded. Nevertheless it is quite easy to make the
substitution in the dynadv ubs.F90 module and obtain a QUICK scheme.

Note also that in the current version of dynadv ubs.F90, there is also the possibility
of using a 4th order evaluation of the advective velocity as in ROMS. This is an error and
should be suppressed soon.

6.4 Hydrostatic pressure gradient (dynhpg.F90)
!-----------------------------------------------------------------------
&namdyn_hpg ! Hydrostatic pressure gradient option
!-----------------------------------------------------------------------

ln_hpg_zco = .false. ! z-coordinate - full steps
ln_hpg_zps = .true. ! z-coordinate - partial steps (interpolation)
ln_hpg_sco = .false. ! s-coordinate (standard jacobian formulation)
ln_hpg_hel = .false. ! s-coordinate (helsinki modification)
ln_hpg_wdj = .false. ! s-coordinate (weighted density jacobian)
ln_hpg_djc = .false. ! s-coordinate (Density Jacobian with Cubic polynomial)
ln_hpg_rot = .false. ! s-coordinate (ROTated axes scheme)
rn_gamma = 0.e0 ! weighting coefficient (wdj scheme)
ln_dynhpg_imp = .false. ! time stepping: semi-implicit time scheme (T)

! centered time scheme (F)
nn_dynhpg_rst = 0 ! =1 dynhpg restartable restart or not (=0)

/

The key distinction between the different algorithms used for the hydrostatic pressure
gradient is the vertical coordinate used, since HPG is a horizontal pressure gradient, i.e.
computed along geopotential surfaces. As a result, any tilt of the surface of the computa-
tional levels will require a specific treatment to compute the hydrostatic pressure gradient.
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The hydrostatic pressure gradient term is evaluated either using a leapfrog scheme,
i.e. the density appearing in its expression is centred in time (now ρ), or a semi-implcit
scheme. At the lateral boundaries either free slip, no slip or partial slip boundary condi-
tions are applied.

6.4.1 z-coordinate with full step (ln dynhpg zco=true)
The hydrostatic pressure can be obtained by integrating the hydrostatic equation ver-

tically from the surface. However, the pressure is large at great depth while its horizontal
gradient is several orders of magnitude smaller. This may lead to large truncation errors
in the pressure gradient terms. Thus, the two horizontal components of the hydrostatic
pressure gradient are computed directly as follows :

for k = km (surface layer, jk = 1 in the code)




δi+1/2

[
ph
]∣∣∣
k=km

=
1
2
g δi+1/2 [e3w ρ]

∣∣
k=km

δj+1/2

[
ph
]∣∣∣
k=km

=
1
2
g δj+1/2 [e3w ρ]

∣∣
k=km

(6.18)

for 1 < k < km (interior layer)


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
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]∣∣∣
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= δi+1/2

[
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1
2
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[
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[
ph
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+
1
2
g δj+1/2

[
e3w ρ

k+1/2
]∣∣∣
k

(6.19)

Note that the 1/2 factor in (6.18) is adequate because of the definition of e3w as the
vertical derivative of the scale factor at the surface level (z = 0). Note also that in case
of variable volume level (key vvl defined), the surface pressure gradient is included in
(6.18) and (6.19) through the space and time variations of the vertical scale factor e3w.

6.4.2 z-coordinate with partial step (ln dynhpg zps=true)
With partial bottom cells, tracers in horizontally adjacent cells generally live at dif-

ferent depths. Before taking horizontal gradients between these tracer points, a linear in-
terpolation is used to approximate the deeper tracer as if it actually lived at the depth of
the shallower tracer point.

Apart from this modification, the horizontal hydrostatic pressure gradient evaluated in
the z-coordinate with partial step is exactly as in the pure z-coordinate case. As explained
in detail in section §5.9, the nonlinearity of pressure effects in the equation of state is
such that it is better to interpolate temperature and salinity vertically before computing the
density. Horizontal gradients of temperature and salinity are needed for the TRA modules,
which is the reason why the horizontal gradients of density at the deepest model level are
computed in module zpsdhe.F90 located in the TRA directory and described in §5.9.
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6.4.3 s- and z-s-coordinates
Pressure gradient formulations in an s-coordinate have been the subject of a vast num-

ber of papers (e.g., ??). A number of different pressure gradient options are coded, but
they are not yet fully documented or tested.
• Traditional coding (see for example ? : (ln dynhpg sco=true, ln dynhpg hel=true)





− 1
ρo e1u

δi+1/2

[
ph
]

+
g ρi+1/2

ρo e1u
δi+1/2 [zt]

− 1
ρo e2v

δj+1/2

[
ph
]

+
g ρj+1/2

ρo e2v
δj+1/2 [zt]

(6.20)

Where the first term is the pressure gradient along coordinates, computed as in (6.18)
- (6.19), and zT is the depth of the T -point evaluated from the sum of the vertical scale
factors at the w-point (e3w). The version ln dynhpg hel=true has been added by Aike
Beckmann and involves a redefinition of the relative position of T -points relative to w-
points.
•Weighted density Jacobian (WDJ) [?] (ln dynhpg wdj=true)
• Density Jacobian with cubic polynomial scheme (DJC) [?] (ln dynhpg djc=true)
• Rotated axes scheme (rot) [?] (ln dynhpg rot=true)
Note that expression (6.20) is used when the variable volume formulation is activated

(key vvl) because in that case, even with a flat bottom, the coordinate surfaces are not
horizontal but follow the free surface [?]. The other pressure gradient options are not yet
available.

6.4.4 Time-scheme (ln dynhpg imp= true/false)
The default time differencing scheme used for the horizontal pressure gradient is a

leapfrog scheme and therefore the density used in all discrete expressions given above
is the now density, computed from the now temperature and salinity. In some specific
cases (usually high resolution simulations over an ocean domain which includes weakly
stratified regions) the physical phenomenon that controls the time-step is internal gravity
waves (IGWs). A semi-implicit scheme for doubling the stability limit associated with
IGWs can be used [??]. It involves the evaluation of the hydrostatic pressure gradient as
an average over the three time levels t − ∆t, t, and t + ∆t (i.e. before, now and after
time-steps), rather than at the central time level t only, as in the standard leapfrog scheme.
• leapfrog scheme (ln dynhpg imp=true) :

ut+∆t − ut−∆t

2∆t
= · · · − 1

ρo e1u
δi+1/2

[
pth
]

(6.21)

• semi-implicit scheme (ln dynhpg imp=true) :

ut+∆t − ut−∆t

2∆t
= · · · − 1

4 ρo e1u
δi+1/2

[
pt+∆t
h + 2 pth + pt−∆t

h

]
(6.22)
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The semi-implicit time scheme (6.22) is made possible without significant additional
computation since the density can be updated to time level t + ∆t before computing the
horizontal hydrostatic pressure gradient. It can be easily shown that the stability limit
associated with the hydrostatic pressure gradient doubles using (6.22) compared to that
using the standard leapfrog scheme (6.21). Note that (6.22) is equivalent to applying a
time filter to the pressure gradient to eliminate high frequency IGWs. Obviously, when
using (6.22), the doubling of the time-step is achievable only if no other factors control
the time-step, such as the stability limits associated with advection or diffusion.

In practice, the semi-implicit scheme is used when ln dynhpg imp=true. In this case,
we choose to apply the time filter to temperature and salinity used in the equation of state,
instead of applying it to the hydrostatic pressure or to the density, so that no additional
storage array has to be defined. The density used to compute the hydrostatic pressure
gradient (whatever the formulation) is evaluated as follows :

ρt = ρ(T̃ , S̃, zt) with X̃ = 1/4
(
Xt+∆t + 2Xt +Xt−∆t

)
(6.23)

Note that in the semi-implicit case, it is necessary to save the filtered density, an extra
three-dimensional field, in the restart file to restart the model with exact reproducibility.
This option is controlled by nn dynhpg rst, a namelist parameter.

6.5 Surface pressure gradient (dynspg.F90)
!-----------------------------------------------------------------------
!namdyn_spg ! surface pressure gradient (CPP key only)
!-----------------------------------------------------------------------
! ! explicit free surface ("key_dynspg_exp")
! ! filtered free surface ("key_dynspg_flt")
! ! split-explicit free surface ("key_dynspg_ts")

The surface pressure gradient term is related to the representation of the free surface
(§2.2). The main distinction is between the fixed volume case (linear free surface) and the
variable volume case (nonlinear free surface, key vvl is defined). In the linear free surface
case (§2.2.2) the vertical scale factors e3 are fixed in time, while they are time-dependent
in the nonlinear case (§2.2.2). With both linear and nonlinear free surface, external gravity
waves are allowed in the equations, which imposes a very small time step when an explicit
time stepping is used. Two methods are proposed to allow a longer time step for the three-
dimensional equations : the filtered free surface, which is a modification of the continuous
equations (see (2.6)), and the split-explicit free surface described below. The extra term
introduced in the filtered method is calculated implicitly, so that the update of the next
velocities is done in module dynspg flt.F90 and not in dynnxt.F90.

The form of the surface pressure gradient term depends on how the user wants to
handle the fast external gravity waves that are a solution of the analytical equation (§2.2).
Three formulations are available, all controlled by a CPP key (ln dynspg xxx) : an explicit
formulation which requires a small time step ; a filtered free surface formulation which
allows a larger time step by adding a filtering term into the momentum equation ; and a
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split-explicit free surface formulation, described below, which also allows a larger time
step.

The extra term introduced in the filtered method is calculated implicitly, so that a
solver is used to compute it. As a consequence the update of the next velocities is done
in module dynspg flt.F90 and not in dynnxt.F90.

6.5.1 Explicit free surface (key dynspg exp)
In the explicit free surface formulation (key dynspg exp defined), the model time

step is chosen to be small enough to resolve the external gravity waves (typically a few
tens of seconds). The surface pressure gradient, evaluated using a leap-frog scheme (i.e.
centered in time), is thus simply given by :





− 1
e1u ρo

δi+1/2 [ ρ η ]

− 1
e2v ρo

δj+1/2 [ ρ η ]
(6.24)

Note that in the non-linear free surface case (i.e. key vvl defined), the surface pres-
sure gradient is already included in the momentum tendency through the level thickness
variation allowed in the computation of the hydrostatic pressure gradient. Thus, nothing
is done in the dynspg exp.F90 module.

6.5.2 Split-Explicit free surface (key dynspg ts)
The split-explicit free surface formulation used in NEMO (key dynspg ts defined),

also called the time-splitting formulation, follows the one proposed by ?. The general
idea is to solve the free surface equation and the associated barotropic velocity equations
with a smaller time step than ∆t, the time step used for the three dimensional prognostic
variables (Fig.6.5.2). The size of the small time step, ∆e (the external mode or barotropic
time step) is provided through the nn baro namelist parameter as : ∆e = ∆/nn baro.

The split-explicit formulation has a damping effect on external gravity waves, which
is weaker damping than that for the filtered free surface but still significant, as shown by
? in the case of an analytical barotropic Kelvin wave.

6.5.3 Filtered free surface (key dynspg flt)
The filtered formulation follows the ? implementation. The extra term introduced in

the equations (see §I.2.2) is solved implicitly. The elliptic solvers available in the code are
documented in §11.

Note that in the linear free surface formulation (key vvl not defined), the ocean depth
is time-independent and so is the matrix to be inverted. It is computed once and for all and
applies to all ocean time steps.
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t-∆t t t+2∆tt+∆t
M U η

t+1/2∆t t+3/2∆t

~ ~

∆τ

FIGURE 6.2 – Schematic of the split-explicit time stepping scheme for the external
and internal modes. Time increases to the right. Internal mode time steps (which
are also the model time steps) are denoted by t−∆t, t, t+∆t, and t+2∆t. The cur-
ved line represents a leap-frog time step, and the smaller time steps N∆te = 3

2
∆t

are denoted by the zig-zag line. The vertically integrated forcing M(t) computed at
the model time step t represents the interaction between the external and internal
motions. While keeping M and freshwater forcing field fixed, a leap-frog integra-
tion carries the external mode variables (surface height and vertically integrated
velocity) from t to t + 3

2
∆t using N external time steps of length ∆te. Time ave-

raging the external fields over the 2
3
N + 1 time steps (endpoints included) centers

the vertically integrated velocity and the sea surface height at the model timestep
t+ ∆t. These averaged values are used to update M(t) with both the surface pres-
sure gradient and the Coriolis force, therefore providing the t + ∆t velocity. The
model time stepping scheme can then be achieved by a baroclinic leap-frog time
step that carries the surface height from t−∆t to t+ ∆t.

6.6 Lateral diffusion term (dynldf.F90)
!-----------------------------------------------------------------------
&namdyn_ldf ! lateral diffusion on momentum
!-----------------------------------------------------------------------

! Type of the operator :
ln_dynldf_lap = .true. ! laplacian operator
ln_dynldf_bilap = .false. ! bilaplacian operator

! Direction of action :
ln_dynldf_level = .false. ! iso-level
ln_dynldf_hor = .true. ! horizontal (geopotential) (require "key_ldfslp" in s-coord.)
ln_dynldf_iso = .false. ! iso-neutral (require "key_ldfslp")

! Coefficient
rn_ahm_0 = 40.e3 ! horizontal eddy viscosity [m2/s]
rn_ahmb_0 = 0. ! background eddy viscosity for ldf_iso [m2/s]
rn_ahm_0_blp = 0. ! horizontal bilaplacian eddy viscosity [m4/s]

/

The options available for lateral diffusion are to use either laplacian (rotated or not)
or biharmonic operators. The coefficients may be constant or spatially variable ; the des-
cription of the coefficients is found in the chapter on lateral physics (Chap.9). The lateral
diffusion of momentum is evaluated using a forward scheme, i.e. the velocity appearing
in its expression is the before velocity in time, except for the pure vertical component that
appears when a tensor of rotation is used. This latter term is solved implicitly together
with the vertical diffusion term (see §??)
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At the lateral boundaries either free slip, no slip or partial slip boundary conditions
are applied according to the user’s choice (see Chap.8).

6.6.1 Iso-level laplacian operator (ln dynldf lap=true)

For lateral iso-level diffusion, the discrete operator is :





DlU
u =

1
e1u

δi+1/2

[
AlmT χ

]
− 1
e2ue3u

δj

[
Almf e3fζ

]

DlU
v =

1
e2v

δj+1/2

[
AlmT χ

]
+

1
e1v e3v

δi

[
Almf e3fζ

]
(6.25)

As explained in §2.5.2, this formulation (as the gradient of a divergence and curl of
the vorticity) preserves symmetry and ensures a complete separation between the vorticity
and divergence parts of the momentum diffusion. Note that in the full step z-coordinate
(key zco is defined), e3u = e3v = e3f so that they cancel in the rotational part of (6.25).

6.6.2 Rotated laplacian operator (ln dynldf iso=true)

A rotation of the lateral momentum diffusion operator is needed in several cases :
for iso-neutral diffusion in the z-coordinate (ln dynldf iso=true) and for either iso-neutral
(ln dynldf iso=true) or geopotential (ln dynldf hor=true) diffusion in the s-coordinate. In
the partial step case, coordinates are horizontal except at the deepest level and no rota-
tion is performed when ln dynldf hor=true. The diffusion operator is defined simply as
the divergence of down gradient momentum fluxes on each momentum component. It
must be emphasized that this formulation ignores constraints on the stress tensor such as
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symmetry. The resulting discrete representation is :

DlU
u =

1
e1u e2u e3u{
δi+1/2

[
AlmT

(
e2t e3t

e1t
δi[u]− e2t r1t δk+1/2[u]

i, k
)]

+ δj

[
Almf

(
e1f e3f

e2f
δj+1/2[u]− e1f r2f δk+1/2[u]

j+1/2, k
)]

+ δk

[
Almuw

(
−e2u r1uw δi+1/2[u]

i+1/2, k+1/2

− e1u r2uw δj+1/2[u]
j, k+1/2

+
e1u e2u

e3uw

(
r2

1uw + r2
2uw

)
δk+1/2[u]

)] }

DlV
v =

1
e1v e2v e3v{
δi+1/2

[
Almf

(
e2f e3f

e1f
δi+1/2[v]− e2f r1f δk+1/2[v]

i+1/2, k
)]

+ δj

[
AlmT

(
e1t e3t

e2t
δj [v]− e1t r2t δk+1/2[v]

j, k
)]

+ δk

[
Almvw

(
−e2v r1vw δi+1/2[v]

i+1/2, k+1/2

− e1v r2vw δj+1/2[v]
j+1/2, k+1/2

+
e1v e2v

e3vw

(
r2

1vw + r2
2vw

)
δk+1/2[v]

)] }

(6.26)

where r1 and r2 are the slopes between the surface along which the diffusion operator acts
and the surface of computation (z- or s-surfaces). The way these slopes are evaluated is
given in the lateral physics chapter (Chap.9).

6.6.3 Iso-level bilaplacian operator (ln dynldf bilap=true)
The lateral fourth order operator formulation on momentum is obtained by applying

(6.25) twice. It requires an additional assumption on boundary conditions : the first deri-
vative term normal to the coast depends on the free or no-slip lateral boundary conditions
chosen, while the third derivative terms normal to the coast are set to zero (see Chap.8).

6.7 Vertical diffusion term (dynzdf.F90)
!-----------------------------------------------------------------------
&namzdf ! vertical physics
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!-----------------------------------------------------------------------
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

The large vertical diffusion coefficient found in the surface mixed layer together with
high vertical resolution implies that in the case of explicit time stepping there would be
too restrictive a constraint on the time step. Two time stepping schemes can be used for the
vertical diffusion term : (a) a forward time differencing scheme (ln zdfexp=true) using a
time splitting technique (nn zdfexp > 1) or (b) a backward (or implicit) time differencing
scheme (ln zdfexp=false) (see §??). Note that namelist variables ln zdfexp and nn zdfexp
apply to both tracers and dynamics.

The formulation of the vertical subgrid scale physics is the same whatever the vertical
coordinate is. The vertical diffusion operators given by (2.36) take the following semi-
discrete space form :





Dvm
u ≡ 1

e3u
δk

[
Avmuw
e3uw

δk+1/2[u ]
]

Dvm
v ≡ 1

e3v
δk

[
Avmvw
e3vw

δk+1/2[ v ]
] (6.27)

where Avmuw and Avmvw are the vertical eddy viscosity and diffusivity coefficients. The way
these coefficients are evaluated depends on the vertical physics used (see §10).

The surface boundary condition on momentum is the stress exerted by the wind. At
the surface, the momentum fluxes are prescribed as the boundary condition on the vertical
turbulent momentum fluxes,

(
Avm

e3

∂Uh

∂k

)∣∣∣∣
z=1

=
1
ρo

(
τu
τv

)
(6.28)

where (τu, τv) are the two components of the wind stress vector in the (i,j) coordinate
system. The high mixing coefficients in the surface mixed layer ensure that the surface
wind stress is distributed in the vertical over the mixed layer depth. If the vertical mixing
coefficient is small (when no mixed layer scheme is used) the surface stress enters only
the top model level, as a body force. The surface wind stress is calculated in the surface
module routines (SBC, see Chap.7)

The turbulent flux of momentum at the bottom of the ocean is specified through a
bottom friction parameterisation (see §10.4)
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6.8 External Forcings
Besides the surface and bottom stresses (see the above section) which are introduced

as boundary conditions on the vertical mixing, two other forcings enter the dynamical
equations.

One is the effect of atmospheric pressure on the ocean dynamics. Another forcing
term is the tidal potential. Both of which will be introduced into the reference version
soon.

6.9 Time evolution term (dynnxt.F90)
!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

nn_bathy = 1 ! compute (=0) or read(=1) the bathymetry file
nn_closea = 0 ! closed seas and lakes are removed (=0) or kept (=1) from the ORCA domain
nn_msh = 0 ! create (=1) a mesh file (coordinates, scale factors, masks) or not (=0)
rn_e3zps_min= 20. ! the thickness of the partial step is set larger than the minimum
rn_e3zps_rat= 0.1 ! of e3zps_min and e3zps_rat * e3t (N.B. 0<e3zps_rat<1)

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nacc=0) ==> 5760
nn_baro = 64 ! number of barotropic time step (for the split explicit algorithm) ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nacc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nacc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nacc=1)

/

The general framework for dynamics time stepping is a leap-frog scheme, i.e. a three
level centred time scheme associated with an Asselin time filter (cf. Chap.3). The scheme
is applied to the velocity, except when using the flux form of momentum advection (cf.
§6.3) in the variable volume case (key vvl defined), where it has to be applied to the
thickness weighted velocity (see §A.3)
• vector invariant form or linear free surface (ln dynhpg vec=true ; key vvl not defi-

ned) : 


ut+∆t = ut−∆t

f + 2∆t RHStu

utf = ut + γ
[
ut−∆t
f − 2ut + ut+∆t

] (6.29)

• flux form and nonlinear free surface (ln dynhpg vec=false ; key vvl defined) :




(e3u u)t+∆t = (e3u u)t−∆t
f + 2∆t e3u RHStu

(e3u u)tf = (e3u u)t + γ
[
(e3u u)t−∆t

f − 2 (e3u u)t + (e3u u)t+∆t
] (6.30)

where RHS is the right hand side of the momentum equation, the subscript f denotes filte-
red values and γ is the Asselin coefficient. γ is initialized as nn atfp (namelist parameter).
Its default value is nn atfp = 10−3. In both cases, the modified Asselin filter is not applied
since perfect conservation is not an issue for the momentum equations.

Note that with the filtered free surface, the update of the after velocities is done
in the dynsp flt.F90 module, and only array swapping and Asselin filtering is done in
dynnxt.F90.
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!-----------------------------------------------------------------------
&namsbc ! Surface Boundary Condition (surface module)
!-----------------------------------------------------------------------

nn_fsbc = 5 ! frequency of surface boundary condition computation
! (= the frequency of sea-ice model call)

ln_ana = .false. ! analytical formulation (T => fill namsbc_ana )
ln_flx = .false. ! flux formulation (T => fill namsbc_flx )
ln_blk_clio = .true. ! CLIO bulk formulation (T => fill namsbc_clio)
ln_blk_core = .false. ! CORE bulk formulation (T => fill namsbc_core)
ln_cpl = .false. ! Coupled formulation (T => fill namsbc_cpl )
nn_ice = 2 ! =0 no ice boundary condition ,

! =1 use observed ice-cover ,
! =2 ice-model used ("key_lim3" or "key_lim2)

nn_ico_cpl = 0 ! ice-ocean coupling : =0 each nn_fsbc
! =1 stresses recomputed each ocean time step ("key_lim3" only)
! =2 combination of 0 and 1 cases ("key_lim3" only)

ln_dm2dc = .false. ! daily mean to diurnal cycle short wave (qsr)
ln_rnf = .true. ! runoffs (T => fill namsbc_rnf)
ln_ssr = .true. ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr)
nn_fwb = 3 ! FreshWater Budget: =0 unchecked

! =1 global mean of e-p-r set to zero at each time step
! =2 annual global mean of e-p-r set to zero
! =3 global emp set to zero and spread out over erp area

/

The ocean needs six fields as surface boundary condition :
– the two components of the surface ocean stress (τu , τv)
– the incoming solar and non solar heat fluxes (Qns , Qsr)
– the surface freshwater budget (emp, empS)
Four different ways to provide those six fields to the ocean are available which are

controlled by namelist variables : an analytical formulation (ln ana=true), a flux formula-
tion (ln flx=true), a bulk formulae formulation (CORE (ln core=true) or CLIO (ln clio=true)
bulk formulae) and a coupled formulation (exchanges with a atmospheric model via the
OASIS coupler) (ln cpl=true). The frequency at which the six fields have to be updated
is the nf sbc namelist parameter. When the fields are supplied from data files (flux and
bulk formulations), the input fields need not be supplied on the model grid. Instead a file
of coordinates and weights can be supplied which maps the data from the supplied grid
to the model points (so called ”Interpolation on the Fly”). In addition, the resulting fields
can be further modified using several namelist options. These options control the rota-
tion of vector components supplied relative to an east-north coordinate system onto the
local grid directions in the model ; the addition of a surface restoring term to observed
SST and/or SSS (ln ssr=true) ; the modification of fluxes below ice-covered areas (using
observed ice-cover or a sea-ice model) (nn ice=0,1, 2 or 3) ; the addition of river runoffs
as surface freshwater fluxes (ln rnf =true) ; the addition of a freshwater flux adjustment in
order to avoid a mean sea-level drift (nn fwb= 0, 1 or 2) ; and the transformation of the
solar radiation (if provided as daily mean) into a diurnal cycle (ln dm2dc=true).

In this chapter, we first discuss where the surface boundary condition appears in the
model equations. Then we present the four ways of providing the surface boundary condi-
tion. Next the scheme for interpolation on the fly is described. Finally, the different options
that further modify the fluxes applied to the ocean are discussed.
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7.1 Surface boundary condition for the ocean
The surface ocean stress is the stress exerted by the wind and the sea-ice on the ocean.

The two components of stress are assumed to be interpolated onto the ocean mesh, i.e. re-
solved onto the model (i,j) direction at u- and v-points They are applied as a surface boun-
dary condition of the computation of the momentum vertical mixing trend (dynzdf.F90
module) : (

Avm

e3

∂Uh

∂k

)∣∣∣∣
z=1

=
1
ρo

(
τu
τv

)
(7.1)

where (τu, τv) = (utau, vtau) are the two components of the wind stress vector in the
(i, j) coordinate system.

The surface heat flux is decomposed into two parts, a non solar and a solar heat flux,
Qns and Qsr, respectively. The former is the non penetrative part of the heat flux (i.e.
the sum of sensible, latent and long wave heat fluxes). It is applied as a surface boundary
condition trend of the first level temperature time evolution equation (trasbc.F90 module).

∂T

∂t
≡ · · · +

Qns
ρo Cp e3t

∣∣∣∣
k=1

(7.2)

Qsr is the penetrative part of the heat flux. It is applied as a 3D trends of the temperature
equation (traqsr.F90 module) when ln traqsr=True.

∂T

∂t
≡ · · · +

Qsr
ρoCp e3t

δk [Iw] (7.3)

where Iw is a non-dimensional function that describes the way the light penetrates inside
the water column. It is generally a sum of decreasing exponentials (see §5.4.2).

The surface freshwater budget is provided by fields : emp and empS which may or may
not be identical. Indeed, a surface freshwater flux has two effects : it changes the volume
of the ocean and it changes the surface concentration of salt (and other tracers). Therefore
it appears in the sea surface height as a volume flux, emp (dynspg xxx modules), and in
the salinity time evolution equations as a concentration/dilution effect, empS (trasbc.F90
module).

∂η

∂t
≡ · · · + emp

∂S

∂t
≡ · · · +

empS S
e3t

∣∣∣∣
k=1

(7.4)

In the real ocean, emp = empS and the ocean salt content is conserved, but it exist se-
veral numerical reasons why this equality should be broken. For example, when the ocean
is coupled to a sea-ice model, the water exchanged between ice and ocean is slightly
salty (mean sea-ice salinity is ∼4 psu). In this case, empS take into account both concen-
tration/dilution effect associated with freezing/melting and the salt flux between ice and
ocean, while emp is only the volume flux. In addition, in the current version of NEMO



114 Surface Boundary Condition (SBC)

Variable description Model variable Units point
i-component of the surface current ssu m m.s−1 U
j-component of the surface current ssv m m.s−1 V
Sea surface temperature sst m ˚K T
Sea surface salinty sss m psu T

TABLE 7.1 – Ocean variables provided by the ocean to the surface module (SBC).
The variable are averaged over nf sbc time step, i.e. the frequency of computation
of surface fluxes.

, the sea-ice is assumed to be above the ocean (the so-called levitating sea-ice). Free-
zing/melting does not change the ocean volume (no impact on emp) but it modifies the
SSS.

Note that SST can also be modified by a freshwater flux. Precipitation (in particular
solid precipitation) may have a temperature significantly different from the SST. Due to
the lack of information about the temperature of precipitation, we assume it is equal to
the SST. Therefore, no concentration/dilution term appears in the temperature equation. It
has to be emphasised that this absence does not mean that there is no heat flux associated
with precipitation ! Precipitation can change the ocean volume and thus the ocean heat
content. It is therefore associated with a heat flux (not yet diagnosed in the model) [?]).

The ocean model provides the surface currents, temperature and salinity averaged
over nf sbc time-step (7.1).The computation of the mean is done in sbcmod.F90 module.

7.2 Analytical formulation (sbcana.F90 module)
!-----------------------------------------------------------------------
&namsbc_ana ! analytical surface boundary condition
!-----------------------------------------------------------------------

nn_tau000 = 0 ! gently increase the stress over the first ntau_rst time-steps
rn_utau0 = 0.5 ! uniform value for the i-stress
rn_vtau0 = 0.e0 ! uniform value for the j-stress
rn_q0 = 0.e0 ! uniform value for the total heat flux
rn_qsr0 = 0.e0 ! uniform value for the solar radiation
rn_emp0 = 0.e0 ! uniform value for the freswater budget (E-P)

/

The analytical formulation of the surface boundary condition is the default scheme.
In this case, all the six fluxes needed by the ocean are assumed to be uniform in space.
They take constant values given in the namelist namsbc ana by the variables rn utau0,
rn vtau0, rn qns0, rn qsr0, and rn emp0 (emp = empS). The runoff is set to zero. In
addition, the wind is allowed to reach its nominal value within a given number of time
steps (nn tau000).

If a user wants to apply a different analytical forcing, the sbcana.F90 module can be
modified to use another scheme. As an example, the sbc ana gyre.F90 routine provides
the analytical forcing for the GYRE configuration (see GYRE configuration manual, in
preparation).
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7.3 Flux formulation (sbcflx.F90 module)
!-----------------------------------------------------------------------
&namsbc_flx ! surface boundary condition : flux formulation
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interpol. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_utau = ’utau’ , 24. , ’utau’ , .false. , .false. , ’yearly’ , ’’ , ’’
sn_vtau = ’vtau’ , 24. , ’vtau’ , .false. , .false. , ’yearly’ , ’’ , ’’
sn_qtot = ’qtot’ , 24. , ’qtot’ , .false. , .false. , ’yearly’ , ’’ , ’’
sn_qsr = ’qsr’ , 24. , ’qsr’ , .false. , .false. , ’yearly’ , ’’ , ’’
sn_emp = ’emp’ , 24. , ’emp’ , .false. , .false. , ’yearly’ , ’’ , ’’

!
cn_dir = ’./’ ! root directory for the location of the flux files

/

In the flux formulation (ln flx=true), the surface boundary condition fields are directly
read from input files. The user has to define in the namelist namsbc flx the name of the
file, the name of the variable read in the file, the time frequency at which it is given (in
hours), and a logical setting whether a time interpolation to the model time step is required
for this field). (fld i namelist structure).

Caution : when the frequency is set to –12, the data are monthly values. These are
assumed to be climatological values, so time interpolation between December the 15th

and January the 15th is done using records 12 and 1
When higher frequency is set and time interpolation is demanded, the model will try

to read the last (first) record of previous (next) year in a file having the same name but a
suffix prev year ( next year) being added (e.g. ” 1989”). These files must only contain a
single record. If they don’t exist, the model assumes that the last record of the previous
year is equal to the first record of the current year, and similarly, that the first record of
the next year is equal to the last record of the current year. This will cause the forcing to
remain constant over the first and last half fld frequ hours.

Note that in general, a flux formulation is used in associated with a restoring term to
observed SST and/or SSS. See §7.9.2 for its specification.

7.4 Bulk formulation (sbcblk core.F90 or sbcblk clio.F90 module)

In the bulk formulation, the surface boundary condition fields are computed using
bulk formulae and atmospheric fields and ocean (and ice) variables.

The atmospheric fields used depend on the bulk formulae used. Two bulk formulations
are available : the CORE and CLIO bulk formulea. The choice is made by setting to true
one of the following namelist variable : ln core and ln clio.

Note : in forced mode, when a sea-ice model is used, a bulk formulation have to be
used. Therefore the two bulk formulea provided include the computation of the fluxes
over both an ocean and an ice surface.

7.4.1 CORE Bulk formulea (ln core=true, sbcblk core.F90)
!-----------------------------------------------------------------------
&namsbc_core ! namsbc_core CORE bulk formulea
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interpol. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_wndi = ’u10_core’ , -1. , ’u10’ , .true. , .true. , ’yearly’ ,’bicubic_weights_orca2.nc’ , ’U1’
sn_wndj = ’v10_core’ , -1. , ’v10’ , .true. , .true. , ’yearly’ ,’bicubic_weights_orca2.nc’ , ’V1’
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sn_qsr = ’qsw_core’ , -1. , ’swdn’ , .true. , .true. , ’yearly’ ,’bilinear_weights_orca2.nc’, ’’
sn_qlw = ’qlw_core’ , -1. , ’lwdn’ , .true. , .true. , ’yearly’ ,’bilinear_weights_orca2.nc’, ’’
sn_tair = ’t2_core’ , -1. , ’t2’ , .true. , .true. , ’yearly’ ,’bilinear_weights_orca2.nc’, ’’
sn_humi = ’q2_core’ , -1. , ’q2’ , .true. , .true. , ’yearly’ ,’bilinear_weights_orca2.nc’, ’’
sn_prec = ’precip_core’, -1. , ’precip’ , .true. , .true. , ’yearly’ ,’bilinear_weights_orca2.nc’, ’’
sn_snow = ’snow_core’ , -1. , ’snow’ , .true. , .true. , ’yearly’ ,’bilinear_weights_orca2.nc’, ’’

!
cn_dir = ’./’ ! root directory for the location of the bulk files
ln_2m = .true. ! air temperature and humidity referenced at 2m (T) instead 10m (F)
rn_pfac = 1. ! multiplicative factor for precipitation (total & snow)

/

The CORE bulk formulae have been developed by ?. They have been designed to
handle the CORE forcing, a mixture of NCEP reanalysis and satellite data. They use
an inertial dissipative method to compute the turbulent transfer coefficients (momentum,
sensible heat and evaporation) from the 10 metre wind speed, air temperature and specific
humidity.

Note that substituting ERA40 to NCEP reanalysis fields does not require changes in
the bulk formulea themself.

The required 8 input fields are :

Variable desciption Model variable Units point
i-component of the 10m air velocity utau m.s−1 T
j-component of the 10m air velocity vtau m.s−1 T
10m air temperature tair ˚K T
Specific humidity humi % T
Incoming long wave radiation qlw W.m−2 T
Incoming short wave radiation qsr W.m−2 T
Total precipitation (liquid + solid) precip Kg.m−2.s−1 T
Solid precipitation snow Kg.m−2.s−1 T

Note that the air velocity is provided at a tracer ocean point, not at a velocity ocean
point (u- and v-points). It is simpler and faster (less fields to be read), but it is not the
recommended method when the ocean grid size is the same or larger than the one of the
input atmospheric fields.

7.4.2 CLIO Bulk formulea (ln clio=true, sbcblk clio.F90)
!-----------------------------------------------------------------------
&namsbc_clio ! namsbc_clio CLIO bulk formulea
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interpol. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_utau = ’taux_1m’ , -1. , ’sozotaux’ , .true. , .true. , ’yearly’ , ’’ , ’’
sn_vtau = ’tauy_1m’ , -1. , ’sometauy’ , .true. , .true. , ’yearly’ , ’’ , ’’
sn_wndm = ’flx’ , -1. , ’socliowi’ , .true. , .true. , ’yearly’ , ’’ , ’’
sn_tair = ’flx’ , -1. , ’socliot2’ , .true. , .true. , ’yearly’ , ’’ , ’’
sn_humi = ’flx’ , -1. , ’socliohu’ , .true. , .true. , ’yearly’ , ’’ , ’’
sn_ccov = ’flx’ , -1. , ’socliocl’ , .false. , .true. , ’yearly’ , ’’ , ’’
sn_prec = ’flx’ , -1. , ’socliopl’ , .false. , .true. , ’yearly’ , ’’ , ’’

!
cn_dir = ’./’ ! root directory for the location of the bulk files are

/
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The CLIO bulk formulae were developed several years ago for the Louvain-la-neuve
coupled ice-ocean model (CLIO, ?). They are simpler bulk formulae. They assume the
stress to be known and compute the radiative fluxes from a climatological cloud cover.

The required 7 input fields are :

Variable desciption Model variable Units point
i-component of the ocean stress utau N.m−2 U
j-component of the ocean stress vtau N.m−2 V
Wind speed module vatm m.s−1 T
10m air temperature tair ˚K T
Specific humidity humi % T
Cloud cover % T
Total precipitation (liquid + solid) precip Kg.m−2.s−1 T
Solid precipitation snow Kg.m−2.s−1 T

As for the flux formulation, information about the input data required by the model
is provided in the namsbc blk core or namsbc blk clio namelist (via the structure fld i).
The first and last record assumption is also made (see §7.3)

7.5 Coupled formulation (sbccpl.F90 module)
!-----------------------------------------------------------------------
&namsbc_cpl ! coupled ocean/atmosphere model ("key_coupled")
!-----------------------------------------------------------------------

! send
cn_snd_temperature= ’weighted oce and ice’ ! ’oce only’ ’weighted oce and ice’ ’mixed oce-ice’
cn_snd_albedo = ’weighted ice’ ! ’none’ ’weighted ice’ ’mixed oce-ice’
cn_snd_thickness = ’none’ ! ’none’ ’weighted ice and snow’
cn_snd_crt_nature = ’none’ ! ’none’ ’oce only’ ’weighted oce and ice’ ’mixed oce-ice’
cn_snd_crt_refere = ’spherical’ ! ’spherical’ ’cartesian’
cn_snd_crt_orient = ’eastward-northward’ ! ’eastward-northward’ or ’local grid’
cn_snd_crt_grid = ’T’ ! ’T’

! receive
cn_rcv_w10m = ’coupled’ ! ’none’ ’coupled’
cn_rcv_tau_nature = ’oce only’ ! ’oce only’ ’oce and ice’ ’mixed oce-ice’
cn_rcv_tau_refere = ’cartesian’ ! ’spherical’ ’cartesian’
cn_rcv_tau_orient = ’eastward-northward’ ! ’eastward-northward’ or ’local grid’
cn_rcv_tau_grid = ’U,V’ ! ’T’ ’U,V’ ’U,V,F’ ’U,V,I’ ’T,F’ ’T,I’ ’T,U,V’
cn_rcv_dqnsdt = ’coupled’ ! ’none’ ’coupled’
cn_rcv_qsr = ’oce and ice’ ! ’conservative’ ’oce and ice’ ’mixed oce-ice’
cn_rcv_qns = ’oce and ice’ ! ’conservative’ ’oce and ice’ ’mixed oce-ice’
cn_rcv_emp = ’conservative’ ! ’conservative’ ’oce and ice’ ’mixed oce-ice’
cn_rcv_rnf = ’coupled’ ! ’coupled’ ’climato’ ’mixed’
cn_rcv_cal = ’coupled’ ! ’none’ ’coupled’
/

In the coupled formulation of the surface boundary condition, the fluxes are provided
by the OASIS coupler at each nf cpl time-step, while sea and ice surface temperature,
ocean and ice albedo, and ocean currents are sent to the atmospheric component.

The generalised coupled interface is under development. It should be available in
summer 2008. It will include the ocean interface for most of the European atmospheric
GCM (ARPEGE, ECHAM, ECMWF, HadAM, LMDz).
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7.6 river runoffs (sbcrnf.F90)
!-----------------------------------------------------------------------
&namsbc_rnf ! runoffs namelist surface boundary condition
!-----------------------------------------------------------------------
! ! file name ! frequency (h) ! variable ! time interp. ! clim ! starting !
! ! ! (if <0 months) ! name ! (logical) ! (0/1) ! record !

sn_rnf = ’runoff_1m_nomask.nc’, -12. , ’sorunoff’ , .true. , 1 , 0 , ’’ , ’’
sn_cnf = ’runoff_1m_nomask.nc’, 0. , ’socoefr’ , .false. , 1 , 0 , ’’ , ’’
sn_s_rnf = ’runoffs’ , 24 , ’rosaline’ , .true. , .true. , ’yearly’, ’’ , ’’
sn_t_rnf = ’runoffs’ , 24 , ’rotemper’ , .true. , .true. , ’yearly’, ’’ , ’’
sn_dep_rnf = ’runoffs’ , 0 , ’rodepth’ , .false. , .true. , ’yearly’, ’’ , ’’

!
cn_dir = ’./’ ! directory in which the model is executed
ln_rnf_emp = .false. ! runoffs included into precipitation field (T) or into a file (F)
ln_rnf_mouth = .false. ! specific treatment at rivers mouths
rn_hrnf = 15.e0 ! depth over which enhanced vertical mixing is used
rn_avt_rnf = 1.e-3 ! value of the additional vertical mixing coef. [m2/s]
rn_rfact = 1.e0 ! multiplicative factor for runoff
ln_rnf_depth = .false. ! read in depth information for runoff
ln_rnf_temp = .false. ! read in temperature information for runoff
ln_rnf_sal = .false. ! read in salinity information for runoff

/

River runoff generally enters the ocean at a nonzero depth rather than through the
surface. Many models, however, have traditionally inserted river runoff to the top model
cell. This was the case in NEMO prior to the version 3.3, and was combined with an option
to increase vertical mixing near the river mouth.

However, with this method numerical and physical problems arise when the top grid
cells are of the order of one meter. This situation is common in coastal modelling and is
becoming more common in open ocean and climate modelling 1.

As such from VN3.3 onwards it is possible to add river runoff through a non-zero
depth, and for the temperature and salinity of the river to effect the surrounding ocean.
The user is able to specify, in a NetCDF input file, the temperature and salinity of the
river, along with the depth (in metres) which the river should be added to.

Namelist options, ln rnf depth, ln rnf sal and ln rnf temp control whether the river
attributes (depth, salinity and temperature) are read in and used. If these are set as false
the river is added to the surface box only, assumed to be fresh (0 psu), and/or taken as
surface temperature respectively.

The runoff value and attributes are read in in sbcrnf. For temperature -999 is taken
as missing data and the river temperature is taken to be the surface temperatue at the
river point. For the depth parameter a value of -1 means the river is added to the surface
box only, and a value of -999 means the river is added through the entire water column.
After being read in the temperature and salinity variables are multiplied by the amount of
runoff (converted into m/s) to give the heat and salt content of the river runoff. After the
user specified depth is read ini, the number of grid boxes this corresponds to is calculated
and stored in the variable nz rnf . The variable h dep is then calculated to be the depth (in
metres) of the bottom of the lowest box the river water is being added to (i.e. the total
depth that river water is being added to in the model).

The mass/volume addition due to the river runoff is, at each relevant depth level, ad-
ded to the horizontal divergence (hdivn) in the subroutine sbc rnf div (called from divcur).

1. At least a top cells thickness of 1 meter and a 3 hours forcing frequency are required to
properly represent the diurnal cycle [?]. see also §7.7.
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This increases the diffusion term in the vicinity of the river, thereby simulating a momen-
tum flux. The sea surface height is calculated using the sum of the horizontal divergence
terms, and so the river runoff indirectly forces an increase in sea surface height.

The hdivn terms are used in the tracer advection modules to force vertical velocities.
This causes a mass of water, equal to the amount of runoff, to be moved into the box above.
The heat and salt content of the river runoff is not included in this step, and so the tracer
concentrations are diluted as water of ocean temperature and salinity is moved upward
out of the box and replaced by the same volume of river water with no corresponding heat
and salt addition.

For the linear free surface case, at the surface box the tracer advection causes a flux
of water (of equal volume to the runoff) through the sea surface out of the domain, which
causes a salt and heat flux out of the model. As such the volume of water does not change,
but the water is diluted.

For the non-linear free surface case (vvl), no flux is allowed through the surface.
Instead in the surface box (as well as water moving up from the boxes below) a volume
of runoff water is added with no corresponding heat and salt addition and so as happens
in the lower boxes there is a dilution effect. (The runoff addition to the top box along with
the water being moved up through boxes below means the surface box has a large increase
in volume, whilst all other boxes remain the same size)

In trasbc the addition of heat and salt due to the river runoff is added. This is done in
the same way for both vvl and non-vvl. The temperature and salinity are increased through
the specified depth according to the heat and salt content of the river.

In the non-linear free surface case (vvl), near the end of the time step the change in
sea surface height is redistrubuted through the grid boxes, so that the original ratios of
grid box heights are restored. In doing this water is moved into boxes below, throughout
the water column, so the large volume addition to the surface box is spread between all
the grid boxes.

It is also possible for runnoff to be specified as a negative value for modelling flow
through straits, i.e. modelling the Baltic flow in and out of the North Sea. When the flow is
out of the domain there is no change in temperature and salinity, regardless of the namelist
options used, as the ocean water leaving the domain removes heat and salt (at the same
concentration) with it.

7.7 Diurnal cycle (sbcdcy.F90)
? have shown that to capture 90% of the diurnal variability of SST requires a vertical

resolution in upper ocean of 1 m or better and a temporal resolution of the surface fluxes
of 3 h or less. Unfortunately high frequency forcing fields are rare, not to say inexistent.
Nevertheless, it is possible to obtain a reasonable diurnal cycle of the SST knowning only
short wave flux (SWF) at high frequency [?]. Furthermore, only the knowledge of daily
mean value of SWF is needed, as higher frequency variations can be reconstructed from
them, assuming that the diurnal cycle of SWF is a scaling of the top of the atmosphere
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FIGURE 7.1 – Example of recontruction of the diurnal cycle variation of short
wave flux from daily mean values. The reconstructed diurnal cycle (black line) is
chosen as the mean value of the analytical cycle (blue line) over a time step, not
as the mid time step value of the analytically cycle (red square). From ?.

diurnal cycle of incident SWF. The ? reconstruction algorithm is available in NEMO by
setting ln dm2dc=true (a namsbc namelist parameter) when using CORE bulk formulea
(ln blk core=true) or the flux formulation (ln flx=true). The reconstruction is performed
in the sbcdcy.F90 module. The detail of the algoritm used can be found in the appen-
dix A of ?. The algorithm preserve the daily mean incomming SWF as the reconstructed
SWF at a given time step is the mean value of the analytical cycle over this time step
(Fig.7.6). The use of diurnal cycle reconstruction requires the input SWF to be daily (i.e.
a frequency of 24 and a time interpolation set to true in sn qsr namelist parameter). Fur-
thermore, it is recommended to have a least 8 surface module time step per day, that is
∆t nn fsbc < 10, 800 s = 3 h. An example of recontructed SWF is given in Fig.7.7 for a
12 reconstructed diurnal cycle, one every 2 hours (from 1am to 11pm).

Note also that the setting a diurnal cycle in SWF is highly recommended when the
top layer thickness approach 1 m or less, otherwise large error in SST can appear due to
an inconsistency between the scale of the vertical resolution and the forcing acting on that
scale.
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FIGURE 7.2 – Example of recontruction of the diurnal cycle variation of short
wave flux from daily mean values on an ORCA2 grid with a time sampling of
2 hours (from 1am to 11pm). The display is on (i,j) plane.

7.8 Interpolation on the Fly
Interpolation on the Fly allows the user to supply input files required for the surface

forcing on grids other than the model grid. To do this he or she must supply, in addition
to the source data file, a file of weights to be used to interpolate from the data grid to
the model grid. The original development of this code used the SCRIP package (freely
available under a copyright agreement from http ://climate.lanl.gov/Software/SCRIP). In
principle, any package can be used to generate the weights, but the variables in the input
weights file must have the same names and meanings as assumed by the model. Two
methods are currently available : bilinear and bicubic interpolation.

7.8.1 Bilinear Interpolation
The input weights file in this case has two sets of variables : src01, src02, src03,

src04 and wgt01, wgt02, wgt03, wgt04. The ”src” variables correspond to the point in
the input grid to which the weight ”wgt” is to be applied. Each src value is an integer
corresponding to the index of a point in the input grid when written as a one dimensional
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array. For example, for an input grid of size 5x10, point (3,2) is referenced as point 8, since
(2-1)*5+3=8. There are four of each variable because bilinear interpolation uses the four
points defining the grid box containing the point to be interpolated. All of these arrays are
on the model grid, so that values src01(i,j) and wgt01(i,j) are used to generate a value for
point (i,j) in the model.

Symbolically, the algorithm used is :

fm(i, j) = fm(i, j) +
4∑

k=1

wgt(k)f(idx(src(k))) (7.5)

where function idx() transforms a one dimensional index src(k) into a two dimensional
index, and wgt(1) corresponds to variable ”wgt01” for example.

7.8.2 Bicubic Interpolation
Again there are two sets of variables : ”src” and ”wgt”. But in this case there are 16

of each. The symbolic algorithm used to calculate values on the model grid is now :

fm(i, j) = fm(i, j)+
4∑

k=1

wgt(k)f(idx(src(k))) +
8∑

k=5

wgt(k)
∂f

∂i

∣∣∣∣
idx(src(k))

+
12∑

k=9

wgt(k)
∂f

∂j

∣∣∣∣
idx(src(k))

+
16∑

k=13

wgt(k)
∂2f

∂i∂j

∣∣∣∣
idx(src(k))

The gradients here are taken with respect to the horizontal indices and not distances since
the spatial dependency has been absorbed into the weights.

7.8.3 Implementation
To activate this option, a non-empty string should be supplied in the weights filename

column of the relevant namelist ; if this is left as an empty string no action is taken. In
the model, weights files are read in and stored in a structured type (WGT) in the fldread
module, as and when they are first required. This initialisation procedure tries to determine
whether the input data grid should be treated as cyclical or not. (In fact this only matters
when bicubic interpolation is required.) To do this the model looks in the input data file
(i.e. the data to which the weights are to be applied) for a variable with name ”nav lon”
or ”lon”. If found, it checks the difference between the first and last values of longitude
along a single row. If the absolute value of this difference is close to 360 degrees or less
than twice the maximum spacing from 360 degrees, the grid is assumed to be cyclical,
and the difference determines whether the first column is a repeat of the last one or not. If
neither ”nav lon” or ”lon” can be found, the model resorts to looking at the first and last
columns of data. If the sum of the absolute values of the differences between the columns
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is very small, then the grid is assumed to be cyclical with coincident first and last columns.
If both of these tests fail, the grid is assumed not to be cyclical.

Next the routine reads in the weights. Bicubic interpolation is assumed if it finds a
variable with name ”src05”, otherwise bilinear interpolation is used. The WGT structure
includes dynamic arrays both for the storage of the weights (on the model grid), and
when required, for reading in the variable to be interpolated (on the input data grid). The
size of the input data array is determined by examining the values in the ”src” arrays
to find the minimum and maximum i and j values required. Since bicubic interpolation
requires the calculation of gradients at each point on the grid, the corresponding arrays
are dimensioned with a halo of width one grid point all the way around. When the array
of points from the data file is adjacent to an edge of the data grid, the halo is either a
copy of the row/column next to it (non-cyclical case), or is a copy of one from the first
two rows/columns on the opposite side of the grid (cyclical case with coincident end
rows/columns, or cyclical case with non-coincident end rows/columns).

7.8.4 Limitations
Input data grids must be logically rectangular.

This code is not guaranteed to produce positive definite answers from positive definite
inputs.

The cyclic condition is only applied on left and right columns, and not to top and bottom
rows.

The gradients across the ends of a cyclical grid assume that the grid spacing between the
two columns involved are consistent with the weights used.

Neither interpolation scheme is conservative. (There is a conservative scheme available
in SCRIP, but this has not been implemented.)

7.8.5 Utilities
A set of utilities to create a weights file for a rectilinear input grid is available.

7.9 Miscellaneous options

7.9.1 Rotation of vector pairs onto the model grid directions
When using a flux (ln flx=true) or bulk (ln clio=true or ln core=true) formulation,

pairs of vector components can be rotated from east-north directions onto the local grid
directions. This is particularly useful when interpolation on the fly is used since here any
vectors are likely to be defined relative to a rectilinear grid. To activate this option a non-
empty string is supplied in the rotation pair column of the relevant namelist. The eastward
component must start with ”U” and the northward component with ”V”. The remaining
characters in the strings are used to identify which pair of components go together. So
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for example, strings ”U1” and ”V1” next to ”utau” and ”vtau” would pair the wind stress
components together and rotate them on to the model grid directions ; ”U2” and ”V2”
could be used against a second pair of components, and so on. The extra characters used
in the strings are arbitrary. The rot rep routine from the geo2ocean.F90 module is used to
perform the rotation.

7.9.2 Surface restoring to observed SST and/or SSS (sbcssr.F90)
!-----------------------------------------------------------------------
&namsbc_ssr ! surface boundary condition : sea surface restoring
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interpol. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_sst = ’sst_data’ , 24. , ’sst’ , .false. , .false. , ’yearly’ , ’’ , ’’
sn_sss = ’sss_data’ , -1. , ’sss’ , .true. , .true. , ’yearly’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the runoff files
nn_sstr = 0 ! add a retroaction term in the surface heat flux (=1) or not (=0)
nn_sssr = 2 ! add a damping term in the surface freshwater flux (=2)

! or to SSS only (=1) or no damping term (=0)
rn_dqdt = -40. ! magnitude of the retroaction on temperature [W/m2/K]
rn_deds = -27.7 ! magnitude of the damping on salinity [mm/day/psu]
ln_sssr_bnd = .true. ! flag to bound erp term (associated with nn_sssr=2)
rn_sssr_bnd = 4.e0 ! ABS(Max/Min) value of the damping erp term [mm/day]

/

In forced mode using a flux formulation (default option or key flx defined), a feedback
term must be added to the surface heat flux Qons :

Qns = Qons +
dQ

dT
(T |k=1 − SSTObs) (7.6)

where SST is a sea surface temperature field (observed or climatological), T is the model
surface layer temperature and dQ

dT is a negative feedback coefficient usually taken equal
to −40 W/m2/K. For a 50 m mixed-layer depth, this value corresponds to a relaxation
time scale of two months. This term ensures that if T perfectly matches the supplied SST,
then Q is equal to Qo.

In the fresh water budget, a feedback term can also be added. Converted into an equi-
valent freshwater flux, it takes the following expression :

emp = empo + γ−1
s e3t

(S|k=1 − SSSObs)
S|k=1

(7.7)

where empo is a net surface fresh water flux (observed, climatological or an atmos-
pheric model product), SSSObs is a sea surface salinity (usually a time interpolation of
the monthly mean Polar Hydrographic Climatology [?]), S|k=1 is the model surface layer
salinity and γs is a negative feedback coefficient which is provided as a namelist parame-
ter. Unlike heat flux, there is no physical justification for the feedback term in 7.7 as the
atmosphere does not care about ocean surface salinity [?]. The SSS restoring term should
be viewed as a flux correction on freshwater fluxes to reduce the uncertainties we have on
the observed freshwater budget.
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7.9.3 Handling of ice-covered area (sbcice ...)
The presence at the sea surface of an ice covered area modifies all the fluxes transmit-

ted to the ocean. There are several way to handle sea-ice in the system depending on the
value of the nn ice namelist parameter.

nn ice = 0 there will never be sea-ice in the computational domain. This is a typical na-
melist value used for tropical ocean domain. The surface fluxes are simply specified
for an ice-free ocean. No specific things is done for sea-ice.

nn ice = 1 sea-ice can exist in the computational domain, but no sea-ice model is used.
An observed ice covered area is read in a file. Below this area, the SST is resto-
red to the freezing point and the heat fluxes are set to −4 W/m2 (−2 W/m2) in
the northern (southern) hemisphere. The associated modification of the freshwater
fluxes are done in such a way that the change in buoyancy fluxes remains zero. This
prevents deep convection to occur when trying to reach the freezing point (and so
ice covered area condition) while the SSS is too large. This manner of managing
sea-ice area, just by using si IF case, is usually referred as the ice-if model. It can
be found in the sbcice if.F90 module.

nn ice = 2 or more A full sea ice model is used. This model computes the ice-ocean
fluxes, that are combined with the air-sea fluxes using the ice fraction of each mo-
del cell to provide the surface ocean fluxes. Note that the activation of a sea-ice
model is is done by defining a CPP key (key lim2 or key lim3). The activation
automatically ovewrite the read value of nn ice to its appropriate value (i.e. 2 for
LIM-2 and 3 for LIM-3).

7.9.4 Freshwater budget control (sbcfwb.F90)
For global ocean simulation it can be useful to introduce a control of the mean sea

level in order to prevent unrealistic drift of the sea surface height due to inaccuracy in the
freshwater fluxes. In NEMO , two way of controlling the the freshwater budget.

nn fwb=0 no control at all. The mean sea level is free to drift, and will certainly do so.

nn fwb=1 global mean emp set to zero at each model time step.

nn fwb=2 freshwater budget is adjusted from the previous year annual mean budget
which is read in the EMPave old.dat file. As the model uses the Boussinesq ap-
proximation, the annual mean fresh water budget is simply evaluated from the
change in the mean sea level at January the first and saved in the EMPav.dat file.
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8.1 Boundary Condition at the Coast (rn shlat)
!-----------------------------------------------------------------------
&namlbc ! lateral momentum boundary condition
!-----------------------------------------------------------------------

shlat = 2. ! shlat = 0 : free slip
! 0 < shlat < 2 : partial slip
! shlat = 2 : no slip
! 2 < shlat : strong slip

/

The discrete representation of a domain with complex boundaries (coastlines and bot-
tom topography) leads to arrays that include large portions where a computation is not
required as the model variables remain at zero. Nevertheless, vectorial supercomputers
are far more efficient when computing over a whole array, and the readability of a code is
greatly improved when boundary conditions are applied in an automatic way rather than
by a specific computation before or after each computational loop. An efficient way to
work over the whole domain while specifying the boundary conditions, is to use multi-
plication by mask arrays in the computation. A mask array is a matrix whose elements
are 1 in the ocean domain and 0 elsewhere. A simple multiplication of a variable by its
own mask ensures that it will remain zero over land areas. Since most of the boundary
conditions consist of a zero flux across the solid boundaries, they can be simply applied
by multiplying variables by the correct mask arrays, i.e. the mask array of the grid point
where the flux is evaluated. For example, the heat flux in the i-direction is evaluated at
u-points. Evaluating this quantity as,

AlT

e1

∂T

∂i
≡ AlTu
e1u

δi+1/2 [T ] masku (8.1)

(where masku is the mask array at a u-point) ensures that the heat flux is zero inside
land and at the boundaries, since masku is zero at solid boundaries which in this case are
defined at u-points (normal velocity u remains zero at the coast) (Fig. 8.1).

For momentum the situation is a bit more complex as two boundary conditions must
be provided along the coast (one each for the normal and tangential velocities). The boun-
dary of the ocean in the C-grid is defined by the velocity-faces. For example, at a given
T -level, the lateral boundary (a coastline or an intersection with the bottom topography)
is made of segments joining f -points, and normal velocity points are located between two
f−points (Fig. 8.1). The boundary condition on the normal velocity (no flux through solid
boundaries) can thus be easily implemented using the mask system. The boundary condi-
tion on the tangential velocity requires a more specific treatment. This boundary condition
influences the relative vorticity and momentum diffusive trends, and is required in order
to compute the vorticity at the coast. Four different types of lateral boundary condition
are available, controlled by the value of the rn shlat namelist parameter. (The value of the
maskf array along the coastline is set equal to this parameter.) These are :
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land

ocean

T-point
f-point
u-, v-points
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V=0

U=0

U=0

FIGURE 8.1 – Lateral boundary (thick line) at T-level. The velocity normal to the
boundary is set to zero.

free-slip boundary condition (rn shlat=0) : the tangential velocity at the coastline is
equal to the offshore velocity, i.e. the normal derivative of the tangential velocity
is zero at the coast, so the vorticity : maskf array is set to zero inside the land and
just at the coast (Fig. 8.1-a).

no-slip boundary condition (rn shlat=2) : the tangential velocity vanishes at the coast-
line. Assuming that the tangential velocity decreases linearly from the closest ocean
velocity grid point to the coastline, the normal derivative is evaluated as if the velo-
cities at the closest land velocity gridpoint and the closest ocean velocity gridpoint
were of the same magnitude but in the opposite direction (Fig. 8.1-b). Therefore,
the vorticity along the coastlines is given by :

ζ ≡ 2
(
δi+1/2 [e2vv]− δj+1/2 [e1uu]

)
/ (e1fe2f ) ,
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V V
land ocean land ocean

V V

land ocean land ocean

fmask=0
fmask=2

fmask=1
fmask>2

0<fmask<2

(a) (b)

(c) (d)

FIGURE 8.2 – lateral boundary condition (a) free-slip (rn shlat = 0) ; (b) no-
slip (rn shlat = 2) ; (c) ”partial” free-slip (0 < rn shlat < 2) and (d) ”strong”
no-slip (2 < rn shlat). Implied ”ghost” velocity inside land area is display in
grey.
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where u and v are masked fields. Setting the maskf array to 2 along the coastline
provides a vorticity field computed with the no-slip boundary condition, simply by
multiplying it by the maskf :

ζ ≡ 1
e1f e2f

(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
maskf (8.2)

”partial” free-slip boundary condition (0<rn shlat<2) : the tangential velocity at the
coastline is smaller than the offshore velocity, i.e. there is a lateral friction but not
strong enough to make the tangential velocity at the coast vanish (Fig. 8.1-c). This
can be selected by providing a value of maskf strictly inbetween 0 and 2.

”strong” no-slip boundary condition (2<rn shlat) : the viscous boundary layer is as-
sumed to be smaller than half the grid size (Fig. 8.1-d). The friction is thus larger
than in the no-slip case.

Note that when the bottom topography is entirely represented by the s-coor-dinates
(pure s-coordinate), the lateral boundary condition on tangential velocity is of much less
importance as it is only applied next to the coast where the minimum water depth can be
quite shallow.

The alternative numerical implementation of the no-slip boundary conditions for an
arbitrary coast line of ? is also available through the key noslip accurate CPP key. It is
based on a fourth order evaluation of the shear at the coast which, in turn, allows a true
second order scheme in the interior of the domain (i.e. the numerical boundary scheme
simulates the truncation error of the numerical scheme used in the interior of the domain).
? found that such a technique considerably improves the quality of the numerical solu-
tion. In NEMO , such spectacular improvements have not been found in the half-degree
global ocean (ORCA05), but significant reductions of numerically induced coastal upwel-
lings were found in an eddy resolving simulation of the Alboran Sea [?]. Nevertheless,
since a no-slip boundary condition is not recommended in an eddy permitting or resolving
simulation [?], the use of this option is also not recommended.

In practice, the no-slip accurate option changes the way the curl is evaluated at the
coast (see divcur.F90 module), and requires the nature of each coastline grid point (convex
or concave corners, straight north-south or east-west coast) to be specified. This is perfor-
med in routine dom msk nsa in the domask.F90 module.

8.2 Model Domain Boundary Condition (jperio)
At the model domain boundaries several choices are offered : closed, cyclic east-west,

south symmetric across the equator, a north-fold, and combination closed-north fold or
cyclic-north-fold. The north-fold boundary condition is associated with the 3-pole ORCA
mesh.
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row(jpj) = row(2)
row(1) = row(jpj-1) line(1) = -line(2)

line(1) = line(2)

T- or u-point
variables

v- or f-point
variables

(a) (b)

FIGURE 8.3 – setting of (a) east-west cyclic (b) symmetric across the equator
boundary conditions.

8.2.1 Closed, cyclic, south symmetric (jperio = 0, 1 or 2)

The choice of closed, cyclic or symmetric model domain boundary condition is made
by setting jperio to 0, 1 or 2 in file par oce.F90. Each time such a boundary condition is
needed, it is set by a call to routine lbclnk.F90. The computation of momentum and tracer
trends proceeds from i = 2 to i = jpi − 1 and from j = 2 to j = jpj − 1, i.e. in the
model interior. To choose a lateral model boundary condition is to specify the first and
last rows and columns of the model variables.

For closed boundary (jperio=0) , solid walls are imposed at all model boundaries : first
and last rows and columns are set to zero.

For cyclic east-west boundary (jperio=1) , first and last rows are set to zero (closed)
whilst the first column is set to the value of the last-but-one column and the last
column to the value of the second one (Fig. 8.2.1-a). Whatever flows out of the
eastern (western) end of the basin enters the western (eastern) end. Note that there
is no option for north-south cyclic or for doubly cyclic cases.

For symmetric boundary condition across the equator (jperio=2) , last rows, and first
and last columns are set to zero (closed). The row of symmetry is chosen to be the
u- and T−points equator line (j = 2, i.e. at the southern end of the domain). For
arrays defined at u− or T−points, the first row is set to the value of the third row
while for most of v- and f -point arrays (v, ζ, jψ, but scalar arrays such as eddy
coefficients) the first row is set to minus the value of the second row (Fig. 8.2.1-b).
Note that this boundary condition is not yet available for the case of a massively
parallel computer (key mpp defined).
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FIGURE 8.4 – North fold boundary with a T -point pivot and cyclic east-west boun-
dary condition (jperio = 4), as used in ORCA 2, 1/4, and 1/12. Pink shaded area
corresponds to the inner domain mask (see text).

8.2.2 North-fold (jperio = 3 to 6)

The north fold boundary condition has been introduced in order to handle the north
boundary of a three-polar ORCA grid. Such a grid has two poles in the northern hemis-
phere. to be completed...

8.3 Exchange with neighbouring processors (lbclnk.F90,
lib mpp.F90)

For massively parallel processing (mpp), a domain decomposition method is used.
The basic idea of the method is to split the large computation domain of a numerical
experiment into several smaller domains and solve the set of equations by addressing
independent local problems. Each processor has its own local memory and computes the
model equation over a subdomain of the whole model domain. The subdomain boundary
conditions are specified through communications between processors which are organized
by explicit statements (message passing method).

A big advantage is that the method does not need many modifications of the initial
FORTRAN code. From the modeller’s point of view, each sub domain running on a pro-
cessor is identical to the ”mono-domain” code. In addition, the programmer manages the
communications between subdomains, and the code is faster when the number of proces-
sors is increased. The porting of OPA code on an iPSC860 was achieved during Guyon’s
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PhD [Guyon et al. 1994, 1995] in collaboration with CETIIS and ONERA. The imple-
mentation in the operational context and the studies of performance on a T3D and T3E
Cray computers have been made in collaboration with IDRIS and CNRS. The present
implementation is largely inspired by Guyon’s work [Guyon 1995].

The parallelization strategy is defined by the physical characteristics of the ocean
model. Second order finite difference schemes lead to local discrete operators that depend
at the very most on one neighbouring point. The only non-local computations concern
the vertical physics (implicit diffusion, 1.5 turbulent closure scheme, ...) (delocalization
over the whole water column), and the solving of the elliptic equation associated with the
surface pressure gradient computation (delocalization over the whole horizontal domain).
Therefore, a pencil strategy is used for the data sub-structuration : the 3D initial domain is
laid out on local processor memories following a 2D horizontal topological splitting. Each
sub-domain computes its own surface and bottom boundary conditions and has a side wall
overlapping interface which defines the lateral boundary conditions for computations in
the inner sub-domain. The overlapping area consists of the two rows at each edge of the
sub-domain. After a computation, a communication phase starts : each processor sends to
its neighbouring processors the update values of the points corresponding to the interior
overlapping area to its neighbouring sub-domain (i.e. the innermost of the two overlapping
rows). The communication is done through message passing. Usually the parallel virtual
language, PVM, is used as it is a standard language available on nearly all MPP computers.
More specific languages (i.e. computer dependant languages) can be easily used to speed
up the communication, such as SHEM on a T3E computer. The data exchanges between
processors are required at the very place where lateral domain boundary conditions are
set in the mono-domain computation (§III.10-c) : the lbc lnk routine which manages such
conditions is substituted by mpplnk.F or mpplnk2.F routine when running on an MPP
computer (key mpp mpi defined). It has to be pointed out that when using the MPP
version of the model, the east-west cyclic boundary condition is done implicitly, whilst
the south-symmetric boundary condition option is not available.

In the standard version of the OPA model, the splitting is regular and arithmetic. the
i-axis is divided by jpni and the j-axis by jpnj for a number of processors jpnij most
often equal to jpni × jpnj (model parameters set in par oce.F90). Each processor is
independent and without message passing or synchronous process , programs run alone
and access just its own local memory. For this reason, the main model dimensions are
now the local dimensions of the subdomain (pencil) that are named jpi, jpj, jpk. These
dimensions include the internal domain and the overlapping rows. The number of rows to
exchange (known as the halo) is usually set to one (jpreci=1, in par oce.F90). The whole
domain dimensions are named jpiglo, jpjglo and jpk. The relationship between the whole
domain and a sub-domain is :

jpi = (jpiglo− 2 ∗ jpreci+ (jpni− 1))/jpni+ 2 ∗ jpreci
jpj = (jpjglo− 2 ∗ jprecj + (jpnj − 1))/jpnj + 2 ∗ jprecj (8.3)

where jpni, jpnj are the number of processors following the i- and j-axis.
Figure IV.3 : example of a domain splitting with 9 processors and no east-west cyclic boundary conditions.
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FIGURE 8.5 – Positioning of a sub-domain when massively parallel processing is
used.

One also defines variables nldi and nlei which correspond to the internal domain
bounds, and the variables nimpp and njmpp which are the position of the (1,1) grid-point
in the global domain. An element of Tl, a local array (subdomain) corresponds to an ele-
ment of Tg, a global array (whole domain) by the relationship :

Tg(i+ nimpp− 1, j + njmpp− 1, k) = Tl(i, j, k), (8.4)

with 1 ≤ i ≤ jpi, 1 ≤ j ≤ jpj , and 1 ≤ k ≤ jpk.
Processors are numbered from 0 to jpnij − 1, the number is saved in the variable

nproc. In the standard version, a processor has no more than four neighbouring processors
named nono (for north), noea (east), noso (south) and nowe (west) and two variables,
nbondi and nbondj, indicate the relative position of the processor (see Fig.IV.3) :

– nbondi = -1 an east neighbour, no west processor,
– nbondi = 0 an east neighbour, a west neighbour,
– nbondi = 1 no east processor, a west neighbour,
– nbondi = 2 no splitting following the i-axis.

During the simulation, processors exchange data with their neighbours. If there is effecti-
vely a neighbour, the processor receives variables from this processor on its overlapping
row, and sends the data issued from internal domain corresponding to the overlapping row
of the other processor.

Figure IV.4 : pencil splitting with the additional outer halos
The NEMO model computes equation terms with the help of mask arrays (0 on land

points and 1 on sea points). It is easily readable and very efficient in the context of a
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computer with vectorial architecture. However, in the case of a scalar processor, compu-
tations over the land regions become more expensive in terms of CPU time. It is worse
when we use a complex configuration with a realistic bathymetry like the global ocean
where more than 50 % of points are land points. For this reason, a pre-processing tool can
be used to choose the mpp domain decomposition with a maximum number of only land
points processors, which can then be eliminated. (For example, the mpp optimiz tools,
available from the DRAKKAR web site.) This optimisation is dependent on the speci-
fic bathymetry employed. The user then chooses optimal parameters jpni, jpnj and jpnij
with jpnij < jpni × jpnj, leading to the elimination of jpni × jpnj − jpnij land
processors. When those parameters are specified in module par oce.F90, the algorithm in
the inimpp2 routine sets each processor’s parameters (nbound, nono, noea,...) so that the
land-only processors are not taken into account.

Note that the inimpp2 routine is general so that the original inimpp routine should be suppressed from the code.
When land processors are eliminated, the value corresponding to these locations in

the model output files is zero. Note that this is a problem for a mesh output file written by
such a model configuration, because model users often divide by the scale factors (e1t,
e2t, etc) and do not expect the grid size to be zero, even on land. It may be best not to
eliminate land processors when running the model especially to write the mesh files as
outputs (when nn msh namelist parameter differs from 0).

8.4 Open Boundary Conditions (key obc)
!-----------------------------------------------------------------------
&namobc ! open boundaries parameters ("key_obc")
!-----------------------------------------------------------------------

ln_obc_clim= .false. ! climatological obc data files (T) or not (F)
ln_vol_cst = .true. ! impose the total volume conservation (T) or not (F)
ln_obc_fla = .false. ! Flather open boundary condition
nn_obcdta = 1 ! = 0 the obc data are equal to the initial state

! = 1 the obc data are read in ’obc.dta’ files
cn_obcdta = ’annual’ ! set to annual if obc datafile hold 1 year of data

! set to monthly if obc datafile hold 1 month of data
rn_dpein = 1. ! damping time scale for inflow at east open boundary
rn_dpwin = 1. ! - - - west - -
rn_dpnin = 1. ! - - - north - -
rn_dpsin = 1. ! - - - south - -
rn_dpeob = 3000. ! time relaxation (days) for the east open boundary
rn_dpwob = 15. ! - - - west - -
rn_dpnob = 3000. ! - - - north - -
rn_dpsob = 15. ! - - - south - -
rn_volemp = 1. ! = 0 the total volume change with the surface flux (E-P-R)

! = 1 the total volume remains constant
/

It is often necessary to implement a model configuration limited to an oceanic region
or a basin, which communicates with the rest of the global ocean through ”open boun-
daries”. As stated by ?, an open boundary is a computational border where the aim of
the calculations is to allow the perturbations generated inside the computational domain
to leave it without deterioration of the inner model solution. However, an open boundary
also has to let information from the outer ocean enter the model and should support inflow
and outflow conditions.

The open boundary package OBC is the first open boundary option developed in
NEMO (originally in OPA8.2). It allows the user to
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(a) (b)

FIGURE 8.6 – Example of Atlantic domain defined for the CLIPPER projet. Initial
grid is composed of 773 x 1236 horizontal points. (a) the domain is split onto 9
subdomains (jpni=9, jpnj=20). 52 subdomains are land areas. (b) 52 subdomains
are eliminated (white rectangles) and the resulting number of processors really
used during the computation is jpnij=128.

– tell the model that a boundary is ”open” and not closed by a wall, for example by
modifying the calculation of the divergence of velocity there ;

– impose values of tracers and velocities at that boundary (values which may be taken
from a climatology) : this is the“fixed OBC” option.

– calculate boundary values by a sophisticated algorithm combining radiation and
relaxation (“radiative OBC” option)

The package resides in the OBC directory. It is described here in four parts : the
boundary geometry (parameters to be set in obc par.F90), the forcing data at the boun-
daries (module obcdta.F90), the radiation algorithm involving the namelist and module
obcrad.F90, and a brief presentation of boundary update and restart files.
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8.4.1 Boundary geometry
First one has to realize that open boundaries may not necessarily be located at the

extremities of the computational domain. They may exist in the middle of the domain,
for example at Gibraltar Straits if one wants to avoid including the Mediterranean in an
Atlantic domain. This flexibility has been found necessary for the CLIPPER project [?].
Because of the complexity of the geometry of ocean basins, it may even be necessary to
have more than one ”west” open boundary, more than one ”north”, etc. This is not possible
with the OBC option : only one open boundary of each kind, west, east, south and north is
allowed ; these names refer to the grid geometry (not to the direction of the geographical
”west”, ”east”, etc).

The open boundary geometry is set by a series of parameters in the module obc par.F90.
For an eastern open boundary, parameters are lp obc east (true if an east open boundary
exists), jpieob the i-index along which the eastern open boundary (eob) is located, jpjed
the j-index at which it starts, and jpjef the j-index where it ends (note d is for ”début”
and f for ”fin” in French). Similar parameters exist for the west, south and north cases
(Table 8.4.1).

Boundary and Constant index Starting index (début) Ending index (fin)
Logical flag
West jpiwob >= 2 jpjwd>= 2 jpjwf ¡= jpjglo-1
lp obc west i-index of a u point j of a T point j of a T point
East jpieob<=jpiglo-2 jpjed >= 2 jpjef<= jpjglo-1
lp obc east i-index of a u point j of a T point j of a T point
South jpjsob >= 2 jpisd >= 2 jpisf<=jpiglo-1
lp obc south j-index of a v point i of a T point i of a T point
North jpjnob <= jpjglo-2 jpind >= 2 jpinf<=jpiglo-1
lp obc north j-index of a v point i of a T point i of a T point

TABLE 8.1 – Names of different indices relating to the open boundaries. In the
case of a completely open ocean domain with four ocean boundaries, the parame-
ters take exactly the values indicated.

The open boundaries must be along coordinate lines. On the C-grid, the boundary
itself is along a line of normal velocity points : v points for a zonal open boundary (the
south or north one), and u points for a meridional open boundary (the west or east one).
Another constraint is that there still must be a row of masked points all around the domain,
as if the domain were a closed basin (unless periodic conditions are used together with
open boundary conditions). Therefore, an open boundary cannot be located at the first/last
index, namely, 1, jpiglo or jpjglo. Also, the open boundary algorithm involves calculating
the normal velocity points situated just on the boundary, as well as the tangential velocity
and temperature and salinity just outside the boundary. This means that for a west/south
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FIGURE 8.7 – Localization of the North open boundary points.

boundary, normal velocities and temperature are calculated at the same index jpiwob and
jpjsob, respectively. For an east/north boundary, the normal velocity is calculated at index
jpieob and jpjnob, but the “outside” temperature is at index jpieob+1 and jpjnob+1. This
means that jpieob, jpjnob cannot be bigger than jpiglo-2, jpjglo-2.

The starting and ending indices are to be thought of as T point indices : in many cases
they indicate the first land T -point, at the extremity of an open boundary (the coast line
follows the f grid points, see Fig. 8.4.1 for an example of a northern open boundary). All
indices are relative to the global domain. In the free surface case it is possible to have
“ocean corners”, that is, an open boundary starting and ending in the ocean.

Although not compulsory, it is highly recommended that the bathymetry in the vici-
nity of an open boundary follows the following rule : in the direction perpendicular to
the open line, the water depth should be constant for 4 grid points. This is in order to
ensure that the radiation condition, which involves model variables next to the boundary,
is calculated in a consistent way. On Fig.8.4.1 we indicate by an = symbol, the points
which should have the same depth. It means that at the 4 points near the boundary, the
bathymetry is cylindrical . The line behind the open T -line must be 0 in the bathymetry
file (as shown on Fig.8.4.1 for example).
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8.4.2 Boundary data

It is necessary to provide information at the boundaries. The simplest case is when
this information does not change in time and is equal to the initial conditions (namelist
variable nn obcdta=0). This is the case for the standard configuration EEL5 with open
boundaries. When (nn obcdta=1), open boundary information is read from netcdf files.
For convenience the input files are supposed to be similar to the ”history” NEMO output
files, for dimension names and variable names. Open boundary arrays must be dimensio-
ned according to the parameters of table 8.4.1 : for example, at the western boundary,
arrays have a dimension of jpwf -jpwd+1 in the horizontal and jpk in the vertical.

When ocean observations are used to generate the boundary data (a hydrographic sec-
tion for example, as in ?) it happens often that only the velocity normal to the boundary
is known, which is the reason why the initial OBC code assumes that only T , S, and the
normal velocity (u or v) needs to be specified. As more and more global model solutions
and ocean analysis products become available, it will be possible to provide information
about all the variables (including the tangential velocity) so that the specification of four
variables at each boundaries will become standard. For the sea surface height, one must
distinguish between the filtered free surface case and the time-splitting or explicit treat-
ment of the free surface. In the first case, it is assumed that the user does not wish to
represent high frequency motions such as tides. The boundary condition is thus one of
zero normal gradient of sea surface height at the open boundaries, following ?. No infor-
mation other than the total velocity needs to be provided at the open boundaries in that
case. In the other two cases (time splitting or explicit free surface), the user must provide
barotropic information (sea surface height and barotropic velocities) and the use of the
Flather algorithm for barotropic variables is recommanded. However, this algorithm has
not yet been fully tested and bugs remain in NEMO v2.3. Users should read the code
carefully before using it. Finally, in the case of the rigid lid approximation the barotropic
streamfunction must be provided, as documented in ?). This option is no longer recom-
mended but remains in NEMO V2.3.

One frequently encountered case is when an open boundary domain is constructed
from a global or larger scale NEMO configuration. Assuming the domain corresponds to
indices ib : ie, jb : je of the global domain, the bathymetry and forcing of the small
domain can be created by using the following netcdf utility on the global files : ncks -F
−d x, ib, ie−d y, jb, je (part of the nco series of utilities, see http ://nco.sourceforge.net).
The open boundary files can be constructed using ncks commands, following table 8.4.2.

It is assumed that the open boundary files contain the variables for the period of the
model integration. If the boundary files contain one time frame, the boundary data is held
fixed in time. If the files contain 12 values, it is assumed that the input is a climatology
for a repeated annual cycle (corresponding to the case ln obc clim =true). The case of an
arbitrary number of time frames is not yet implemented correctly ; the user is required to
write his own code in the module obc dta.F90 to deal with this situation.
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OBC Variable file name Index Start end
West T,S obcwest TS.nc ib+1 jb+1 je− 1

U obcwest U.nc ib+1 jb+1 je− 1
V obcwest V.nc ib+1 jb+1 je− 1

East T,S obceast TS.nc ie-1 jb+1 je− 1
U obceast U.nc ie-2 jb+1 je− 1
V obceast V.nc ie-1 jb+1 je− 1

South T,S obcsouth TS.nc jb+1 ib+1 ie− 1
U obcsouth U.nc jb+1 ib+1 ie− 1
V obcsouth V.nc jb+1 ib+1 ie− 1

North T,S obcnorth TS.nc je-1 ib+1 ie− 1
U obcnorth U.nc je-1 ib+1 ie− 1
V obcnorth V.nc je-2 ib+1 ie− 1

TABLE 8.2 – Requirements for creating open boundary files from a global confi-
guration, appropriate for the subdomain of indices ib : ie, jb : je. “Index” desi-
gnates the i or j index along which the u of v boundary point is situated in the
global configuration, starting and ending with the j or i indices indicated. For
example, to generate file obcnorth V.nc, use the command ncks −F −d y, je− 2
−d x, ib+ 1, ie− 1
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8.4.3 Radiation algorithm
The art of open boundary management consists in applying a constraint strong enough

that the inner domain ”feels” the rest of the ocean, but weak enough that perturbations are
allowed to leave the domain with minimum false reflections of energy. The constraints are
specified separately at each boundary as time scales for ”inflow” and ”outflow” as defined
below. The time scales are set (in days) by namelist parameters such as rn dpein, rn dpeob
for the eastern open boundary for example. When both time scales are zero for a given
boundary (e.g. for the western boundary, lp obc west=true, rn dpwob=0 and rn dpwin=0)
this means that the boundary in question is a ”fixed ” boundary where the solution is
set exactly by the boundary data. This is not recommended, except in combination with
increased viscosity in a ”sponge” layer next to the boundary in order to avoid spurious
reflections.

The radiationrelaxation algorithm is applied when either relaxation time (for ”inflow”
or ”outflow”) is non-zero. It has been developed and tested in the SPEM model and its suc-
cessor ROMS [??], which is an s-coordinate model on an Arakawa C-grid. Although the
algorithm has been numerically successful in the CLIPPER Atlantic models, the physics
do not work as expected [?]. Users are invited to consider open boundary conditions (OBC
hereafter) with some scepticism [??].

The first part of the algorithm calculates a phase velocity to determine whether per-
turbations tend to propagate toward, or away from, the boundary. Let us consider a model
variable φ. The phase velocities (Cφx,Cφy) for the variable φ, in the directions normal and
tangential to the boundary are

Cφx =
−φt

(φ2
x + φ2

y)
φx Cφy =

−φt
(φ2
x + φ2

y)
φy. (8.5)

Following ? and ? we retain only the normal component of the velocity, Cφx, setting
Cφy = 0 (but unlike the original Orlanski radiation algorithm we retain φy in the expres-
sion for Cφx).

The discrete form of (8.5), described by ?, takes into account the two rows of grid
points situated inside the domain next to the boundary, and the three previous time steps
(n, n− 1, and n− 2). The same equation can then be discretized at the boundary at time
steps n− 1, n and n+ 1 in order to extrapolate for the new boundary value φn+1.

In the open boundary algorithm as implemented in NEMO v2.3, the new boundary
values are updated differently depending on the sign of Cφx. Let us take an eastern boun-
dary as an example. The solution for variable φ at the boundary is given by a generalized
wave equation with phase velocity Cφ, with the addition of a relaxation term, as :

φt = −Cφxφx +
1
τo

(φc − φ) (Cφx > 0), (8.6)

φt =
1
τi

(φc − φ) (Cφx < 0), (8.7)

where φc is the estimate of φ at the boundary, provided as boundary data. Note that
in (8.6), Cφx is bounded by the ratio δx/δt for stability reasons. When Cφx is east-
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ward (outward propagation), the radiation condition (8.6) is used. When Cφx is west-
ward (inward propagation), (8.7) is used with a strong relaxation to climatology (usually
τi = rn dpein =1 day). Equation (8.7) is solved with a Euler time-stepping scheme. As
a consequence, setting τi smaller than, or equal to the time step is equivalent to a fixed
boundary condition. A time scale of one day is usually a good compromise which gua-
rantees that the inflow conditions remain close to climatology while ensuring numerical
stability.

In the case of a western boundary located in the Eastern Atlantic, ? have been able to
implement the radiation algorithm without any boundary data, using persistence from the
previous time step instead. This solution has not worked in other cases [?], so that the use
of boundary data is recommended. Even in the outflow condition (8.6), we have found it
desirable to maintain a weak relaxation to climatology. The time step is usually chosen so
as to be larger than typical turbulent scales (of order 1000 days ).

The radiation condition is applied to the model variables : temperature, salinity, tan-
gential and normal velocities. For normal and tangential velocities, u and v, radiation is
applied with phase velocities calculated from u and v respectively. For the radiation of
tracers, we use the phase velocity calculated from the tangential velocity in order to avoid
calculating too many independent radiation velocities and because tangential velocities
and tracers have the same position along the boundary on a C-grid.

8.4.4 Domain decomposition (key mpp mpi)

When key mpp mpi is active in the code, the computational domain is divided into
rectangles that are attributed each to a different processor. The open boundary code is
“mpp-compatible” up to a certain point. The radiation algorithm will not work if there is
an mpp subdomain boundary parallel to the open boundary at the index of the boundary, or
the grid point after (outside), or three grid points before (inside). On the other hand, there
is no problem if an mpp subdomain boundary cuts the open boundary perpendicularly.
These geometrical limitations must be checked for by the user (there is no safeguard in
the code). The general principle for the open boundary mpp code is that loops over the
open boundaries not sure what this means are performed on local indices (nie0, nie1,
nje0, nje1 for an eastern boundary for instance) that are initialized in module obc ini.F90.
Those indices have relevant values on the processors that contain a segment of an open
boundary. For processors that do not include an open boundary segment, the indices are
such that the calculations within the loops are not performed.

Arrays of climatological data that are read from files are seen by all processors and
have the same dimensions for all (for instance, for the eastern boundary, uedta(jpjglo,jpk,2)).
On the other hand, the arrays for the calculation of radiation are local to each processor
(uebnd(jpj,jpk,3,3) for instance). This allowed the CLIPPER model for example, to save
on memory where the eastern boundary crossed 8 processors so that jpj was much smaller
than (jpjef -jpjed+1).
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8.4.5 Volume conservation
It is necessary to control the volume inside a domain when using open boundaries.

With fixed boundaries, it is enough to ensure that the total inflow/outflow has reasonable
values (either zero or a value compatible with an observed volume balance). When using
radiative boundary conditions it is necessary to have a volume constraint because each
open boundary works independently from the others. The methodology used to control
this volume is identical to the one coded in the ROMS model [?].

Explain obc vol. . .

OBC algorithm for update, OBC restart, list of routines where obc key appears. . .

OBC rigid lid ? . . .

8.5 Unstructured Open Boundary Conditions (key bdy)
!-----------------------------------------------------------------------
&nambdy ! unstructured open boundaries ("key_bdy")
!-----------------------------------------------------------------------

filbdy_mask = ’’ ! name of mask file (if ln_bdy_mask=.TRUE.)
filbdy_data_T = ’bdydata_grid_T.nc’ ! name of data file (T-points)
filbdy_data_U = ’bdydata_grid_U.nc’ ! name of data file (U-points)
filbdy_data_V = ’bdydata_grid_V.nc’ ! name of data file (V-points)
filbdy_data_bt_T = ’bdydata_bt_grid_T.nc’ ! name of data file for Flather condition (T-points)
filbdy_data_bt_U = ’bdydata_bt_grid_U.nc’ ! name of data file for Flather condition (U-points)
filbdy_data_bt_V = ’bdydata_bt_grid_V.nc’ ! name of data file for Flather condition (V-points)
ln_bdy_clim = .false. ! contain 1 (T) or 12 (F) time dumps and be cyclic
ln_bdy_vol = .true. ! total volume correction (see volbdy parameter)
ln_bdy_mask = .false. ! boundary mask from filbdy_mask (T) or boundaries are on edges of domain (F)
ln_bdy_tides = .true. ! Apply tidal harmonic forcing with Flather condition
ln_bdy_dyn_fla = .true. ! Apply Flather condition to velocities
ln_bdy_tra_frs = .false. ! Apply FRS condition to temperature and salinity
ln_bdy_dyn_frs = .false. ! Apply FRS condition to velocities
nbdy_dta = 1 ! = 0, bdy data are equal to the initial state

! = 1, bdy data are read in ’bdydata .nc’ files
nb_rimwidth = 9 ! width of the relaxation zone
volbdy = 0 ! = 0, the total water flux across open boundaries is zero

! = 1, the total volume of the system is conserved
/

The BDY module is an alternative implementation of open boundary conditions for
regional configurations. It implements the Flow Relaxation Scheme algorithm for tempe-
rature, salinity, velocities and ice fields, and the Flather radiation condition for the depth-
mean transports. The specification of the location of the open boundary is completely
flexible and allows for example the open boundary to follow an isobath or other irregular
contour.

The BDY module was modelled on the OBC module and shares many features and a
similar coding structure ?.

8.5.1 The Flow Relaxation Scheme
The Flow Relaxation Scheme ?,?, applies a simple relaxation of the model fields to

externally-specified values over a zone next to the edge of the model domain. Given a
model prognostic variable Φ

Φ(d) = α(d)Φe(d) + (1− α(d))Φm(d) d = 1, N (8.8)
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where Φm is the model solution and Φe is the specified external field, d gives the discrete
distance from the model boundary and α is a parameter that varies from 1 at d = 1 to a
small value at d = N . It can be shown that this scheme is equivalent to adding a relaxation
term to the prognostic equation for Φ of the form :

−1
τ

(Φ− Φe) (8.9)

where the relaxation time scale τ is given by a function of α and the model time step ∆t :

τ = ∆t
1− α
α

(8.10)

Thus the model solution is completely prescribed by the external conditions at the edge of
the model domain and is relaxed towards the external conditions over the rest of the FRS
zone. The application of a relaxation zone helps to prevent spurious reflection of outgoing
signals from the model boundary.

The function α is specified as a tanh function :

α(d) = 1− tanh
(

1
2

(d− 1)
)

d = 1, N (8.11)

The width of the FRS zone is specified in the namelist as nb rimwidth. This is typically
set to a value between 8 and 10.

8.5.2 The Flather radiation scheme
The Flather scheme ? is a radiation condition on the normal, depth-mean transport

across the open boundary. It takes the form

U = Ue +
c

h
(η − ηe) , (8.12)

whereU is the depth-mean velocity normal to the boundary and η is the sea surface height,
both from the model. The subscript e indicates the same fields from external sources.
The speed of external gravity waves is given by c =

√
gh, and h is the depth of the

water column. The depth-mean normal velocity along the edge of the model domain is
set equal to the external depth-mean normal velocity, plus a correction term that allows
gravity waves generated internally to exit the model boundary. Note that the sea-surface
height gradient in Equation 8.12 is a spatial gradient across the model boundary, so that
ηe is defined on the T points with nbrdta = 1 and η is defined on the T points with
nbrdta = 2. U and Ue are defined on the U or V points with nbrdta = 1, ie. between the
two T grid points.

8.5.3 Choice of schemes
The Flow Relaxation Scheme may be applied separately to the temperature and sa-

linity (set ln bdy tra frs to .true.) and the velocity fields (set ln bdy dyn frs to .true.).
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Flather radiation conditions may be applied using externally defined barotropic velocities
and sea-surface height (set ln bdy dyn fla to .true.) or using tidal harmonics fields (set
ln bdy tides to .true.) or both. FRS and Flather conditions may be applied simultaneously.
A typical configuration where all possible conditions might be used is a tidal, shelf-seas
model, where the barotropic boundary conditions are fixed with the Flather scheme using
tidal harmonics and possibly output from a large-scale model, and FRS conditions are
applied to the tracers and baroclinic velocity fields, using fields from a large-scale model.

Note that FRS conditions will work with the filtered (key dynspg flt) or time-split
(key dynspg ts) solutions for the surface pressure gradient. The Flather condition will
only work for the time-split solution (key dynspg ts). FRS conditions are applied at the
end of the main model time step. Flather conditions are applied during the barotropic
subcycle in the time-split solution.

8.5.4 Boundary geometry
The definition of the open boundary is completely flexible. An example is shown in

Fig. 8.5.4. The boundary zone is defined by a series of index arrays read in from the
input boundary data files : nbidta, nbjdta, and nbrdta. The first two of these define the
global (i, j) indices of each point in the boundary zone and the nbrdta array defines the
discrete distance from the boundary with nbrdta = 1 meaning that the point is next to the
edge of the model domain and nbrdta > 1 showing that the point is increasingly further
away from the edge of the model domain. These arrays are defined separately for each
of the T , U and V grids, but the relationship between the points is assumed to be as in
Fig. 8.5.4 with the T points forming the outermost row of the boundary and the first row
of velocities normal to the boundary being inside the first row of T points. The order in
which the points are defined is unimportant.

8.5.5 Input boundary data files
The input data files for the FRS conditions are defined in the namelist as filbdy data T ,

filbdy data U, filbdy data V . The input data files for the Flather conditions are defined in
the namelist as filbdy data bt T , filbdy data bt U, filbdy data bt V .

The netcdf header of a typical input data file is shown in Figure 8.5.5. The file contains
the index arrays which define the boundary geometry as noted above and the data arrays
for each field. The data arrays are dimensioned on : a time dimension ; xb which is the
index of the boundary data point in the horizontal ; and ybwhich is a degenerate dimension
of 1 to enable the file to be read by the standard NEMO I/O routines. The 3D fields also
have a depth dimension.

If ln bdy clim is set to .false., the model expects the units of the time axis to have
the form shown in ??, ie. “seconds since yyyy-mm-dd hh :mm :ss” The fields are then
linearly interpolated to the model time at each timestep. Note that for this option, the time
axis of the input files must completely span the time period of the model integration. If
ln bdy clim is set to .true. (climatological boundary forcing), the model will expect either
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FIGURE 8.8 – Example of geometry of unstructured open boundary

a single set of annual mean fields (constant boundary forcing) or 12 sets of monthly mean
fields in the input files.

As in the OBC module there is an option to use initial conditions as boundary condi-
tions. This is chosen by setting nb dta = 0. However, since the model defines the boun-
dary geometry by reading the boundary index arrays from the input files, it is still neces-
sary to provide a set of input files in this case. They need only contain the boundary index
arrays, nbidta, nbjdta, nbrdta.
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 Nesting code for NEMO 

Ref.: MERSEA-WP09-MERCA-TASK-9.1.1 page 15 

Figure 11: Ncdump output example of boundary data file at T-points. 

 

FIGURE 8.9 – Example of header of netcdf input data file for BDY

8.5.6 Volume correction

There is an option to force the total volume in the regional model to be constant,
similar to the option in the OBC module. This is controlled by the volbdy parameter in
the namelist. A value of volbdy = 0 indicates that this option is not used. If volbdy = 1
then a correction is applied to the normal velocities around the boundary at each timestep
to ensure that the integrated volume flow through the boundary is zero. If volbdy = 2
then the calculation of the volume change on the timestep includes the change due to the
freshwater flux across the surface and the correction velocity corrects for this as well.
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8.5.7 Tidal harmonic forcing
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The lateral physics terms in the momentum and tracer equations have been descri-
bed in §2.5.1 and their discrete formulation in §5.2 and §6.6). In this section we further
discuss each lateral physics option. Choosing one lateral physics scheme means for the
user defining, (1) the space and time variations of the eddy coefficients ; (2) the direction
along which the lateral diffusive fluxes are evaluated (model level, geopotential or iso-
pycnal surfaces) ; and (3) the type of operator used (harmonic, or biharmonic operators,
and for tracers only, eddy induced advection on tracers). These three aspects of the late-
ral diffusion are set through namelist parameters and CPP keys (see the nam traldf and
nam dynldf below).

!-----------------------------------------------------------------------
&namtra_ldf ! lateral diffusion scheme for tracer
!-----------------------------------------------------------------------

! Type of the operator :
ln_traldf_lap = .true. ! laplacian operator
ln_traldf_bilap = .false. ! bilaplacian operator

! Direction of action :
ln_traldf_level = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential) (require "key_ldfslp" when ln_sco=T)
ln_traldf_iso = .true. ! iso-neutral (require "key_ldfslp")

! Coefficient
rn_aht_0 = 2000. ! horizontal eddy diffusivity for tracers [m2/s]
rn_ahtb_0 = 0. ! background eddy diffusivity for ldf_iso [m2/s]
rn_aeiv_0 = 2000. ! eddy induced velocity coefficient [m2/s] (require "key_traldf_eiv")

/

!-----------------------------------------------------------------------
&namdyn_ldf ! lateral diffusion on momentum
!-----------------------------------------------------------------------

! Type of the operator :
ln_dynldf_lap = .true. ! laplacian operator
ln_dynldf_bilap = .false. ! bilaplacian operator

! Direction of action :
ln_dynldf_level = .false. ! iso-level
ln_dynldf_hor = .true. ! horizontal (geopotential) (require "key_ldfslp" in s-coord.)
ln_dynldf_iso = .false. ! iso-neutral (require "key_ldfslp")

! Coefficient
rn_ahm_0 = 40.e3 ! horizontal eddy viscosity [m2/s]
rn_ahmb_0 = 0. ! background eddy viscosity for ldf_iso [m2/s]
rn_ahm_0_blp = 0. ! horizontal bilaplacian eddy viscosity [m4/s]

/

9.1 Lateral Mixing Coefficient (ldftra.F90, ldfdyn.F90)
Introducing a space variation in the lateral eddy mixing coefficients changes the mo-

del core memory requirement, adding up to four extra three-dimensional arrays for the
geopotential or isopycnal second order operator applied to momentum. Six CPP keys
control the space variation of eddy coefficients : three for momentum and three for tracer.
The three choices allow : a space variation in the three space directions (key traldf c3d,
key dynldf c3d), in the horizontal plane (key traldf c2d, key dynldf c2d), or in the ver-
tical only (key traldf c1d, key dynldf c1d). The default option is a constant value over
the whole ocean on both momentum and tracers.

The number of additional arrays that have to be defined and the gridpoint position at
which they are defined depend on both the space variation chosen and the type of operator
used. The resulting eddy viscosity and diffusivity coefficients can be a function of more
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than one variable. Changes in the computer code when switching from one option to
another have been minimized by introducing the eddy coefficients as statement functions
(include file ldftra substitute.h90 and ldfdyn substitute.h90). The functions are replaced
by their actual meaning during the preprocessing step (CPP). The specification of the
space variation of the coefficient is made in ldftra.F90 and ldfdyn.F90, or more precisely
in include files ldftra cNd.h90 and ldfdyn cNd.h90, with N=1, 2 or 3. The user can modify
these include files as he/she wishes. The way the mixing coefficient are set in the reference
version can be briefly described as follows :

Constant Mixing Coefficients (default option)

When none of the key ldfdyn ... and key ldftra ... keys are defined, a constant value
is used over the whole ocean for momentum and tracers, which is specified through the
rn ahm0 and rn aht0 namelist parameters.

Vertically varying Mixing Coefficients (key ldftra c1d and key ldfdyn c1d)

The 1D option is only available when using the z-coordinate with full step. Indeed in
all the other types of vertical coordinate, the depth is a 3D function of (i,j,k) and therefore,
introducing depth-dependent mixing coefficients will require 3D arrays. In the 1D option,
a hyperbolic variation of the lateral mixing coefficient is introduced in which the surface
value is rn aht0 (rn ahm0), the bottom value is 1/4 of the surface value, and the transition
takes place around z=300 m with a width of 300 m (i.e. both the depth and the width of
the inflection point are set to 300 m). This profile is hard coded in file ldftra c1d.h90, but
can be easily modified by users.

Horizontally Varying Mixing Coefficients (key ldftra c2d and key ldfdyn c2d)

By default the horizontal variation of the eddy coefficient depends on the local mesh
size and the type of operator used :

Al =





max(e1, e2)
emax

Alo for laplacian operator

max(e1, e2)3

e3
max

Alo for bilaplacian operator
(9.1)

where emax is the maximum of e1 and e2 taken over the whole masked ocean domain,
and Alo is the rn ahm0 (momentum) or rn aht0 (tracer) namelist parameter. This variation
is intended to reflect the lesser need for subgrid scale eddy mixing where the grid size
is smaller in the domain. It was introduced in the context of the DYNAMO modelling
project [?]. Note that such a grid scale dependance of mixing coefficients significantly
increase the range of stability of model configurations presenting large changes in grid
pacing such as global ocean models. Indeed, in such a case, a constant mixing coefficient
can lead to a blow up of the model due to large coefficient compare to the smallest grid
size (see §3.3), especially when using a bilaplacian operator.
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Other formulations can be introduced by the user for a given configuration. For example,
in the ORCA2 global ocean model (key orca r2), the laplacian viscosity operator uses
rn ahm0 = 4.104 m2/s poleward of 20◦ north and south and decreases linearly to rn aht0 =
2.103 m2/s at the equator [??]. This modification can be found in routine ldf dyn c2d orca
defined in ldfdyn c2d.F90. Similar modified horizontal variations can be found with the
Antarctic or Arctic sub-domain options of ORCA2 and ORCA05 (key antarctic or key arctic
defined, see ldfdyn antarctic.h90 and ldfdyn arctic.h90).

Space Varying Mixing Coefficients (key ldftra c3d and key ldfdyn c3d)

The 3D space variation of the mixing coefficient is simply the combination of the 1D
and 2D cases, i.e. a hyperbolic tangent variation with depth associated with a grid size
dependence of the magnitude of the coefficient.

Space and Time Varying Mixing Coefficients

There is no default specification of space and time varying mixing coefficient. The
only case available is specific to the ORCA2 and ORCA05 global ocean configurations
(key orca r2 or key orca r05). It provides only a tracer mixing coefficient for eddy in-
duced velocity (ORCA2) or both iso-neutral and eddy induced velocity (ORCA05) that
depends on the local growth rate of baroclinic instability. This specification is actually
used when an ORCA key and both key traldf eiv and key traldf c2d are defined.

A space variation in the eddy coefficient appeals several remarks :
(1) the momentum diffusion operator acting along model level surfaces is written in

terms of curl and divergent components of the horizontal current (see §2.5.2). Although
the eddy coefficient can be set to different values in these two terms, this option is not
available.

(2) with an horizontally varying viscosity, the quadratic integral constraints on en-
strophy and on the square of the horizontal divergence for operators acting along model-
surfaces are no longer satisfied (Appendix C.7).

(3) for isopycnal diffusion on momentum or tracers, an additional purely horizontal
background diffusion with uniform coefficient can be added by setting a non zero value of
rn ahmb0 or rn ahtb0, a background horizontal eddy viscosity or diffusivity coefficient
(namelist parameters whose default values are 0). However, the technique used to com-
pute the isopycnal slopes is intended to get rid of such a background diffusion, since it
introduces spurious diapycnal diffusion (see §9.2).

(4) when an eddy induced advection term is used (key trahdf eiv), Aeiv, the eddy
induced coefficient has to be defined. Its space variations are controlled by the same CPP
variable as for the eddy diffusivity coefficient (i.e. key traldf cNd).

(5) the eddy coefficient associated with a biharmonic operator must be set to a negative
value.

(6) it is possible to use both the laplacian and biharmonic operators concurrently.



9.2. Direction of Lateral Mixing (ldfslp) 155

(7) it is possible to run without explicit lateral diffusion on momentum (ln dynldf lap
= ln dynldf bilap = false). This is recommended when using the UBS advection scheme
on momentum (ln dynadv ubs = true, see 6.3.2) and can be useful for testing purposes.

9.2 Direction of Lateral Mixing (ldfslp.F90)
A direction for lateral mixing has to be defined when the desired operator does not

act along the model levels. This occurs when (a) horizontal mixing is required on tracer
or momentum (ln traldf hor or ln dynldf hor) in s- or mixed s-z- coordinates, and (b)
isoneutral mixing is required whatever the vertical coordinate is. This direction of mixing
is defined by its slopes in the i- and j-directions at the face of the cell of the quantity to
be diffused. For a tracer, this leads to the following four slopes : r1u, r1w, r2v, r2w (see
(5.11)), while for momentum the slopes are r1t, r1uw, r2f , r2uw for u and r1f , r1vw, r2t,
r2vw for v.

9.2.1 slopes for tracer geopotential mixing in the s-coordinate
In s-coordinates, geopotential mixing (i.e. horizontal mixing) r1 and r2 are the slopes

between the geopotential and computational surfaces. Their discrete formulation is found
by locally solving (5.11) when the diffusive fluxes in the three directions are set to zero
and T is assumed to be horizontally uniform, i.e. a linear function of zT , the depth of a
T -point.

r1u =
e3u(

e1u e3w
i+1/2, k

) δi+1/2[zt] ≈ 1
e1u

δi+1/2[zt]

r2v =
e3v(

e2v e3w
j+1/2, k

) δj+1/2[zt] ≈ 1
e2v

δj+1/2[zt]

r1w =
1
e1w

δi+1/2[zt]
i, k+1/2

≈ 1
e1w

δi+1/2[zuw]

r2w =
1
e2w

δj+1/2[zt]
j, k+1/2

≈ 1
e2w

δj+1/2[zvw]

(9.2)

These slopes are computed once in ldfslp init when ln sco=True, and either ln traldf hor=True
or ln dynldf hor=True.

9.2.2 slopes for tracer iso-neutral mixing
In iso-neutral mixing r1 and r2 are the slopes between the iso-neutral and computa-

tional surfaces. Their formulation does not depend on the vertical coordinate used. Their
discrete formulation is found using the fact that the diffusive fluxes of locally referenced
potential density (i.e. insitu density) vanish. So, substituting T by ρ in (5.11) and setting
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the diffusive fluxes in the three directions to zero leads to the following definition for the
neutral slopes :

r1u =
e3u

e1u

δi+1/2[ρ]

δk+1/2[ρ]
i+1/2, k

r2v =
e3v

e2v

δj+1/2 [ρ]

δk+1/2[ρ]
j+1/2, k

r1w =
e3w

e1w

δi+1/2[ρ]
i, k+1/2

δk+1/2[ρ]

r2w =
e3w

e2w

δj+1/2[ρ]
j, k+1/2

δk+1/2[ρ]

(9.3)

As the mixing is performed along neutral surfaces, the gradient of ρ in (9.3) has to be
evaluated at the same local pressure (which, in decibars, is approximated by the depth in
meters in the model). Therefore (9.3) cannot be used as such, but further transformation
is needed depending on the vertical coordinate used :

z-coordinate with full step : in (9.3) the densities appearing in the i and j derivatives
are taken at the same depth, thus the insitu density can be used. This is not the
case for the vertical derivatives : δk+1/2[ρ] is replaced by −ρN2/g, where N2 is
the local Brunt-Vaisälä frequency evaluated following ? (see §5.8.2).

z-coordinate with partial step : this case is identical to the full step case except that at
partial step level, the horizontal density gradient is evaluated as described in §5.9.

s- or hybrid s-z- coordinate : in the current release of NEMO , there is no specific
treatment for iso-neutral mixing in the s-coordinate. In other words, iso-neutral
mixing will only be accurately represented with a linear equation of state (nn eos=1
or 2). In the case of a ”true” equation of state, the evaluation of i and j derivatives
in (9.3) will include a pressure dependent part, leading to the wrong evaluation of
the neutral slopes.

Note : The solution for s-coordinate passes trough the use of different (and better)
expression for the constraint on iso-neutral fluxes. Following ?, instead of speci-
fying directly that there is a zero neutral diffusive flux of locally referenced poten-
tial density, we stay in the T -S plane and consider the balance between the neutral
direction diffusive fluxes of potential temperature and salinity :

α F(T ) = β F(S) (9.4)
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This constraint leads to the following definition for the slopes :

r1u =
e3u

e1u

αu δi+1/2[T ]− βu δi+1/2[S]

αu δk+1/2[T ]
i+1/2, k

− βu δk+1/2[S]
i+1/2, k

r2v =
e3v

e2v

αv δj+1/2[T ]− βv δj+1/2[S]

αv δk+1/2[T ]
j+1/2, k

− βv δk+1/2[S]
j+1/2, k

r1w =
e3w

e1w

αw δi+1/2[T ]
i, k+1/2

− βw δi+1/2[S]
i, k+1/2

αw δk+1/2[T ]− βw δk+1/2[S]

r2w =
e3w

e2w

αw δj+1/2[T ]
j, k+1/2

− βw δj+1/2[S]
j, k+1/2

αw δk+1/2[T ]− βw δk+1/2[S]

(9.5)

where α and β, the thermal expansion and saline contraction coefficients introdu-
ced in §5.8.2, have to be evaluated at the three velocity points. In order to save com-
putation time, they should be approximated by the mean of their values at T -points
(for example in the case of α : αu = αT

i+1/2, αv = αT
j+1/2 and αw = αT

k+1/2).
Note that such a formulation could be also used in the z-coordinate and z-coordinate
with partial steps cases.

This implementation is a rather old one. It is similar to the one proposed by Cox
[1987], except for the background horizontal diffusion. Indeed, the Cox implementation
of isopycnal diffusion in GFDL-type models requires a minimum background horizontal
diffusion for numerical stability reasons. To overcome this problem, several techniques
have been proposed in which the numerical schemes of the ocean model are modified
[??]. Here, another strategy has been chosen [?] : a local filtering of the iso-neutral slopes
(made on 9 grid-points) prevents the development of grid point noise generated by the iso-
neutral diffusion operator (Fig. 9.2.2). This allows an iso-neutral diffusion scheme without
additional background horizontal mixing. This technique can be viewed as a diffusion
operator that acts along large-scale (2 ∆x) iso-neutral surfaces. The diapycnal diffusion
required for numerical stability is thus minimized and its net effect on the flow is quite
small when compared to the effect of an horizontal background mixing.

Nevertheless, this iso-neutral operator does not ensure that variance cannot increase,
contrary to the ? operator which has that property.

In addition and also for numerical stability reasons [??], the slopes are bounded by
1/100 everywhere. This limit is decreasing linearly to zero fom 70 meters depth and the
surface (the fact that the eddies ”feel” the surface motivates this flattening of isopycnals
near the surface).

For numerical stability reasons [??], the slopes must also be bounded by 1/100 eve-
rywhere. This constraint is applied in a piecewise linear fashion, increasing from zero at
the surface to 1/100 at 70 metres and thereafter decreasing to zero at the bottom of the
ocean. (the fact that the eddies ”feel” the surface motivates this flattening of isopycnals
near the surface).



158 Lateral Ocean Physics (LDF)

FIGURE 9.1 – averaging procedure for isopycnal slope computation.

add here a discussion about the flattening of the slopes, vs tapering the coefficient.

9.2.3 slopes for momentum iso-neutral mixing
The iso-neutral diffusion operator on momentum is the same as the one used on tracers

but applied to each component of the velocity separately (see (6.26) in section 6.6.2). The
slopes between the surface along which the diffusion operator acts and the surface of
computation (z- or s-surfaces) are defined at T -, f -, and uw- points for the u-component,
and T -, f - and vw- points for the v-component. They are computed from the slopes used
for tracer diffusion, i.e. (9.2) and (9.3) :

r1t = r1u
i r1f = r1u

i+1/2

r2f = r2v
j+1/2 r2t = r2v

j

r1uw = r1w
i+1/2 and r1vw = r1w

j+1/2

r2uw = r2w
j+1/2 r2vw = r2w

j+1/2

(9.6)

The major issue remaining is in the specification of the boundary conditions. The
same boundary conditions are chosen as those used for lateral diffusion along model level
surfaces, i.e. using the shear computed along the model levels and with no additional
friction at the ocean bottom (see §8.1).
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9.3 Eddy Induced Velocity (traadv eiv.F90, ldfeiv.F90)
When Gent and McWilliams [1990] diffusion is used (key traldf eiv defined), an

eddy induced tracer advection term is added, the formulation of which depends on the
slopes of iso-neutral surfaces. Contrary to the case of iso-neutral mixing, the slopes used
here are referenced to the geopotential surfaces, i.e. (9.2) is used in z-coordinates, and the
sum (9.2) + (9.3) in s-coordinates. The eddy induced velocity is given by :

u∗ =
1

e2ue3u
δk

[
e2uA

eiv
uw r1w

i+1/2
]

v∗ =
1

e1ue3v
δk

[
e1v A

eiv
vw r2w

j+1/2
]

w∗ =
1

e1we2w

{
δi

[
e2uA

eiv
uw r1w

i+1/2
]

+ δj

[
e1v A

eiv
vw r2w

j+1/2
]}

(9.7)

where Aeiv is the eddy induced velocity coefficient whose value is set through rn aeiv,
a nam traldf namelist parameter. The three components of the eddy induced velocity are
computed and add to the eulerian velocity in traadv eiv.F90. This has been preferred to
a separate computation of the advective trends associated with the eiv velocity, since it
allows us to take advantage of all the advection schemes offered for the tracers (see §5.1)
and not just the 2nd order advection scheme as in previous releases of OPA [?]. This
is particularly useful for passive tracers where positivity of the advection scheme is of
paramount importance.

At the surface, lateral and bottom boundaries, the eddy induced velocity, and thus the
advective eddy fluxes of heat and salt, are set to zero.
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FIGURE 9.2 – Vertical profile of the slope used for lateral mixing in the mixed
layer : (a) in the real ocean the slope is the iso-neutral slope in the ocean inter-
ior, which has to be adjusted at the surface boundary (i.e. it must tend to zero at
the surface since there is no mixing across the air-sea interface : wall boundary
condition). Nevertheless, the profile between the surface zero value and the inter-
ior iso-neutral one is unknown, and especially the value at the base of the mixed
layer ; (b) profile of slope using a linear tapering of the slope near the surface and
imposing a maximum slope of 1/100 ; (c) profile of slope actually used in NEMO :
a linear decrease of the slope from zero at the surface to its ocean interior value
computed just below the mixed layer. Note the huge change in the slope at the
base of the mixed layer between (b) and (c).
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10.1 Vertical Mixing
The discrete form of the ocean subgrid scale physics has been presented in §5.3 and

§6.7. At the surface and bottom boundaries, the turbulent fluxes of momentum, heat and
salt have to be defined. At the surface they are prescribed from the surface forcing (see
Chap. 7), while at the bottom they are set to zero for heat and salt, unless a geothermal flux
forcing is prescribed as a bottom boundary condition (i.e. key trabbl defined, see §5.4.3),
and specified through a bottom friction parameterisation for momentum (see §10.4).

In this section we briefly discuss the various choices offered to compute the verti-
cal eddy viscosity and diffusivity coefficients, Avmu , Avmv and AvT (AvS), defined at
uw-, vw- and w- points, respectively (see §5.3 and §6.7). These coefficients can be as-
sumed to be either constant, or a function of the local Richardson number, or computed
from a turbulent closure model (either TKE or KPP formulation). The computation of
these coefficients is initialized in the zdfini.F90 module and performed in the zdfric.F90,
zdftke.F90 or zdfkpp.F90 modules. The trends due to the vertical momentum and tracer
diffusion, including the surface forcing, are computed and added to the general trend in
the dynzdf.F90 and trazdf.F90 modules, respectively. These trends can be computed using
either a forward time stepping scheme (namelist parameter ln zdfexp=true) or a backward
time stepping scheme (ln zdfexp=false) depending on the magnitude of the mixing coeffi-
cients, and thus of the formulation used (see §3).

10.1.1 Constant (key zdfcst)
!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

When key zdfcst is defined, the momentum and tracer vertical eddy coefficients are
set to constant values over the whole ocean. This is the crudest way to define the vertical
ocean physics. It is recommended that this option is only used in process studies, not in
basin scale simulations. Typical values used in this case are :

Avmu = Avmv = 1.2 10−4 m2.s−1

AvT = AvS = 1.2 10−5 m2.s−1
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These values are set through the rn avm0 and rn avt0 namelist parameters. In all
cases, do not use values smaller that those associated with the molecular viscosity and
diffusivity, that is ∼ 10−6 m2.s−1 for momentum, ∼ 10−7 m2.s−1 for temperature and
∼ 10−9 m2.s−1 for salinity.

10.1.2 Richardson Number Dependent (key zdfric)
!-----------------------------------------------------------------------
&namzdf_ric ! richardson number dependent vertical diffusion ("key_zdfric" )
!-----------------------------------------------------------------------

rn_avmri = 100.e-4 ! maximum value of the vertical viscosity
rn_alp = 5. ! coefficient of the parameterization
nn_ric = 2 ! coefficient of the parameterization

/

When key zdfric is defined, a local Richardson number dependent formulation for
the vertical momentum and tracer eddy coefficients is set. The vertical mixing coefficients
are diagnosed from the large scale variables computed by the model. In situ measurements
have been used to link vertical turbulent activity to large scale ocean structures. The hypo-
thesis of a mixing mainly maintained by the growth of Kelvin-Helmholtz like instabilities
leads to a dependency between the vertical eddy coefficients and the local Richardson
number (i.e. the ratio of stratification to vertical shear). Following ?, the following for-
mulation has been implemented :





AvT =
AvTric

(1 + a Ri)n
+AvTb

Avm =
AvT

(1 + a Ri)
+Avmb

(10.1)

whereRi = N2/ (∂zUh)2 is the local Richardson number,N is the local Brunt-Vaisälä fre-
quency (see §5.8.2), AvTb and Avmb are the constant background values set as in the
constant case (see §10.1.1), and AvTric = 10−4 m2.s−1 is the maximum value that can
be reached by the coefficient when Ri ≤ 0, a = 5 and n = 2. The last three values can
be modified by setting the rn avmri, rn alp and nn ric namelist parameters, respectively.

10.1.3 TKE Turbulent Closure Scheme (key zdftke)
!-----------------------------------------------------------------------
&namzdf_tke ! turbulent eddy kinetic dependent vertical diffusion ("key_zdftke")
!-----------------------------------------------------------------------

rn_ediff = 0.1 ! coef. for vertical eddy coef. (avt=rn_ediff*mxl*sqrt(e) )
rn_ediss = 0.7 ! coef. of the Kolmogoroff dissipation
rn_ebb = 60. ! coef. of the surface input of tke
rn_emin = 1.e-6 ! minimum value of tke [m2/s2]
rn_emin0 = 1.e-4 ! surface minimum value of tke [m2/s2]
rn_bshear = 1.e-20 ! background shear (>0)
nn_mxl = 2 ! mixing length: = 0 bounded by the distance to surface and bottom

! = 1 bounded by the local vertical scale factor
! = 2 first vertical derivative of mixing length bounded by 1
! = 3 same criteria as case 2 but applied in a different way

nn_pdl = 1 ! Prandtl number function of richarson number (=1, avt=pdl(Ri)*avm) or not (=0, avt=avm)
ln_mxl0 = .false. ! mixing length scale surface value as function of wind stress (T) or not (F)
rn_lmin = 0.001 ! interior buoyancy lenght scale minimum value
rn_lmin0 = 0.01 ! surface buoyancy lenght scale minimum value
nn_etau = 0 ! exponentially deceasing penetration of tke due to internal & intertial waves

! = 0 no penetration ( O(2 km) resolution)
! = 1 additional tke source
! = 2 additional tke source applied only at the base of the mixed layer



164 Vertical Ocean Physics (ZDF)

nn_htau = 1 ! type of exponential decrease of tke penetration
! = 0 constant 10 m length scale
! = 1 0.5m at the equator to 30m at high latitudes

rn_efr = 0.05 ! fraction of surface tke value which penetrates inside the ocean
ln_lc = .false. ! Langmuir cell parameterisation
rn_lc = 0.15 ! coef. associated to Langmuir cells

/

The vertical eddy viscosity and diffusivity coefficients are computed from a TKE
turbulent closure model based on a prognostic equation for ē, the turbulent kinetic energy,
and a closure assumption for the turbulent length scales. This turbulent closure model
has been developed by ? in the atmospheric case, adapted by ? for the oceanic case, and
embedded in OPA, the ancestor of NEMO, by ? for equatorial Atlantic simulations. Since
then, significant modifications have been introduced by ? in both the implementation and
the formulation of the mixing length scale. The time evolution of ē is the result of the
production of ē through vertical shear, its destruction through stratification, its vertical
diffusion, and its dissipation of ? type :

∂ē

∂t
=
Km

e3
2

[(
∂u

∂k

)2

+
(
∂v

∂k

)2
]
−KρN

2 +
1
e3

∂

∂k

[
Avm

e3

∂ē

∂k

]
− cε ē

3/2

lε
(10.2)

Km = Ck lk
√
ē

Kρ = Avm/Prt
(10.3)

where N is the local Brunt-Vaisälä frequency (see §5.8.2), lε and lκ are the dissipation
and mixing length scales, Prt is the Prandtl number, Km and Kρ are the vertical eddy
viscosity and diffusivity coefficients. The constants Ck = 0.1 and Cε =

√
2/2 ≈ 0.7

are designed to deal with vertical mixing at any depth [?]. They are set through namelist
parameters nn ediff and nn ediss. Prt can be set to unity or, following ?, be a function of
the local Richardson number, Ri :

Prt =





1 if Ri ≤ 0.2
5Ri if 0.2 ≤ Ri ≤ 2
10 if 2 ≤ Ri

The choice of Prt is controlled by the nn pdl namelist parameter.
For computational efficiency, the original formulation of the turbulent length scales

proposed by ? has been simplified. Four formulations are proposed, the choice of which
is controlled by the nn mxl namelist parameter. The first two are based on the following
first order approximation [?] :

lk = lε =
√

2ē /N (10.4)

which is valid in a stable stratified region with constant values of the Brunt- Vaisälä fre-
quency. The resulting length scale is bounded by the distance to the surface or to the
bottom (nn mxl = 0) or by the local vertical scale factor (nn mxl = 1). ? notice that this
simplification has two major drawbacks : it makes no sense for locally unstable stratifi-
cation and the computation no longer uses all the information contained in the vertical
density profile. To overcome these drawbacks, ? introduces the nn mxl = 2 or 3 cases,
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FIGURE 10.1 – Illustration of the mixing length computation.

which add an extra assumption concerning the vertical gradient of the computed length
scale. So, the length scales are first evaluated as in (10.4) and then bounded such that :

1
e3

∣∣∣∣
∂l

∂k

∣∣∣∣ ≤ 1 with l = lk = lε (10.5)

(10.5) means that the vertical variations of the length scale cannot be larger than the
variations of depth. It provides a better approximation of the ? formulation while being
much less time consuming. In particular, it allows the length scale to be limited not only
by the distance to the surface or to the ocean bottom but also by the distance to a strongly
stratified portion of the water column such as the thermocline (Fig. 10.1.3). In order to
impose the (10.5) constraint, we introduce two additional length scales : lup and ldwn,
the upward and downward length scales, and evaluate the dissipation and mixing length
scales as (and note that here we use numerical indexing) :

l(k)
up = min

(
l(k) , l(k+1)

up + e
(k)
3t

)
from k = 1 to jpk

l
(k)
dwn = min

(
l(k) , l

(k−1)
dwn + e

(k−1)
3t

)
from k = jpk to 1

(10.6)

where l(k) is computed using (10.4), i.e. l(k) =
√

2ē(k)/N2(k).
In the nn mxl=2 case, the dissipation and mixing length scales take the same value :

lk = lε = min ( lup , ldwn ), while in the nn mxl=2 case, the dissipation and mixing
turbulent length scales are give as in ? :

lk =
√
lup ldwn

lε = min ( lup , ldwn )
(10.7)
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At the sea surface the value of ē is prescribed from the wind stress field : ē =
rn ebb |τ | (rn ebb=60 by default) with a minimal threshold of rn emin0= 10−4 m2.s−2

(namelist parameters). Its value at the bottom of the ocean is assumed to be equal to the
value of the level just above. The time integration of the ē equation may formally lead to
negative values because the numerical scheme does not ensure its positivity. To overcome
this problem, a cut-off in the minimum value of ē is used (rn emin namelist parameter).
Following ?, the cut-off value is set to

√
2/2 10−6 m2.s−2. This allows the subsequent

formulations to match that of ? for the diffusion in the thermocline and deep ocean :
Kρ = 10−3/N . In addition, a cut-off is applied on Km and Kρ to avoid numerical insta-
bilities associated with too weak vertical diffusion. They must be specified at least larger
than the molecular values, and are set through rn avm0 and rn avt0 (namzdf namelist, see
§10.1.1).

10.1.4 TKE discretization considerations (key zdftke)

The production of turbulence by vertical shear (the first term of the right hand side of
(10.2)) should balance the loss of kinetic energy associated with the vertical momentum
diffusion (first line in (2.36)). To do so a special care have to be taken for both the time
and space discretization of the TKE equation [?].

Let us first address the time stepping issue. Fig. 10.1.4 shows how the two-level Leap-
Frog time stepping of the momentum and tracer equations interplays with the one-level
forward time stepping of TKE equation. With this framework, the total loss of kinetic
energy (in 1D for the demonstration) due to the vertical momentum diffusion is obtained
by multiplying this quantity by ut and summing the result vertically :

∫ η

−H
ut ∂z

(
Km

t (∂zu)t+∆t
)
dz

=
[
utKm

t (∂zu)t+∆t
]η
−H
−
∫ η

−H
Km

t ∂zu
t ∂zu

t+∆t dz

(10.8)

Here, the vertical diffusion of momentum is discretized backward in time with a coeffi-
cient,Km, known at time t (Fig. 10.1.4), as it is required when using the TKE scheme (see
§3.3). The first term of the right hand side of (10.8) represents the kinetic energy transfer
at the surface (atmospheric forcing) and at the bottom (friction effect). The second term is
always negative. It is the dissipation rate of kinetic energy, and thus minus the shear pro-
duction rate of ē. (10.8) implies that, to be energetically consistent, the production rate of
ē used to compute (ē)t (and thus Km

t) should be expressed as Km
t−∆t (∂zu)t−∆t (∂zu)t

(and not by the more straightforward Km (∂zu)2 expression taken at time t or t−∆t).
A similar consideration applies on the destruction rate of ē due to stratification (se-

cond term of the right hand side of (10.2)). This term must balance the input of potential
energy resulting from vertical mixing. The rate of change of potential energy (in 1D for the
demonstration) due vertical mixing is obtained by multiplying vertical density diffusion
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FIGURE 10.2 – Illustration of the TKE time integration and its links to the mo-
mentum and tracer time integration.

tendency by g z and and summing the result vertically :∫ η

−H
g z ∂z

(
Kρ

t (∂kρ)t+∆t
)
dz

=
[
g z Kρ

t (∂zρ)t+∆t
]η
−H
−
∫ η

−H
g Kρ

t (∂kρ)t+∆t dz

= −
[
z Kρ

t (N2)t+∆t
]η
−H

+
∫ η

−H
ρt+∆tKρ

t (N2)t+∆t dz

(10.9)
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where we useN2 = −g ∂kρ/(e3ρ). The first term of the right hand side of (10.9) is always
zero because there is no diffusive flux through the ocean surface and bottom). The second
term is minus the destruction rate of ē due to stratification. Therefore (10.8) implies that,
to be energetically consistent, the product Kρ

t−∆t (N2)t should be used in (10.2), the
TKE equation.

Let us now address the space discretization issue. The vertical eddy coefficients are
defined at w-point whereas the horizontal velocity components are in the centre of the
side faces of a t-box in staggered C-grid (Fig.4.1.1). A space averaging is thus required
to obtain the shear TKE production term. By redoing the (10.8) in the 3D case, it can be
shown that the product of eddy coefficient by the shear at t and t−∆t must be performed
prior to the averaging. Furthermore, the possible time variation of e3 (key vvl case) have
to be taken into account.

The above energetic considerations leads to the following final discrete form for the
TKE equation :

(ē)t − (ē)t−∆t

∆t
≡
{((

Km
i+1/2

)t−∆t δk+1/2[ut+∆t]
e3ut+∆t

δk+1/2[ut]
e3ut

) i

+
((

Km
j+1/2

)t−∆t δk+1/2[vt+∆t]
e3vt+∆t

δk+1/2[vt]
e3vt

) j}

−Kρ
t−∆t (N2)t

+
1

e3wt+∆t
δk+1/2

[
Km

t−∆t δk[(ē)
t+∆t]

e3wt+∆t

]

−cε
(√

ē

lε

)t−∆t

(ē)t+∆t

(10.10)

where the last two terms in (10.10) (vertical diffusion and Kolmogorov dissipation) are
time stepped using a backward scheme (see§3.3). Note that the Kolmogorov term has been
linearized in time in order to render the implicit computation possible. The restart of the
TKE scheme requires the storage of ē, Km, Kρ and lε as they all appear in the right hand
side of (10.10). For the latter, it is in fact the ratio

√
ē/lε which is stored.

10.1.5 GLS Generic Length Scale (key zdfgls)
!-----------------------------------------------------------------------
&namzdf_gls ! GLS vertical diffusion ("key_zdfgls")
!-----------------------------------------------------------------------

rn_emin = 1.e-6 ! minimum value of e [m2/s2]
rn_epsmin = 1.e-12 ! minimum value of eps [m2/s3]
ln_length_lim = .true. ! limit on the dissipation rate under stable stratification (Galperin et al., 1988)
clim_galp = 0.53 ! galperin limit
ln_crban = .TRUE. ! Use Craig & Banner (1994) surface wave mixing parametrisation
ln_sigpsi = .TRUE. ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case
rn_crban = 100. ! Craig and Banner 1994 constant for wb tke flux
rn_charn = 70000. ! Charnock constant for wb induced roughness length
nn_tkebc_surf = 1 ! surface tke condition (0/1/2=Dir/Neum/Dir Mellor-Blumberg)
nn_tkebc_bot = 1 ! bottom tke condition (0/1=Dir/Neum)
nn_psibc_surf = 1 ! surface psi condition (0/1/2=Dir/Neum/Dir Mellor-Blumberg)
nn_psibc_bot = 1 ! bottom psi condition (0/1=Dir/Neum)
nn_stab_func = 2 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
nn_clos = 1 ! predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen)

/
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The Generic Length Scale (GLS) scheme is a turbulent closure scheme based on two
prognostic equations : one for the turbulent kinetic energy ē, and another for the generic
length scale, ψ [??]. This later variable is defined as : ψ = C0µ

p ēm ln, where the triplet
(p,m, n) value given in Tab.10.1.5 allows to recover a number of well-known turbulent
closures (k-kl [?], k-ε [?], k-ω [?] among others [??]). The GLS scheme is given by the
following set of equations :

∂ē

∂t
=

Km

σee3

[(
∂u

∂k

)2

+
(
∂v

∂k

)2
]
−KρN

2 +
1
e3

∂

∂k

[
Km

e3

∂ē

∂k

]
− ε (10.11)

∂ψ

∂t
=
ψ

ē

{
C1Km

σψe3

[(
∂u

∂k

)2

+
(
∂v

∂k

)2
]
− C3KρN

2 − C2 ε Fw

}

+
1
e3

∂

∂k

[
Km

e3

∂ψ

∂k

] (10.12)

Km = Cµ
√
ē l

Kρ = Cµ′
√
ē l

(10.13)

ε = C0µ
ē3/2

l
(10.14)

where N is the local Brunt-Vaisälä frequency (see §5.8.2) and ε the dissipation rate. The
constants C1, C2, C3, σe, σψ and the wall function (Fw) depends of the choice of the
turbulence model. Four different turbulent models are pre-defined (Tab.10.1.5). They are
made available through th gls namelist parameter.

k − kl k − ε k − ω generic
nn clo 0 1 2 3

(p, n,m) ( 0 , 1 , 1 ) ( 3 , 1.5 , -1 ) ( -1 , 0.5 , -1 ) ( 2 , 1 , -0.67 )
σk 2.44 1. 2. 0.8
σψ 2.44 1.3 2. 1.07
C1 0.9 1.44 0.555 1.
C2 0.5 1.92 0.833 1.22
C3 1. 1. 1. 1.
Fwall Yes – – –

TABLE 10.1 – Set of predefined GLS parameters, or equivalently predefined tur-
bulence models available with key gls and controlled by the nn clos namelist pa-
rameter.
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In the Mellor-Yamada model, the negativity of n allows to use a wall function to
force the convergence of the mixing length towards K zb (K : Kappa and zb : rugosity
length) value near physical boundaries (logarithmic boundary layer law). Cµ and Cµ′ are
calculated from stability function proposed by ?, or by ? or one of the two functions
suggested by ? (nn stab func = 0, 1, 2 or 3, resp.). The value of C0µ depends of the choice
of the stability function.

The surface and bottom boundary condition on both ē and ψ can be calculated thanks
to Dirichlet or Neumann condition through nn tkebc surf and nn tkebc bot, resp. The
wave effect on the mixing could be also being considered [?].

The ψ equation is known to fail in stably stratified flows, and for this reason almost
all authors apply a clipping of the length scale as an ad hoc remedy. With this clipping,
the maximum permissible length scale is determined by lmax = clim

√
2ē/N . A value of

clim = 0.53 is often used [?]. ? show that the value of the clipping factor is of crucial
importance for the entrainment depth predicted in stably stratified situations, and that its
value has to be chosen in accordance with the algebraic model for the turbulent ßuxes.
The clipping is only activated if ln length lim=true, and the clim is set to the clim galp
value.

10.1.6 K Profile Parametrisation (KPP) (key zdfkpp)
!------------------------------------------------------------------------
&namzdf_kpp ! K-Profile Parameterization dependent vertical mixing ("key_zdfkpp", and optionnally:
!------------------------------------------------------------------------ "key_kppcustom" or "key_kpplktb")

ln_kpprimix = .true. ! shear instability mixing
rn_difmiw = 1.0e-04 ! constant internal wave viscosity [m2/s]
rn_difsiw = 0.1e-04 ! constant internal wave diffusivity [m2/s]
rn_riinfty = 0.8 ! local Richardson Number limit for shear instability
rn_difri = 0.0050 ! maximum shear mixing at Rig = 0 [m2/s]
rn_bvsqcon = -0.01e-07 ! Brunt-Vaisala squared for maximum convection [1/s2]
rn_difcon = 1. ! maximum mixing in interior convection [m2/s]
nn_avb = 0 ! horizontal averaged (=1) or not (=0) on avt and amv
nn_ave = 1 ! constant (=0) or profile (=1) background on avt

/

The KKP scheme has been implemented by J. Chanut ...
Add a description of KPP here.

10.2 Convection
!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

Static instabilities (i.e. light potential densities under heavy ones) may occur at par-
ticular ocean grid points. In nature, convective processes quickly re-establish the static
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stability of the water column. These processes have been removed from the model via
the hydrostatic assumption so they must be parameterized. Three parameterisations are
available to deal with convective processes : a non-penetrative convective adjustment or
an enhanced vertical diffusion, or/and the use of a turbulent closure scheme.

10.2.1 Non-Penetrative Convective Adjustment (ln tranpc=.true.)
!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

The non-penetrative convective adjustment is used when ln zdfnpc=true. It is applied
at each nn npc time step and mixes downwards instantaneously the statically unstable
portion of the water column, but only until the density structure becomes neutrally stable
(i.e. until the mixed portion of the water column has exactly the density of the water just
below) [?]. The associated algorithm is an iterative process used in the following way
(Fig. 10.2.1) : starting from the top of the ocean, the first instability is found. Assume
in the following that the instability is located between levels k and k + 1. The potential
temperature and salinity in the two levels are vertically mixed, conserving the heat and
salt contents of the water column. The new density is then computed by a linear approxi-
mation. If the new density profile is still unstable between levels k + 1 and k + 2, levels
k, k + 1 and k + 2 are then mixed. This process is repeated until stability is established
below the level k (the mixing process can go down to the ocean bottom). The algorithm
is repeated to check if the density profile between level k − 1 and k is unstable and/or if
there is no deeper instability.

This algorithm is significantly different from mixing statically unstable levels two by
two. The latter procedure cannot converge with a finite number of iterations for some
vertical profiles while the algorithm used in NEMO converges for any profile in a number
of iterations which is less than the number of vertical levels. This property is of paramount
importance as pointed out by ? : it avoids the existence of permanent and unrealistic static
instabilities at the sea surface. This non-penetrative convective algorithm has been proved
successful in studies of the deep water formation in the north-western Mediterranean Sea
[???].

Note that in the current implementation of this algorithm presents several limitations.
First, potential density referenced to the sea surface is used to check whether the den-
sity profile is stable or not. This is a strong simplification which leads to large errors for
realistic ocean simulations. Indeed, many water masses of the world ocean, especially
Antarctic Bottom Water, are unstable when represented in surface-referenced potential
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FIGURE 10.3 – Example of an unstable density profile treated by the non penetra-
tive convective adjustment algorithm. 1st step : the initial profile is checked from
the surface to the bottom. It is found to be unstable between levels 3 and 4. They
are mixed. The resulting ρ is still larger than ρ(5) : levels 3 to 5 are mixed. The
resulting ρ is still larger than ρ(6) : levels 3 to 6 are mixed. The 1st step ends since
the density profile is then stable below the level 3. 2nd step : the new ρ profile is
checked following the same procedure as in 1st step : levels 2 to 5 are mixed. The
new density profile is checked. It is found stable : end of algorithm.

density. The scheme will erroneously mix them up. Second, the mixing of potential den-
sity is assumed to be linear. This assures the convergence of the algorithm even when the
equation of state is non-linear. Small static instabilities can thus persist due to cabbeling :
they will be treated at the next time step. Third, temperature and salinity, and thus den-
sity, are mixed, but the corresponding velocity fields remain unchanged. When using a
Richardson Number dependent eddy viscosity, the mixing of momentum is done through
the vertical diffusion : after a static adjustment, the Richardson Number is zero and thus
the eddy viscosity coefficient is at a maximum. When this convective adjustment algo-
rithm is used with constant vertical eddy viscosity, spurious solutions can occur since the
vertical momentum diffusion remains small even after a static adjustment. In that case,
we recommend the addition of momentum mixing in a manner that mimics the mixing in
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temperature and salinity [??].

10.2.2 Enhanced Vertical Diffusion (ln zdfevd=true)
!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

The enhanced vertical diffusion parameterisation is used when ln zdfevd=true. In this
case, the vertical eddy mixing coefficients are assigned very large values (a typical value
is 10 m2s−1) in regions where the stratification is unstable (i.e. when N2 the Brunt-
Vaisälä frequency is negative) [??]. This is done either on tracers only (nn evdm=0) or on
both momentum and tracers (nn evdm=1).

In practice, where N2 ≤ 10−12, AvTT and AvST , and if nn evdm=1, the four neigh-
bouring Avmu and Avmv values also, are set equal to the namelist parameter rn avevd.
A typical value for rn avevd is between 1 and 100 m2.s−1. This parameterisation of
convective processes is less time consuming than the convective adjustment algorithm
presented above when mixing both tracers and momentum in the case of static insta-
bilities. It requires the use of an implicit time stepping on vertical diffusion terms (i.e.
ln zdfexp=false).

Note that the stability test is performed on both before and now values of N2. This
removes a potential source of divergence of odd and even time step in a leapfrog environ-
ment [?] (see §3.5).

10.2.3 Turbulent Closure Scheme (key zdftke)
The TKE turbulent closure scheme presented in §10.1.3 and used when the key zdftke

is defined, in theory solves the problem of statically unstable density profiles. In such a
case, the term corresponding to the destruction of turbulent kinetic energy through strati-
fication in (10.2) becomes a source term, since N2 is negative. It results in large values
of AvTT and AvTT , and also the four neighbouring Avmu and Avmv (up to 1 m2s−1). These
large values restore the static stability of the water column in a way similar to that of
the enhanced vertical diffusion parameterisation (§10.2.2). However, in the vicinity of the
sea surface (first ocean layer), the eddy coefficients computed by the turbulent closure
scheme do not usually exceed 10−2m.s−1, because the mixing length scale is bounded by
the distance to the sea surface (see §10.1.3). It can thus be useful to combine the enhanced
vertical diffusion with the turbulent closure scheme, i.e. setting the ln zdfnpc namelist
parameter to true and defining the key zdftke CPP key all together.



174 Vertical Ocean Physics (ZDF)

The KPP turbulent closure scheme already includes enhanced vertical diffusion in the
case of convection, as governed by the variables bvsqcon and difcon found in zdfkpp.F90,
therefore ln zdfevd=false should be used with the KPP scheme.

10.3 Double Diffusion Mixing (zdfddm.F90 module - key zdfddm)
!-----------------------------------------------------------------------
&namzdf_ddm ! double diffusive mixing parameterization ("key_zdfddm")
!-----------------------------------------------------------------------

rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio

/

Double diffusion occurs when relatively warm, salty water overlies cooler, fresher
water, or vice versa. The former condition leads to salt fingering and the latter to diffu-
sive convection. Double-diffusive phenomena contribute to diapycnal mixing in extensive
regions of the ocean. ? include a parameterisation of such phenomena in a global ocean
model and show that it leads to relatively minor changes in circulation but exerts signifi-
cant regional influences on temperature and salinity.

Diapycnal mixing of S and T are described by diapycnal diffusion coefficients

AvT = AvTo +AvTf +AvTd

AvS = AvSo +AvSf +AvSd

where subscript f represents mixing by salt fingering, d by diffusive convection, and o by
processes other than double diffusion. The rates of double-diffusive mixing depend on the
buoyancy ratio Rρ = α∂zT/β∂zS, where α and β are coefficients of thermal expansion
and saline contraction (see §5.8.1). To represent mixing of S and T by salt fingering, we
adopt the diapycnal diffusivities suggested by Schmitt (1981) :

AvSf =

{
A∗v

1+(Rρ/Rc)n
if Rρ > 1 and N2 > 0

0 otherwise
(10.15)

AvTf = 0.7 AvSf /Rρ (10.16)

The factor 0.7 in (10.16) reflects the measured ratio αFT /βFS ≈ 0.7 of buoyancy
flux of heat to buoyancy flux of salt (e.g., ?). Following ?, we adopt Rc = 1.6, n = 6, and
A∗v = 10−4 m2.s−1.

To represent mixing of S and T by diffusive layering, the diapycnal diffusivities sug-
gested by Federov (1988) is used :

AvTd =

{
1.3635 exp

(
4.6 exp

[−0.54 (R−1
ρ − 1)

])
if 0 < Rρ < 1 and N2 > 0

0 otherwise

(10.17)

AvSd =





AvTd (1.85Rρ − 0.85) if 0.5 ≤ Rρ < 1 and N2 > 0
AvTd 0.15 Rρ if 0 < Rρ < 0.5 and N2 > 0
0 otherwise

(10.18)
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FIGURE 10.4 – From ? : (a) Diapycnal diffusivities AvTf and AvSf for temperature
and salt in regions of salt fingering. Heavy curves denote A∗v = 10−3 m2.s−1

and thin curves A∗v = 10−4 m2.s−1 ; (b) diapycnal diffusivities AvTd and AvSd for
temperature and salt in regions of diffusive convection. Heavy curves denote the
Federov parameterisation and thin curves the Kelley parameterisation. The latter
is not implemented in NEMO .

The dependencies of (10.15) to (10.18) on Rρ are illustrated in Fig. 10.3. Implemen-
ting this requires computing Rρ at each grid point on every time step. This is done in
eosbn2.F90 at the same time as N2 is computed. This avoids duplication in the computa-
tion of α and β (which is usually quite expensive).

10.4 Bottom Friction (zdfbfr.F90 module)
!-----------------------------------------------------------------------
&nambfr ! bottom friction
!-----------------------------------------------------------------------

nn_bfr = 1 ! type of bottom friction : = 0 : no slip, = 2 : nonlinear friction
! = 3 : free slip, = 1 : linear friction

rn_bfri1 = 4.e-4 ! bottom drag coefficient (linear case)
rn_bfri2 = 1.e-3 ! bottom drag coefficient (non linear case)
rn_bfeb2 = 2.5e-3 ! bottom turbulent kinetic energy background (mˆ2/sˆ2)
ln_bfr2d = .false. ! horizontal variation of the bottom friction coef (read a 2D mask file )
rn_bfrien = 50. ! local multiplying factor of bfr (ln_bfr2d = .true.)

/

Both the surface momentum flux (wind stress) and the bottom momentum flux (bot-
tom friction) enter the equations as a condition on the vertical diffusive flux. For the
bottom boundary layer, one has :

Avm (∂Uh/∂z) = FU
h (10.19)

where FU
h is represents the downward flux of horizontal momentum outside the loga-

rithmic turbulent boundary layer (thickness of the order of 1 m in the ocean). How FU
h

influences the interior depends on the vertical resolution of the model near the bottom
relative to the Ekman layer depth. For example, in order to obtain an Ekman layer depth
d =
√

2 Avm/f = 50 m, one needs a vertical diffusion coefficient Avm = 0.125 m2s−1
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(for a Coriolis frequency f = 10−4 m2s−1). With a background diffusion coefficient
Avm = 10−4 m2s−1, the Ekman layer depth is only 1.4 m. When the vertical mixing
coefficient is this small, using a flux condition is equivalent to entering the viscous forces
(either wind stress or bottom friction) as a body force over the depth of the top or bottom
model layer. To illustrate this, consider the equation for u at k, the last ocean level :

∂uk
∂t

=
1
e3u

[
Avmuw
e3uw

δk+1/2 [u]−Fuh
]
≈ −F

u
h

e3u
(10.20)

If the bottom layer thickness is 200 m, the Ekman transport will be distributed over that
depth. On the other hand, if the vertical resolution is high (1 m or less) and a turbulent
closure model is used, the turbulent Ekman layer will be represented explicitly by the
model. However, the logarithmic layer is never represented in current primitive equation
model applications : it is necessary to parameterize the fluxFuh . Two choices are available
in NEMO : a linear and a quadratic bottom friction. Note that in both cases, the rotation
between the interior velocity and the bottom friction is neglected in the present release of
NEMO .

In the code, the bottom friction is imposed by adding the trend due to the bottom
friction to the general momentum trend in dynbfr.F90. For the time-split surface pressure
gradient algorithm, the momentum trend due to the barotropic component needs to be
handled separately. For this purpose it is convenient to compute and store coefficients
which can be simply combined with bottom velocities and geometric values to provide
the momentum trend due to bottom friction. These coefficients are computed in zdfbfr.F90
and generally take the form cU

b where :

∂Uh

∂t
= −F

U
h

e3u
=

cU
b

e3u
Ub
h (10.21)

where Ub
h = (ub , vb) is the near-bottom, horizontal, ocean velocity.

10.4.1 Linear Bottom Friction (nn botfr = 0 or 1)
The linear bottom friction parameterisation (including the special case of a free-slip

condition) assumes that the bottom friction is proportional to the interior velocity (i.e. the
velocity of the last model level) :

FU
h =

Avm

e3

∂Uh

∂k
= r Ub

h (10.22)

where r is a friction coefficient expressed in ms−1. This coefficient is generally estimated
by setting a typical decay time τ in the deep ocean, and setting r = H/τ , where H is
the ocean depth. Commonly accepted values of τ are of the order of 100 to 200 days [?].
A value τ−1 = 10−7 s−1 equivalent to 115 days, is usually used in quasi-geostrophic
models. One may consider the linear friction as an approximation of quadratic friction,
r ≈ 2 CD Uav (?, Eq. 9.6.6). For example, with a drag coefficient CD = 0.002, a typical
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speed of tidal currents of Uav = 0.1 m s−1, and assuming an ocean depth H = 4000 m,
the resulting friction coefficient is r = 4 10−4 m s−1. This is the default value used in
NEMO . It corresponds to a decay time scale of 115 days. It can be changed by specifying
rn bfric1 (namelist parameter).

For the linear friction case the coefficients defined in the general expression (10.21)
are :

cub = −r
cvb = −r (10.23)

When nn botfr=1, the value of r used is rn bfric1. Setting nn botfr=0 is equivalent to set-
ting r = 0 and leads to a free-slip bottom boundary condition. These values are assigned
in zdfbfr.F90. From v3.2 onwards there is support for local enhancement of these values
via an externally defined 2D mask array (ln bfr2d=true) given in the bfr coef.nc input
NetCDF file. The mask values should vary from 0 to 1. Locations with a non-zero mask
value will have the friction coefficient increased by mask value*rn bfrien*rn bfric1.

10.4.2 Non-Linear Bottom Friction (nn botfr = 2)
The non-linear bottom friction parameterisation assumes that the bottom friction is

quadratic :

FU
h =

Avm

e3

∂Uh

∂k
= CD

√
u2
b + v2

b + eb Ub
h (10.24)

where CD is a drag coefficient, and eb a bottom turbulent kinetic energy due to tides,
internal waves breaking and other short time scale currents. A typical value of the drag
coefficient is CD = 10−3. As an example, the CME experiment [?] uses CD = 10−3

and eb = 2.5 10−3m2 s−2, while the FRAM experiment [?] uses CD = 1.4 10−3 and
eb = 2.5 10−3m2 s−2. The CME choices have been set as default values (rn bfric2 and
rn bfeb2 namelist parameters).

As for the linear case, the bottom friction is imposed in the code by adding the trend
due to the bottom friction to the general momentum trend in dynbfr.F90. For the non-linear
friction case the terms computed in zdfbfr.F90 are :

cub = − CD
[
u2 +

(
¯̄vi+1,j

)2 + eb

]1/2

cvb = − CD
[(

¯̄ui,j+1
)2 + v2 + eb

]1/2
(10.25)

The coefficients that control the strength of the non-linear bottom friction are initiali-
sed as namelist parameters : CD= rn bfri2, and eb =rn bfeb2. Note for applications which
treat tides explicitly a low or even zero value of rn bfeb2 is recommended. From v3.2
onwards a local enhancement of CD is possible via an externally defined 2D mask array
(ln bfr2d=true). See previous section for details.
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10.4.3 Bottom Friction stability considerations
Some care needs to exercised over the choice of parameters to ensure that the imple-

mentation of bottom friction does not induce numerical instability. For the purposes of
stability analysis, an approximation to (10.20) is :

∆u = −Fh
u

e3u
2∆t

= − ru
e3u

2∆t
(10.26)

where linear bottom friction and a leapfrog timestep have been assumed. To ensure that
the bottom friction cannot reverse the direction of flow it is necessary to have :

|∆u| < |u| (10.27)

which, using (10.26), gives :

r
2∆t
e3u

< 1 ⇒ r <
e3u

2∆t
(10.28)

This same inequality can also be derived in the non-linear bottom friction case if a ve-
locity of 1 m.s−1 is assumed. Alternatively, this criterion can be rearranged to suggest a
minimum bottom box thickness to ensure stability :

e3u > 2 r ∆t (10.29)

which it may be necessary to impose if partial steps are being used. For example, if |u| = 1
m.s−1, rdt = 1800 s, r = 10−3 then e3u should be greater than 3.6 m. For most appli-
cations, with physically sensible parameters these restrictions should not be of concern.
But caution may be necessary if attempts are made to locally enhance the bottom friction
parameters. To ensure stability limits are imposed on the bottom friction coefficients both
during initialisation and at each time step. Checks at initialisation are made in zdfbfr.F90
(assuming a 1 m.s−1 velocity in the non-linear case). The number of breaches of the stabi-
lity criterion are reported as well as the minimum and maximum values that have been set.
The criterion is also checked at each time step, using the actual velocity, in dynbfr.F90.
Values of the bottom friction coefficient are reduced as necessary to ensure stability ; these
changes are not reported.

10.4.4 Bottom Friction with split-explicit time splitting
When calculating the momentum trend due to bottom friction in dynbfr.F90, the bot-

tom velocity at the before time step is used. This velocity includes both the baroclinic and
barotropic components which is appropriate when using either the explicit or filtered sur-
face pressure gradient algorithms (key dynspg exp or key dynspg flt). Extra attention is
required, however, when using split-explicit time stepping (key dynspg ts). In this case
the free surface equation is solved with a small time step nn baro*rn rdt, while the three
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dimensional prognostic variables are solved with a longer time step that is a multiple of
rn rdt. The trend in the barotropic momentum due to bottom friction appropriate to this
method is that given by the selected parameterisation (i.e. linear or non-linear bottom
friction) computed with the evolving velocities at each barotropic timestep.

In the case of non-linear bottom friction, we have elected to partially linearise the
problem by keeping the coefficients fixed throughout the barotropic time-stepping to those
computed in zdfbfr.F90 using the now timestep. This decision allows an efficient use of
the cU

b coefficients to :

1. On entry to dyn spg ts, remove the contribution of the before barotropic velocity to
the bottom friction component of the vertically integrated momentum trend. Note
the same stability check that is carried out on the bottom friction coefficient in
dynbfr.F90 has to be applied here to ensure that the trend removed matches that
which was added in dynbfr.F90.

2. At each barotropic step, compute the contribution of the current barotropic velocity
to the trend due to bottom friction. Add this contribution to the vertically integrated
momentum trend. This contribution is handled implicitly which eliminates the need
to impose a stability criteria on the values of the bottom friction coefficient within
the barotropic loop.

Note that the use of an implicit formulation for the bottom friction trend means that
any limiting of the bottom friction coefficient in dynbfr.F90 does not adversely affect the
solution when using split-explicit time splitting. This is because the major contribution to
bottom friction is likely to come from the barotropic component which uses the unrestric-
ted value of the coefficient.

The implicit formulation takes the form :

Ū t+∆t =
[
Ū t−∆t + 2∆t RHS

]
/ [1− 2∆t cub /He] (10.30)

where Ū is the barotropic velocity, He is the full depth (including sea surface height),
cub is the bottom friction coefficient as calculated in zdf bfr and RHS represents all the
components to the vertically integrated momentum trend except for that due to bottom
friction.

10.5 Tidal Mixing
!-----------------------------------------------------------------------
&namzdf_tmx ! tidal mixing parameterization ("key_zdftmx")
!-----------------------------------------------------------------------

rn_htmx = 500. ! vertical decay scale for turbulence (meters)
rn_n2min = 1.e-8 ! threshold of the Brunt-Vaisala frequency (s-1)
rn_tfe = 0.333 ! tidal dissipation efficiency
rn_me = 0.2 ! mixing efficiency
ln_tmx_itf = .FALSE. ! ITF specific parameterisation
rn_tfe_itf = 1. ! ITF tidal dissipation efficiency

/
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10.5.1 Bottom intensified tidal mixing
The parameterization of tidal mixing follows the general formulation for the vertical

eddy diffusivity proposed by ? and first introduced in an OGCM by [?]. In this formulation
an additional vertical diffusivity resulting from internal tide breaking, AvTtides is expressed
as a function of E(x, y), the energy transfer from barotropic tides to baroclinic tides :

AvTtides = q Γ
E(x, y)F (z)

ρN2
(10.31)

where Γ is the mixing efficiency,N the Brunt-Vaisälä frequency (see §5.8.2), ρ the density,
q the tidal dissipation efficiency, and F (z) the vertical structure function.

The mixing efficiency of turbulence is set by Γ (rn me namelist parameter) and is
usually taken to be the canonical value of Γ = 0.2 (Osborn 1980). The tidal dissipation
efficiency is given by the parameter q (rn tfe namelist parameter) represents the part of
the internal wave energy flux E(x, y) that is dissipated locally, with the remaining 1 − q
radiating away as low mode internal waves and contributing to the background internal
wave field. A value of q = 1/3 is typically used ?. The vertical structure function F (z)
models the distribution of the turbulent mixing in the vertical. It is implemented as a
simple exponential decaying upward away from the bottom, with a vertical scale of ho
(rn htmx namelist parameter, with a typical value of 500m) [?],

F (i, j, k) =
e−

H+z
ho

ho

(
1− e− H

ho

) (10.32)

and is normalized so that vertical integral over the water column is unity.
The associated vertical viscosity is calculated from the vertical diffusivity assuming

a Prandtl number of 1, i.e. Avmtides = AvTtides. In the limit of N → 0 (or becoming nega-
tive), the vertical diffusivity is capped at 300 cm2/s and impose a lower limit on N2 of
rn n2min usually set to 10−8s−2. These bounds are usually rarely encountered.

The internal wave energy map, E(x, y) in (10.31), is derived from a barotropic model
of the tides utilizing a parameterization of the conversion of barotropic tidal energy into
internal waves. The essential goal of the parameterization is to represent the momentum
exchange between the barotropic tides and the unrepresented internal waves induced by
the tidal ßow over rough topography in a stratified ocean. In the current version of NEMO
, the map is built from the output of the barotropic global ocean tide model MOG2D-G
[?]. This model provides the dissipation associated with internal wave energy for the M2
and K1 tides component (Fig. 10.5.1). The S2 dissipation is simply approximated as being
1/4 of the M2 one. The internal wave energy is thus : E(x, y) = 1.25EM2 + EK1. Its
global mean value is 1.1 TW, in agreement with independent estimates [??].

10.5.2 Indonesian area specific treatment
When the Indonesian Through Flow (ITF) area is included in the model domain, a spe-

cific treatment of tidal induced mixing in this area can be used. It is activated through the
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FIGURE 10.5 – (a) M2 and (b) K2 internal wave drag energy from ? (W/m2).

namelist logical ln tmx itf , and the user must provide an input NetCDF file, mask itf.nc,
which contains a mask array defining the ITF area where the specific treatment is applied.

When ln tmx itf =true, the two key parameters q and F (z) are adjusted following the
parameterisation developed by ?? :

First, the Indonesian archipelago is a complex geographic region with a series of
large, deep, semi-enclosed basins connected via numerous narrow straits. Once generated,
internal tides remain confined within this semi-enclosed area and hardly radiate away.
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Therefore all the internal tides energy is consumed within this area. So it is assumed that
q = 1, i.e. all the energy generated is available for mixing. Note that for test purposed, the
ITF tidal dissipation efficiency is a namelist parameter (rn tfe itf ). A value of 1 or close
to is this recommended for this parameter.

Second, the vertical structure function, F (z), is no more associated with a bottom
intensification of the mixing, but with a maximum of energy available within the thermo-
cline. ?? have suggested that the vertical distribution of the energy dissipation proportional
to N2 below the core of the thermocline and to N above. The resulting F (z) is :

F (i, j, k) ∼





q ΓE(i, j)
ρN

∫
Ndz

when ∂zN < 0

q ΓE(i, j)
ρ
∫
N2dz

when ∂zN > 0
(10.33)

Averaged over the ITF area, the resulting tidal mixing coefficient is 1.5 cm2/s, which
agrees with the independent estimates inferred from observations. Introduced in a regio-
nal OGCM, the parameterization improves the water mass characteristics in the different
Indonesian seas, suggesting that the horizontal and vertical distributions of the mixing
are adequately prescribed [???]. Note also that such a parameterisation has a sugnificant
impact on the behaviour of global coupled GCMs [?].
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11.1 Representation of Unresolved Straits
In climate modeling, it often occurs that a crucial connections between water masses

is broken as the grid mesh is too coarse to resolve narrow straits. For example, coarse grid
spacing typically closes off the Mediterranean from the Atlantic at the Strait of Gibraltar.
In this case, it is important for climate models to include the effects of salty water entering
the Atlantic from the Mediterranean. Likewise, it is important for the Mediterranean to re-
plenish its supply of water from the Atlantic to balance the net evaporation occurring over
the Mediterranean region. This problem occurs even in eddy permitting simulations. For
example, in ORCA 1/4 ˚ several straits of the Indonesian archipelago (Ombai, Lombok...)
are much narrow than even a single ocean grid-point.

We describe briefly here the three methods that can be used in NEMO to handle such
improperly resolved straits. The first two consist of opening the strait by hand while en-
suring that the mass exchanges through the strait are not too large by either artificially
reducing the surface of the strait grid-cells or, locally increasing the lateral friction. In
the third one, the strait is closed but exchanges of mass, heat and salt across the land are
allowed. Note that such modifications are so specific to a given configuration that no at-
tempt has been made to set them in a generic way. However, examples of how they can be
set up is given in the ORCA 2 ˚ and 0.5 ˚ configurations (search for key ORCA R2 or
key ORCA R05 in the code).

11.1.1 Hand made geometry changes
• reduced scale factor in the cross-strait direction to a value in better agreement with

the true mean width of the strait. (Fig. 11.1.1). This technique is sometime called ”partially
open face” or ”partially closed cells”. The key issue here is only to reduce the faces of
T -cell (i.e. change the value of the horizontal scale factors at u- or v-point) but not the
volume of the T -cell. Indeed, reducing the volume of strait T -cell can easily produce a
numerical instability at that grid point that would require a reduction of the model time
step. The changes associated with strait management are done in domhgr.F90, just after
the definition or reading of the horizontal scale factors.
• increase of the viscous boundary layer thickness by local increase of the fmask

value at the coast (Fig. 11.1.1). This is done in dommsk.F90 together with the setting of
the coastal value of fmask (see Section 8.1)

11.1.2 Cross Land Advection (tracla.F90)
!-----------------------------------------------------------------------
&namcla ! cross land advection
!-----------------------------------------------------------------------

nn_cla = 0 ! advection between 2 ocean pts separates by land
/



11.1. Representation of Unresolved Straits 185

10oW 8oW 6oW 4oW 2oW 0o

34oN

36oN

38oN

10oW 8oW 6oW 4oW 2oW 0o

34oN

36oN

38oN

Viscous฀Boundary
layer

fmask฀set฀to฀value฀>฀2

FIGURE 11.1 – Example of the Gibraltar strait defined in a 1 ˚ x 1 ˚ mesh. Top :
using partially open cells. The meridional scale factor at v-point is reduced on
both sides of the strait to account for the real width of the strait (about 20 km).
Note that the scale factors of the strait T -point remains unchanged. Bottom : using
viscous boundary layers. The four fmask parameters along the strait coastlines are
set to a value larger than 4, i.e. ”strong” no-slip case (see Fig.8.1) creating a large
viscous boundary layer that allows a reduced transport through the strait.
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Add a short description of CLA staff here or in lateral boundary condition chapter ?

11.2 Closed seas (closea.F90)
Add here a short description of the way closed seas are managed

11.3 Sub-Domain Functionality (jpizoom, jpjzoom)
The sub-domain functionality, also improperly called the zoom option (improperly

because it is not associated with a change in model resolution) is a quite simple function
that allows a simulation over a sub-domain of an already defined configuration (i.e. wi-
thout defining a new mesh, initial state and forcings). This option can be useful for testing
the user settings of surface boundary conditions, or the initial ocean state of a huge ocean
model configuration while having a small computer memory requirement. It can also be
used to easily test specific physics in a sub-domain (for example, see [?] for a test of the
coupling used in the global ocean version of OPA between sea-ice and ocean model over
the Arctic or Antarctic ocean, using a sub-domain). In the standard model, this option
does not include any specific treatment for the ocean boundaries of the sub-domain : they
are considered as artificial vertical walls. Nevertheless, it is quite easy to add a restoring
term toward a climatology in the vicinity of such boundaries (see §5.6).

In order to easily define a sub-domain over which the computation can be performed,
the dimension of all input arrays (ocean mesh, bathymetry, forcing, initial state, ...) are de-
fined as jpidta, jpjdta and jpkdta (par oce.F90 module), while the computational domain
is defined through jpiglo, jpjglo and jpk (par oce.F90 module). When running the model
over the whole domain, the user sets jpiglo=jpidta jpjglo=jpjdta and jpk=jpkdta. When
running the model over a sub-domain, the user has to provide the size of the sub-domain,
(jpiglo, jpjglo, jpkglo), and the indices of the south western corner as jpizoom and jpjzoom
in the par oce.F90 module (Fig. 11.3).

Note that a third set of dimensions exist, jpi, jpj and jpk which is actually used to
perform the computation. It is set by default to jpi=jpjglo and jpj=jpjglo, except for mas-
sively parallel computing where the computational domain is laid out on local processor
memories following a 2D horizontal splitting.

11.4 Water column model : 1D model (key cfg 1d)
The 1D model option simulates a stand alone water column within the 3D NEMO sys-

tem. It can be applied to the ocean alone or to the ocean-ice system and can include passive
tracers or a biogeochemical model. It is set up by defining the key cfg 1d CPP key. The
1D model is a very useful tool (a) to learn about the physics and numerical treatment of
vertical mixing processes ; (b) to investigate suitable parameterisations of unresolved tur-
bulence (wind steering, langmuir circulation, skin layers) ; (c) to compare the behaviour
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FIGURE 11.2 – Position of a model domain compared to the data input domain
when the zoom functionality is used.

of different vertical mixing schemes ; (d) to perform sensitivity studies on the vertical dif-
fusion at a particular point of an ocean domain ; (d) to produce extra diagnostics, without
the large memory requirement of the full 3D model.

The methodology is based on the use of the zoom functionality over the smallest
possible domain : a 3 x 3 domain centred on the grid point of interest (see §11.3), with
some extra routines. There is no need to define a new mesh, bathymetry, initial state or
forcing, since the 1D model will use those of the configuration it is a zoom of. The chosen
grid point is set in par oce.F90 module by setting the jpizoom and jpjzoom parameters to
the indices of the location of the chosen grid point.

11.5 Accelerating the Convergence (nn acc = 1)
!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

nn_bathy = 1 ! compute (=0) or read(=1) the bathymetry file
nn_closea = 0 ! closed seas and lakes are removed (=0) or kept (=1) from the ORCA domain
nn_msh = 0 ! create (=1) a mesh file (coordinates, scale factors, masks) or not (=0)
rn_e3zps_min= 20. ! the thickness of the partial step is set larger than the minimum
rn_e3zps_rat= 0.1 ! of e3zps_min and e3zps_rat * e3t (N.B. 0<e3zps_rat<1)

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nacc=0) ==> 5760
nn_baro = 64 ! number of barotropic time step (for the split explicit algorithm) ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nacc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nacc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nacc=1)
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/

Searching an equilibrium state with an global ocean model requires a very long time
integration period (a few thousand years for a global model). Due to the size of the time
step required for numerical stability (less than a few hours), this usually requires a large
elapsed time. In order to overcome this problem, ? introduces a technique that is intended
to accelerate the spin up to equilibrium. It uses a larger time step in the tracer evolution
equations than in the momentum evolution equations. It does not affect the equilibrium
solution but modifies the trajectory to reach it.

The acceleration of convergence option is used when nn acc=1. In that case, ∆t =
rn rdt is the time step of dynamics while ∆̃t = rdttra is the tracer time-step. the former
is set from the rn rdt namelist parameter while the latter is computed using a hyperbolic
tangent profile and the following namelist parameters : rn rdtmin, rn rdtmax and rn rdth.
Those three parameters correspond to the surface value the deep ocean value and the
depth at which the transition occurs, respectively. The set of prognostic equations to solve
becomes :

∂Uh

∂t
≡ Ut+1

h − Ut−1
h

2∆t
= . . .

∂T

∂t
≡ T t+1 − T t−1

2∆̃t
= . . .

∂S

∂t
≡ St+1 − St−1

2∆̃t
= . . .

(11.1)

? has examined the consequences of this distorted physics. Free waves have a slower
phase speed, their meridional structure is slightly modified, and the growth rate of baro-
clinically unstable waves is reduced but with a wider range of instability. This technique
is efficient for searching for an equilibrium state in coarse resolution models. However its
application is not suitable for many oceanic problems : it cannot be used for transient or
time evolving problems (in particular, it is very questionable to use this technique when
there is a seasonal cycle in the forcing fields), and it cannot be used in high-resolution mo-
dels where baroclinically unstable processes are important. Moreover, the vertical varia-
tion of ∆̃t implies that the heat and salt contents are no longer conserved due to the vertical
coupling of the ocean level through both advection and diffusion. Therefore rn rdtmin =
rn rdtmax should be a more clever choice.

11.6 Model Optimisation, Control Print and Benchmark
!-----------------------------------------------------------------------
&namctl ! Control prints & Benchmark
!-----------------------------------------------------------------------

nn_print = 0 ! level of print (0 no extra print)
nn_bench = 0 ! Bench mode (1/0): CAUTION use zero except for bench

! (no physical validity of the results)
nn_bit_cmp = 0 ! bit comparison mode (1/0): CAUTION use zero except for test

! of comparison between single and multiple processor runs
ln_ctl = .false. ! trends control print (expensive!)
nn_ictls = 0 ! start i indice of control sum (use to compare mono versus
nn_ictle = 0 ! end i indice of control sum multi processor runs
nn_jctls = 0 ! start j indice of control over a subdomain)
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nn_jctle = 0 ! end j indice of control
nn_isplt = 1 ! number of processors in i-direction
nn_jsplt = 1 ! number of processors in j-direction

/

Three issues to be described here :
• Vector and memory optimisation :
key vectopt loop enables the internal loops to collapse. This is very a very efficient

way to increase the length of vector calculations and thus to speed up the model on vector
computers.

key vectopt memory is an obsolescent option. It has been introduced in order to re-
duce the memory requirement of the model at a time when in-core memory were rather
limited. This is obviously done at the cost of increasing the CPU time requirement, since
it suppress intermediate computations which would have been saved in in-core memory.
Currently it is only used in the old implementation of the TKE physics (key tke old)
where, when key vectopt memory is defined, the coefficients used for horizontal smoo-
thing of ATv and Amv are no longer computed once and for all. This reduces the memory
requirement by three 3D arrays. This option will disappear in the next NEMO release.
• Control print
1- ln ctl : compute and print the trends averaged over the interior domain in all TRA,

DYN, LDF and ZDF modules. This option is very helpful when diagnosing the origin of
an undesired change in model results.

2- also ln ctl but using the nictl and njctl namelist parameters to check the source of
differences between mono and multi processor runs.

3- key esopa (to be rename key nemo) : which is another option for model mana-
gement. When defined, this key forces the activation of all options and CPP keys. For
example, all tracer and momentum advection schemes are called ! Therefore the model
results have no physical meaning. However, this option forces both the compiler and the
model to run through all the FORTRAN lines of the model. This allows the user to check
for obvious compilation or execution errors with all CPP options, and errors in namelist
options.

4- last digit comparison (nn bit cmp). In an MPP simulation, the computation of a
sum over the whole domain is performed as the summation over all processors of each
of their sums over their interior domains. This double sum never gives exactly the same
result as a single sum over the whole domain, due to truncation differences. The ”bit
comparison” option has been introduced in order to be able to check that mono-processor
and multi-processor runs give exactly the same results.
• Benchmark (nn bench). This option defines a benchmark run based on a GYRE

configuration in which the resolution remains the same whatever the domain size. This
allows a very large model domain to be used, just by changing the domain size (jpiglo,
jpjglo) and without adjusting either the time-step or the physical parameterisations.

11.7 Elliptic solvers (SOL)
!-----------------------------------------------------------------------
&namsol ! elliptic solver / island / free surface
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!-----------------------------------------------------------------------
nn_solv = 1 ! elliptic solver: =1 preconditioned conjugate gradient (pcg)

! =2 successive-over-relaxation (sor)
nn_sol_arp = 0 ! absolute/relative (0/1) precision convergence test
rn_eps = 1.e-6 ! absolute precision of the solver
nn_nmin = 300 ! minimum of iterations for the SOR solver
nn_nmax = 800 ! maximum of iterations for the SOR solver
nn_nmod = 10 ! frequency of test for the SOR solver
rn_resmax = 1.e-10 ! absolute precision for the SOR solver
rn_sor = 1.92 ! optimal coefficient for SOR solver (to be adjusted with the domain)

/

When the filtered sea surface height option is used, the surface pressure gradient is
computed in dynspg flt.F90. The force added in the momentum equation is solved im-
plicitely. It is thus solution of an elliptic equation (2.6) for which two solvers are avai-
lable : a Successive-Over-Relaxation scheme (SOR) and a preconditioned conjugate gra-
dient scheme(PCG) [??]. The solver is selected trough the the value of nn solv (namelist
parameter).

The PCG is a very efficient method for solving elliptic equations on vector computers.
It is a fast and rather easy method to use ; which are attractive features for a large number
of ocean situations (variable bottom topography, complex coastal geometry, variable grid
spacing, islands, open or cyclic boundaries, etc ...). It does not require a search for an
optimal parameter as in the SOR method. However, the SOR has been retained because it
is a linear solver, which is a very useful property when using the adjoint model of NEMO
.

At each time step, the time derivative of the sea surface height at time step t + 1 (or
equivalently the divergence of the after barotropic transport) that appears in the filtering
forced is the solution of the elliptic equation obtained from the horizontal divergence of
the vertical summation of (2.6). Introducing the following coefficients :

cNSi,j = 2∆t2
Hv(i, j) e1v(i, j)

e2v(i, j)

cEWi,j = 2∆t2
Hu(i, j) e2u(i, j)

e1u(i, j)
bi,j = δi [e2uMu]− δj [e1vMv] ,

(11.2)

the five-point finite difference equation (??) can be rewritten as :

cNSi+1,jDi+1,j + cEWi,j+1Di,j+1 + cNSi,j Di−1,j + cEWi,j Di,j−1

− (cNSi+1,j + cEWi,j+1 + cNSi,j + cEWi,j
)
Di,j = bi,j

(11.3)

(11.3) is a linear symmetric system of equations. All the elements of the corresponding
matrix A vanish except those of five diagonals. With the natural ordering of the grid points
(i.e. from west to east and from south to north), the structure of A is block-tridiagonal with
tridiagonal or diagonal blocks. A is a positive-definite symmetric matrix of size (jpi ·
jpj)2, and B, the right hand side of (11.3), is a vector.

Note that in the linear free surface case, the depth that appears in (11.2) does not vary
with time, and thus the matrix can be computed once for all. In non-linear free surface
(key vvl defined) the matrix have to be updated at each time step.
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11.7.1 Successive Over Relaxation (nn solv=2, solsor.F90)
Let us introduce the four cardinal coefficients :

aSi,j = cNSi,j /di,j aWi,j = cEWi,j /di,j

aEi,j = cEWi,j+1/di,j aNi,j = cNSi+1,j/di,j

where di,j = cNSi,j + cNSi+1,j + cEWi,j + cEWi,j+1 (i.e. the diagonal of the matrix). (11.3) can be
rewritten as :

aNi,jDi+1,j + aEi,jDi,j+1 + aSi,jDi−1,j + aWi,jDi,j−1 −Di,j = b̃i,j (11.4)

with b̃i,j = bi,j/di,j . (11.4) is the equation actually solved with the SOR method. This
method used is an iterative one. Its algorithm can be summarised as follows (see ? for a
further discussion) :

initialisation (evaluate a first guess from previous time step computations)

D0
i,j = 2Dt

i,j −Dt−1
i,j (11.5)

iteration n, from n = 0 until convergence, do :

Rni,j =aNi,jD
n
i+1,j + aEi,jD

n
i,j+1 + aSi,jD

n+1
i−1,j + aWi,jD

n+1
i,j−1 −Dn

i,j − b̃i,j
Dn+1
i,j =Dn

i,j + ω Rni,j
(11.6)

where ω satisfies 1 ≤ ω ≤ 2. An optimal value exists for ω which significantly accelerates
the convergence, but it has to be adjusted empirically for each model domain (except for
a uniform grid where an analytical expression for ω can be found [?]). The value of ω is
set using rn sor, a namelist parameter. The convergence test is of the form :

δ =

∑
i,j
Rni,jR

n
i,j

∑
i,j
b̃ni,j b̃

n
i,j

≤ ε (11.7)

where ε is the absolute precision that is required. It is recommended that a value smaller
or equal to 10−6 is used for ε since larger values may lead to numerically induced basin
scale barotropic oscillations. The precision is specified by setting rn eps (namelist para-
meter). In addition, two other tests are used to halt the iterative algorithm. They involve
the number of iterations and the modulus of the right hand side. If the former exceeds
a specified value, nn max (namelist parameter), or the latter is greater than 1015, the
whole model computation is stopped and the last computed time step fields are saved in a
abort.nc NetCDF file. In both cases, this usually indicates that there is something wrong
in the model configuration (an error in the mesh, the initial state, the input forcing, or the
magnitude of the time step or of the mixing coefficients). A typical value of nn max is
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a few hundred when ε = 10−6, increasing to a few thousand when ε = 10−12. The vec-
torization of the SOR algorithm is not straightforward. The scheme contains two linear
recurrences on i and j. This inhibits the vectorisation. (11.6) can be been rewritten as :

Rni,j =aNi,jD
n
i+1,j + aEi,jD

n
i,j+1 + aSi,jD

n
i−1,j + W

i,jD
n
i,j−1 −Dn

i,j − b̃i,j
Rni,j =Rni,j − ω aSi,j Rni,j−1

Rni,j =Rni,j − ω aWi,j Rni−1,j

(11.8)

This technique slightly increases the number of iteration required to reach the conver-
gence, but this is largely compensated by the gain obtained by the suppression of the
recurrences.

Another technique have been chosen, the so-called red-black SOR. It consist in sol-
ving successively (11.6) for odd and even grid points. It also slightly reduced the conver-
gence rate but allows the vectorisation. In addition, and this is the reason why it has been
chosen, it is able to handle the north fold boundary condition used in ORCA configuration
(i.e. tri-polar global ocean mesh).

The SOR method is very flexible and can be used under a wide range of conditions,
including irregular boundaries, interior boundary points, etc. Proofs of convergence, etc.
may be found in the standard numerical methods texts for partial differential equations.

11.7.2 Preconditioned Conjugate Gradient (nn solv=1, solpcg.F90)
A is a definite positive symmetric matrix, thus solving the linear system (11.3) is

equivalent to the minimisation of a quadratic functional :

Ax = b↔ x = infy φ(y) , φ(y) = 1/2〈Ay, y〉 − 〈b, y〉

where 〈, 〉 is the canonical dot product. The idea of the conjugate gradient method is to
search for the solution in the following iterative way : assuming that xn has been obtained,
xn+1 is found from xn+1 = xn + αndn which satisfies :

xn+1 = inf y= xn+αn dn φ( y) ⇔ dφ

dα
= 0

and expressing φ(y) as a function of α, we obtain the value that minimises the functional :

αn = 〈rn, rn〉/〈 A dn,dn〉

where rn = b−A xn = A(x− xn) is the error at rank n. The descent vector dn s chosen
to be dependent on the error : dn = rn + βn dn−1. βn is searched such that the descent
vectors form an orthogonal basis for the dot product linked to A. Expressing the condition
〈A dn,dn−1〉 = 0 the value of βn is found : βn = 〈rn, rn〉/〈rn−1, rn−1〉. As a result, the
errors rn form an orthogonal base for the canonic dot product while the descent vectors
dn form an orthogonal base for the dot product linked to A. The resulting algorithm is
thus the following one :
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initialisation :

x0 = D0
i,j = 2Dt

i,j −Dt−1
i,j , the initial guess

r0 = d0 = b− A x0

γ0 = 〈r0, r0〉

iteration n, from n = 0 until convergence, do :

zn = A dn

αn = γn/〈zn,dn〉
xn+1 = xn + αn dn

rn+1 = rn − αn zn

γn+1 = 〈rn+1, rn+1〉
βn+1 = γn+1/γn

dn+1 = rn+1 + βn+1 dn

(11.9)

The convergence test is :

δ = γn /〈b,b〉 ≤ ε (11.10)

where ε is the absolute precision that is required. As for the SOR algorithm, the whole
model computation is stopped when the number of iterations, nn max, or the modulus of
the right hand side of the convergence equation exceeds a specified value (see §11.7.1
for a further discussion). The required precision and the maximum number of iterations
allowed are specified by setting rn eps and nn max (namelist parameters).

It can be demonstrated that the above algorithm is optimal, provides the exact solu-
tion in a number of iterations equal to the size of the matrix, and that the convergence
rate is faster as the matrix is closer to the identity matrix, i.e. its eigenvalues are closer
to 1. Therefore, it is more efficient to solve a better conditioned system which has the
same solution. For that purpose, we introduce a preconditioning matrix Q which is an
approximation of A but much easier to invert than A, and solve the system :

Q−1A x = Q−1b (11.11)

The same algorithm can be used to solve (11.11) if instead of the canonical dot product
the following one is used : 〈a,b〉Q = 〈a,Q b〉, and if b̃ = Q−1 b and Ã = Q−1 A
are substituted to b and A [?]. In NEMO , Q is chosen as the diagonal of A, i.e. the
simplest form for Q so that it can be easily inverted. In this case, the discrete formulation
of (11.11) is in fact given by (11.4) and thus the matrix and right hand side are computed
independently from the solver used.
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11.8 Diagnostics (DIA, IOM)

11.8.1 Standard Model Output (default option or key dimg)
The model outputs are of three types : the restart file, the output listing, and the output

file(s). The restart file is used internally by the code when the user wants to start the model
with initial conditions defined by a previous simulation. It contains all the information that
is necessary in order for there to be no changes in the model results (even at the computer
precision) between a run performed with several restarts and the same run performed in
one step. It should be noted that this requires that the restart file contain two consecutive
time steps for all the prognostic variables, and that it is saved in the same binary format as
the one used by the computer that is to read it (in particular, 32 bits binary IEEE format
must not be used for this file). The output listing and file(s) are predefined but should
be checked and eventually adapted to the user’s needs. The output listing is stored in the
ocean.output file. The information is printed from within the code on the logical unit
numout. To locate these prints, use the UNIX command ”grep -i numout” in the source
code directory.

In the standard configuration, the user will find the model results in NetCDF files
containing mean values (or instantaneous values if key diainstant is defined) for every
time-step where output is demanded. These outputs are defined in the diawri.F90 module.
When defining key dimgout, the output are written in DIMG format, an IEEE output
format.

Since version 3.2, an I/O server has been added which provides more flexibility in the
choice of the fields to be output as well as how the writing work is distributed over the
processors in massively parallel computing. It is activated when key dimgout is defined.

11.8.2 Tracer/Dynamics Trends (key trdlmd, key diatrdtra, key diatrddyn)
When key diatrddyn and/or key diatrddyn cpp variables are defined, each trend of

the dynamics and/or temperature and salinity time evolution equations is stored in three-
dimensional arrays just after their computation (i.e. at the end of each dyn · · · .F90 and/or
tra · · · .F90 routine). These trends are then used in diagnostic routines diadyn.F90 and
diatra.F90 respectively. In the standard model, these routines check the basin averaged
properties of the momentum and tracer equations every ntrd time-steps (namelist para-
meter). These routines are supplied as an example ; they must be adapted by the user to
his/her requirements.

These two options imply the creation of several extra arrays in the in-core memory,
increasing quite seriously the code memory requirements.

11.8.3 On-line Floats trajectories (FLO)
!-----------------------------------------------------------------------
&namflo ! float parameters ("key_float")
!-----------------------------------------------------------------------

ln_rstflo = .false. ! float restart (T) or not (F)
nn_writefl= 75 ! frequency of writing in float output file



11.9. Steric effect in sea surface height 195

nn_stockfl= 5475 ! frequency of creation of the float restart file
ln_argo = .false. ! Argo type floats (stay at the surface each 10 days)
ln_flork4 = .false. ! trajectories computed with a 4th order Runge-Kutta (T)

! or computed with Blanke’ scheme (F)
/

The on-line computation of floats adevected either by the three dimensional velocity
field or constraint to remain at a given depth (w = 0 in the computation) have been
introduced in the system during the CLIPPER project. The algorithm used is based on the
work of ?. (see also the web site describing the off-line use of this marvellous diagnostic
tool (http ://stockage.univ-brest.fr/ grima/Ariane/).

11.8.4 Other Diagnostics
Aside from the standard model variables, other diagnostics can be computed on-line

or can be added to the model. The available ready-to-add diagnostics routines can be
found in directory DIA. Among the available diagnostics are :

- the mixed layer depth (based on a density criterion) (diamxl.F90)
- the turbocline depth (based on a turbulent mixing coefficient criterion) (diamxl.F90)
- the depth of the 20 ˚ C isotherm (diahth.F90)
- the depth of the thermocline (maximum of the vertical temperature gradient) (diahth.F90)
- the meridional heat and salt transports and their decomposition (diamfl.F90)
In addition, a series of diagnostics has been added in the diaar5.F90. They corres-

ponds to outputs that are required for AR5 simulations (see Section 11.9 below for one of
them). Activating those outputs requires to define the key diaar5 CPP key.

11.9 Steric effect in sea surface height
Changes in steric sea level are caused when changes in the density of the water co-

lumn imply an expansion or contraction of the column. It is essentially produced through
surface heating/cooling and to a lesser extent through non-linear effects of the equation
of state (cabbeling, thermobaricity...). Non-Boussinesq models contain all ocean effects
within the ocean acting on the sea level. In particular, they include the steric effect. In
contrast, Boussinesq models, such as NEMO , conserve volume, rather than mass, and so
do not properly represent expansion or contraction. The steric effect is therefore not ex-
plicitely represented. This approximation does not represent a serious error with respect
to the flow field calculated by the model [?], but extra attention is required when inves-
tigating sea level, as steric changes are an important contribution to local changes in sea
level on seasonal and climatic time scales. This is especially true for investigation into sea
level rise due to global warming.

Fortunately, the steric contribution to the sea level consists of a spatially uniform
component that can be diagnosed by considering the mass budget of the world ocean [?].
In order to better understand how global mean sea level evolves and thus how the steric sea
level can be diagnosed, we compare, in the following, the non-Boussinesq and Boussinesq
cases.
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Let denoteM the total mass of liquid seawater (M =
∫
D ρdv), V the total volume

of seawater (V =
∫
D dv), A the total surface of the ocean (A =

∫
S ds), ρ̄ the global

mean seawater (in situ) density (ρ̄ = 1/V ∫D ρ dv), and η̄ the global mean sea level (η̄ =
1/A ∫S η ds).

A non-Boussinesq fluid conserves mass. It satisfies the following relations :

M = V ρ̄
V = A η̄

(11.12)

Temporal changes in total mass is obtained from the density conservation equation :

1
e3
∂t(e3 ρ) +∇(ρU) =

emp
e3

∣∣∣∣
surface

(11.13)

where ρ is the in situ density, and emp the surface mass exchanges with the other media
of the Earth system (atmosphere, sea-ice, land). Its global averaged leads to the total mass
change

∂tM = A emp (11.14)

where emp =
∫
S emp ds is the net mass flux through the ocean surface. Bringing (11.14)

and the time derivative of (11.12) together leads to the evolution equation of the mean sea
level

∂tη̄ =
emp
ρ̄
− VA

∂tρ̄

ρ̄
(11.15)

The first term in equation (11.15) alters sea level by adding or subtracting mass from the
ocean. The second term arises from temporal changes in the global mean density ; i.e.
from steric effects.

In a Boussinesq fluid, ρ is replaced by ρo in all the equation except when ρ appears
multiplied by the gravity (i.e. in the hydrostatic balance of the primitive Equations). In
particular, the mass conservation equation, (11.13), degenerates into the incompressibility
equation :

1
e3
∂t(e3) +∇(U) =

emp
ρo e3

∣∣∣∣
surface

(11.16)

and the global average of this equation now gives the temporal change of the total volume,

∂tV = A emp
ρo

(11.17)

Only the volume is conserved, not mass, or, more precisely, the mass which is conserved
is the Boussinesq mass,Mo = ρoV . The total volume (or equivalently the global mean
sea level) is altered only by net volume fluxes across the ocean surface, not by changes in
mean mass of the ocean : the steric effect is missing in a Boussinesq fluid.

Nevertheless, following [?], the steric effect on the volume can be diagnosed by consi-
dering the mass budget of the ocean. The apparent changes in M, mass of the ocean,
which are not induced by surface mass flux must be compensated by a spatially uniform
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change in the mean sea level due to expansion/contraction of the ocean [?]. In others
words, the Boussinesq mass,Mo, can be related toM, the total mass of the ocean seen
by the Boussinesq model, via the steric contribution to the sea level, ηs, a spatially uniform
variable, as follows :

Mo =M+ ρo ηsA (11.18)

Any change in M which cannot be explained by the net mass flux through the ocean
surface is converted into a mean change in sea level. Introducing the total density anomaly,
D =

∫
D da dv, where da = (ρ−ρo)/ρo is the density anomaly used in NEMO (cf. §5.8.1)

in (11.18) leads to a very simple form for the steric height :

ηs = − 1
AD (11.19)

The above formulation of the steric height of a Boussinesq ocean requires four re-
marks. First, one can be tempted to define ρo as the initial value ofM/V , i.e. set Dt=0 =
0, so that the initial steric height is zero. We do not recommend that. Indeed, in this case
ρo depends on the initial state of the ocean. Since ρo has a direct effect on the dynamics
of the ocean (it appears in the pressure gradient term of the momentum equation) it is
definitively not a good idea when inter-comparing experiments. We better recommend to
fixe once for all ρo to 1035 Kgm−3. This value is a sensible choice for the reference den-
sity used in a Boussinesq ocean climate model since, with the exception of only a small
percentage of the ocean, density in the World Ocean varies by no more than 2% from this
value (?, page 47).

Second, we have assumed here that the total ocean surface, A, does not change when
the sea level is changing as it is the case in all global ocean GCMs (wetting and drying of
grid point is not allowed).

Third, the discretisation of (11.19) depends on the type of free surface which is consi-
dered. In the non linear free surface case, i.e. key vvl defined, it is given by

ηs = −
∑

i, j, k da e1te2te3t∑
i, j, k e1te2te3t

(11.20)

whereas in the linear free surface, the volume above the z=0 surface must be explicitly
taken into account to better approximate the total ocean mass and thus the steric sea level :

ηs = −
∑

i, j, k da e1te2te3t +
∑

i, j da e1te2tη∑
i, j, k e1te2te3t +

∑
i, j e1te2tη

(11.21)

The fourth and last remark concerns the effective sea level and the presence of sea-
ice. In the real ocean, sea ice (and snow above it) depresses the liquid seawater through its
mass loading. This depression is a result of the mass of sea ice/snow system acting on the
liquid ocean. There is, however, no dynamical effect associated with these depressions
in the liquid ocean sea level, so that there are no associated ocean currents. Hence, the
dynamically relevant sea level is the effective sea level, i.e. the sea level as if sea ice (and
snow) were converted to liquid seawater [?]. However, in the current version of NEMO
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the sea-ice is levitating above the ocean without mass exchanges between ice and ocean.
Therefore the model effective sea level is always given by η + ηs, whether or not there is
sea ice present.

In AR5 outputs, the thermosteric sea level is demanded. It is steric sea level due to
changes in ocean density arising just from changes in temperature. It is given by :

ηs = − 1
A
∫

D
da(T, So, po) dv (11.22)

where So and po are the initial salinity and pressure, respectively.
Both steric and thermosteric sea level are computed in diaar5.F90 which needs the

key diaar5 defined to be called.
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A.1 Chain rule of s−coordinate

In order to establish the set of Primitive Equation in curvilinear s−coordinates (i.e. an
orthogonal curvilinear coordinate in the horizontal and an Arbitrary Lagrangian Eulerian
(ALE) coordinate in the vertical), we start from the set of equations established in §2.3.2
for the special case k = z and thus e3 = 1, and we introduce an arbitrary vertical coordi-
nate a = a(i, j, z, t). Let us define a new vertical scale factor by e3 = ∂z/∂s (which now
depends on (i, j, z, t)) and the horizontal slope of s−surfaces by :

σ1 =
1
e1

∂z

∂i

∣∣∣∣
s

and σ2 =
1
e2

∂z

∂j

∣∣∣∣
s

(A.1)

The chain rule to establish the model equations in the curvilinear s−coordinate system
is :

∂•
∂t

∣∣∣∣
z

=
∂•
∂t

∣∣∣∣
s

− ∂•
∂s

∂s

∂t

∂•
∂i

∣∣∣∣
z

=
∂•
∂i

∣∣∣∣
s

− ∂•
∂s

∂s

∂i
=
∂•
∂i

∣∣∣∣
s

− e1

e3
σ1
∂•
∂s

∂•
∂j

∣∣∣∣
z

=
∂•
∂j

∣∣∣∣
s

− ∂•
∂s

∂s

∂j
=
∂•
∂j

∣∣∣∣
s

− e2

e3
σ2
∂•
∂s

∂•
∂z

=
1
e3

∂•
∂s

(A.2)

In particular applying the time derivative chain rule to z provides the expression for
ws, the vertical velocity of the s−surfaces referenced to a fix z-coordinate :

ws =
∂z

∂t

∣∣∣∣
s

=
∂z

∂s

∂s

∂t
= e3

∂s

∂t
(A.3)

A.2 Continuity Equation in s−coordinate

Using (A.2) and the fact that the horizontal scale factors e1 and e2 do not depend
on the vertical coordinate, the divergence of the velocity relative to the (i,j,z) coordi-
nate system is transformed as follows in order to obtain its expression in the curvilinear
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s−coordinate system :

∇ ·U = 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
z

+ ∂(e1 v)
∂j

∣∣∣
z

]
+ ∂w

∂z

= 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
s
− e1

e3
σ1

∂(e2 u)
∂s + ∂(e1 v)

∂j

∣∣∣
s
− e2

e3
σ2

∂(e1 v)
∂s

]
+ ∂w

∂s
∂s
∂z

= 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
s

+ ∂(e1 v)
∂j

∣∣∣
s

]
+ 1

e3

[
∂w
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]

= 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s
− e2 u

∂e3
∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s
− e1v

∂e3
∂j

∣∣∣
s

]

+ 1
e3

[
∂w
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]

Noting that 1
e1

∂e3
∂i

∣∣∣
s

= 1
e1

∂2z
∂i ∂s

∣∣∣
s

= ∂
∂s

(
1
e1

∂z
∂i

∣∣
s

)
= ∂σ1

∂s and 1
e2

∂e3
∂j

∣∣∣
s

= ∂σ2
∂s , it be-

comes :

∇ ·U = 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]

+ 1
e3

[
∂w
∂s − u∂σ1

∂s − v ∂σ2
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]

= 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂
∂s [w − u σ1 − v σ2]

Here, w is the vertical velocity relative to the z−coordinate system. Introducing
the dia-surface velocity component, ω, defined as the velocity relative to the moving
s−surfaces and normal to them :

ω = w − ws − σ1 u− σ2 v (A.5)

with ws given by (A.3), we obtain the expression for the divergence of the velocity in the
curvilinear s−coordinate system :

∇ ·U = 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + 1

e3
∂ws
∂s

= 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + 1

e3
∂
∂s

(
e3

∂s
∂t

)

= 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + ∂

∂s
∂s
∂t + 1

e3
∂s
∂t
∂e3
∂s

= 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + 1

e3
∂e3
∂t

As a result, the continuity equation (2.1c) in the s−coordinates is :

1
e3

∂e3

∂t
+

1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣∣
s

+
∂(e1 e3 v)

∂j

∣∣∣∣
s

]
+

1
e3

∂ω

∂s
= 0 (A.7)

A additional term has appeared that take into account the contribution of the time variation
of the vertical coordinate to the volume budget.
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A.3 Momentum Equation in s−coordinate
Here we only consider the first component of the momentum equation, the generali-

zation to the second one being straightforward.

• Total derivative in vector invariant form
Let us consider (2.17), the first component of the momentum equation in the vector

invariant form. Its total z−coordinate time derivative, DuDt
∣∣
z

can be transformed as follows
in order to obtain its expression in the curvilinear s−coordinate system :

Du
Dt

∣∣
z

= ∂u
∂t

∣∣
z
− ζ|z v + 1

2e1

∂(u2+v2)
∂i

∣∣∣
z

+ w ∂u
∂z

= ∂u
∂t

∣∣
z
− ζ|z v + 1

e1 e2

[
∂(e2 v)
∂i

∣∣∣
z
− ∂(e1 u)

∂j

∣∣∣
z

]
v + 1

2e1

∂(u2+v2)
∂i

∣∣∣
z

+ w ∂u
∂z

introducing the chain rule (A.2)

= ∂u
∂t

∣∣
z
− 1

e1 e2

[
∂(e2 v)
∂i

∣∣∣
s
− ∂(e1 u)

∂j

∣∣∣
s
− e1
e3
σ1

∂(e2 v)
∂s + e2

e3
σ2

∂(e1 u)
∂s

]
v

+ 1
2e1

(
∂(u2+v2)

∂i

∣∣∣
s
− e1

e3
σ1

∂(u2+v2)
∂s

)
+ w

e3
∂u
∂s

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ w
e3

∂u
∂s −

[
σ1
e3
∂v
∂s − σ2

e3
∂u
∂s

]
v − σ1

2e3

∂(u2+v2)
∂s

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

[
w ∂u
∂s + σ1v

∂v
∂s − σ2v

∂u
∂s − σ1u

∂u
∂s − σ1v

∂v
∂s

]

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

[w − σ2v − σ1u] ∂u
∂s

Introducing ω, the dia-a-surface velocity given by (A.5)

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

(ω − ws) ∂u∂s
Applying the time derivative chain rule (first equation of (A.2)) to u and using (A.3)
provides the expression of the last term of the right hand side,

ws
∂u
∂s = ∂s

∂t
∂u
∂s = ∂u

∂t

∣∣
s
− ∂u

∂t

∣∣
z

,

leads to the s−coordinate formulation of the total z−coordinate time derivative, i.e. the
total s−coordinate time derivative :

Du

Dt

∣∣∣∣
s

=
∂u

∂t

∣∣∣∣
s

+ ζ|s v +
1

2 e1

∂(u2 + v2)
∂i

∣∣∣∣
s

+
1
e3
ω
∂u

∂s
(A.9)
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Therefore, the vector invariant form of the total time derivative has exactly the same ma-
thematical form in z− and s−coordinates. This is not the case for the flux form as shown
in next paragraph.

• Total derivative in flux form
Let us start from the total time derivative in the curvilinear s−coordinate system we

have just establish. Following the procedure used to establish (2.15), it can be transformed
into :

Du
Dt

∣∣
s

= ∂u
∂t

∣∣
s
−ζ v + 1

2 e1

∂(u2+v2)
∂i + 1

e3
ω ∂u

∂s

= ∂u
∂t

∣∣
s

+ 1
e1 e2

(
∂(e2 uu)

∂i + ∂(e1 u v)
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2

(
∂(e2u)
∂i + ∂(e1v)

∂j

)
+ 1

e3
∂ω
∂s

]

− v
e1e2

(
v ∂e2

∂i − u ∂e1
∂j

)

Introducing the vertical scale factor inside the horizontal derivative of the first two terms
(i.e. the horizontal divergence), it becomes :

Du
Dt

∣∣
s

= ∂u
∂t

∣∣
s

+ 1
e1 e2 e3

(
∂(e2e3 u2)

∂i + ∂(e1e3 uv)
∂j − e2uu

∂e3
∂i − e1uv

∂e3
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2e3

(
∂(e2e3 u)

∂i + ∂(e1e3 v)
∂j − e2u

∂e3
∂i − e1v

∂e3
∂j

)
− 1

e3
∂ω
∂s

]

− v
e1e2

(
v ∂e2

∂i − u ∂e1
∂j

)

= ∂u
∂t

∣∣
s

+ 1
e1 e2 e3

(
∂(e2e3 uu)

∂i + ∂(e1e3 u v)
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2e3

(
∂(e2e3 u)

∂i + ∂(e1e3 v)
∂j

)
− 1

e3
∂ω
∂s

]
− v

e1e2

(
v ∂e2

∂i − u ∂e1
∂j

)

Introducing a more compact form for the divergence of the momentum fluxes, and using
(A.7), the s−coordinate continuity equation, it becomes :

= ∂u
∂t

∣∣
s

+ ∇ · (Uu)|s + u 1
e3
∂e3
∂t − v

e1e2

(
v ∂e2

∂i − u ∂e1
∂j

)

which leads to the s−coordinate flux formulation of the total s−coordinate time deriva-
tive, i.e. the total s−coordinate time derivative in flux form :

Du

Dt

∣∣∣∣
s

=
1
e3

∂(e3 u)
∂t

∣∣∣∣
s

+ ∇ · (Uu)|s −
v

e1e2

(
v
∂e2

∂i
− u ∂e1

∂j

)
(A.11)
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which is the total time derivative expressed in the curvilinear s−coordinate system. It has
the same form as in the z−coordinate but for the vertical scale factor that has appeared
inside the time derivative which comes from the modification of (A.7), the continuity
equation.

• horizontal pressure gradient
The horizontal pressure gradient term can be transformed as follows :

− 1
ρo e1

∂p

∂i

∣∣∣∣
z

= − 1
ρoe1

[
∂p

∂i

∣∣∣∣
s

− e1

e3
σ1
∂p

∂s

]

= − 1
ρo e1

∂p

∂i

∣∣∣∣
s

+
σ1

ρo e3
(−g ρ e3)

= − 1
ρo e1

∂p

∂i

∣∣∣∣
s

− g ρ

ρo
σ1

Applying similar manipulation to the second component and replacing σ1 and σ2 by their
expression (A.1), it comes :

− 1
ρo e1

∂p

∂i

∣∣∣∣
z

= − 1
ρo e1

(
∂p

∂i

∣∣∣∣
s

+ g ρ
∂z

∂i

∣∣∣∣
s

)

− 1
ρo e2

∂p

∂j

∣∣∣∣
z

= − 1
ρo e2

(
∂p

∂j

∣∣∣∣
s

+ g ρ
∂z

∂j

∣∣∣∣
s

) (A.12)

An additional term appears in (A.14) which accounts for the tilt of s−surfaces with
respect to geopotential z−surfaces.

As in z-coordinate, the horizontal pressure gradient can be split in two parts following
?. Let defined a density anomaly, d, by d = (ρ − ρo)/ρo, and a hydrostatic pressure
anomaly, p′h, by p′h = g

∫ η
z d e3 dk. The pressure is then given by :

p = g

∫ η

z
ρ e3 dk = g

∫ η

z
(ρo d+ 1) e3 dk

= g ρo

∫ η

z
d e3 dk + g

∫ η

z
e3 dk

Therefore, p and p′h are linked through :

p = ρo p
′
h + g (z + η) (A.13)

and the hydrostatic pressure balance expressed in terms of p′h and d is :

∂p′h
∂k

= −d g e3
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Substituing (A.13) in (A.14) and using the definition of the density anomaly it comes
the expression in two parts :

− 1
ρo e1

∂p

∂i

∣∣∣∣
z

= − 1
e1

(
∂p′h
∂i

∣∣∣∣
s

+ g d
∂z

∂i

∣∣∣∣
s

)
− g

e1

∂η

∂i

− 1
ρo e2

∂p

∂j

∣∣∣∣
z

= − 1
e2

(
∂p′h
∂j

∣∣∣∣
s

+ g d
∂z

∂j

∣∣∣∣
s

)
− g

e2

∂η

∂j

(A.14)

This formulation of the pressure gradient is characterised by the appearance of a term de-
pending on the the sea surface height only (last term on the right hand side of expression
(A.14)). This term will be abusively named surface pressure gradient whereas the first
term will be named hydrostatic pressure gradient by analogy to the z-coordinate formu-
lation. In fact, the the true surface pressure gradient is 1/ρo∇(ρη), and η is implicitly
included in the computation of p′h through the upper bound of the vertical integration.

• The other terms of the momentum equation
The coriolis and forcing terms as well as the the vertical physics remain unchanged as

they involve neither time nor space derivatives. The form of the lateral physics is discussed
in appendix B.

• Full momentum equation
To sum up, in a curvilinear s-coordinate system, the vector invariant momentum equa-

tion solved by the model has the same mathematical expression as the one in a curvilinear
z−coordinate, but the pressure gradient term :

∂u

∂t
= + (ζ + f) v − 1

2 e1

∂

∂i

(
u2 + v2

)− 1
e3
ω
∂u

∂k

− 1
e1

(
∂p′h
∂i

+ g d
∂z

∂i

)
− g

e1

∂η

∂i
+DU

u + FU
u (A.15a)

∂v

∂t
= − (ζ + f) u− 1

2 e2

∂

∂j

(
u2 + v2

)− 1
e3
ω
∂v

∂k

− 1
e2

(
∂p′h
∂j

+ g d
∂z

∂j

)
− g

e2

∂η

∂j
+DU

v + FU
v (A.15b)

whereas the flux form momentum equation differ from it by the formulation of both the
time derivative and the pressure gradient term :

1
e3

∂ (e3 u)
∂t

= ∇ · (Uu) +
{
f +

1
e1e2

(
v
∂e2

∂i
− u ∂e1

∂j

)}
v

− 1
e1

(
∂p′h
∂i

+ g d
∂z

∂i

)
− g

e1

∂η

∂i
+DU

u + FU
u (A.16a)
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1
e3

∂ (e3 v)
∂t

= −∇ · (U v) +
{
f +

1
e1e2

(
v
∂e2

∂i
− u ∂e1

∂j

)}
u

− 1
e2

(
∂p′h
∂j

+ g d
∂z

∂j

)
− g

e2

∂η

∂j
+DU

v + FU
v (A.16b)

Both formulation share the same hydrostatic pressure balance expressed in terms of hy-
drostatic pressure and density anmalies, p′h and d = ( ρρo − 1) :

∂p′h
∂k

= −d g e3 (A.17)

It is important to realize that the change in coordinate system has only concerned the
position on the vertical. It has not affected (i,j,k), the orthogonal curvilinear set of unit
vector. (u,v) are always horizontal velocities so that their evolution is driven by horizontal
forces, in particular the pressure gradient. By contrast, ω is not w, the third component
of the velocity, but the dia-surface velocity component, i.e. the velocity relative to the
moving s−surfaces and normal to them.

A.4 Tracer Equation
The tracer equation is obtained using the same calculation as for the continuity equa-

tion and then regrouping the time derivative terms in the left hand side :

1
e3

∂ (e3T )
∂t

= − 1
e1 e2 e3

[
∂

∂i
(e2 e3 Tu) +

∂

∂j
(e1 e3 Tv)

]

+
1
e3

∂

∂k
(Tw) +DT + F T (A.18)

The expression for the advection term is a straight consequence of (A.4), the expres-
sion of the 3D divergence in the s−coordinates established above.
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B.1 Horizontal/Vertical 2nd Order Tracer Diffusive Ope-
rators

In the z-coordinate, the horizontal/vertical second order tracer diffusion operator is
given by :

DT = 1
e1 e2

[
∂
∂i

(
e2
e1
AlT ∂T

∂i

∣∣
z

)∣∣∣
z

+ ∂
∂j

(
e1
e2
AlT ∂T

∂j

∣∣∣
z

)∣∣∣
z

]
+ ∂

∂z

(
AvT ∂T

∂z

)
(B.1)

In the s-coordinate, we defined the slopes of s-surfaces, σ1 and σ2 by (A.1) and the
vertical/horizontal ratio of diffusion coefficient by ε = AvT /AlT . The diffusion operator
is given by :

DT = ∇|s ·
[
AlT < · ∇|s T

]
where < =




1 0 −σ1

0 1 −σ2

−σ1 −σ2 ε+ σ2
1 + σ2

2


 (B.2)

or in expanded form :

DT = 1
e1 e2 e3

[
e2 e3A

lT ∂
∂i

(
1
e1

∂T
∂i

∣∣
s
− σ1

e3
∂T
∂s

)∣∣∣
s

+e1 e3A
lT ∂

∂j

(
1
e2

∂T
∂j

∣∣∣
s
− σ2

e3
∂T
∂s

)∣∣∣
s

+e1 e2A
lT ∂

∂s

(
−σ1
e1

∂T
∂i

∣∣
s
− σ2

e2
∂T
∂j

∣∣∣
s

+
(
ε+ σ2

1 + σ2
2

)
1
e3

∂T
∂s

) ]

Equation (B.2) is obtained from (B.1) without any additional assumption. Indeed, for
the special case k = z and thus e3 = 1, we introduce an arbitrary vertical coordinate s =
s(i, j, z) as in Appendix A and use (A.1) and (A.2). Since no cross horizontal derivative
∂i∂j appears in (B.1), the (i,z) and (j,z) planes are independent. The derivation can then
be demonstrated for the (i,z)→ (j,s) transformation without any loss of generality :

DT = 1
e1 e2

∂
∂i

(
e2
e1
AlT ∂T

∂i

∣∣
z

)∣∣∣
z

+ ∂
∂z

(
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)

= 1
e1 e2

[
∂
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e1
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∂T
∂i
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s
− e1 σ1

e3
∂T
∂s
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s

− e1 σ1
e3

∂
∂s

(
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e1
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(
∂T
∂i
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s
− e1 σ1

e3
∂T
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)∣∣∣
s

) ]
+ 1

e3
∂
∂s

[
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e3
∂T
∂s

]

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i
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s

)∣∣∣
s
− e2
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AlT ∂e3
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s
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s

−e3
∂
∂i

(
e2 σ1
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s
− e1 σ1

∂
∂s

(
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AlT ∂T

∂i
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s

)

−e1 σ1
∂
∂s

(
− e2 σ1

e3
AlT ∂T
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)
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∂s

(
e1 e2
e3
AvT ∂T

∂s

) ]
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Noting that 1
e1

∂e3
∂i

∣∣∣
s

= ∂σ1
∂s , it becomes :

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1

AlT ∂T
∂i

∣∣
s

)∣∣∣
s
− e3

∂
∂i

(
e2 σ1
e3
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s

−e2A
lT ∂σ1
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∂i
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s
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∂
∂s

(
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∂i
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s

)

+e1 σ1
∂
∂s

(
e2 σ1
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∂s

)
+ ∂

∂s

(
e1 e2
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∂z
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= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1
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∂i

∣∣
s

)∣∣∣
s
− ∂
∂i

(
e2 σ1A

lT ∂T
∂s
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s

+ e2 σ1
e3
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∂e3
∂i
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s
− e2A
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∂i
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s

−e2 σ1
∂
∂s

(
AlT ∂T

∂i
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s

)
+ ∂

∂s

(
e1 e2 σ2

1
e3
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∂s

)

−∂(e1 e2 σ1)
∂s

(
σ1
e3
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)
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∂s

(
e1 e2
e3
AvT ∂T

∂s

) ]

using the same remark as just above, it becomes :

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s
− e2 σ1A

lT ∂T
∂s

)∣∣∣
s

+ e1 e2 σ1
e3

AlT ∂T
∂s

∂σ1
∂s − σ1

e3
AlT ∂(e1 e2 σ1)

∂s
∂T
∂s

−e2

(
AlT ∂σ1

∂s
∂T
∂i

∣∣
s

+ ∂
∂s

(
σ1A

lT ∂T
∂i

∣∣
s

)− ∂σ1
∂s AlT ∂T

∂i

∣∣
s

)

+ ∂
∂s

(
e1 e2 σ2

1
e3

AlT ∂T
∂s + e1 e2

e3
AvT ∂T

∂s

) ]

Since the horizontal scale factors do not depend on the vertical coordinate, the last term
of the first line and the first term of the last line cancel, while the second line reduces to a
single vertical derivative, so it becomes :

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s
− e2 σ1A

lT ∂T
∂s

)∣∣∣
s

+ ∂
∂s

(
−e2 σ1A

lT ∂T
∂i

∣∣
s

+AlT e1 e2e3

(
ε+ σ2

1

)
∂T
∂s

) ]

in other words, the horizontal Laplacian operator in the (i,s) plane takes the following
form :

DT =
1

e1 e2 e3

(
∂(e2e3•)

∂i

∣∣∣
s

∂(e1e2•)
∂s

)
·
[
AlT

(
1 −σ1

−σ1 ε2
1

)
·
(

1
e1

∂•
∂i

∣∣
s

1
e3

∂•
∂s

)
(T )

]
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B.2 Iso/diapycnal 2nd Order Tracer Diffusive Operators
The iso/diapycnal diffusive tensor AI expressed in the (i,j,k) curvilinear coordinate

system in which the equations of the ocean circulation model are formulated, takes the
following form [?] :

AI =
AlT(

1 + a2
1 + a2

2

)



1 + a2
1 −a1a2 −a1

−a1a2 1 + a2
2 −a2

−a1 −a2 ε+ a2
1 + a2

2




where (a1, a2) are the isopycnal slopes in (i, j) directions :

a1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

, a2 =
e3

e2

(
∂ρ

∂j

)(
∂ρ

∂k

)−1

In practice, the isopycnal slopes are generally less than 10−2 in the ocean, so AI can
be simplified appreciably [?] :

AI ≈ AlT



1 0 −a1

0 1 −a2

−a1 −a2 ε+ a2
1 + a2

2




The resulting isopycnal operator conserves the quantity and dissipates its square. The
demonstration of the first property is trivial as (B.2) is the divergence of fluxes. Let us
demonstrate the second one :∫∫∫

D

T ∇. (AI∇T ) dv = −
∫∫∫

D

∇T . (AI∇T ) dv

since

∇T . (AI∇T ) = AlT
[(

∂T
∂i

)2 − 2a1
∂T
∂i

∂T
∂k +

(
∂T
∂j

)2

− 2a2
∂T
∂j

∂T
∂k +

(
a2

1 + a2
2

) (
∂T
∂k

)2]

= Ah

[(
∂T
∂i − a1

∂T
∂k

)2
+
(
∂T
∂j − a2

∂T
∂k

)2
]

≥ 0

the property becomes obvious.
The resulting diffusion operator in z-coordinate has the following form :

DT =
1
e1e2

{
∂

∂i

[
Ah

(
e2

e1

∂T

∂i
− a1

e2

e3

∂T

∂k

)]
+
∂

∂j

[
Ah

(
e1

e2

∂T

∂j
− a2

e1

e3

∂T

∂k

)] }

+
1
e3

∂

∂k

[
Ah

(
−a1

e1

∂T

∂i
− a2

e2

∂T

∂j
+

(
a2

1 + a2
2

)

e3

∂T

∂k

)]

It has to be emphasised that the simplification introduced, leads to a decoupling bet-
ween (i,z) and (j,z) planes. The operator has therefore the same expression as (??), the
diffusion operator obtained for geopotential diffusion in the s-coordinate.
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B.3 Lateral/Vertical Momentum Diffusive Operators
The second order momentum diffusion operator (Laplacian) in the z-coordinate is

found by applying (2.11e), the expression for the Laplacian of a vector, to the horizontal
velocity vector :

∆Uh = ∇ (∇ · Uh)−∇× (∇× Uh)

=




1
e1
∂χ
∂i

1
e2
∂χ
∂j

1
e3
∂χ
∂k


−




1
e2
∂ζ
∂j − 1

e3
∂
∂k

(
1
e3
∂u
∂k

)

1
e3

∂
∂k

(
− 1
e3
∂v
∂k

)
− 1

e1
∂ζ
∂i

1
e1e2

[
∂
∂i

(
e2
e3
∂u
∂k

)
− ∂

∂j

(
− e1
e3
∂v
∂k

)]




=




1
e1
∂χ
∂i − 1

e2
∂ζ
∂j

1
e2
∂χ
∂j + 1

e1
∂ζ
∂i

0


+

1
e3




∂
∂k

(
1
e3
∂u
∂k

)

∂
∂k

(
1
e3
∂v
∂k

)

∂χ
∂k − 1

e1e2

(
∂2(e2 u)
∂i∂k + ∂2(e1 v)

∂j∂k

)




Using (2.11b), the definition of the horizontal divergence, the third componant of the
second vector is obviously zero and thus :

∆Uh = ∇h (χ)−∇h × (ζ) +
1
e3

∂

∂k

(
1
e3

∂ Uh

∂k

)

Note that this operator ensures a full separation between the vorticity and horizon-
tal divergence fields (see Appendix C). It is only equal to a Laplacian applied to each
component in Cartesian coordinates, not on the sphere.

The horizontal/vertical second order (Laplacian type) operator used to diffuse hori-
zontal momentum in the z-coordinate therefore takes the following form :

DU = ∇h
(
Alm χ

)
−∇h ×

(
Alm ζ k

)
+

1
e3

∂

∂k

(
Avm

e3

∂Uh

∂k

)
(B.6)

that is, in expanded form :

DU
u =

1
e1

∂
(
Almχ

)

∂i
− 1
e2

∂
(
Almζ

)

∂j
+

1
e3

∂u

∂k

DU
v =

1
e2

∂
(
Almχ

)

∂j
+

1
e1

∂
(
Almζ

)

∂i
+

1
e3

∂v

∂k

Note Bene : introducing a rotation in (B.6) does not lead to a useful expression for
the iso/diapycnal Laplacian operator in the z-coordinate. Similarly, we did not found an
expression of practical use for the geopotential horizontal/vertical Laplacian operator in
the s-coordinate. Generally, (B.6) is used in both z- and s-coordinate systems, that is a
Laplacian diffusion is applied on momentum along the coordinate directions.
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C.1 Introduction / Notations
Notation used in this appendix in the demonstations :
fluxes at the faces of a T -box :

U = e2u e3u u V = e1v e3v v W = e1w e2w ω

volume of cells at u-, v-, and T -points :

bu = e1u e2u e3u bv = e1v e2v e3v bt = e1t e2t e3t

partial derivative notation : ∂• = ∂
∂•

dv = e1 e2 e3 di dj dk is the volume element, with only e3 that depends on time. D
and S are the ocean domain volume and surface, respectively. No wetting/drying is allow
(i.e. ∂S∂t = 0) Let ks and kb be the ocean surface and bottom, resp. (i.e. s(ks) = η and
s(kb) = −H , where H is the bottom depth).

z(k) = η −
k̃=ks∫

k̃=k

e3(k̃) dk̃ = η −
ks∫

k

e3 dk̃

Continuity equation with the above notation :

1
e3t
∂t(e3t) +

1
bt

{
δi[U ] + δj [V ] + δk[W ]

}
= 0

A quantity, Q is conserved when its domain averaged time change is zero, that is
when :

∂t

(∫

D
Q dv

)
= 0

Noting that the coordinate system used .... blah blah

∂t

(∫

D
Q dv

)
=
∫

D
∂t (e3Q) e1e2 di dj dk =

∫

D

1
e3
∂t (e3Q) dv = 0

equation of evolution of Q written as the time evolution of the vertical content of Q like
for tracers, or momentum in flux form, the quadratic quantity 1

2Q
2 is conserved when :

∂t

(∫

D

1
2
Q2 dv

)
=
∫

D

1
2
∂t

(
1
e3

(e3Q)2

)
e1e2 di dj dk

=
∫

D
Q ∂t (e3Q) e1e2 di dj dk −

∫

D

1
2
Q2 ∂t(e3) e1e2 di dj dk
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that is in a more compact form :

∂t

(∫

D

1
2
Q2 dv

)
=
∫

D

Q

e3
∂t (e3Q) dv − 1

2

∫

D

Q2

e3
∂t(e3) dv (C.1)

equation of evolution ofQ written as the time evolution ofQ like for momentum in vector
invariant form, the quadratic quantity 1

2Q
2 is conserved when :

∂t

(∫

D

1
2
Q2 dv

)
=
∫

D

1
2
∂t
(
e3Q

2
)
e1e2 di dj dk

=
∫

D
Q∂tQ e1e2e3 di dj dk +

∫

D

1
2
Q2 ∂te3 e1e2 di dj dk

that is in a more compact form :

∂t

(∫

D

1
2
Q2 dv

)
=
∫

D
Q∂tQ dv +

1
2

∫

D

1
e3
Q2∂te3 dv (C.2)

C.2 Continuous conservation
The discretization of pimitive equation in s-coordinate (i.e. time and space varying

vertical coordinate) must be chosen so that the discrete equation of the model satisfy
integral constrains on energy and enstrophy.

Let us first establish those constraint in the continuous world. The total energy (i.e.
kinetic plus potential energies) is conserved :

∂t

(∫

D

(
1
2

Uh
2 + ρ g z

)
dv

)
=0 (C.3)

under the following assumptions : no dissipation, no forcing (wind, buoyancy flux, atmos-
pheric pressure variations), mass conservation, and closed domain.

This equation can be transformed to obtain several sub-equalities. The transformation
for the advection term depends on whether the vector invariant form or the flux form is
used for the momentum equation. Using (C.2) and introducing (A.15) in (C.3) for the
former form and Using (C.1) and introducing (A.16) in (C.3) for the latter form leads to :

advection term (vector invariant form) :
∫

D

ζ (k× Uh) · Uh dv = 0 (C.4a)

∫

D

Uh · ∇h
(

Uh
2

2

)
dv +

∫

D

Uh · ∇zUh dv −
∫

D

Uh
2

2
1
e3
∂te3 dv = 0 (C.4b)
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advection term (flux form) :
∫

D

1
e1e2

(v ∂ie2 − u ∂je1) (k× Uh) · Uh dv = 0 (C.4c)

∫

D

Uh ·
( ∇ · (Uu)
∇ · (U v)

)
dv +

1
2

∫

D

Uh
2 1
e3
∂te3 dv = 0 (C.4d)

coriolis term ∫

D

f (k× Uh) · Uh dv = 0 (C.4e)

pressure gradient :

−
∫

D

∇p|z · Uh dv = −
∫

D

∇ · (ρU) g z dv +
∫

D

g ρ ∂tz dv (C.4f)

where∇h = ∇|k is the gradient along the s-surfaces.
blah blah....

The prognostic ocean dynamics equation can be summarized as follows :

NXT =
(

VOR + KEG + ZAD
COR + ADV

)
+ HPG + SPG + LDF + ZDF

Vector invariant form : ∫

D

Uh · VOR dv = 0 (C.5a)

∫

D

Uh · KEG dv +
∫

D

Uh · ZAD dv −
∫

D

Uh
2

2
1
e3
∂te3 dv = 0 (C.5b)

−
∫

D

Uh · (HPG + SPG) dv = −
∫

D

∇ · (ρU) g z dv +
∫

D

g ρ ∂tz dv (C.5c)

Flux form : ∫

D

Uh · COR dv = 0 (C.6a)

∫

D

Uh · ADV dv +
1
2

∫

D

Uh
2 1
e3
∂te3 dv = 0 (C.6b)

−
∫

D

Uh · (HPG + SPG) dv = −
∫

D

∇ · (ρU) g z dv +
∫

D

g ρ ∂tz dv (C.6c)
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(C.6c) is the balance between the conversion KE to PE and PE to KE. Indeed the left
hand side of (C.6c) can be transformed as follows :

∂t



∫

D

ρ g z dv


 = +

∫

D

1
e3
∂t(e3 ρ) g z dv +

∫

D

g ρ ∂tz dv

= −
∫

D

∇ · (ρU) g z dv +
∫

D

g ρ ∂tz dv

= +
∫

D

ρ g

(
Uh · ∇hz + ω

1
e3
∂kz

)
dv +

∫

D

g ρ ∂tz dv

= +
∫

D

ρ g (ω + ∂tz + Uh · ∇hz) dv

= +
∫

D

g ρ w dv

where the last equality is obtained by noting that the brackets is exactly the expression of
w, the vertical velocity referenced to the fixe z-coordinate system (see (A.5)).

The left hand side of (C.6c) can be transformed as follows :

−
∫

D

∇p|z · Uh dv = −
∫

D

(∇hp+ ρ g∇hz) · Uh dv

= −
∫

D

∇hp · Uh dv −
∫

D

ρ g∇hz · Uh dv

= +
∫

D

p∇h · Uh dv +
∫

D

ρ g (ω − w + ∂tz) dv

= −
∫

D

p

(
1
e3
∂te3 +

1
e3
∂kω

)
dv +

∫

D

ρ g (ω − w + ∂tz) dv

= −
∫

D

p

e3
∂te3 dv +

∫

D

1
e3
∂kp ω dv +

∫

D

ρ g (ω − w + ∂tz) dv

= −
∫

D

p

e3
∂te3 dv −

∫

D

ρ g ω dv +
∫

D

ρ g (ω − w + ∂tz) dv

= −
∫

D

p

e3
∂te3 dv −

∫

D

ρ g w dv +
∫

D

ρ g ∂tz dv
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introducing the hydrostatic balance ∂kp = −ρ g e3 in the last term, it becomes :

= −
∫

D

p

e3
∂te3 dv −

∫

D

ρ g w dv −
∫

D

1
e3
∂kp ∂tz dv

= −
∫

D

p

e3
∂te3 dv −

∫

D

ρ g w dv +
∫

D

p

e3
∂t(∂kz)dv

= −
∫

D

ρ g w dv

C.3 Discrete total energy conservation : vector invariant
form

C.3.1 Total energy conservation

The discrete form of the total energy conservation, (C.3), is given by :

∂t


∑

i,j,k

{
u2

2
bu +

v2

2
bv + ρ g zt bt

}
 = 0

which in vector invariant forms, it leads to :

∑

i,j,k

{
u ∂tu bu + v ∂tv bv

}
+

1
2

∑

i,j,k

{
u2

e3u
∂te3u bu +

v2

e3v
∂te3v bv

}

= −
∑

i,j,k

{
1
e3t
∂t(e3tρ) g zt bt

}
−
∑

i,j,k

{
ρ g ∂t(zt) bt

} (C.7)

Substituting the discrete expression of the time derivative of the velocity either in
vector invariant, leads to the discrete equivalent of the four equations (C.6).

C.3.2 Vorticity term (coriolis + vorticity part of the advection)

Let q, located at f -points, be either the relative (q = ζ/e3f ), or the planetary (q =
f/e3f ), or the total potential vorticity (q = (ζ+f)/e3f ). Two discretisation of the vorticity
term (ENE and EEN) allows the conservation of the kinetic energy.
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Vorticity Term with ENE scheme (ln dynvor ene=.true.)

For the ENE scheme, the two components of the vorticity term are given by :

−e3 q k× Uh ≡


 + 1

e1u
q (e1v e3v v)

i+1/2
j

− 1
e2v

q (e2u e3u u)
j+1/2

i




This formulation does not conserve the enstrophy but it does conserve the total kinetic
energy. Indeed, the kinetic energy tendency associated to the vorticity term and averaged
over the ocean domain can be transformed as follows :

∫

D

− (e3 q k× Uh) · Uh dv

≡ ∑
i,j,k

{
1
e1u

q V
i+1/2

j

u bu − 1
e2v

q U
j+1/2

i

v bv

}

≡ ∑
i,j,k

{
q V

i+1/2
j

U − q U
j+1/2

i

V

}

≡ ∑
i,j,k

q

{
V
i+1/2

U
j+1/2 − U j+1/2

V
i+1/2

}
≡ 0

In other words, the domain averaged kinetic energy does not change due to the vorticity
term.

Vorticity Term with EEN scheme (ln dynvor een=.true.)

With the EEN scheme, the vorticity terms are represented as :





+q e3 v ≡ +
1
e1u

∑

ip, kp

i+1/2−ip
j Qipjp (e1ve3v v)i+ip−1/2

j+jp

−q e3 u ≡ − 1
e2v

∑

ip, kp

i
j+1/2−jpQ

ip
jp

(e2ue3u u)i+ipj+jp−1/2

(C.8)

where the indices ip and kp take the following value : ip = −1/2 or 1/2 and jp = −1/2
or 1/2, and the vorticity triads, ijQ

ip
jp

, defined at T -point, are given by :

j
iQ

ip
jp

=
1
12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(C.9)
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This formulation does conserve the total kinetic energy. Indeed,
∫

D

−Uh · (ζ k× Uh) dv

≡
∑

i,j,k

{
∑

ip, kp

i+1/2−ip
j Qipjp V

i+1/2−ip
j+jp


U i+1/2

j −

∑

ip, kp

i
j+1/2−jpQ

ip
jp
U
i+ip
j+1/2−jp


V i

j+1/2

}

≡
∑

i,j,k

∑

ip, kp

{
i+1/2−ip
j Qipjp V

i+1/2−ip
j+jp

U
i+1/2
j − i

j+1/2−jpQ
ip
jp
U
i+ip
j+1/2−jp V

i
j+1/2

}

Expending the summation on ip and kp, it becomes :

≡
∑

i,j,k

{
i+1
j Q−1/2

+1/2 V
i+1
j+1/2 U

i+1/2
j − i

j Q−1/2
+1/2 U

i−1/2
j V i

j+1/2

+ i+1
j Q−1/2

−1/2 V
i+1
j−1/2 U

i+1/2
j − i

j+1Q
−1/2
−1/2 U

i−1/2
j+1 V i

j+1/2

+ i
j Q+1/2

+1/2 V
i
j+1/2 U

i+1/2
j − i

j Q+1/2
+1/2 U

i+1/2
j V i

j+1/2

+ i
j Q+1/2

−1/2 V
i
j−1/2 U

i+1/2
j − i

j+1Q
+1/2
−1/2 U

i+1/2
j+1 V i

j+1/2

}

The summation is done over all i and j indices, it is therefore possible to introduce a
shift of −1 either in i or j direction in some of the term of the summation (first term of
the first and second lines, second term of the second and fourth lines). By doning so, we
can regroup all the terms of the summation by triad at a (i,j) point. In other words, we
regroup all the terms in the neighbourhood that contain a triad at the same (i,j) indices. It
becomes :

≡
∑

i,j,k

{
i
jQ
−1/2
+1/2

[
V i
j+1/2 U

i−1/2
j − U i−1/2

j V i
j+1/2

]

+ i
jQ
−1/2
−1/2

[
V i
j−1/2 U

i−1/2
j − U i−1/2

j V i
j−1/2

]

+ i
jQ

+1/2
+1/2

[
V i
j+1/2 U

i+1/2
j − U i+1/2

j V i
j+1/2

]

+ i
jQ

+1/2
−1/2

[
V i
j−1/2 U

i+1/2
j − U i+1/2

j−1 V i
j−1/2

] }
≡ 0
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Gradient of Kinetic Energy / Vertical Advection

The change of Kinetic Energy (KE) due to the vertical advection is exactly balanced
by the change of KE due to the horizontal gradient of KE :

∫

D
Uh · 1

e3
ω∂kUh dv = −

∫

D
Uh · ∇h

(
1
2

Uh
2

)
dv +

1
2

∫

D

Uh
2

e3
∂t(e3) dv

Indeed, using successively (4.11) (i.e. the skew symmetry property of the δ operator) and
the continuity equation, then (4.11) again, then the commutativity of operators · and δ,
and finally (4.12) (i.e. the symmetry property of the · operator) applied in the horizontal
and vertical directions, it becomes :

−
∫

D
Uh · KEG dv = −

∫

D
Uh · ∇h

(
1
2

Uh
2

)
dv

≡−
∑

i,j,k

1
2

{
1
e1u

δi+1/2

[
u2

i
+ v2

j
]
u bu +

1
e2v

δj+1/2

[
u2

i
+ v2

j
]
v bv

}

≡+
∑

i,j,k

1
2

(
u2

i
+ v2

j
) {

δi [U ] + δj [V ]
}

≡−
∑

i,j,k

1
2

(
u2

i
+ v2

j
) { bt

e3t
∂t(e3t) + δk [W ]

}

≡+
∑

i,j,k

1
2
δk+1/2

[
u2

i
+ v2

j
]
W −

∑

i,j,k

1
2

(
u2

i
+ v2

j
)
∂tbt

≡+
∑

i,j,k

1
2

(
δk+1/2 [u2]

i
+ δk+1/2 [v2]

j
)
W −

∑

i,j,k

(
u2

2
∂tbt

i+1/2 +
v2

2
∂tbt

j+1/2
)

Assuming that bu = bt
i+1/2

and bv = bt
j+1/2

, or at least that the time derivative of these
two equations is satisfied, it becomes :

≡
∑

i,j,k

1
2

{
W

i+1/2
δk+1/2

[
u2
]

+W
j+1/2

δk+1/2

[
v2
] }−

∑

i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

≡
∑

i,j,k

{
W

i+1/2
u k+1/2 δk+1/2[u] +W

j+1/2
v k+1/2 δk+1/2[v]

}
−
∑

i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

≡
∑

i,j,k

{
1
bu

W
i+1/2

δk+1/2 [u]
k

u bu +
1
bv
W

j+1/2
δk+1/2 [v]

k

v bv

}
−
∑

i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)
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The first term provides the discrete expression for the vertical advection of momentum
(ZAD), while the second term corresponds exactly to (C.7), therefore :

≡
∫

D

Uh · ZAD dv +
1
2

∫

D
Uh

2 1
e3
∂t(e3) dv

≡
∫

D

Uh · w∂kUh dv +
1
2

∫

D
Uh

2 1
e3
∂t(e3) dv

There is two main points here. First, the satisfaction of this property links the choice
of the discrete formulation of the vertical advection and of the horizontal gradient of KE.
Choosing one imposes the other. For example KE can also be discretized as 1/2 (u i2 +
v j

2). This leads to the following expression for the vertical advection :

1
e3
ω ∂kUh ≡




1
e1u e2u e3u

e1t e2t ω δk+1/2

[
u i+1/2

] i+1/2,k

1
e1v e2v e3v

e1t e2t ω δk+1/2

[
v j+1/2

] j+1/2,k




a formulation that requires an additional horizontal mean in contrast with the one used in
NEMO. Nine velocity points have to be used instead of 3. This is the reason why it has
not been chosen.

Second, as soon as the chosen s-coordinate depends on time, an extra constraint arises
on the time derivative of the volume at u- and v-points :

e1u e2u ∂t(e3u) = e1t e2t ∂t(e3t)
i+1/2

e1v e2v ∂t(e3v) = e1t e2t ∂t(e3t)
j+1/2

which is (over-)satified by defining the vertical scale factor as follows :

e3u =
1

e1u e2u
e1t e2t e3t

i+1/2 (C.10)

e3v =
1

e1v e2v
e1t e2t e3t

j+1/2 (C.11)

Blah blah required on the the step representation of bottom topography.....

C.3.3 Pressure Gradient Term
When the equation of state is linear (i.e. when an advection-diffusion equation for

density can be derived from those of temperature and salinity) the change of KE due to
the work of pressure forces is balanced by the change of potential energy due to buoyancy
forces :

−
∫

D
∇p|z · Uh dv = −

∫

D
∇ · (ρU) g z dv +

∫

D
g ρ ∂t(z) dv
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This property can be satisfied in a discrete sense for both z- and s-coordinates. Indeed,
defining the depth of a T -point, zt, as the sum of the vertical scale factors at w-points
starting from the surface, the work of pressure forces can be written as :

−
∫

D
∇p|z · Uh dv ≡

∑

i,j,k

{
− 1
e1u

(
δi+1/2[pt]− g ρ i+1/2 δi+1/2[zt]

)
u bu

− 1
e2v

(
δj+1/2[pt]− g ρ j+1/2δj+1/2[zt]

)
v bv

}

Using successively (4.11), i.e. the skew symmetry property of the δ operator, (6.4), the
continuity equation, (6.20), the hydrostatic equation in the s-coordinate, and δk+1/2 [zt] ≡
e3w, which comes from the definition of zt, it becomes :

≡+
∑

i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +

(
δi[U ] + δj [V ]

) pt
g

}

≡+
∑

i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt]−

(
bt
e3t
∂t(e3t) + δk [W ]

)
pt
g

}

≡+
∑

i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +

W

g
δk+1/2[pt]− pt

g
∂tbt

}

≡+
∑

i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt]−W e3wρ

k+1/2 − pt
g
∂tbt

}

≡+
∑

i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +W ρ k+1/2 δk+1/2[zt]− pt

g
∂tbt

}

≡−
∑

i,j,k

g zt

{
δi

[
U ρ i+1/2

]
+ δj

[
V ρ j+1/2

]
+ δk

[
W ρ k+1/2

]}
−
∑

i,j,k

{
pt ∂tbt

}

≡+
∑

i,j,k

g zt

{
∂t(e3t ρ)

}
bt −

∑

i,j,k

{
pt ∂tbt

}

The first term is exactly the first term of the right-hand-side of (C.7). It remains to de-
monstrate that the last term, which is obviously a discrete analogue of

∫
D

p
e3
∂t(e3) dv is

equal to the last term of (C.7). In other words, the following property must be satisfied :

∑

i,j,k

{
pt ∂tbt

}
≡
∑

i,j,k

{
ρ g ∂t(zt) bt

}

Let introduce pw the pressure at w-point such that δk[pw] = −ρ g e3t. The right-hand-
side of the above equation can be transformed as follows :
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∑

i,j,k

{
ρ g ∂t(zt) bt

}
≡ −

∑

i,j,k

{
δk[pw] ∂t(zt) e1t e2t

}

≡ +
∑

i,j,k

{
pw δk+1/2[∂t(zt)] e1t e2t

}
≡ +

∑

i,j,k

{
pw ∂t(e3w) e1t e2t

}

≡ +
∑

i,j,k

{
pw ∂t(bw)

}

therefore, the balance to be satisfied is :
∑

i,j,k

{
pt ∂t(bt)

}
≡
∑

i,j,k

{
pw ∂t(bw)

}

which is a purely vertical balance :
∑

k

{
pt ∂t(e3t)

}
≡
∑

k

{
pw ∂t(e3w)

}

Defining pw = pt
k+1/2

Note that this property strongly constrains the discrete expression of both the depth of
T−points and of the term added to the pressure gradient in the s-coordinate. Nevertheless,
it is almost never satisfied since a linear equation of state is rarely used.

C.4 Discrete total energy conservation : flux form

C.4.1 Total energy conservation
The discrete form of the total energy conservation, (C.3), is given by :

∂t


∑

i,j,k

{
u2

2
bu +

v2

2
bv + ρ g zt bt

}
 = 0

which in flux form, it leads to :
∑

i,j,k

{
u

e3u

∂(e3uu)
∂t

bu +
v

e3v

∂(e3vv)
∂t

bv

}
− 1

2

∑

i,j,k

{
u2

e3u

∂e3u

∂t
bu +

v2

e3v

∂e3v

∂t
bv

}

= −
∑

i,j,k

{
1
e3t

∂e3tρ

∂t
g zt bt

}
−
∑

i,j,k

{
ρ g

∂zt
∂t

bt

}

Substituting the discrete expression of the time derivative of the velocity either in
vector invariant or in flux form, leads to the discrete equivalent of the
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C.4.2 Coriolis and advection terms : flux form
Coriolis plus “metric” Term

In flux from the vorticity term reduces to a Coriolis term in which the Coriolis para-
meter has been modified to account for the “metric” term. This altered Coriolis parameter
is discretised at an f-point. It is given by :

f +
1
e1e2

(
v
∂e2

∂i
− u∂e1

∂j

)
≡ f +

1
e1f e2f

(
v i+1/2δi+1/2 [e2u]− u j+1/2δj+1/2 [e1u]

)

Either the ENE or EEN scheme is then applied to obtain the vorticity term in flux
form. It therefore conserves the total KE. The derivation is the same as for the vorticity
term in the vector invariant form (§C.3.2).

Flux form advection

The flux form operator of the momentum advection is evaluated using a centered
second order finite difference scheme. Because of the flux form, the discrete operator
does not contribute to the global budget of linear momentum. Because of the centered
second order scheme, it conserves the horizontal kinetic energy, that is :

−
∫

D
Uh ·

( ∇ · (Uu)
∇ · (U v)

)
dv − 1

2

∫

D
Uh

2 1
e3

∂e3

∂t
dv = 0 (C.12)

Let us first consider the first term of the scalar product (i.e. just the the terms associa-
ted with the i-component of the advection) :

−
∫

D
u · ∇ · (Uu) dv

≡−
∑

i,j,k

{
1
bu

(
δi+1/2

[
U
i
u i
]

+ δj

[
V
i+1/2

u j+1/2
]

+ δk

[
W

i+1/2
u k+1/2

]) }
bu u

≡−
∑

i,j,k

{
δi+1/2

[
U
i
u i
]

+ δj

[
V
i+1/2

u j+1/2
]

+ δk

[
W

i+12
u k+1/2

] }
u

≡+
∑

i,j,k

{
U
i
u iδi [u] + V

i+1/2
u j+1/2δj+1/2 [u] +W

i+1/2
u k+1/2δk+1/2 [u]

}

≡+
1
2

∑

i,j,k

{
U
i
δi
[
u2
]

+ V
i+1/2

δj+/2
[
u2
]

+W
i+1/2

δk+1/2

[
u2
]}

≡−
∑

i,j,k

1
2

{
U δi+1/2

[
u2

i
]

+ V δj+1/2

[
u2

i
]

+W δk+1/2

[
u2

i
]}

≡−
∑

i,j,k

1
2
u2

i
{
δi+1/2 [U ] + δj+1/2 [V ] + δk+1/2 [W ]

}
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≡+
∑

i,j,k

1
2
u2

i
{(

1
e3t

∂e3t

∂t

)
bt

}

Applying similar manipulation applied to the second term of the scalar product leads to :

−
∫

D
Uh ·

( ∇ · (Uu)
∇ · (U v)

)
dv ≡ +

∑

i,j,k

1
2

(
u2

i
+ v2

j
){( 1

e3t

∂e3t

∂t

)
bt

}

which is the discrete form of 1
2

∫
D u · ∇ · (Uu) dv. (C.12) is thus satisfied.

When the UBS scheme is used to evaluate the flux form momentum advection, the
discrete operator does not contribute to the global budget of linear momentum (flux form).
The horizontal kinetic energy is not conserved, but forced to decay (i.e. the scheme is
diffusive).

C.5 Discrete enstrophy conservation
Vorticity Term with ENS scheme (ln dynvor ens=.true.)

In the ENS scheme, the vorticity term is descretized as follows :




+
1
e1u

q i (e1v e3v v)
i,j+1/2

− 1
e2v

q j (e2u e3u u)
i+1/2,j

(C.13)

The scheme does not allow but the conservation of the total kinetic energy but the
conservation of q2, the potential enstrophy for a horizontally non-divergent flow (i.e.
when χ=0). Indeed, using the symmetry or skew symmetry properties of the operators
(Eqs (4.12) and (4.11)), it can be shown that :

∫

D
q k · 1

e3
∇× (e3 q k× Uh) dv ≡ 0 (C.14)

where dv = e1 e2 e3 di dj dk is the volume element. Indeed, using (C.13), the discrete
form of the right hand side of (C.14) can be transformed as follow :

∫

D
q k · 1

e3
∇× (e3 q k× Uh) dv

≡ ∑
i,j,k

q

{
δi+1/2

[
− q i U i,j+1/2

]
− δj+1/2

[
q j V

i+1/2,j
]}

≡ ∑
i,j,k

{
δi[q] q i U

i,j+1/2
+ δj [q] q j V

i+1/2,j
}

≡ 1
2

∑
i,j,k

{
δi
[
q2
]
U
i,j+1/2

+ δj
[
q2
]
V
i+1/2,j

}

≡ −1
2

∑
i,j,k

q2

{
δi+1/2

[
U
i,j+1/2

]
+ δj+1/2

[
V
i+1/2,j

]}
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Since · and δ operators commute : δi+1/2

[
a i
]

= δi [a]
i+1/2

, and introducing the hori-
zontal divergence χ, it becomes :

≡ ∑
i,j,k

−1
2q

2 e1t e2t e3t χ
i+1/2,j+1/2 ≡ 0

The later equality is obtain only when the flow is horizontally non-divergent, i.e. χ=0.

Vorticity Term with EEN scheme (ln dynvor een=.true.)

With the EEN scheme, the vorticity terms are represented as :




+q e3 v ≡ +
1
e1u

∑

ip, kp

i+1/2−ip
j Qipjp (e1ve3v v)i+ip−1/2

j+jp

−q e3 u ≡ − 1
e2v

∑

ip, kp

i
j+1/2−jpQ

ip
jp

(e2ue3u u)i+ipj+jp−1/2

(C.15)

where the indices ip and kp take the following value : ip = −1/2 or 1/2 and jp = −1/2
or 1/2, and the vorticity triads, ijQ

ip
jp

, defined at T -point, are given by :

j
iQ

ip
jp

=
1
12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(C.16)

This formulation does conserve the potential enstrophy for a horizontally non-divergent
flow (i.e. χ = 0).

Let consider one of the vorticity triad, for example ijQ
+1/2
+1/2, similar manipulation can

be done for the 3 others. The discrete form of the right hand side of (C.14) applied to this
triad only can be transformed as follow :

∫

D
q k · 1

e3
∇× (e3 q k× Uh) dv

≡
∑

i,j,k

q

{
δi+1/2

[
− i
jQ

+1/2
+1/2 U

i+1/2
j

]
− δj+1/2

[
i
jQ

+1/2
+1/2 V

i
j+1/2

] }

≡
∑

i,j,k

{
δi[q] ijQ

+1/2
+1/2 U

i+1/2
j + δj [q] ijQ

+1/2
+1/2 V

i
j+1/2

}

...

Demonstation to be done...

...

≡1
2

∑

i,j,k

{
δi

[(
i
jQ

+1/2
+1/2

)2]
U
i,j+1/2

+ δj

[(
i
jQ

+1/2
+1/2

)2]
V
i+1/2,j

}

≡− 1
2

∑

i,j,k

(
i
jQ

+1/2
+1/2

)2
{
δi+1/2

[
U
i,j+1/2

]
+ δj+1/2

[
V
i+1/2,j

]}



228 Discrete Invariants of the Equations

≡
∑

i,j,k

−1
2

(
i
jQ

+1/2
+1/2

)2
bt χ

i+1/2, j+1/2

≡ 0

C.6 Conservation Properties on Tracers
All the numerical schemes used in NEMO are written such that the tracer content is

conserved by the internal dynamics and physics (equations in flux form). For advection,
only the CEN2 scheme (i.e. 2nd order finite different scheme) conserves the global va-
riance of tracer. Nevertheless the other schemes ensure that the global variance decreases
(i.e. they are at least slightly diffusive). For diffusion, all the schemes ensure the decrease
of the total tracer variance, except the iso-neutral operator. There is generally no strict
conservation of mass, as the equation of state is non linear with respect to T and S. In
practice, the mass is conserved to a very high accuracy.

C.6.1 Advection Term
conservation of a tracer, T :

∂

∂t

(∫

D
T dv

)
=
∫

D

1
e3

∂ (e3 T )
∂t

dv = 0

conservation of its variance :

∂

∂t

(∫

D

1
2
T 2 dv

)
=
∫

D

1
e3
Q
∂ (e3 T )
∂t

dv − 1
2

∫

D
T 2 1
e3

∂e3

∂t
dv

Whatever the advection scheme considered it conserves of the tracer content as all
the scheme are written in flux form. Indeed, let T be the tracer and τu, τv, and τw its
interpolated values at velocity point (whatever the interpolation is), the conservation of
the tracer content due to the advection tendency is obtained as follows :
∫

D

1
e3

∂ (e3 T )
∂t

dv = −
∫

D
∇ · (TU) dv

≡ −
∑

i,j,k

{
1
bt

(δi [U τu] + δj [V τv]) +
1
e3t
δk [w τw]

}
bt

≡ −
∑

i,j,k

{δi [U τu] + δj [V τv] + δk [W τw]}

≡ 0

The conservation of the variance of tracer due to the advection tendency can be
achieved only with the CEN2 scheme, i.e. when τu = T

i+1/2, τv = T
j+1/2, and
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τw = T
k+1/2. It can be demonstarted as follows :

∫

D

1
e3
Q
∂ (e3 T )
∂t

dv = −
∫

D

τ ∇ · (T U) dv

≡−
∑

i,j,k

T
{
δi

[
UT

i+1/2
]

+ δj

[
V T

j+1/2
]

+ δk

[
WT

k+1/2
]}

≡+
∑

i,j,k

{
UT

i+1/2
δi+1/2 [T ] + V T

j+1/2
δj+1/2 [T ] +WT

k+1/2
δk+1/2 [T ]

}

≡+
1
2

∑

i,j,k

{
U δi+1/2

[
T 2
]

+ V δj+1/2

[
T 2
]

+W δk+1/2

[
T 2
]}

≡− 1
2

∑

i,j,k

T 2
{
δi [U ] + δj [V ] + δk [W ]

}

≡+
1
2

∑

i,j,k

T 2
{ 1
e3t

∂e3t T

∂t

}

which is the discrete form of 1
2

∫
D T

2 1
e3
∂e3
∂t dv.

C.7 Conservation Properties on Lateral Momentum Phy-
sics

The discrete formulation of the horizontal diffusion of momentum ensures the conser-
vation of potential vorticity and the horizontal divergence, and the dissipation of the square
of these quantities (i.e. enstrophy and the variance of the horizontal divergence) as well as
the dissipation of the horizontal kinetic energy. In particular, when the eddy coefficients
are horizontally uniform, it ensures a complete separation of vorticity and horizontal di-
vergence fields, so that diffusion (dissipation) of vorticity (enstrophy) does not generate
horizontal divergence (variance of the horizontal divergence) and vice versa.

These properties of the horizontal diffusion operator are a direct consequence of pro-
perties (4.9) and (4.10). When the vertical curl of the horizontal diffusion of momentum
(discrete sense) is taken, the term associated with the horizontal gradient of the divergence
is locally zero.

C.7.1 Conservation of Potential Vorticity
The lateral momentum diffusion term conserves the potential vorticity :

∫

D

1
e3

k · ∇ ×
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv = 0
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=
∫

D

− 1
e3

k · ∇ ×
[
∇h ×

(
A lm ζ k

)]
dv

≡
∑

i,j

{
δi+1/2

[
e2v

e1v e3v
δi

[
A lm
f e3fζ

]]
+ δj+1/2

[
e1u

e2u e3u
δj

[
A lm
f e3fζ

]]}

Using (4.11), it follows :

≡
∑

i,j,k

−
{

e2v

e1v e3v
δi

[
A lm
f e3fζ

]
δi [1] +

e1u

e2u e3u
δj

[
A lm
f e3fζ

]
δj [1]

}
≡ 0

C.7.2 Dissipation of Horizontal Kinetic Energy
The lateral momentum diffusion term dissipates the horizontal kinetic energy :

∫

D
Uh · [∇h

(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

≡
∑

i,j,k

{
1
e1u

δi+1/2

[
A lm
T χ

]
− 1
e2u e3u

δj

[
A lm
f e3fζ

]}
e1u e2u e3u u

+
{

1
e2u

δj+1/2

[
A lm
T χ

]
+

1
e1v e3v

δi

[
A lm
f e3fζ

]}
e1v e2u e3v v

≡
∑

i,j,k

{
e2u e3u u δi+1/2

[
A lm
T χ

]
− e1u u δj

[
A lm
f e3fζ

]}

+
{
e1v e3v v δj+1/2

[
A lm
T χ

]
+ e2v v δi

[
A lm
f e3fζ

]}

≡
∑

i,j,k

−
(
δi [e2u e3u u] + δj [e1v e3v v]

)
A lm
T χ

−
(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
A lm
f e3fζ

≡
∑

i,j,k

−A lm
T χ2 e1t e2t e3t −A lm

f ζ2 e1f e2f e3f ≤ 0
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C.7.3 Dissipation of Enstrophy

The lateral momentum diffusion term dissipates the enstrophy when the eddy coeffi-
cients are horizontally uniform :

∫

D

ζ k · ∇ ×
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

= A lm

∫

D

ζk · ∇ × [∇h × (ζ k)] dv

≡ A lm
∑

i,j,k

ζ e3f

{
δi+1/2

[
e2v

e1v e3v
δi [e3fζ]

]
+ δj+1/2

[
e1u

e2u e3u
δj [e3fζ]

]}

Using (4.11), it follows :

≡ −A lm
∑

i,j,k

{(
1

e1v e3v
δi [e3fζ]

)2

bv +
(

1
e2u e3u

δj [e3fζ]
)2

bu

}

≤ 0

C.7.4 Conservation of Horizontal Divergence

When the horizontal divergence of the horizontal diffusion of momentum (discrete
sense) is taken, the term associated with the vertical curl of the vorticity is zero locally,
due to ( ! ! ! II.1.8 ! ! ! ! !). The resulting term conserves the χ and dissipates χ2 when the
eddy coefficients are horizontally uniform.

∫

D

∇h ·
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv =

∫

D

∇h · ∇h
(
A lm χ

)
dv

≡
∑

i,j,k

{
δi

[
A lm
u

e2u e3u

e1u
δi+1/2 [χ]

]
+ δj

[
A lm
v

e1v e3v

e2v
δj+1/2 [χ]

]}

Using (4.11), it follows :

≡
∑

i,j,k

−
{
e2u e3u

e1u
A lm
u δi+1/2 [χ] δi+1/2 [1] +

e1v e3v

e2v
A lm
v δj+1/2 [χ] δj+1/2 [1]

}
≡ 0
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C.7.5 Dissipation of Horizontal Divergence Variance

∫

D

χ ∇h ·
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv = A lm

∫

D

χ ∇h · ∇h (χ) dv

≡ A lm
∑

i,j,k

1
e1t e2t e3t

χ

{
δi

[
e2u e3u

e1u
δi+1/2 [χ]

]
+ δj

[
e1v e3v

e2v
δj+1/2 [χ]

]}
e1t e2t e3t

Using (4.11), it turns out to be :

≡ −A lm
∑

i,j,k

{(
1
e1u

δi+1/2 [χ]
)2

bu +
(

1
e2v

δj+1/2 [χ]
)2

bv

}

≤ 0

C.8 Conservation Properties on Vertical Momentum Phy-
sics

As for the lateral momentum physics, the continuous form of the vertical diffusion
of momentum satisfies several integral constraints. The first two are associated with the
conservation of momentum and the dissipation of horizontal kinetic energy :

∫

D

1
e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv = ~0

and
∫

D

Uh · 1
e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv ≤ 0

The first property is obvious. The second results from :

∫

D

Uh · 1
e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv

≡
∑

i,j,k

(
u δk

[
A vm
u

e3uw
δk+1/2 [u]

]
e1u e2u + v δk

[
A vm
v

e3vw
δk+1/2 [v]

]
e1v e2v

)
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since the horizontal scale factor does not depend on k, it follows :

≡ −
∑

i,j,k

(
A vm
u

e3uw

(
δk+1/2 [u]

)2
e1u e2u +

A vm
v

e3vw

(
δk+1/2 [v]

)2
e1v e2v

)
≤ 0

The vorticity is also conserved. Indeed :

∫

D

1
e3

k · ∇ ×
(

1
e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

≡
∑

i,j,k

1
e3f

1
e1f e2f

{
δi+1/2

(
e2v

e3v
δk

[
1

e3vw
δk+1/2 [v]

])

−δj+1/2

(
e1u

e3u
δk

[
1

e3uw
δk+1/2 [u]

])}
e1f e2f e3f ≡ 0

If the vertical diffusion coefficient is uniform over the whole domain, the enstrophy is
dissipated, i.e.

∫

D

ζ k · ∇ ×
(

1
e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

This property is only satisfied in z-coordinates :

∫

D

ζ k · ∇ ×
(

1
e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

≡
∑

i,j,k

ζ e3f

{
δi+1/2

(
e2v

e3v
δk

[
A vm
v

e3vw
δk+1/2[v]

])

−δj+1/2

(
e1u

e3u
δk

[
A vm
u

e3uw
δk+1/2[u]

])}
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≡
∑

i,j,k

ζ e3f

{
1
e3v

δk

[
A vm
v

e3vw
δk+1/2

[
δi+1/2 [e2v v]

]]

− 1
e3u

δk

[
A vm
u

e3uw
δk+1/2

[
δj+1/2 [e1u u]

]]}

Using the fact that the vertical diffusion coefficients are uniform, and that in z-coordinate,
the vertical scale factors do not depend on i and j so that : e3f = e3u = e3v = e3t and
e3w = e3uw = e3vw, it follows :

≡ A vm
∑

i,j,k

ζ δk

[
1
e3w

δk+1/2

[
δi+1/2 [e2v v]− δj+1/2 [e1u u]

]]

≡ −A vm
∑

i,j,k

1
e3w

(
δk+1/2 [ζ]

)2
e1f e2f ≤ 0

Similarly, the horizontal divergence is obviously conserved :

∫

D

∇ ·
(

1
e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

and the square of the horizontal divergence decreases (i.e. the horizontal divergence is
dissipated) if the vertical diffusion coefficient is uniform over the whole domain :

∫

D

χ ∇ ·
(

1
e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

This property is only satisfied in the z-coordinate :

∫

D

χ ∇ ·
(

1
e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv
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≡
∑

i,j,k

χ

e1t e2t

{
δi+1/2

(
e2u

e3u
δk

[
A vm
u

e3uw
δk+1/2[u]

])

+δj+1/2

(
e1v

e3v
δk

[
A vm
v

e3vw
δk+1/2[v]

])}
e1t e2t e3t

≡ A vm
∑

i,j,k

χ

{
δi+1/2

(
δk

[
1

e3uw
δk+1/2 [e2u u]

])

+δj+1/2

(
δk

[
1

e3vw
δk+1/2 [e1v v]

])}

≡ −A vm
∑

i,j,k

δk+1/2 [χ]
e3w

{
δk+1/2

[
δi+1/2 [e2u u] + δj+1/2 [e1v v]

]}

≡ −A vm
∑

i,j,k

1
e3w

δk+1/2 [χ] δk+1/2 [e1t e2t χ]

≡ −A vm
∑

i,j,k

e1t e2t

e3w

(
δk+1/2 [χ]

)2 ≡ 0

C.9 Conservation Properties on Tracer Physics
The numerical schemes used for tracer subgridscale physics are written such that the

heat and salt contents are conserved (equations in flux form, second order centered finite
differences). Since a flux form is used to compute the temperature and salinity, the qua-
dratic form of these quantities (i.e. their variance) globally tends to diminish. As for the
advection term, there is generally no strict conservation of mass, even if in practice the
mass is conserved to a very high accuracy.
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C.9.1 Conservation of Tracers
constraint of conservation of tracers :

∫

D

∇ · (A ∇T ) dv

≡
∑

i,j,k

{
δi

[
A lT
u

e2u e3u

e1u
δi+1/2 [T ]

]
+ δj

[
A lT
v

e1v e3v

e2v
δj+1/2 [T ]

]

+ δk

[
A vT
w

e1t e2t

e3t
δk+1/2 [T ]

]}
≡ 0

In fact, this property simply results from the flux form of the operator.

C.9.2 Dissipation of Tracer Variance
constraint on the dissipation of tracer variance :

∫

D

T ∇ · (A ∇T ) dv

≡
∑

i,j,k

T

{
δi

[
A lT
u

e2u e3u

e1u
δi+1/2 [T ]

]
+δj

[
A lT
v

e1v e3v

e2v
δj+1/2 [T ]

]

+δk

[
A vT
w

e1t e2t

e3t
δk+1/2 [T ]

]}

≡ −
∑

i,j,k

{
A lT
u

(
1
e1u

δi+1/2 [T ]
)2

e1u e2u e3u

+A lT
v

(
1
e2v

δj+1/2 [T ]
)2

e1v e2v e3v

+A vT
w

(
1
e3w

δk+1/2 [T ]
)2

e1w e2w e3w

}
≤ 0
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A ”model life” is more than ten years. Its software, composed of a few hundred mo-
dules, is used by many people who are scientists or students and do not necessarily know
every aspect of computing very well. Moreover, a well thought-out program is easier to
read and understand, less difficult to modify, produces fewer bugs and is easier to main-
tain. Therefore, it is essential that the model development follows some rules :

- well planned and designed
- well written
- well documented (both on- and off-line)
- maintainable
- easily portable
- flexible.
To satisfy part of these aims, NEMO is written with a coding standard which is close

to the ECMWF rules, named DOCTOR [?]. These rules present some advantages like :
- to provide a well presented program
- to use rules for variable names which allow recognition of their type (integer, real,

parameter, local or shared variables, etc. ).
This facilitates both the understanding and the debugging of an algorithm.

D.1 The program structure
Each program begins with a set of headline comments containing :
- the program title
- the purpose of the routine
- the method and algorithms used
- the detail of input and output interfaces
- the external routines and functions used (if they exist)
- references (if they exist)
- the author name(s), the date of creation and any updates.
- Each program is split into several well separated sections and sub-sections with an

underlined title and specific labelled statements.
- A program has not more than 200 to 300 lines.
A template of a module style can be found on the NEMO depository in the following

file : NEMO/OPA SRC/module example.

D.2 Coding conventions
- Use of the universal language FORTRAN 90, and try to avoid obsolescent features

like statement functions, do not use GO TO and EQUIVALENCE statements.
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- A continuation line begins with the character & indented by three spaces compared
to the previous line, while the previous line ended with the character &.

- All the variables must be declared. The code is usually compiled with implicit none.
- Never use continuation lines in the declaration of a variable. When searching a va-

riable in the code through a grep command, the declaration line will be found.
- In the declaration of a PUBLIC variable, the comment part at the end of the line

should start with the two characters ”!:”. the following UNIX command, grep var_name *90 \ grep \!: will
display the module name and the line where the var name declaration is.

- Always use a three spaces indentation in DO loop, CASE, or IF-ELSEIF-ELSE-
ENDIF statements.

- use a space after a comma, except when it appears to separate the indices of an array.
- use call to ctl stop routine instead of just a STOP.
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D.3 Naming Conventions
The purpose of the naming conventions is to use prefix letters to classify model va-

riables. These conventions allow the variable type to be easily known and rapidly identi-
fied. The naming conventions are summarised in the Table below :

Type
/ Status

integer real logical character structure double
precision

complex

public
or
module
variable

m n
but not
nn

a b e f g
h o q r
t to x
but not
fs rn

l
but not
lp ld
ll ln

c
but not
cp cd
cl cn

s
but not
sd sd
sl sn

d
but not
dp dd
dl dn

y
but not
yp yd
yl yn

dummy
argument

k
but not
kf

p
but not
pp pf

ld cd sd dd yd

local
variable

i z ll cl sl dl yl

loop
control

j
but not
jp

parameter jp pp lp cp sp dp yp
namelist nn rn ln cn sn dn yn
CPP
macro

kf fs


