MODULE limdyn_2 !!====================================================================== !! *** MODULE limdyn_2 *** !! Sea-Ice dynamics : !!====================================================================== !! History : 1.0 ! 2001-04 (LIM) Original code !! 2.0 ! 2002-08 (C. Ethe, G. Madec) F90, mpp !! 2.0 ! 2003-08 (C. Ethe) add lim_dyn_init !! 2.0 ! 2006-07 (G. Madec) Surface module !! 3.3 ! 2009-05 (G. Garric, C. Bricaud) addition of the lim2_evp case !!--------------------------------------------------------------------- #if defined key_lim2 !!---------------------------------------------------------------------- !! 'key_lim2' : LIM 2.0 sea-ice model !!---------------------------------------------------------------------- !! lim_dyn_2 : computes ice velocities !! lim_dyn_init_2 : initialization and namelist read !!---------------------------------------------------------------------- USE dom_oce ! ocean space and time domain USE sbc_oce ! ocean surface boundary condition USE phycst ! physical constant USE ice_2 ! LIM-2: ice variables USE sbc_ice ! Surface boundary condition: sea-ice fields USE dom_ice_2 ! LIM-2: ice domain USE limistate_2 ! LIM-2: initial state USE limrhg_2 ! LIM-2: VP ice rheology USE limrhg ! LIM : EVP ice rheology USE lbclnk ! lateral boundary condition - MPP link USE lib_mpp ! MPP library USE wrk_nemo ! work arrays USE in_out_manager ! I/O manager USE prtctl ! Print control IMPLICIT NONE PRIVATE PUBLIC lim_dyn_2 ! routine called by sbc_ice_lim !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/LIM2 3.3 , UCL - NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_dyn_2( kt ) !!------------------------------------------------------------------- !! *** ROUTINE lim_dyn_2 *** !! !! ** Purpose : compute ice velocity and ocean-ice friction velocity !! !! ** Method : !! !! ** Action : - Initialisation !! - Call of the dynamic routine for each hemisphere !! - computation of the friction velocity at the sea-ice base !! - treatment of the case if no ice dynamic !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! number of iteration !! INTEGER :: ji, jj ! dummy loop indices INTEGER :: i_j1, i_jpj ! Starting/ending j-indices for rheology REAL(wp) :: zcoef ! temporary scalar REAL(wp), POINTER, DIMENSION(: ) :: zind ! i-averaged indicator of sea-ice REAL(wp), POINTER, DIMENSION(: ) :: zmsk ! i-averaged of tmask REAL(wp), POINTER, DIMENSION(:,:) :: zu_io, zv_io ! ice-ocean velocity !!--------------------------------------------------------------------- CALL wrk_alloc( jpi, jpj, zu_io, zv_io ) CALL wrk_alloc( jpj, zind , zmsk ) IF( kt == nit000 ) CALL lim_dyn_init_2 ! Initialization (first time-step only) IF( ln_limdyn ) THEN ! ! Mean ice and snow thicknesses. hsnm(:,:) = ( 1.0 - frld(:,:) ) * hsnif(:,:) hicm(:,:) = ( 1.0 - frld(:,:) ) * hicif(:,:) ! ! ! Rheology (ice dynamics) ! ! ======== ! Define the j-limits where ice rheology is computed ! --------------------------------------------------- IF( lk_mpp .OR. lk_mpp_rep ) THEN ! mpp: compute over the whole domain i_j1 = 1 i_jpj = jpj IF(ln_ctl) CALL prt_ctl_info( 'lim_dyn : i_j1 = ', ivar1=i_j1, clinfo2=' ij_jpj = ', ivar2=i_jpj ) IF( lk_lim2_vp ) THEN ; CALL lim_rhg_2( i_j1, i_jpj ) ! VP rheology ELSE ; CALL lim_rhg ( i_j1, i_jpj ) ! EVP rheology ENDIF ! ELSE ! optimization of the computational area ! DO jj = 1, jpj zind(jj) = SUM( frld (:,jj ) ) ! = REAL(jpj) if ocean everywhere on a j-line zmsk(jj) = SUM( tmask(:,jj,1) ) ! = 0 if land everywhere on a j-line END DO ! IF( l_jeq ) THEN ! local domain include both hemisphere ! ! Rheology is computed in each hemisphere ! ! only over the ice cover latitude strip ! Northern hemisphere i_j1 = njeq i_jpj = jpj DO WHILE ( i_j1 <= jpj .AND. zind(i_j1) == FLOAT(jpi) .AND. zmsk(i_j1) /=0 ) i_j1 = i_j1 + 1 END DO IF( lk_lim2_vp ) THEN ! VP rheology i_j1 = MAX( 1, i_j1-1 ) CALL lim_rhg_2( i_j1, i_jpj ) ELSE ! EVP rheology i_j1 = MAX( 1, i_j1-2 ) CALL lim_rhg( i_j1, i_jpj ) ENDIF IF(ln_ctl) WRITE(numout,*) 'lim_dyn : NH i_j1 = ', i_j1, 'ij_jpj = ', i_jpj ! ! Southern hemisphere i_j1 = 1 i_jpj = njeq DO WHILE ( i_jpj >= 1 .AND. zind(i_jpj) == FLOAT(jpi) .AND. zmsk(i_jpj) /=0 ) i_jpj = i_jpj - 1 END DO IF( lk_lim2_vp ) THEN ! VP rheology i_jpj = MIN( jpj, i_jpj+2 ) CALL lim_rhg_2( i_j1, i_jpj ) ELSE ! EVP rheology i_jpj = MIN( jpj, i_jpj+1 ) CALL lim_rhg( i_j1, i_jpj ) ENDIF IF(ln_ctl) WRITE(numout,*) 'lim_dyn : SH i_j1 = ', i_j1, 'ij_jpj = ', i_jpj ! ELSE ! local domain extends over one hemisphere only ! ! Rheology is computed only over the ice cover ! ! latitude strip i_j1 = 1 DO WHILE ( i_j1 <= jpj .AND. zind(i_j1) == FLOAT(jpi) .AND. zmsk(i_j1) /=0 ) i_j1 = i_j1 + 1 END DO i_j1 = MAX( 1, i_j1-1 ) i_jpj = jpj DO WHILE ( i_jpj >= 1 .AND. zind(i_jpj) == FLOAT(jpi) .AND. zmsk(i_jpj) /=0 ) i_jpj = i_jpj - 1 END DO i_jpj = MIN( jpj, i_jpj+2 ) ! IF( lk_lim2_vp ) THEN ! VP rheology i_jpj = MIN( jpj, i_jpj+2 ) CALL lim_rhg_2( i_j1, i_jpj ) ! VP rheology ELSE ! EVP rheology i_j1 = MAX( 1 , i_j1-2 ) i_jpj = MIN( jpj, i_jpj+1 ) CALL lim_rhg ( i_j1, i_jpj ) ! EVP rheology ENDIF IF(ln_ctl) WRITE(numout,*) 'lim_dyn : one hemisphere: i_j1 = ', i_j1, ' ij_jpj = ', i_jpj ! ENDIF ! ENDIF IF(ln_ctl) CALL prt_ctl(tab2d_1=u_ice , clinfo1=' lim_dyn : u_ice :', tab2d_2=v_ice , clinfo2=' v_ice :') ! computation of friction velocity ! -------------------------------- SELECT CASE( cp_ice_msh ) ! ice-ocean relative velocity at u- & v-pts CASE( 'C' ) ! EVP : C-grid ice dynamics zu_io(:,:) = u_ice(:,:) - ssu_m(:,:) ! ice-ocean & ice velocity at ocean velocity points zv_io(:,:) = v_ice(:,:) - ssv_m(:,:) CASE( 'I' ) ! VP : B-grid ice dynamics (I-point) DO jj = 1, jpjm1 ! u_ice v_ice at I-point ; ssu_m, ssv_m at U- & V-points DO ji = 1, jpim1 ! NO vector opt. ! zu_io(ji,jj) = 0.5_wp * ( u_ice(ji+1,jj+1) + u_ice(ji+1,jj ) ) - ssu_m(ji,jj) zv_io(ji,jj) = 0.5_wp * ( v_ice(ji+1,jj+1) + v_ice(ji ,jj+1) ) - ssv_m(ji,jj) END DO END DO END SELECT ! frictional velocity at T-point zcoef = 0.5_wp * cw DO jj = 2, jpjm1 DO ji = 2, jpim1 ! NO vector opt. because of zu_io ust2s(ji,jj) = zcoef * ( zu_io(ji,jj) * zu_io(ji,jj) + zu_io(ji-1,jj) * zu_io(ji-1,jj) & & + zv_io(ji,jj) * zv_io(ji,jj) + zv_io(ji,jj-1) * zv_io(ji,jj-1) ) * tms(ji,jj) END DO END DO ! ELSE ! no ice dynamics : transmit directly the atmospheric stress to the ocean ! zcoef = SQRT( 0.5 ) / rau0 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ust2s(ji,jj) = zcoef * SQRT( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) & & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) * tms(ji,jj) END DO END DO ! ENDIF ! CALL lbc_lnk( ust2s, 'T', 1. ) ! T-point ! IF(ln_ctl) CALL prt_ctl(tab2d_1=ust2s , clinfo1=' lim_dyn : ust2s :') ! CALL wrk_dealloc( jpi, jpj, zu_io, zv_io ) CALL wrk_dealloc( jpj, zind , zmsk ) ! END SUBROUTINE lim_dyn_2 SUBROUTINE lim_dyn_init_2 !!------------------------------------------------------------------- !! *** ROUTINE lim_dyn_init_2 *** !! !! ** Purpose : Physical constants and parameters linked to the ice !! dynamics !! !! ** Method : Read the namicedyn namelist and check the ice-dynamic !! parameter values !! !! ** input : Namelist namicedyn !!------------------------------------------------------------------- NAMELIST/namicedyn/ epsd, alpha, & & dm, nbiter, nbitdr, om, resl, cw, angvg, pstar, & & c_rhg, etamn, creepl, ecc, ahi0, & & nevp, telast,alphaevp !!------------------------------------------------------------------- REWIND ( numnam_ice ) ! Read Namelist namicedyn READ ( numnam_ice , namicedyn ) IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'lim_dyn_init_2: ice parameters for ice dynamics ' WRITE(numout,*) '~~~~~~~~~~~~~~' WRITE(numout,*) ' tolerance parameter epsd = ', epsd WRITE(numout,*) ' coefficient for semi-implicit coriolis alpha = ', alpha WRITE(numout,*) ' diffusion constant for dynamics dm = ', dm WRITE(numout,*) ' number of sub-time steps for relaxation nbiter = ', nbiter WRITE(numout,*) ' maximum number of iterations for relaxation nbitdr = ', nbitdr WRITE(numout,*) ' relaxation constant om = ', om WRITE(numout,*) ' maximum value for the residual of relaxation resl = ', resl WRITE(numout,*) ' drag coefficient for oceanic stress cw = ', cw WRITE(numout,*) ' turning angle for oceanic stress angvg = ', angvg, ' degrees' WRITE(numout,*) ' first bulk-rheology parameter pstar = ', pstar WRITE(numout,*) ' second bulk-rhelogy parameter c_rhg = ', c_rhg WRITE(numout,*) ' minimun value for viscosity etamn = ', etamn WRITE(numout,*) ' creep limit creepl = ', creepl WRITE(numout,*) ' eccentricity of the elliptical yield curve ecc = ', ecc WRITE(numout,*) ' horizontal diffusivity coeff. for sea-ice ahi0 = ', ahi0 WRITE(numout,*) ' number of iterations for subcycling nevp = ', nevp WRITE(numout,*) ' timescale for elastic waves telast = ', telast WRITE(numout,*) ' coefficient for the solution of int. stresses alphaevp = ', alphaevp ENDIF ! IF( angvg /= 0._wp .AND. .NOT.lk_lim2_vp ) THEN CALL ctl_warn( 'lim_dyn_init_2: turning angle for oceanic stress not properly coded for EVP ', & & '(see limsbc_2 module). We force angvg = 0._wp' ) angvg = 0._wp ENDIF ! Initialization usecc2 = 1.0 / ( ecc * ecc ) rhoco = rau0 * cw angvg = angvg * rad ! convert angvg from degree to radian sangvg = SIN( angvg ) cangvg = COS( angvg ) pstarh = pstar / 2.0 ! ahiu(:,:) = ahi0 * umask(:,:,1) ! Ice eddy Diffusivity coefficients. ahiv(:,:) = ahi0 * vmask(:,:,1) ! END SUBROUTINE lim_dyn_init_2 #else !!---------------------------------------------------------------------- !! Default option Empty module NO LIM 2.0 sea-ice model !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_dyn_2 ! Empty routine END SUBROUTINE lim_dyn_2 #endif !!====================================================================== END MODULE limdyn_2