MODULE nemogcm !!====================================================================== !! *** MODULE nemogcm *** !! Ocean system : NEMO GCM (ocean dynamics, on-line tracers, biochemistry and sea-ice) !!====================================================================== !! History : OPA ! 1990-10 (C. Levy, G. Madec) Original code !! 7.0 ! 1991-11 (M. Imbard, C. Levy, G. Madec) !! 7.1 ! 1993-03 (M. Imbard, C. Levy, G. Madec, O. Marti, M. Guyon, A. Lazar, !! P. Delecluse, C. Perigaud, G. Caniaux, B. Colot, C. Maes) release 7.1 !! - ! 1992-06 (L.Terray) coupling implementation !! - ! 1993-11 (M.A. Filiberti) IGLOO sea-ice !! 8.0 ! 1996-03 (M. Imbard, C. Levy, G. Madec, O. Marti, M. Guyon, A. Lazar, !! P. Delecluse, L.Terray, M.A. Filiberti, J. Vialar, A.M. Treguier, M. Levy) release 8.0 !! 8.1 ! 1997-06 (M. Imbard, G. Madec) !! 8.2 ! 1999-11 (M. Imbard, H. Goosse) LIM sea-ice model !! ! 1999-12 (V. Thierry, A-M. Treguier, M. Imbard, M-A. Foujols) OPEN-MP !! ! 2000-07 (J-M Molines, M. Imbard) Open Boundary Conditions (CLIPPER) !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and modules !! - ! 2004-06 (R. Redler, NEC CCRLE, Germany) add OASIS[3/4] coupled interfaces !! - ! 2004-08 (C. Talandier) New trends organization !! - ! 2005-06 (C. Ethe) Add the 1D configuration possibility !! - ! 2005-11 (V. Garnier) Surface pressure gradient organization !! - ! 2006-03 (L. Debreu, C. Mazauric) Agrif implementation !! - ! 2006-04 (G. Madec, R. Benshila) Step reorganization !! - ! 2007-07 (J. Chanut, A. Sellar) Unstructured open boundaries (BDY) !! 3.2 ! 2009-08 (S. Masson) open/write in the listing file in mpp !! 3.3 ! 2010-05 (K. Mogensen, A. Weaver, M. Martin, D. Lea) Assimilation interface !! - ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase !! 3.3.1! 2011-01 (A. R. Porter, STFC Daresbury) dynamical allocation !! 3.4 ! 2011-11 (C. Harris) decomposition changes for running with CICE !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! nemo_gcm : solve ocean dynamics, tracer, biogeochemistry and/or sea-ice !! nemo_init : initialization of the NEMO system !! nemo_ctl : initialisation of the contol print !! nemo_closefile : close remaining open files !! nemo_alloc : dynamical allocation !! nemo_partition : calculate MPP domain decomposition !! factorise : calculate the factors of the no. of MPI processes !!---------------------------------------------------------------------- USE step_oce ! module used in the ocean time stepping module USE sbc_oce ! surface boundary condition: ocean USE cla ! cross land advection (tra_cla routine) USE domcfg ! domain configuration (dom_cfg routine) USE mppini ! shared/distributed memory setting (mpp_init routine) USE domain ! domain initialization (dom_init routine) USE obcini ! open boundary cond. initialization (obc_ini routine) USE bdyini ! open boundary cond. initialization (bdy_init routine) USE bdydta ! open boundary cond. initialization (bdy_dta_init routine) USE bdytides ! open boundary cond. initialization (tide_init routine) USE istate ! initial state setting (istate_init routine) USE ldfdyn ! lateral viscosity setting (ldfdyn_init routine) USE ldftra ! lateral diffusivity setting (ldftra_init routine) USE zdfini ! vertical physics setting (zdf_init routine) USE phycst ! physical constant (par_cst routine) USE trdmod ! momentum/tracers trends (trd_mod_init routine) USE asmtrj ! writing out state trajectory USE diaptr ! poleward transports (dia_ptr_init routine) USE diadct ! sections transports (dia_dct_init routine) USE diaobs ! Observation diagnostics (dia_obs_init routine) USE step ! NEMO time-stepping (stp routine) #if defined key_oasis3 USE cpl_oasis3 ! OASIS3 coupling #elif defined key_oasis4 USE cpl_oasis4 ! OASIS4 coupling (not working) #endif USE c1d ! 1D configuration USE step_c1d ! Time stepping loop for the 1D configuration #if defined key_top USE trcini ! passive tracer initialisation #endif USE lib_mpp ! distributed memory computing #if defined key_iomput USE mod_ioclient #endif IMPLICIT NONE PRIVATE PUBLIC nemo_gcm ! called by model.F90 PUBLIC nemo_init ! needed by AGRIF CHARACTER(lc) :: cform_aaa="( /, 'AAAAAAAA', / ) " ! flag for output listing !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2011) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE nemo_gcm !!---------------------------------------------------------------------- !! *** ROUTINE nemo_gcm *** !! !! ** Purpose : NEMO solves the primitive equations on an orthogonal !! curvilinear mesh on the sphere. !! !! ** Method : - model general initialization !! - launch the time-stepping (stp routine) !! - finalize the run by closing files and communications !! !! References : Madec, Delecluse, Imbard, and Levy, 1997: internal report, IPSL. !! Madec, 2008, internal report, IPSL. !!---------------------------------------------------------------------- INTEGER :: istp ! time step index !!---------------------------------------------------------------------- ! #if defined key_agrif CALL Agrif_Init_Grids() ! AGRIF: set the meshes #endif ! !-----------------------! CALL nemo_init !== Initialisations ==! ! !-----------------------! #if defined key_agrif CALL Agrif_Declare_Var ! AGRIF: set the meshes # if defined key_top CALL Agrif_Declare_Var_Top ! AGRIF: set the meshes # endif #endif ! check that all process are still there... If some process have an error, ! they will never enter in step and other processes will wait until the end of the cpu time! IF( lk_mpp ) CALL mpp_max( nstop ) IF(lwp) WRITE(numout,cform_aaa) ! Flag AAAAAAA ! !-----------------------! ! !== time stepping ==! ! !-----------------------! istp = nit000 #if defined key_c1d DO WHILE ( istp <= nitend .AND. nstop == 0 ) CALL stp_c1d( istp ) istp = istp + 1 END DO #else IF( lk_asminc ) THEN IF( ln_bkgwri ) CALL asm_bkg_wri( nit000 - 1 ) ! Output background fields IF( ln_trjwri ) CALL asm_trj_wri( nit000 - 1 ) ! Output trajectory fields IF( ln_asmdin ) THEN ! Direct initialization IF( ln_trainc ) CALL tra_asm_inc( nit000 - 1 ) ! Tracers IF( ln_dyninc ) THEN CALL dyn_asm_inc( nit000 - 1 ) ! Dynamics IF ( ln_asmdin ) CALL ssh_wzv ( nit000 - 1 ) ! update vertical velocity ENDIF IF( ln_sshinc ) CALL ssh_asm_inc( nit000 - 1 ) ! SSH ENDIF ENDIF DO WHILE ( istp <= nitend .AND. nstop == 0 ) #if defined key_agrif CALL Agrif_Step( stp ) ! AGRIF: time stepping #else CALL stp( istp ) ! standard time stepping #endif istp = istp + 1 IF( lk_mpp ) CALL mpp_max( nstop ) END DO #endif IF( lk_diaobs ) CALL dia_obs_wri ! !------------------------! ! !== finalize the run ==! ! !------------------------! IF(lwp) WRITE(numout,cform_aaa) ! Flag AAAAAAA ! IF( nstop /= 0 .AND. lwp ) THEN ! error print WRITE(numout,cform_err) WRITE(numout,*) nstop, ' error have been found' ENDIF ! #if defined key_agrif CALL Agrif_ParentGrid_To_ChildGrid() IF( lk_diaobs ) CALL dia_obs_wri IF( nn_timing == 1 ) CALL timing_finalize CALL Agrif_ChildGrid_To_ParentGrid() #endif IF( nn_timing == 1 ) CALL timing_finalize ! CALL nemo_closefile #if defined key_oasis3 || defined key_oasis4 CALL cpl_prism_finalize ! end coupling and mpp communications with OASIS #else IF( lk_mpp ) CALL mppstop ! end mpp communications #endif ! END SUBROUTINE nemo_gcm SUBROUTINE nemo_init !!---------------------------------------------------------------------- !! *** ROUTINE nemo_init *** !! !! ** Purpose : initialization of the NEMO GCM !!---------------------------------------------------------------------- INTEGER :: ji ! dummy loop indices INTEGER :: ilocal_comm ! local integer CHARACTER(len=80), DIMENSION(16) :: cltxt !! NAMELIST/namctl/ ln_ctl , nn_print, nn_ictls, nn_ictle, & & nn_isplt, nn_jsplt, nn_jctls, nn_jctle, & & nn_bench, nn_timing !!---------------------------------------------------------------------- ! cltxt = '' ! ! ! open Namelist file CALL ctl_opn( numnam, 'namelist', 'OLD', 'FORMATTED', 'SEQUENTIAL', -1, 6, .FALSE. ) ! READ( numnam, namctl ) ! Namelist namctl : Control prints & Benchmark ! ! !--------------------------------------------! ! ! set communicator & select the local node ! ! !--------------------------------------------! #if defined key_iomput IF( Agrif_Root() ) THEN # if defined key_oasis3 || defined key_oasis4 CALL cpl_prism_init( ilocal_comm ) ! nemo local communicator given by oasis # endif CALL init_ioclient( ilocal_comm ) ! exchange io_server nemo local communicator with the io_server ENDIF narea = mynode( cltxt, numnam, nstop, ilocal_comm ) ! Nodes selection #else # if defined key_oasis3 || defined key_oasis4 IF( Agrif_Root() ) THEN CALL cpl_prism_init( ilocal_comm ) ! nemo local communicator given by oasis ENDIF narea = mynode( cltxt, numnam, nstop, ilocal_comm ) ! Nodes selection (control print return in cltxt) # else ilocal_comm = 0 narea = mynode( cltxt, numnam, nstop ) ! Nodes selection (control print return in cltxt) # endif #endif narea = narea + 1 ! mynode return the rank of proc (0 --> jpnij -1 ) lwp = (narea == 1) .OR. ln_ctl ! control of all listing output print ! If dimensions of processor grid weren't specified in the namelist file ! then we calculate them here now that we have our communicator size IF( (jpni < 1) .OR. (jpnj < 1) )THEN #if defined key_mpp_mpi IF( Agrif_Root() ) CALL nemo_partition(mppsize) #else jpni = 1 jpnj = 1 jpnij = jpni*jpnj #endif END IF ! Calculate domain dimensions given calculated jpni and jpnj ! This used to be done in par_oce.F90 when they were parameters rather ! than variables IF( Agrif_Root() ) THEN jpi = ( jpiglo-2*jpreci + (jpni-1) ) / jpni + 2*jpreci ! first dim. #if defined key_nemocice_decomp jpj = ( jpjglo+1-2*jprecj + (jpnj-1) ) / jpnj + 2*jprecj ! second dim. #else jpj = ( jpjglo-2*jprecj + (jpnj-1) ) / jpnj + 2*jprecj ! second dim. #endif jpk = jpkdta ! third dim jpim1 = jpi-1 ! inner domain indices jpjm1 = jpj-1 ! " " jpkm1 = jpk-1 ! " " jpij = jpi*jpj ! jpi x j ENDIF IF(lwp) THEN ! open listing units ! CALL ctl_opn( numout, 'ocean.output', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, 6, .FALSE., narea ) ! WRITE(numout,*) WRITE(numout,*) ' CNRS - NERC - Met OFFICE - MERCATOR-ocean - INGV - CMCC' WRITE(numout,*) ' NEMO team' WRITE(numout,*) ' Ocean General Circulation Model' WRITE(numout,*) ' version 3.4 (2011) ' WRITE(numout,*) WRITE(numout,*) DO ji = 1, SIZE(cltxt) IF( TRIM(cltxt(ji)) /= '' ) WRITE(numout,*) cltxt(ji) ! control print of mynode END DO WRITE(numout,cform_aaa) ! Flag AAAAAAA ! ENDIF ! Now we know the dimensions of the grid and numout has been set we can ! allocate arrays CALL nemo_alloc() ! !-------------------------------! ! ! NEMO general initialization ! ! !-------------------------------! CALL nemo_ctl ! Control prints & Benchmark ! ! Domain decomposition IF( jpni*jpnj == jpnij ) THEN ; CALL mpp_init ! standard cutting out ELSE ; CALL mpp_init2 ! eliminate land processors ENDIF ! IF( nn_timing == 1 ) CALL timing_init ! ! ! General initialization CALL phy_cst ! Physical constants CALL eos_init ! Equation of state CALL dom_cfg ! Domain configuration CALL dom_init ! Domain IF( ln_nnogather ) CALL nemo_northcomms ! Initialise the northfold neighbour lists (must be done after the masks are defined) IF( ln_ctl ) CALL prt_ctl_init ! Print control IF( lk_obc ) CALL obc_init ! Open boundaries IF( lk_bdy ) CALL bdy_init ! Open boundaries initialisation IF( lk_bdy ) CALL bdy_dta_init ! Open boundaries initialisation of external data arrays IF( lk_bdy ) CALL tide_init ! Open boundaries initialisation of tidal harmonic forcing CALL flush(numout) CALL dyn_nept_init ! simplified form of Neptune effect CALL flush(numout) CALL istate_init ! ocean initial state (Dynamics and tracers) ! ! Ocean physics CALL sbc_init ! Forcings : surface module ! ! Vertical physics CALL zdf_init ! namelist read CALL zdf_bfr_init ! bottom friction IF( lk_zdfric ) CALL zdf_ric_init ! Richardson number dependent Kz IF( lk_zdftke ) CALL zdf_tke_init ! TKE closure scheme IF( lk_zdfgls ) CALL zdf_gls_init ! GLS closure scheme IF( lk_zdfkpp ) CALL zdf_kpp_init ! KPP closure scheme IF( lk_zdftmx ) CALL zdf_tmx_init ! tidal vertical mixing IF( lk_zdfddm .AND. .NOT. lk_zdfkpp ) & & CALL zdf_ddm_init ! double diffusive mixing ! ! Lateral physics CALL ldf_tra_init ! Lateral ocean tracer physics CALL ldf_dyn_init ! Lateral ocean momentum physics IF( lk_ldfslp ) CALL ldf_slp_init ! slope of lateral mixing ! ! Active tracers CALL tra_qsr_init ! penetrative solar radiation qsr CALL tra_bbc_init ! bottom heat flux IF( lk_trabbl ) CALL tra_bbl_init ! advective (and/or diffusive) bottom boundary layer scheme IF( ln_tradmp ) CALL tra_dmp_init ! internal damping trends CALL tra_adv_init ! horizontal & vertical advection CALL tra_ldf_init ! lateral mixing CALL tra_zdf_init ! vertical mixing and after tracer fields ! ! Dynamics CALL dyn_adv_init ! advection (vector or flux form) CALL dyn_vor_init ! vorticity term including Coriolis CALL dyn_ldf_init ! lateral mixing CALL dyn_hpg_init ! horizontal gradient of Hydrostatic pressure CALL dyn_zdf_init ! vertical diffusion CALL dyn_spg_init ! surface pressure gradient ! ! Misc. options IF( nn_cla == 1 ) CALL cla_init ! Cross Land Advection #if defined key_top ! ! Passive tracers CALL trc_init #endif ! ! Diagnostics IF( lk_floats ) CALL flo_init ! drifting Floats CALL iom_init ! iom_put initialization IF( lk_diaar5 ) CALL dia_ar5_init ! ar5 diag CALL dia_ptr_init ! Poleward TRansports initialization IF( lk_diadct ) CALL dia_dct_init ! Sections tranports CALL dia_hsb_init ! heat content, salt content and volume budgets CALL trd_mod_init ! Mixed-layer/Vorticity/Integral constraints trends IF( lk_diaobs ) THEN ! Observation & model comparison CALL dia_obs_init ! Initialize observational data CALL dia_obs( nit000 - 1 ) ! Observation operator for restart ENDIF ! ! Assimilation increments IF( lk_asminc ) CALL asm_inc_init ! Initialize assimilation increments IF(lwp) WRITE(numout,*) 'Euler time step switch is ', neuler ! END SUBROUTINE nemo_init SUBROUTINE nemo_ctl !!---------------------------------------------------------------------- !! *** ROUTINE nemo_ctl *** !! !! ** Purpose : control print setting !! !! ** Method : - print namctl information and check some consistencies !!---------------------------------------------------------------------- ! IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'nemo_ctl: Control prints & Benchmark' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist namctl' WRITE(numout,*) ' run control (for debugging) ln_ctl = ', ln_ctl WRITE(numout,*) ' level of print nn_print = ', nn_print WRITE(numout,*) ' Start i indice for SUM control nn_ictls = ', nn_ictls WRITE(numout,*) ' End i indice for SUM control nn_ictle = ', nn_ictle WRITE(numout,*) ' Start j indice for SUM control nn_jctls = ', nn_jctls WRITE(numout,*) ' End j indice for SUM control nn_jctle = ', nn_jctle WRITE(numout,*) ' number of proc. following i nn_isplt = ', nn_isplt WRITE(numout,*) ' number of proc. following j nn_jsplt = ', nn_jsplt WRITE(numout,*) ' benchmark parameter (0/1) nn_bench = ', nn_bench ENDIF ! nprint = nn_print ! convert DOCTOR namelist names into OLD names nictls = nn_ictls nictle = nn_ictle njctls = nn_jctls njctle = nn_jctle isplt = nn_isplt jsplt = nn_jsplt nbench = nn_bench ! ! Parameter control ! IF( ln_ctl ) THEN ! sub-domain area indices for the control prints IF( lk_mpp .AND. jpnij > 1 ) THEN isplt = jpni ; jsplt = jpnj ; ijsplt = jpni*jpnj ! the domain is forced to the real split domain ELSE IF( isplt == 1 .AND. jsplt == 1 ) THEN CALL ctl_warn( ' - isplt & jsplt are equal to 1', & & ' - the print control will be done over the whole domain' ) ENDIF ijsplt = isplt * jsplt ! total number of processors ijsplt ENDIF IF(lwp) WRITE(numout,*)' - The total number of processors over which the' IF(lwp) WRITE(numout,*)' print control will be done is ijsplt : ', ijsplt ! ! ! indices used for the SUM control IF( nictls+nictle+njctls+njctle == 0 ) THEN ! print control done over the default area lsp_area = .FALSE. ELSE ! print control done over a specific area lsp_area = .TRUE. IF( nictls < 1 .OR. nictls > jpiglo ) THEN CALL ctl_warn( ' - nictls must be 1<=nictls>=jpiglo, it is forced to 1' ) nictls = 1 ENDIF IF( nictle < 1 .OR. nictle > jpiglo ) THEN CALL ctl_warn( ' - nictle must be 1<=nictle>=jpiglo, it is forced to jpiglo' ) nictle = jpiglo ENDIF IF( njctls < 1 .OR. njctls > jpjglo ) THEN CALL ctl_warn( ' - njctls must be 1<=njctls>=jpjglo, it is forced to 1' ) njctls = 1 ENDIF IF( njctle < 1 .OR. njctle > jpjglo ) THEN CALL ctl_warn( ' - njctle must be 1<=njctle>=jpjglo, it is forced to jpjglo' ) njctle = jpjglo ENDIF ENDIF ENDIF ! IF( nbench == 1 ) THEN ! Benchmark SELECT CASE ( cp_cfg ) CASE ( 'gyre' ) ; CALL ctl_warn( ' The Benchmark is activated ' ) CASE DEFAULT ; CALL ctl_stop( ' The Benchmark is based on the GYRE configuration:', & & ' key_gyre must be used or set nbench = 0' ) END SELECT ENDIF ! IF( lk_c1d .AND. .NOT.lk_iomput ) CALL ctl_stop( 'nemo_ctl: The 1D configuration must be used ', & & 'with the IOM Input/Output manager. ' , & & 'Compile with key_iomput enabled' ) ! END SUBROUTINE nemo_ctl SUBROUTINE nemo_closefile !!---------------------------------------------------------------------- !! *** ROUTINE nemo_closefile *** !! !! ** Purpose : Close the files !!---------------------------------------------------------------------- ! IF( lk_mpp ) CALL mppsync ! CALL iom_close ! close all input/output files managed by iom_* ! IF( numstp /= -1 ) CLOSE( numstp ) ! time-step file IF( numsol /= -1 ) CLOSE( numsol ) ! solver file IF( numnam /= -1 ) CLOSE( numnam ) ! oce namelist IF( numnam_ice /= -1 ) CLOSE( numnam_ice ) ! ice namelist IF( numevo_ice /= -1 ) CLOSE( numevo_ice ) ! ice variables (temp. evolution) IF( numout /= 6 ) CLOSE( numout ) ! standard model output file IF( numdct_vol /= -1 ) CLOSE( numdct_vol ) ! volume transports IF( numdct_heat /= -1 ) CLOSE( numdct_heat ) ! heat transports IF( numdct_salt /= -1 ) CLOSE( numdct_salt ) ! salt transports ! numout = 6 ! redefine numout in case it is used after this point... ! END SUBROUTINE nemo_closefile SUBROUTINE nemo_alloc !!---------------------------------------------------------------------- !! *** ROUTINE nemo_alloc *** !! !! ** Purpose : Allocate all the dynamic arrays of the OPA modules !! !! ** Method : !!---------------------------------------------------------------------- USE diawri , ONLY: dia_wri_alloc USE dom_oce , ONLY: dom_oce_alloc USE ldfdyn_oce, ONLY: ldfdyn_oce_alloc USE ldftra_oce, ONLY: ldftra_oce_alloc USE trc_oce , ONLY: trc_oce_alloc ! INTEGER :: ierr !!---------------------------------------------------------------------- ! ierr = oce_alloc () ! ocean ierr = ierr + dia_wri_alloc () ierr = ierr + dom_oce_alloc () ! ocean domain ierr = ierr + ldfdyn_oce_alloc() ! ocean lateral physics : dynamics ierr = ierr + ldftra_oce_alloc() ! ocean lateral physics : tracers ierr = ierr + zdf_oce_alloc () ! ocean vertical physics ! ierr = ierr + lib_mpp_alloc (numout) ! mpp exchanges ierr = ierr + trc_oce_alloc () ! shared TRC / TRA arrays ! IF( lk_mpp ) CALL mpp_sum( ierr ) IF( ierr /= 0 ) CALL ctl_stop( 'STOP', 'nemo_alloc : unable to allocate standard ocean arrays' ) ! END SUBROUTINE nemo_alloc SUBROUTINE nemo_partition( num_pes ) !!---------------------------------------------------------------------- !! *** ROUTINE nemo_partition *** !! !! ** Purpose : !! !! ** Method : !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: num_pes ! The number of MPI processes we have ! INTEGER, PARAMETER :: nfactmax = 20 INTEGER :: nfact ! The no. of factors returned INTEGER :: ierr ! Error flag INTEGER :: ji INTEGER :: idiff, mindiff, imin ! For choosing pair of factors that are closest in value INTEGER, DIMENSION(nfactmax) :: ifact ! Array of factors !!---------------------------------------------------------------------- ierr = 0 CALL factorise( ifact, nfactmax, nfact, num_pes, ierr ) IF( nfact <= 1 ) THEN WRITE (numout, *) 'WARNING: factorisation of number of PEs failed' WRITE (numout, *) ' : using grid of ',num_pes,' x 1' jpnj = 1 jpni = num_pes ELSE ! Search through factors for the pair that are closest in value mindiff = 1000000 imin = 1 DO ji = 1, nfact-1, 2 idiff = ABS( ifact(ji) - ifact(ji+1) ) IF( idiff < mindiff ) THEN mindiff = idiff imin = ji ENDIF END DO jpnj = ifact(imin) jpni = ifact(imin + 1) ENDIF ! jpnij = jpni*jpnj ! END SUBROUTINE nemo_partition SUBROUTINE factorise( kfax, kmaxfax, knfax, kn, kerr ) !!---------------------------------------------------------------------- !! *** ROUTINE factorise *** !! !! ** Purpose : return the prime factors of n. !! knfax factors are returned in array kfax which is of !! maximum dimension kmaxfax. !! ** Method : !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kn, kmaxfax INTEGER , INTENT( out) :: kerr, knfax INTEGER, DIMENSION(kmaxfax), INTENT( out) :: kfax ! INTEGER :: ifac, jl, inu INTEGER, PARAMETER :: ntest = 14 INTEGER :: ilfax(ntest) ! lfax contains the set of allowed factors. data (ilfax(jl),jl=1,ntest) / 16384, 8192, 4096, 2048, 1024, 512, 256, & & 128, 64, 32, 16, 8, 4, 2 / !!---------------------------------------------------------------------- ! Clear the error flag and initialise output vars kerr = 0 kfax = 1 knfax = 0 ! Find the factors of n. IF( kn == 1 ) GOTO 20 ! nu holds the unfactorised part of the number. ! knfax holds the number of factors found. ! l points to the allowed factor list. ! ifac holds the current factor. inu = kn knfax = 0 DO jl = ntest, 1, -1 ! ifac = ilfax(jl) IF( ifac > inu ) CYCLE ! Test whether the factor will divide. IF( MOD(inu,ifac) == 0 ) THEN ! knfax = knfax + 1 ! Add the factor to the list IF( knfax > kmaxfax ) THEN kerr = 6 write (*,*) 'FACTOR: insufficient space in factor array ', knfax return ENDIF kfax(knfax) = ifac ! Store the other factor that goes with this one knfax = knfax + 1 kfax(knfax) = inu / ifac !WRITE (*,*) 'ARPDBG, factors ',knfax-1,' & ',knfax,' are ', kfax(knfax-1),' and ',kfax(knfax) ENDIF ! END DO 20 CONTINUE ! Label 20 is the exit point from the factor search loop. ! END SUBROUTINE factorise #if defined key_mpp_mpi SUBROUTINE nemo_northcomms !!====================================================================== !! *** ROUTINE nemo_northcomms *** !! nemo_northcomms : Setup for north fold exchanges with explicit peer to peer messaging !!===================================================================== !!---------------------------------------------------------------------- !! !! ** Purpose : Initialization of the northern neighbours lists. !!---------------------------------------------------------------------- !! 1.0 ! 2011-10 (A. C. Coward, NOCS & J. Donners, PRACE) !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk, ij, jtyp ! dummy loop indices INTEGER :: ijpj ! number of rows involved in north-fold exchange INTEGER :: northcomms_alloc ! allocate return status REAL(wp), ALLOCATABLE, DIMENSION ( :,: ) :: znnbrs ! workspace LOGICAL, ALLOCATABLE, DIMENSION ( : ) :: lrankset ! workspace IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'nemo_northcomms : Initialization of the northern neighbours lists' IF(lwp) WRITE(numout,*) '~~~~~~~~~~' !!---------------------------------------------------------------------- ALLOCATE( znnbrs(jpi,jpj), stat = northcomms_alloc ) ALLOCATE( lrankset(jpnij), stat = northcomms_alloc ) IF( northcomms_alloc /= 0 ) THEN WRITE(numout,cform_war) WRITE(numout,*) 'northcomms_alloc : failed to allocate arrays' CALL ctl_stop( 'STOP', 'nemo_northcomms : unable to allocate temporary arrays' ) ENDIF nsndto = 0 isendto = -1 ijpj = 4 ! ! This routine has been called because ln_nnogather has been set true ( nammpp ) ! However, these first few exchanges have to use the mpi_allgather method to ! establish the neighbour lists to use in subsequent peer to peer exchanges. ! Consequently, set l_north_nogather to be false here and set it true only after ! the lists have been established. ! l_north_nogather = .FALSE. ! ! Exchange and store ranks on northern rows DO jtyp = 1,4 lrankset = .FALSE. znnbrs = narea SELECT CASE (jtyp) CASE(1) CALL lbc_lnk( znnbrs, 'T', 1. ) ! Type 1: T,W-points CASE(2) CALL lbc_lnk( znnbrs, 'U', 1. ) ! Type 2: U-point CASE(3) CALL lbc_lnk( znnbrs, 'V', 1. ) ! Type 3: V-point CASE(4) CALL lbc_lnk( znnbrs, 'F', 1. ) ! Type 4: F-point END SELECT IF ( njmppt(narea) .EQ. MAXVAL( njmppt ) ) THEN DO jj = nlcj-ijpj+1, nlcj ij = jj - nlcj + ijpj DO ji = 1,jpi IF ( INT(znnbrs(ji,jj)) .NE. 0 .AND. INT(znnbrs(ji,jj)) .NE. narea ) & & lrankset(INT(znnbrs(ji,jj))) = .true. END DO END DO DO jj = 1,jpnij IF ( lrankset(jj) ) THEN nsndto(jtyp) = nsndto(jtyp) + 1 IF ( nsndto(jtyp) .GT. jpmaxngh ) THEN CALL ctl_stop( ' Too many neighbours in nemo_northcomms ', & & ' jpmaxngh will need to be increased ') ENDIF isendto(nsndto(jtyp),jtyp) = jj-1 ! narea converted to MPI rank ENDIF END DO ENDIF END DO ! ! Type 5: I-point ! ! ICE point exchanges may involve some averaging. The neighbours list is ! built up using two exchanges to ensure that the whole stencil is covered. ! lrankset should not be reset between these 'J' and 'K' point exchanges jtyp = 5 lrankset = .FALSE. znnbrs = narea CALL lbc_lnk( znnbrs, 'J', 1. ) ! first ice U-V point IF ( njmppt(narea) .EQ. MAXVAL( njmppt ) ) THEN DO jj = nlcj-ijpj+1, nlcj ij = jj - nlcj + ijpj DO ji = 1,jpi IF ( INT(znnbrs(ji,jj)) .NE. 0 .AND. INT(znnbrs(ji,jj)) .NE. narea ) & & lrankset(INT(znnbrs(ji,jj))) = .true. END DO END DO ENDIF znnbrs = narea CALL lbc_lnk( znnbrs, 'K', 1. ) ! second ice U-V point IF ( njmppt(narea) .EQ. MAXVAL( njmppt )) THEN DO jj = nlcj-ijpj+1, nlcj ij = jj - nlcj + ijpj DO ji = 1,jpi IF ( INT(znnbrs(ji,jj)) .NE. 0 .AND. INT(znnbrs(ji,jj)) .NE. narea ) & & lrankset( INT(znnbrs(ji,jj))) = .true. END DO END DO DO jj = 1,jpnij IF ( lrankset(jj) ) THEN nsndto(jtyp) = nsndto(jtyp) + 1 IF ( nsndto(jtyp) .GT. jpmaxngh ) THEN CALL ctl_stop( ' Too many neighbours in nemo_northcomms ', & & ' jpmaxngh will need to be increased ') ENDIF isendto(nsndto(jtyp),jtyp) = jj-1 ! narea converted to MPI rank ENDIF END DO ! ! For northern row areas, set l_north_nogather so that all subsequent exchanges ! can use peer to peer communications at the north fold ! l_north_nogather = .TRUE. ! ENDIF DEALLOCATE( znnbrs ) DEALLOCATE( lrankset ) END SUBROUTINE nemo_northcomms #else SUBROUTINE nemo_northcomms ! Dummy routine WRITE(*,*) 'nemo_northcomms: You should not have seen this print! error?' END SUBROUTINE nemo_northcomms #endif !!====================================================================== END MODULE nemogcm