
NEMO ocean engine

Gurvan Madec, and the NEMO team
gurvan.madec@locean-ipsl.umpc.fr

nemo st@hermes.locean-ipsl.umpc.fr

January 2012
– version 3.4 –

Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace No 27

ISSN No 1288-1619.

Table des matières

Abstract / Résumé

The ocean engine of NEMO (Nucleus for European Modelling of the Ocean) is a pri-
mitive equation model adapted to regional and global ocean circulation problems. It is
intended to be a flexible tool for studying the ocean and its interactions with the others
components of the earth climate system over a wide range of space and time scales. Pro-
gnostic variables are the three-dimensional velocity field, a linear or non-linear sea surface
height, the temperature and the salinity. In the horizontal direction, the model uses a cur-
vilinear orthogonal grid and in the vertical direction, a full or partial step z-coordinate, or
s-coordinate, or a mixture of the two. The distribution of variables is a three-dimensional
Arakawa C-type grid. Various physical choices are available to describe ocean physics, in-
cluding TKE, GLS and KPP vertical physics. Within NEMO, the ocean is interfaced with a
sea-ice model (LIM v2 and v3), passive tracer and biogeochemical models (TOP) and, via
the OASIS coupler, with several atmospheric general circulation models. It also support
two-way grid embedding via the AGRIF software.

Le moteur océanique de NEMO (Nucleus for European Modelling of the Ocean) est
un modèle aux équations primitives de la circulation océanique régionale et globale. Il se
veut un outil flexible pour étudier sur un vaste spectre spatiotemporel l’océan et ses inter-
actions avec les autres composantes du système climatique terrestre. Les variables pronos-
tiques sont le champ tridimensionnel de vitesse, une hauteur de la mer linéaire ou non, la
temperature et la salinité. La distribution des variables se fait sur une grille C d’Arakawa
tridimensionnelle utilisant une coordonnée verticale z à niveaux entiers ou partiels, ou une
coordonnée s, ou encore une combinaison des deux. Différents choix sont proposés pour
décrire la physique océanique, incluant notamment des physiques verticales TKE, GLS et
KPP. A travers l’infrastructure NEMO, l’océan est interfacé avec des modèles de glace de
mer, de biogéochimie et de traceurs passifs, et, via le coupleur OASIS, à plusieurs modèles
de circulation générale atmosphérique. Il supporte également l’emboı̂tement interactif de
maillages via le logiciel AGRIF.

Disclaimer

Like all components of NEMO, the ocean component is developed under the
CECILL license, which is a French adaptation of the GNU GPL (General Public
License). Anyone may use it freely for research purposes, and is encouraged to
communicate back to the NEMO team its own developments and improvements.
The model and the present document have been made available as a service to the
community. We cannot certify that the code and its manual are free of errors. Bugs
are inevitable and some have undoubtedly survived the testing phase. Users are
encouraged to bring them to our attention. The author assumes no responsibility
for problems, errors, or incorrect usage of NEMO.

NEMO reference in papers and other publications is as follows :

Madec, G., and the NEMO team, 2008 : NEMO ocean engine. Note du Pôle
de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No
1288-1619.

Additional information can be found on nemo-ocean.eu website.

http://www.nemo-ocean.eu/

1 Introduction

The Nucleus for European Modelling of the Ocean (NEMO) is a framework of
ocean related engines, namely OPA 1 for the ocean dynamics and thermodynamics,
LIM 2 for the sea-ice dynamics and thermodynamics, TOP 3 for the biogeochemis-
try (both transport (TRP) and sources minus sinks (LOBSTER, PISCES) 4. It is
intended to be a flexible tool for studying the ocean and its interactions with the
other components of the earth climate system (atmosphere, sea-ice, biogeochemi-
cal tracers, ...) over a wide range of space and time scales. This documentation
provides information about the physics represented by the ocean component of
NEMO and the rationale for the choice of numerical schemes and the model de-
sign. More specific information about running the model on different computers,
or how to set up a configuration, are found on the NEMO web site (www.locean-
ipsl.upmc.fr/NEMO).

The ocean component of NEMO has been developed from the OPA model, re-
lease 8.2, described in ?. This model has been used for a wide range of applications,
both regional or global, as a forced ocean model and as a model coupled with the
atmosphere. A complete list of references is found on the NEMO web site.

This manual is organised in as follows. Chapter ?? presents the model basics,
i.e. the equations and their assumptions, the vertical coordinates used, and the sub-
grid scale physics. This part deals with the continuous equations of the model (pri-
mitive equations, with potential temperature, salinity and an equation of state). The
equations are written in a curvilinear coordinate system, with a choice of vertical
coordinates (z or s, with the rescaled height coordinate formulation z*, or s*). Mo-
mentum equations are formulated in the vector invariant form or in the flux form.

1. OPA = Océan PArallélisé
2. LIM= Louvain)la-neuve Ice Model
3. TOP = Tracer in the Ocean Paradigm
4. Both LOBSTER and PISCES are not acronyms just name

6 Introduction

Dimensional units in the meter, kilogram, second (MKS) international system are
used throughout.

The following chapters deal with the discrete equations. Chapter ?? presents
the time domain. The model time stepping environment is a three level scheme in
which the tendency terms of the equations are evaluated either centered in time, or
forward, or backward depending of the nature of the term. Chapter ?? presents the
space domain. The model is discretised on a staggered grid (Arakawa C grid) with
masking of land areas. Vertical discretisation used depends on both how the bottom
topography is represented and whether the free surface is linear or not. Full step
or partial step z-coordinate or s- (terrain-following) coordinate is used with linear
free surface (level position are then fixed in time). In non-linear free surface, the
corresponding rescaled height coordinate formulation (z* or s*) is used (the level
position then vary in time as a function of the sea surface heigh). The following two
chapters (?? and ??) describe the discretisation of the prognostic equations for the
active tracers and the momentum. Explicit, split-explicit and filtered free surface
formulations are implemented. A number of numerical schemes are available for
momentum advection, for the computation of the pressure gradients, as well as
for the advection of tracers (second or higher order advection schemes, including
positive ones).

Surface boundary conditions (chapter ??) can be implemented as prescribed
fluxes, or bulk formulations for the surface fluxes (wind stress, heat, freshwater).
The model allows penetration of solar radiation There is an optional geothermal
heating at the ocean bottom. Within the NEMO system the ocean model is inter-
actively coupled with a sea ice model (LIM) and with biogeochemistry models
(PISCES, LOBSTER). Interactive coupling to Atmospheric models is possible via
the OASIS coupler [?]. Two-way nesting is also available through an interface to
the AGRIF package (Adaptative Grid Refinement in FORTRAN) [?]. The interface
code for coupling to an alternative sea ice model (CICE, ?) has now been upgraded
so that it works for both global and regional domains, although AGRIF is still not
available.

Other model characteristics are the lateral boundary conditions (chapter ??).
Global configurations of the model make use of the ORCA tripolar grid, with spe-
cial north fold boundary condition. Free-slip or no-slip boundary conditions are
allowed at land boundaries. Closed basin geometries as well as periodic domains
and open boundary conditions are possible.

Physical parameterisations are described in chapters ?? and ??. The model in-
cludes an implicit treatment of vertical viscosity and diffusivity. The lateral Lapla-
cian and biharmonic viscosity and diffusion can be rotated following a geopotential
or neutral direction. There is an optional eddy induced velocity [?] with a space and
time variable coefficient ?. The model has vertical harmonic viscosity and diffusion
with a space and time variable coefficient, with options to compute the coefficients
with ?, ?, ?, or ? mixing schemes.

Model outputs management and specific online diagnostics are described in
chapters ??. The diagnostics includes the output of all the tendencies of the mo-

7

mentum and tracers equations, the output of tracers tendencies averaged over the
time evolving mixed layer, the output of the tendencies of the barotropic vorticity
equation, the computation of on-line floats trajectories... Chapter ?? describes a
tool which reads in observation files (profile temperature and salinity, sea surface
temperature, sea level anomaly and sea ice concentration) and calculates an in-
terpolated model equivalent value at the observation location and nearest model
timestep. Originally developed of data assimilation, it is a fantastic tool for model
and data comparison. Chapter ?? describes how increments produced by data as-
similation may be applied to the model equations. Finally, Chapter ?? provides a
brief introduction to the pre-defined model configurations (water column model,
ORCA and GYRE families of configurations).

The model is implemented in FORTRAN 90, with preprocessing (C-pre-processor).
It runs under UNIX. It is optimized for vector computers and parallelised by do-
main decomposition with MPI. All input and output is done in NetCDF (Network
Common Data Format) with a optional direct access format for output. To ensure
the clarity and readability of the code it is necessary to follow coding rules. The
coding rules for OPA include conventions for naming variables, with different star-
ting letters for different types of variables (real, integer, parameter. . .). Those rules
are briefly presented in Appendix ?? and a more complete document is available
on the NEMO web site.

The model is organized with a high internal modularity based on physics. For
example, each trend (i.e., a term in the RHS of the prognostic equation) for mo-
mentum and tracers is computed in a dedicated module. To make it easier for the
user to find his way around the code, the module names follow a three-letter rule.
For example, traldf.F90 is a module related to the TRAcers equation, computing
the Lateral DiFfussion. Furthermore, modules are organized in a few directories
that correspond to their category, as indicated by the first three letters of their name
(Tab. ??).

The manual mirrors the organization of the model. After the presentation of the
continuous equations (Chapter ??), the following chapters refer to specific terms
of the equations each associated with a group of modules (Tab. ??).

Changes between releases

NEMO/OPA, like all research tools, is in perpetual evolution. The present do-
cument describes the OPA version include in the release 3.4 of NEMO. This release
differs significantly from version 8, documented in ?.

• The main modifications from OPA v8 and NEMO/OPA v3.2 are :

1. transition to full native FORTRAN 90, deep code restructuring and drastic
reduction of CPP keys ;

2. introduction of partial step representation of bottom topography [???] ;

8 Introduction

TABLE 1.1: Organization of Chapters mimicking the one of the model directories.

Chapter ?? - model time STePping environment
Chapter ?? DOM model DOMain
Chapter ?? TRA TRAcer equations (potential temperature and salinity)
Chapter ?? DYN DYNamic equations (momentum)
Chapter ?? SBC Surface Boundary Conditions
Chapter ?? LBC Lateral Boundary Conditions (also OBC and BDY)
Chapter ?? LDF Lateral DiFfusion (parameterisations)
Chapter ?? ZDF vertical (Z) DiFfusion (parameterisations)
Chapter ?? DIA I/O and DIAgnostics (also IOM, FLO and TRD)
Chapter ?? OBS OBServation and model comparison
Chapter ?? ASM ASsiMilation increment
Chapter ?? SOL Miscellaneous topics (including solvers)
Chapter ?? - predefined configurations (including C1D)

3. partial reactivation of a terrain-following vertical coordinate (s- and hybrid
s-z) with the addition of several options for pressure gradient computation 5 ;

4. more choices for the treatment of the free surface : full explicit, split-explicit
or filtered schemes, and suppression of the rigid-lid option ;

5. non linear free surface associated with the rescaled height coordinate z* or
s ;

6. additional schemes for vector and flux forms of the momentum advection ;

7. additional advection schemes for tracers ;

8. implementation of the AGRIF package (Adaptative Grid Refinement in FOR-
TRAN) [?] ;

9. online diagnostics : tracers trend in the mixed layer and vorticity balance ;

10. rewriting of the I/O management with the use of an I/O server ;

11. generalized ocean-ice-atmosphere-CO2 coupling interface, interfaced with
OASIS 3 coupler ;

12. surface module (SBC) that simplify the way the ocean is forced and include
two bulk formulea (CLIO and CORE) and which includes an on-the-fly in-
terpolation of input forcing fields ;

13. RGB light penetration and optional use of ocean color

14. major changes in the TKE schemes : it now includes a Langmuir cell pa-
rameterization [?], the ? surface wave breaking parameterization, and has a

5. Partial support of s-coordinate : there is presently no support for neutral physics in s- coordi-
nate and for the new options for horizontal pressure gradient computation with a non-linear equation
of state.

9

time discretization which is energetically consistent with the ocean model
equations [??] ;

15. tidal mixing parametrisation (bottom intensification) + Indonesian specific
tidal mixing [?] ;

16. introduction of LIM-3, the new Louvain-la-Neuve sea-ice model (C-grid
rheology and new thermodynamics including bulk ice salinity) [??]

• The main modifications from NEMO/OPA v3.2 and v3.3 are :

1. introduction of a modified leapfrog-Asselin filter time stepping scheme [?] ;

2. additional scheme for iso-neutral mixing [?], although it is still a ”work in
progress” ;

3. a rewriting of the bottom boundary layer scheme, following ? ;

4. addition of a Generic Length Scale vertical mixing scheme, following ? ;

5. addition of the atmospheric pressure as an external forcing on both ocean
and sea-ice dynamics ;

6. addition of a diurnal cycle on solar radiation [?] ;

7. river runoffs added through a non-zero depth, and having its own temperature
and salinity ;

8. CORE II normal year forcing set as the default forcing of ORCA2-LIM
configuration ;

9. generalisation of the use of fldread.F90 for all input fields (ocean climato-
logy, sea-ice damping...) ;

10. addition of an on-line observation and model comparison (thanks to NEMO-
VAR project) ;

11. optional application of an assimilation increment (thanks to NEMOVAR pro-
ject) ;

12. coupling interface adjusted for WRF atmospheric model ;

13. C-grid ice rheology now available fro both LIM-2 and LIM-3 [?] ;

14. LIM-3 ice-ocean momentum coupling applied to LIM-2 ;

15. a deep re-writting and simplification of the off-line tracer component (OFF SRC) ;

16. the merge of passive and active advection and diffusion modules ;

17. Use of the Flexible Configuration Manager (FCM) to build configurations,
generate the Makefile and produce the executable ;

18. Linear-tangent and Adjoint component (TAM) added, phased with v3.0

10 Introduction

In addition, several minor modifications in the coding have been introduced with
the constant concern of improving the model performance.

• The main modifications from NEMO/OPA v3.3 and v3.4 are :

1. finalisation of above iso-neutral mixing [?]” ;

2. ”Neptune effect” parametrisation ;

3. horizontal pressure gradient suitable for s-coordinate ;

4. semi-implicit bottom friction ;

5. finalisation of the merge of passive and active tracers advection-diffusion
modules ;

6. a new bulk formulae (so-called MFS) ;

7. use fldread for the off-line tracer component (OFF SRC) ;

8. use MPI point to point communications for north fold ;

9. diagnostic of transport ;

2 Model basics

12 Model basics

2.1 Primitive Equations

2.1.1 Vector Invariant Formulation

The ocean is a fluid that can be described to a good approximation by the primi-
tive equations, i.e. the Navier-Stokes equations along with a nonlinear equation of
state which couples the two active tracers (temperature and salinity) to the fluid ve-
locity, plus the following additional assumptions made from scale considerations :

(1) spherical earth approximation : the geopotential surfaces are assumed to
be spheres so that gravity (local vertical) is parallel to the earth’s radius

(2) thin-shell approximation : the ocean depth is neglected compared to the
earth’s radius

(3) turbulent closure hypothesis : the turbulent fluxes (which represent the ef-
fect of small scale processes on the large-scale) are expressed in terms of large-
scale features

(4) Boussinesq hypothesis : density variations are neglected except in their
contribution to the buoyancy force

(5) Hydrostatic hypothesis : the vertical momentum equation is reduced to a ba-
lance between the vertical pressure gradient and the buoyancy force (this removes
convective processes from the initial Navier-Stokes equations and so convective
processes must be parameterized instead)

(6) Incompressibility hypothesis : the three dimensional divergence of the ve-
locity vector is assumed to be zero.

Because the gravitational force is so dominant in the equations of large-scale
motions, it is useful to choose an orthogonal set of unit vectors (i,j,k) linked to the
earth such that k is the local upward vector and (i,j) are two vectors orthogonal to
k, i.e. tangent to the geopotential surfaces. Let us define the following variables :
U the vector velocity, U = Uh + w k (the subscript h denotes the local horizontal
vector, i.e. over the (i,j) plane), T the potential temperature, S the salinity, ρ the
in situ density. The vector invariant form of the primitive equations in the (i,j,k)
vector system provides the following six equations (namely the momentum ba-
lance, the hydrostatic equilibrium, the incompressibility equation, the heat and salt
conservation equations and an equation of state) :

∂Uh

∂t
= −

[
(∇×U)×U +

1

2
∇
(
U2
)]
h

− f k×Uh −
1

ρo
∇hp+ DU + FU

(2.1a)

∂p

∂z
= −ρ g (2.1b)

∇ ·U = 0 (2.1c)

2.1. Primitive Equations 13

∂T

∂t
= −∇ · (T U) +DT + F T (2.1d)

∂S

∂t
= −∇ · (S U) +DS + FS (2.1e)

ρ = ρ (T, S, p) (2.1f)

where ∇ is the generalised derivative vector operator in (i, j,k) directions, t is the
time, z is the vertical coordinate, ρ is the in situ density given by the equation of
state (??), ρo is a reference density, p the pressure, f = 2Ω ·k is the Coriolis acce-
leration (where Ω is the Earth’s angular velocity vector), and g is the gravitational
acceleration. DU, DT and DS are the parameterisations of small-scale physics for
momentum, temperature and salinity, and FU, F T and FS surface forcing terms.
Their nature and formulation are discussed in §?? and page §??.

.

2.1.2 Boundary Conditions

An ocean is bounded by complex coastlines, bottom topography at its base and
an air-sea or ice-sea interface at its top. These boundaries can be defined by two
surfaces, z = −H(i, j) and z = η(i, j, k, t), where H is the depth of the ocean
bottom and η is the height of the sea surface. Both H and η are usually referen-
ced to a given surface, z = 0, chosen as a mean sea surface (Fig. ??). Through
these two boundaries, the ocean can exchange fluxes of heat, fresh water, salt, and
momentum with the solid earth, the continental margins, the sea ice and the atmos-
phere. However, some of these fluxes are so weak that even on climatic time scales
of thousands of years they can be neglected. In the following, we briefly review the
fluxes exchanged at the interfaces between the ocean and the other components of
the earth system.

Land - ocean interface : the major flux between continental margins and the ocean
is a mass exchange of fresh water through river runoff. Such an exchange
modifies the sea surface salinity especially in the vicinity of major river
mouths. It can be neglected for short range integrations but has to be taken
into account for long term integrations as it influences the characteristics of
water masses formed (especially at high latitudes). It is required in order to
close the water cycle of the climate system. It is usually specified as a fresh
water flux at the air-sea interface in the vicinity of river mouths.

Solid earth - ocean interface : heat and salt fluxes through the sea floor are small,
except in special areas of little extent. They are usually neglected in the mo-
del 1. The boundary condition is thus set to no flux of heat and salt across

1. In fact, it has been shown that the heat flux associated with the solid Earth cooling (i.e.the
geothermal heating) is not negligible for the thermohaline circulation of the world ocean (see ??).

14 Model basics

η(i,j,t)

0

z

i, j

—H(i,j)

FIGURE 2.1: The ocean is bounded by two surfaces, z = −H(i, j) and z = η(i, j, t),
where H is the depth of the sea floor and η the height of the sea surface. Both H and
η are referenced to z = 0.

solid boundaries. For momentum, the situation is different. There is no flow
across solid boundaries, i.e. the velocity normal to the ocean bottom and
coastlines is zero (in other words, the bottom velocity is parallel to solid
boundaries). This kinematic boundary condition can be expressed as :

w = −Uh · ∇h (H) (2.2)

In addition, the ocean exchanges momentum with the earth through frictional
processes. Such momentum transfer occurs at small scales in a boundary
layer. It must be parameterized in terms of turbulent fluxes using bottom
and/or lateral boundary conditions. Its specification depends on the nature
of the physical parameterisation used for DU in (??). It is discussed in §??,
page ??.

Atmosphere - ocean interface : the kinematic surface condition plus the mass
flux of fresh water PE (the precipitation minus evaporation budget) leads
to :

w =
∂η

∂t
+ Uh|z=η · ∇h (η) + P − E (2.3)

The dynamic boundary condition, neglecting the surface tension (which re-
moves capillary waves from the system) leads to the continuity of pressure
across the interface z = η. The atmosphere and ocean also exchange hori-
zontal momentum (wind stress), and heat.

Sea ice - ocean interface : the ocean and sea ice exchange heat, salt, fresh wa-
ter and momentum. The sea surface temperature is constrained to be at the
freezing point at the interface. Sea ice salinity is very low (∼ 4 − 6 psu)
compared to those of the ocean (∼ 34 psu). The cycle of freezing/melting is
associated with fresh water and salt fluxes that cannot be neglected.

2.2. The Horizontal Pressure Gradient 15

2.2 The Horizontal Pressure Gradient

2.2.1 Pressure Formulation

The total pressure at a given depth z is composed of a surface pressure ps at
a reference geopotential surface (z = 0) and a hydrostatic pressure ph such that :
p(i, j, k, t) = ps(i, j, t) + ph(i, j, k, t). The latter is computed by integrating (??),
assuming that pressure in decibars can be approximated by depth in meters in (??).
The hydrostatic pressure is then given by :

ph (i, j, z, t) =

∫ ς=0

ς=z
g ρ (T, S, ς) dς (2.4)

Two strategies can be considered for the surface pressure term : (a) introduce of a
new variable η, the free-surface elevation, for which a prognostic equation can be
established and solved ; (b) assume that the ocean surface is a rigid lid, on which
the pressure (or its horizontal gradient) can be diagnosed. When the former stra-
tegy is used, one solution of the free-surface elevation consists of the excitation
of external gravity waves. The flow is barotropic and the surface moves up and
down with gravity as the restoring force. The phase speed of such waves is high
(some hundreds of metres per second) so that the time step would have to be very
short if they were present in the model. The latter strategy filters out these waves
since the rigid lid approximation implies η = 0, i.e. the sea surface is the surface
z = 0. This well known approximation increases the surface wave speed to infinity
and modifies certain other longwave dynamics (e.g. barotropic Rossby or plane-
tary waves). The rigid-lid hypothesis is an obsolescent feature in modern OGCMs.
It has been available until the release 3.1 of NEMO, and it has been removed in
release 3.2 and followings. Only the free surface formulation is now described in
the this document (see the next sub-section).

2.2.2 Free Surface Formulation

In the free surface formulation, a variable η, the sea-surface height, is introdu-
ced which describes the shape of the air-sea interface. This variable is solution of
a prognostic equation which is established by forming the vertical average of the
kinematic surface condition (??) :

∂η

∂t
= −D + P − E where D = ∇ ·

[
(H + η) Uh

]
(2.5)

and using (??) the surface pressure is given by : ps = ρ g η.
Allowing the air-sea interface to move introduces the external gravity waves

(EGWs) as a class of solution of the primitive equations. These waves are barotro-
pic because of hydrostatic assumption, and their phase speed is quite high. Their
time scale is short with respect to the other processes described by the primitive
equations.

16 Model basics

Two choices can be made regarding the implementation of the free surface in
the model, depending on the physical processes of interest.
• If one is interested in EGWs, in particular the tides and their interaction with

the baroclinic structure of the ocean (internal waves) possibly in shallow seas, then
a non linear free surface is the most appropriate. This means that no approxima-
tion is made in (??) and that the variation of the ocean volume is fully taken into
account. Note that in order to study the fast time scales associated with EGWs it is
necessary to minimize time filtering effects (use an explicit time scheme with very
small time step, or a split-explicit scheme with reasonably small time step, see §??
or §??.
• If one is not interested in EGW but rather sees them as high frequency noise,

it is possible to apply an explicit filter to slow down the fastest waves while not al-
tering the slow barotropic Rossby waves. If further, an approximative conservation
of heat and salt contents is sufficient for the problem solved, then it is sufficient to
solve a linearized version of (??), which still allows to take into account freshwater
fluxes applied at the ocean surface [?].

The filtering of EGWs in models with a free surface is usually a matter of
discretisation of the temporal derivatives, using the time splitting method [??] or
the implicit scheme [?]. In NEMO, we use a slightly different approach developed
by ? : the damping of EGWs is ensured by introducing an additional force in the
momentum equation. (??) becomes :

∂Uh

∂t
= M− g∇ (ρ̃ η)− g Tc∇ (ρ̃ ∂tη) (2.6)

where Tc, is a parameter with dimensions of time which characterizes the force,
ρ̃ = ρ/ρo is the dimensionless density, and M represents the collected contribu-
tions of the Coriolis, hydrostatic pressure gradient, non-linear and viscous terms in
(??).

The new force can be interpreted as a diffusion of vertically integrated volume
flux divergence. The time evolution of D is thus governed by a balance of two
terms, −g A η and g Tc A D, associated with a propagative regime and a diffusive
regime in the temporal spectrum, respectively. In the diffusive regime, the EGWs
no longer propagate, i.e. they are stationary and damped. The diffusion regime ap-
plies to the modes shorter than Tc. For longer ones, the diffusion term vanishes.
Hence, the temporally unresolved EGWs can be damped by choosing Tc > ∆t. ?
demonstrate that (??) can be integrated with a leap frog scheme except the additio-
nal term which has to be computed implicitly. This is not surprising since the use
of a large time step has a necessarily numerical cost. Two gains arise in compari-
son with the previous formulations. Firstly, the damping of EGWs can be quantified
through the magnitude of the additional term. Secondly, the numerical scheme does
not need any tuning. Numerical stability is ensured as soon as Tc > ∆t.

When the variations of free surface elevation are small compared to the thick-
ness of the first model layer, the free surface equation (??) can be linearized. As
emphasized by ? the linearization of (??) has consequences on the conservation of

2.2. The Horizontal Pressure Gradient 17

salt in the model. With the nonlinear free surface equation, the time evolution of
the total salt content is

∂

∂t

∫
Dη

S dv =

∫
S

S (−∂η
∂t
−D + P − E) ds (2.7)

where S is the salinity, and the total salt is integrated over the whole ocean volume
Dη bounded by the time-dependent free surface. The right hand side (which is
an integral over the free surface) vanishes when the nonlinear equation (??) is
satisfied, so that the salt is perfectly conserved. When the free surface equation
is linearized, ? show that the total salt content integrated in the fixed volume D
(bounded by the surface z = 0) is no longer conserved :

∂

∂t

∫
D

S dv = −
∫
S

S
∂η

∂t
ds (2.8)

The right hand side of (??) is small in equilibrium solutions [?]. It can be
significant when the freshwater forcing is not balanced and the globally averaged
free surface is drifting. An increase in sea surface height η results in a decrease of
the salinity in the fixed volumeD. Even in that case though, the total salt integrated
in the variable volume Dη varies much less, since (??) can be rewritten as

∂

∂t

∫
Dη

S dv =
∂

∂t

 ∫
D

S dv +

∫
S

Sη ds

 =

∫
S

η
∂S

∂t
ds (2.9)

Although the total salt content is not exactly conserved with the linearized free
surface, its variations are driven by correlations of the time variation of surface sali-
nity with the sea surface height, which is a negligible term. This situation contrasts
with the case of the rigid lid approximation in which case freshwater forcing is
represented by a virtual salt flux, leading to a spurious source of salt at the ocean
surface [??].

18 Model basics

2.3 Curvilinear z-coordinate System

2.3.1 Tensorial Formalism

In many ocean circulation problems, the flow field has regions of enhanced
dynamics (i.e. surface layers, western boundary currents, equatorial currents, or
ocean fronts). The representation of such dynamical processes can be improved
by specifically increasing the model resolution in these regions. As well, it may
be convenient to use a lateral boundary-following coordinate system to better re-
present coastal dynamics. Moreover, the common geographical coordinate system
has a singular point at the North Pole that cannot be easily treated in a global
model without filtering. A solution consists of introducing an appropriate coordi-
nate transformation that shifts the singular point onto land [??]. As a consequence,
it is important to solve the primitive equations in various curvilinear coordinate
systems. An efficient way of introducing an appropriate coordinate transform can
be found when using a tensorial formalism. This formalism is suited to any mul-
tidimensional curvilinear coordinate system. Ocean modellers mainly use three-
dimensional orthogonal grids on the sphere (spherical earth approximation), with
preservation of the local vertical. Here we give the simplified equations for this
particular case. The general case is detailed by ? in their survey of the conservation
laws of fluid dynamics.

Let (i,j,k) be a set of orthogonal curvilinear coordinates on the sphere associa-
ted with the positively oriented orthogonal set of unit vectors (i,j,k) linked to the
earth such that k is the local upward vector and (i,j) are two vectors orthogonal to
k, i.e. along geopotential surfaces (Fig.??). Let (λ, ϕ, z) be the geographical coor-
dinate system in which a position is defined by the latitude ϕ(i, j), the longitude
λ(i, j) and the distance from the centre of the earth a+ z(k) where a is the earth’s
radius and z the altitude above a reference sea level (Fig.??). The local deforma-
tion of the curvilinear coordinate system is given by e1, e2 and e3, the three scale
factors :

e1 = (a+ z)

[(
∂λ

∂i
cosϕ

)2

+

(
∂ϕ

∂i

)2
]1/2

e2 = (a+ z)

[(
∂λ

∂j
cosϕ

)2

+

(
∂ϕ

∂j

)2
]1/2

e3 =

(
∂z

∂k

)
(2.10)

Since the ocean depth is far smaller than the earth’s radius, a+ z, can be repla-
ced by a in (??) (thin-shell approximation). The resulting horizontal scale factors
e1, e2 are independent of k while the vertical scale factor is a single function of

2.3. Curvilinear z-coordinate System 19

k
z

i

λ

j
ϕ

FIGURE 2.2: the geographical coordinate system (λ, ϕ, z) and the curvilinear coor-
dinate system (i,j,k).

k as k is parallel to z. The scalar and vector operators that appear in the primitive
equations (Eqs. (??) to (??)) can be written in the tensorial form, invariant in any
orthogonal horizontal curvilinear coordinate system transformation :

∇q =
1

e1

∂q

∂i
i +

1

e2

∂q

∂j
j +

1

e3

∂q

∂k
k (2.11a)

∇ ·A =
1

e1 e2

[
∂ (e2 a1)

∂i
+
∂ (e1 a2)

∂j

]
+

1

e3

[
∂a3

∂k

]
(2.11b)

∇×A =

[
1

e2

∂a3

∂j
− 1

e3

∂a2

∂k

]
i +

[
1

e3

∂a1

∂k
− 1

e1

∂a3

∂i

]
j

+
1

e1e2

[
∂ (e2a2)

∂i
− ∂ (e1a1)

∂j

]
k

(2.11c)

∆q = ∇ · (∇q) (2.11d)

∆A = ∇ (∇ ·A)−∇× (∇×A) (2.11e)

where q is a scalar quantity and A = (a1, a2, a3) a vector in the (i, j, k) coordinate
system.

20 Model basics

2.3.2 Continuous Model Equations

In order to express the Primitive Equations in tensorial formalism, it is neces-
sary to compute the horizontal component of the non-linear and viscous terms of
the equation using (??)) to (??). Let us set U = (u, v, w) = Uh + w k, the ve-
locity in the (i, j, k) coordinate system and define the relative vorticity ζ and the
divergence of the horizontal velocity field χ, by :

ζ =
1

e1e2

[
∂ (e2 v)

∂i
− ∂ (e1 u)

∂j

]
(2.12)

χ =
1

e1e2

[
∂ (e2 u)

∂i
+
∂ (e1 v)

∂j

]
(2.13)

Using the fact that the horizontal scale factors e1 and e2 are independent of k
and that e3 is a function of the single variable k, the nonlinear term of (??) can be
transformed as follows :[

(∇×U)×U +
1

2
∇
(
U2
)]
h

=

 [
1
e3
∂u
∂k −

1
e1
∂w
∂i

]
w − ζ v

ζ u−
[

1
e2
∂w
∂j −

1
e3
∂v
∂k

]
w

+
1

2

 1
e1

∂(u2+v2+w2)
∂i

1
e2

∂(u2+v2+w2)
∂j



=

(
−ζ v
ζ u

)
+

1

2

 1
e1

∂(u2+v2)
∂i

1
e2

∂(u2+v2)
∂j

+
1

e3

(
w ∂u

∂k

w ∂v
∂k

)
−

(
w
e1
∂w
∂i −

1
2e1

∂w2

∂i
w
e2
∂w
∂j −

1
2e2

∂w2

∂j

)

The last term of the right hand side is obviously zero, and thus the nonlinear
term of (??) is written in the (i, j, k) coordinate system :[

(∇×U)×U +
1

2
∇
(
U2
)]
h

= ζ k×Uh +
1

2
∇h
(
U2
h

)
+

1

e3
w
∂Uh

∂k
(2.14)

This is the so-called vector invariant form of the momentum advection term.
For some purposes, it can be advantageous to write this term in the so-called flux
form, i.e. to write it as the divergence of fluxes. For example, the first component
of (??) (the i-component) is transformed as follows :

[
(∇×U)×U + 1

2∇
(
U2
)]
i

= −ζ v + 1
2 e1

∂(u2+v2)
∂i + 1

e3
w ∂u

∂k

= 1
e1 e2

(
−v ∂(e2 v)

∂i + v ∂(e1 u)
∂j

)
+ 1

e1e2

(
+e2 u

∂u
∂i + e2 v

∂v
∂i

)
+ 1

e3

(
w ∂u

∂k

)

2.3. Curvilinear z-coordinate System 21

= 1
e1 e2

{
−
(
v2 ∂e2

∂i + e2 v
∂v
∂i

)
+
(
∂(e1 u v)

∂j − e1 u
∂v
∂j

)
+
(
∂(e2uu)

∂i − u∂(e2u)
∂i

)
+ e2v

∂v
∂i

}
+ 1

e3

(
∂(wu)
∂k − u∂w∂k

)

= 1
e1 e2

(
∂(e2 uu)

∂i + ∂(e1 u v)
∂j

)
+ 1

e3

∂(wu)
∂k

+ 1
e1e2

(
−u
(
∂(e1v)
∂j − v ∂e1∂j

)
− u∂(e2u)

∂i

)
− 1

e3
∂w
∂k u+ 1

e1e2

(
−v2 ∂e2

∂i

)

= ∇ · (Uu)− (∇ ·U) u+ 1
e1e2

(
−v2 ∂e2

∂i + uv ∂e1∂j

)
as∇ ·U = 0 (incompressibility) it comes :

= ∇ · (Uu) + 1
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
(−v)

The flux form of the momentum advection term is therefore given by :

[
(∇×U)×U +

1

2
∇
(
U2
)]
h

= ∇ ·
(

Uu
U v

)
+

1

e1e2

(
v
∂e2

∂i
− u∂e1

∂j

)
k×Uh (2.15)

The flux form has two terms, the first one is expressed as the divergence of
momentum fluxes (hence the flux form name given to this formulation) and the
second one is due to the curvilinear nature of the coordinate system used. The
latter is called the metric term and can be viewed as a modification of the Coriolis
parameter :

f → f +
1

e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

)
(2.16)

Note that in the case of geographical coordinate, i.e. when (i, j) → (λ, ϕ)
and (e1, e2) → (a cosϕ, a), we recover the commonly used modification of the
Coriolis parameter f → f + (u/a) tanϕ.

To sum up, the curvilinear z-coordinate equations solved by the ocean model
can be written in the following tensorial formalism :

22 Model basics

• Vector invariant form of the momentum equations :

∂u

∂t
= + (ζ + f) v − 1

2 e1

∂

∂i

(
u2 + v2

)
− 1

e3
w
∂u

∂k

− 1

e1

∂

∂i

(
ps + ph
ρo

)
+DU

u + FU
u

∂v

∂t
= − (ζ + f) u− 1

2 e2

∂

∂j

(
u2 + v2

)
− 1

e3
w
∂v

∂k

− 1

e2

∂

∂j

(
ps + ph
ρo

)
+DU

v + FU
v

(2.17a)

• flux form of the momentum equations :

∂u

∂t
= +

(
f +

1

e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

))
v

− 1

e1 e2

(
∂ (e2 uu)

∂i
+
∂ (e1 v u)

∂j

)
− 1

e3

∂ (w u)

∂k

− 1

e1

∂

∂i

(
ps + ph
ρo

)
+DU

u + FU
u (2.18a)

∂v

∂t
= −

(
f +

1

e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

))
u

1

e1 e2

(
∂ (e2 u v)

∂i
+
∂ (e1 v v)

∂j

)
− 1

e3

∂ (w v)

∂k

− 1

e2

∂

∂j

(
ps + ph
ρo

)
+DU

v + FU
v (2.18b)

where ζ, the relative vorticity, is given by (??) and ps, the surface pressure, is given
by :

ps =

 ρ g η standard free surface

ρ g η + ρo µ
∂η

∂t
filtered free surface

(2.19)

with η is solution of (??)
The vertical velocity and the hydrostatic pressure are diagnosed from the fol-

lowing equations :
∂w

∂k
= −χ e3 (2.20)

∂ph
∂k

= −ρ g e3 (2.21)

2.3. Curvilinear z-coordinate System 23

where the divergence of the horizontal velocity, χ is given by (??).

• tracer equations :

∂T

∂t
= − 1

e1e2

[
∂ (e2T u)

∂i
+
∂ (e1T v)

∂j

]
− 1

e3

∂ (T w)

∂k
+DT + F T (2.22)

∂S

∂t
= − 1

e1e2

[
∂ (e2S u)

∂i
+
∂ (e1S v)

∂j

]
− 1

e3

∂ (S w)

∂k
+DS + FS (2.23)

ρ = ρ (T, S, z(k)) (2.24)

The expression of DU , DS and DT depends on the subgrid scale parameteri-
sation used. It will be defined in §??. The nature and formulation of FU, F T and
FS , the surface forcing terms, are discussed in Chapter ??.

24 Model basics

2.4 Curvilinear generalised vertical coordinate System

The ocean domain presents a huge diversity of situation in the vertical. First
the ocean surface is a time dependent surface (moving surface). Second the ocean
floor depends on the geographical position, varying from more than 6,000 meters
in abyssal trenches to zero at the coast. Last but not least, the ocean stratifica-
tion exerts a strong barrier to vertical motions and mixing. Therefore, in order
to represent the ocean with respect to the first point a space and time dependent
vertical coordinate that follows the variation of the sea surface height e.g. an z*-
coordinate ; for the second point, a space variation to fit the change of bottom to-
pography e.g. a terrain-following or σ-coordinate ; and for the third point, one will
be tempted to use a space and time dependent coordinate that follows the isopycnal
surfaces, e.g. an isopycnic coordinate.

In order to satisfy two or more constrains one can even be tempted to mixed
these coordinate systems, as in HYCOM (mixture of z-coordinate at the surface,
isopycnic coordinate in the ocean interior and σ at the ocean bottom) [?] or OPA
(mixture of z-coordinate in vicinity the surface and steep topography areas and
σ-coordinate elsewhere) [?] among others.

In fact one is totally free to choose any space and time vertical coordinate by
introducing an arbitrary vertical coordinate :

s = s(i, j, k, t) (2.25)

with the restriction that the above equation gives a single-valued monotonic re-
lationship between s and k, when i, j and t are held fixed. (??) is a transfor-
mation from the (i, j, k, t) coordinate system with independent variables into the
(i, j, s, t) generalised coordinate system with s depending on the other three va-
riables through (??). This so-called generalised vertical coordinate [?] is in fact
an Arbitrary Lagrangian–Eulerian (ALE) coordinate. Indeed, choosing an expres-
sion for s is an arbitrary choice that determines which part of the vertical velocity
(defined from a fixed referential) will cross the levels (Eulerian part) and which
part will be used to move them (Lagrangian part). The coordinate is also sometime
referenced as an adaptive coordinate [?], since the coordinate system is adapted
in the course of the simulation. Its most often used implementation is via an ALE
algorithm, in which a pure lagrangian step is followed by regridding and remap-
ping steps, the later step implicitly embedding the vertical advection [???]. Here
we follow the [?] strategy : a regridding step (an update of the vertical coordinate)
followed by an eulerian step with an explicit computation of vertical advection
relative to the moving s-surfaces.

the generalized vertical coordinates used in ocean modelling are not orthogo-
nal, which contrasts with many other applications in mathematical physics. Hence,

2.4. Curvilinear generalised vertical coordinate System 25

it is useful to keep in mind the following properties that may seem odd on initial
encounter.

The horizontal velocity in ocean models measures motions in the horizontal
plane, perpendicular to the local gravitational field. That is, horizontal velocity is
mathematically the same regardless the vertical coordinate, be it geopotential, iso-
pycnal, pressure, or terrain following. The key motivation for maintaining the same
horizontal velocity component is that the hydrostatic and geostrophic balances are
dominant in the large-scale ocean. Use of an alternative quasi-horizontal velocity,
for example one oriented parallel to the generalized surface, would lead to unac-
ceptable numerical errors. Correspondingly, the vertical direction is anti-parallel
to the gravitational force in all of the coordinate systems. We do not choose the
alternative of a quasi-vertical direction oriented normal to the surface of a constant
generalized vertical coordinate.

It is the method used to measure transport across the generalized vertical co-
ordinate surfaces which differs between the vertical coordinate choices. That is,
computation of the dia-surface velocity component represents the fundamental dis-
tinction between the various coordinates. In some models, such as geopotential,
pressure, and terrain following, this transport is typically diagnosed from volume
or mass conservation. In other models, such as isopycnal layered models, this trans-
port is prescribed based on assumptions about the physical processes producing a
flux across the layer interfaces.

In this section we first establish the PE in the generalised vertical s-coordinate,
then we discuss the particular cases available in NEMO, namely z, z*, s, and z̃.

2.4.1 The s-coordinate Formulation

Starting from the set of equations established in §?? for the special case k = z
and thus e3 = 1, we introduce an arbitrary vertical coordinate s = s(i, j, k, t),
which includes z-, z*- and σ−coordinates as special cases (s = z, s = z*, and
s = σ = z/H or = z/ (H + η), resp.). A formal derivation of the transfor-
med equations is given in Appendix ??. Let us define the vertical scale factor by
e3 = ∂sz (e3 is now a function of (i, j, k, t)), and the slopes in the (i,j) directions
between s− and z−surfaces by :

σ1 =
1

e1

∂z

∂i

∣∣∣∣
s

, and σ2 =
1

e2

∂z

∂j

∣∣∣∣
s

(2.26)

We also introduce ω, a dia-surface velocity component, defined as the velocity
relative to the moving s-surfaces and normal to them :

ω = w − e3
∂s

∂t
− σ1 u− σ2 v (2.27)

The equations solved by the ocean model (??) in s−coordinate can be written
as follows :

26 Model basics

* momentum equation :

1

e3

∂ (e3 u)

∂t
= + (ζ + f) v − 1

2 e1

∂

∂i

(
u2 + v2

)
− 1

e3
ω
∂u

∂k

− 1

e1

∂

∂i

(
ps + ph
ρo

)
+ g

ρ

ρo
σ1 +DU

u + FU
u (2.28)

1

e3

∂ (e3 v)

∂t
= − (ζ + f) u− 1

2 e2

∂

∂j

(
u2 + v2

)
− 1

e3
ω
∂v

∂k

− 1

e2

∂

∂j

(
ps + ph
ρo

)
+ g

ρ

ρo
σ2 +DU

v + FU
v (2.29)

where the relative vorticity, ζ, the surface pressure gradient, and the hydrostatic
pressure have the same expressions as in z-coordinates although they do not re-
present exactly the same quantities. ω is provided by the continuity equation (see
Appendix ??) :

∂e3

∂t
+ e3 χ+

∂ω

∂s
= 0 with χ =

1

e1e2e3

[
∂ (e2e3 u)

∂i
+
∂ (e1e3 v)

∂j

]
(2.30)

* tracer equations :

1

e3

∂ (e3 T)

∂t
= − 1

e1e2e3

[
∂ (e2e3 uT)

∂i
+
∂ (e1e3 v T)

∂j

]
− 1

e3

∂ (T ω)

∂k
+DT + FS (2.31)

1

e3

∂ (e3 S)

∂t
= − 1

e1e2e3

[
∂ (e2e3 uS)

∂i
+
∂ (e1e3 v S)

∂j

]
− 1

e3

∂ (S ω)

∂k
+DS + FS (2.32)

The equation of state has the same expression as in z-coordinate, and similar
expressions are used for mixing and forcing terms.

2.4.2 Curvilinear z*–coordinate System

In that case, the free surface equation is nonlinear, and the variations of volume
are fully taken into account. These coordinates systems is presented in a report [?]
available on the NEMO web site.

The z* coordinate approach is an unapproximated, non-linear free surface im-
plementation which allows one to deal with large amplitude free-surface variations

2.4. Curvilinear generalised vertical coordinate System 27

relative to the vertical resolution [?]. In the z* formulation, the variation of the
column thickness due to sea-surface undulations is not concentrated in the surface
level, as in the z-coordinate formulation, but is equally distributed over the full
water column. Thus vertical levels naturally follow sea-surface variations, with a
linear attenuation with depth, as illustrated by figure fig.1c . Note that with a flat
bottom, such as in fig.1c, the bottom-following z coordinate and z* are equivalent.
The definition and modified oceanic equations for the rescaled vertical coordinate
z*, including the treatment of fresh-water flux at the surface, are detailed in Adcroft
and Campin (2004). The major points are summarized here. The position (z*) and
vertical discretization (z*) are expressed as :

H + z* = (H + z)/r and δz* = δz/r with r =
H + η

H
(2.33)

Since the vertical displacement of the free surface is incorporated in the vertical
coordinate z*, the upper and lower boundaries are at fixed z* position, z* = 0 and
z* = −H respectively. Also the divergence of the flow field is no longer zero as
shown by the continuity equation :

∂r

∂t
= ∇z* · (r Uh) (r w*) = 0

(a) (b) (c)

FIGURE 2.3: (a) z-coordinate in linear free-surface case ; (b) z−coordinate in non-
linear free surface case ; (c) re-scaled height coordinate (become popular as the z*-
coordinate [?]).

28 Model basics

To overcome problems with vanishing surface and/or bottom cells, we consider
the zstar coordinate

z? = H

(
z − η
H + η

)
(2.34)

This coordinate is closely related to the ”eta” coordinate used in many atmos-
pheric models (see Black (1994) for a review of eta coordinate atmospheric mo-
dels). It was originally used in ocean models by Stacey et al. (1995) for studies of
tides next to shelves, and it has been recently promoted by Adcroft and Campin
(2004) for global climate modelling.

The surfaces of constant z? are quasi-horizontal. Indeed, the z? coordinate re-
duces to z when η is zero. In general, when noting the large differences between
undulations of the bottom topography versus undulations in the surface height,
it is clear that surfaces constant z? are very similar to the depth surfaces. These
properties greatly reduce difficulties of computing the horizontal pressure gradient
relative to terrain following sigma models discussed in §??. Additionally, since z?

when η = 0, no flow is spontaneously generated in an unforced ocean starting
from rest, regardless the bottom topography. This behaviour is in contrast to the
case with ”s”-models, where pressure gradient errors in the presence of nontri-
vial topographic variations can generate nontrivial spontaneous flow from a resting
state, depending on the sophistication of the pressure gradient solver. The quasi-
horizontal nature of the coordinate surfaces also facilitates the implementation of
neutral physics parameterizations in z? models using the same techniques as in z-
models (see Chapters 13-16 of ?) for a discussion of neutral physics in z-models,
as well as Section §?? in this document for treatment in NEMO).

The range over which z? varies is time independent −H ≤ z? ≤ 0. Hence, all
cells remain nonvanishing, so long as the surface height maintains η >?H . This
is a minor constraint relative to that encountered on the surface height when using
s = z or s = z − η.

Because z? has a time independent range, all grid cells have static increments
ds, and the sum of the ver tical increments yields the time independent ocean depth
The z? coordinate is therefore invisible to undulations of the free surface, since
it moves along with the free surface. This proper ty means that no spurious ver
tical transpor t is induced across surfaces of constant z? by the motion of external
gravity waves. Such spurious transpor t can be a problem in z-models, especially
those with tidal forcing. Quite generally, the time independent range for the z?

coordinate is a very convenient proper ty that allows for a nearly arbitrary ver tical
resolution even in the presence of large amplitude fluctuations of the surface height,
again so long as η > −H .

2.4. Curvilinear generalised vertical coordinate System 29

2.4.3 Curvilinear Terrain-following s–coordinate

Introduction

Several important aspects of the ocean circulation are influenced by bottom
topography. Of course, the most important is that bottom topography determines
deep ocean sub-basins, barriers, sills and channels that strongly constrain the path
of water masses, but more subtle effects exist. For example, the topographic β-
effect is usually larger than the planetary one along continental slopes. Topogra-
phic Rossby waves can be excited and can interact with the mean current. In the
z−coordinate system presented in the previous section (§??), z−surfaces are geo-
potential surfaces. The bottom topography is discretised by steps. This often leads
to a misrepresentation of a gradually sloping bottom and to large localized depth
gradients associated with large localized vertical velocities. The response to such a
velocity field often leads to numerical dispersion effects. One solution to strongly
reduce this error is to use a partial step representation of bottom topography instead
of a full step one ?. Another solution is to introduce a terrain-following coordinate
system (hereafter s−coordinate)

The s-coordinate avoids the discretisation error in the depth field since the
layers of computation are gradually adjusted with depth to the ocean bottom. Re-
latively small topographic features as well as gentle, large-scale slopes of the sea
floor in the deep ocean, which would be ignored in typical z-model applications
with the largest grid spacing at greatest depths, can easily be represented (with
relatively low vertical resolution). A terrain-following model (hereafter s−model)
also facilitates the modelling of the boundary layer flows over a large depth range,
which in the framework of the z-model would require high vertical resolution over
the whole depth range. Moreover, with a s-coordinate it is possible, at least in prin-
ciple, to have the bottom and the sea surface as the only boundaries of the domain
(nomore lateral boundary condition to specify). Nevertheless, a s-coordinate also
has its drawbacks. Perfectly adapted to a homogeneous ocean, it has strong limi-
tations as soon as stratification is introduced. The main two problems come from
the truncation error in the horizontal pressure gradient and a possibly increased
diapycnal diffusion. The horizontal pressure force in s-coordinate consists of two
terms (see Appendix ??),

∇p|z = ∇p|s −
∂p

∂s
∇z|s (2.35)

The second term in (??) depends on the tilt of the coordinate surface and in-
troduces a truncation error that is not present in a z-model. In the special case of a
σ−coordinate (i.e. a depth-normalised coordinate system σ = z/H), ? and ? have
given estimates of the magnitude of this truncation error. It depends on topogra-
phic slope, stratification, horizontal and vertical resolution, the equation of state,
and the finite difference scheme. This error limits the possible topographic slopes
that a model can handle at a given horizontal and vertical resolution. This is a se-
vere restriction for large-scale applications using realistic bottom topography. The

30 Model basics

large-scale slopes require high horizontal resolution, and the computational cost
becomes prohibitive. This problem can be at least partially overcome by mixing s-
coordinate and step-like representation of bottom topography [???]. However, the
definition of the model domain vertical coordinate becomes then a non-trivial thing
for a realistic bottom topography : a envelope topography is defined in s-coordinate
on which a full or partial step bottom topography is then applied in order to adjust
the model depth to the observed one (see §??.

For numerical reasons a minimum of diffusion is required along the coordi-
nate surfaces of any finite difference model. It causes spurious diapycnal mixing
when coordinate surfaces do not coincide with isoneutral surfaces. This is the case
for a z-model as well as for a s-model. However, density varies more strongly on
s−surfaces than on horizontal surfaces in regions of large topographic slopes, im-
plying larger diapycnal diffusion in a s-model than in a z-model. Whereas such
a diapycnal diffusion in a z-model tends to weaken horizontal density (pressure)
gradients and thus the horizontal circulation, it usually reinforces these gradients in
a s-model, creating spurious circulation. For example, imagine an isolated bump of
topography in an ocean at rest with a horizontally uniform stratification. Spurious
diffusion along s-surfaces will induce a bump of isoneutral surfaces over the topo-
graphy, and thus will generate there a baroclinic eddy. In contrast, the ocean will
stay at rest in a z-model. As for the truncation error, the problem can be reduced by
introducing the terrain-following coordinate below the strongly stratified portion
of the water column (i.e. the main thermocline) [?]. An alternate solution consists
of rotating the lateral diffusive tensor to geopotential or to isoneutral surfaces (see
§??. Unfortunately, the slope of isoneutral surfaces relative to the s-surfaces can
very large, strongly exceeding the stability limit of such a operator when it is dis-
cretized (see Chapter ??).

The s−coordinates introduced here [??] differ mainly in two aspects from si-
milar models : it allows a representation of bottom topography with mixed full or
partial step-like/terrain following topography ; It also offers a completely general
transformation, s = s(i, j, z) for the vertical coordinate.

2.4. Curvilinear generalised vertical coordinate System 31

2.4.4 Curvilinear z̃–coordinate

The z̃-coordinate has been developed by ?. It is not available in the current
version of NEMO.

32 Model basics

2.5 Subgrid Scale Physics

The primitive equations describe the behaviour of a geophysical fluid at space
and time scales larger than a few kilometres in the horizontal, a few meters in the
vertical and a few minutes. They are usually solved at larger scales : the specified
grid spacing and time step of the numerical model. The effects of smaller scale
motions (coming from the advective terms in the Navier-Stokes equations) must be
represented entirely in terms of large-scale patterns to close the equations. These
effects appear in the equations as the divergence of turbulent fluxes (i.e. fluxes
associated with the mean correlation of small scale perturbations). Assuming a
turbulent closure hypothesis is equivalent to choose a formulation for these fluxes.
It is usually called the subgrid scale physics. It must be emphasized that this is
the weakest part of the primitive equations, but also one of the most important for
long-term simulations as small scale processes in fine balance the surface input of
kinetic energy and heat.

The control exerted by gravity on the flow induces a strong anisotropy between
the lateral and vertical motions. Therefore subgrid-scale physics DU, DS and DT

in (??), (??) and (??) are divided into a lateral part DlU, DlS and DlT and a verti-
cal part DvU , DvS and DvT . The formulation of these terms and their underlying
physics are briefly discussed in the next two subsections.

2.5.1 Vertical Subgrid Scale Physics

The model resolution is always larger than the scale at which the major sources
of vertical turbulence occur (shear instability, internal wave breaking...). Turbu-
lent motions are thus never explicitly solved, even partially, but always parame-
terized. The vertical turbulent fluxes are assumed to depend linearly on the gra-
dients of large-scale quantities (for example, the turbulent heat flux is given by
T ′w′ = −AvT∂zT , where AvT is an eddy coefficient). This formulation is analo-
gous to that of molecular diffusion and dissipation. This is quite clearly a neces-
sary compromise : considering only the molecular viscosity acting on large scale
severely underestimates the role of turbulent diffusion and dissipation, while an ac-
curate consideration of the details of turbulent motions is simply impractical. The
resulting vertical momentum and tracer diffusive operators are of second order :

DvU =
∂

∂z

(
Avm

∂Uh

∂z

)
,

DvT =
∂

∂z

(
AvT

∂T

∂z

)
, DvS =

∂

∂z

(
AvT

∂S

∂z

) (2.36)

whereAvm andAvT are the vertical eddy viscosity and diffusivity coefficients, res-
pectively. At the sea surface and at the bottom, turbulent fluxes of momentum, heat
and salt must be specified (see Chap. ?? and ?? and §??). All the vertical physics
is embedded in the specification of the eddy coefficients. They can be assumed to

2.5. Subgrid Scale Physics 33

be either constant, or function of the local fluid properties (e.g. Richardson num-
ber, Brunt-Vaisälä frequency...), or computed from a turbulent closure model. The
choices available in NEMO are discussed in §??).

2.5.2 Formulation of the Lateral Diffusive and Viscous Operators

Lateral turbulence can be roughly divided into a mesoscale turbulence associa-
ted with eddies (which can be solved explicitly if the resolution is sufficient since
their underlying physics are included in the primitive equations), and a sub mesos-
cale turbulence which is never explicitly solved even partially, but always parame-
terized. The formulation of lateral eddy fluxes depends on whether the mesoscale
is below or above the grid-spacing (i.e. the model is eddy-resolving or not).

In non-eddy-resolving configurations, the closure is similar to that used for
the vertical physics. The lateral turbulent fluxes are assumed to depend linearly
on the lateral gradients of large-scale quantities. The resulting lateral diffusive and
dissipative operators are of second order. Observations show that lateral mixing
induced by mesoscale turbulence tends to be along isopycnal surfaces (or more
precisely neutral surfaces ?) rather than across them. As the slope of neutral sur-
faces is small in the ocean, a common approximation is to assume that the ‘lateral’
direction is the horizontal, i.e. the lateral mixing is performed along geopoten-
tial surfaces. This leads to a geopotential second order operator for lateral subgrid
scale physics. This assumption can be relaxed : the eddy-induced turbulent fluxes
can be better approached by assuming that they depend linearly on the gradients
of large-scale quantities computed along neutral surfaces. In such a case, the dif-
fusive operator is an isoneutral second order operator and it has components in
the three space directions. However, both horizontal and isoneutral operators have
no effect on mean (i.e. large scale) potential energy whereas potential energy is
a main source of turbulence (through baroclinic instabilities). ? have proposed a
parameterisation of mesoscale eddy-induced turbulence which associates an eddy-
induced velocity to the isoneutral diffusion. Its mean effect is to reduce the mean
potential energy of the ocean. This leads to a formulation of lateral subgrid-scale
physics made up of an isoneutral second order operator and an eddy induced advec-
tive part. In all these lateral diffusive formulations, the specification of the lateral
eddy coefficients remains the problematic point as there is no really satisfactory
formulation of these coefficients as a function of large-scale features.

In eddy-resolving configurations, a second order operator can be used, but
usually the more scale selective biharmonic operator is preferred as the grid-spacing
is usually not small enough compared to the scale of the eddies. The role devoted
to the subgrid-scale physics is to dissipate the energy that cascades toward the grid
scale and thus to ensure the stability of the model while not interfering with the re-
solved mesoscale activity. Another approach is becoming more and more popular :
instead of specifying explicitly a sub-grid scale term in the momentum and tracer
time evolution equations, one uses a advective scheme which is diffusive enough
to maintain the model stability. It must be emphasised that then, all the sub-grid

34 Model basics

scale physics is included in the formulation of the advection scheme.
All these parameterisations of subgrid scale physics have advantages and draw-

backs. There are not all available in NEMO. In the z-coordinate formulation, five
options are offered for active tracers (temperature and salinity) : second order geo-
potential operator, second order isoneutral operator, ? parameterisation, fourth or-
der geopotential operator, and various slightly diffusive advection schemes. The
same options are available for momentum, except ? parameterisation which only
involves tracers. In the s-coordinate formulation, additional options are offered for
tracers : second order operator acting along s−surfaces, and for momentum : fourth
order operator acting along s−surfaces (see §??).

Lateral second order tracer diffusive operator

The lateral second order tracer diffusive operator is defined by (see Appen-
dix ??) :

DlT = ∇.
(
AlT < ∇T

)
with < =

 1 0 −r1

0 1 −r2

−r1 −r2 r2
1 + r2

2

 (2.37)

where r1 and r2 are the slopes between the surface along which the diffusive ope-
rator acts and the model level (e.g. z- or s-surfaces). Note that the formulation (??)
is exact for the rotation between geopotential and s-surfaces, while it is only an
approximation for the rotation between isoneutral and z- or s-surfaces. Indeed, in
the latter case, two assumptions are made to simplify (??) [?]. First, the horizon-
tal contribution of the dianeutral mixing is neglected since the ratio between iso
and dia-neutral diffusive coefficients is known to be several orders of magnitude
smaller than unity. Second, the two isoneutral directions of diffusion are assumed
to be independent since the slopes are generally less than 10−2 in the ocean (see
Appendix ??).

For geopotential diffusion, r1 and r2 are the slopes between the geopotential
and computational surfaces : in z-coordinates they are zero (r1 = r2 = 0) while in
s-coordinate (including z* case) they are equal to σ1 and σ2, respectively (see (??)
).

For isoneutral diffusion r1 and r2 are the slopes between the isoneutral and
computational surfaces. Therefore, they are different quantities, but have similar
expressions in z- and s-coordinates. In z-coordinates :

r1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

, r1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

, (2.38)

while in s-coordinates ∂/∂k is replaced by ∂/∂s.

Eddy induced velocity

When the eddy induced velocity parametrisation (eiv) [?] is used, an additio-
nal tracer advection is introduced in combination with the isoneutral diffusion of

2.5. Subgrid Scale Physics 35

tracers :
DlT = ∇ ·

(
AlT < ∇T

)
+∇ · (U∗ T) (2.39)

where U∗ = (u∗, v∗, w∗) is a non-divergent, eddy-induced transport velocity. This
velocity field is defined by :

u∗ = +
1

e3

∂

∂k

[
Aeiv r̃1

]
v∗ = +

1

e3

∂

∂k

[
Aeiv r̃2

]
w∗ = − 1

e1e2

[
∂

∂i

(
Aeiv e2 r̃1

)
+

∂

∂j

(
Aeiv e1 r̃2

)] (2.40)

where Aeiv is the eddy induced velocity coefficient (or equivalently the isoneutral
thickness diffusivity coefficient), and r̃1 and r̃2 are the slopes between isoneutral
and geopotential surfaces. Their values are thus independent of the vertical coordi-
nate, but their expression depends on the coordinate :

r̃n =

{
rn in z-coordinate
rn + σn in z* and s-coordinates

where n = 1, 2 (2.41)

The normal component of the eddy induced velocity is zero at all the bounda-
ries. This can be achieved in a model by tapering either the eddy coefficient or the
slopes to zero in the vicinity of the boundaries. The latter strategy is used in NEMO
(cf. Chap. ??).

Lateral fourth order tracer diffusive operator

The lateral fourth order tracer diffusive operator is defined by :

DlT = ∆
(
AlT ∆T

)
where DlT = ∆

(
AlT ∆T

)
(2.42)

It is the second order operator given by (??) applied twice with the eddy diffu-
sion coefficient correctly placed.

Lateral second order momentum diffusive operator

The second order momentum diffusive operator along z- or s-surfaces is found
by applying (??) to the horizontal velocity vector (see Appendix ??) :

DlU = ∇h
(
Almχ

)
− ∇h ×

(
Alm ζ k

)

=


1

e1

∂
(
Almχ

)
∂i

− 1

e2e3

∂
(
Alm e3ζ

)
∂j

1

e2

∂
(
Almχ

)
∂j

+
1

e1e3

∂
(
Alm e3ζ

)
∂i

 (2.43)

36 Model basics

Such a formulation ensures a complete separation between the vorticity and
horizontal divergence fields (see Appendix ??). Unfortunately, it is not available
for geopotential diffusion in s−coordinates and for isoneutral diffusion in both z-
and s-coordinates (i.e. when a rotation is required). In these two cases, the u and
v−fields are considered as independent scalar fields, so that the diffusive operator
is given by :

DlU
u = ∇. (< ∇u)

DlU
v = ∇. (< ∇v)

(2.44)

where < is given by (??). It is the same expression as those used for diffusive
operator on tracers. It must be emphasised that such a formulation is only exact in
a Cartesian coordinate system, i.e. on a f− or β−plane, not on the sphere. It is also
a very good approximation in vicinity of the Equator in a geographical coordinate
system [?].

lateral fourth order momentum diffusive operator

As for tracers, the fourth order momentum diffusive operator along z or s-
surfaces is a re-entering second order operator (??) or (??) with the eddy viscosity
coefficient correctly placed :

geopotential diffusion in z-coordinate :

DlU = ∇h
{
∇h.

[
Alm∇h (χ)

] }
+∇h ×

{
k · ∇ ×

[
Alm∇h × (ζ k)

] } (2.45)

geopotential diffusion in s-coordinate :DlU
u = ∆

(
Alm ∆u

)
DlU
v = ∆

(
Alm ∆v

) where ∆ (•) = ∇ · (<∇(•)) (2.46)

3 Time Domain (STP)

38 Time Domain (STP)

Having defined the continuous equations in Chap. ??, we need now to choose
a time discretization. In the present chapter, we provide a general description of
the NEMO time stepping strategy and the consequences for the order in which the
equations are solved.

3.1 Time stepping environment

The time stepping used in NEMO is a three level scheme that can be represented
as follows :

xt+∆t = xt−∆t + 2 ∆t RHSt−∆t, t, t+∆t
x (3.1)

where x stands for u, v, T or S ; RHS is the Right-Hand-Side of the corresponding
time evolution equation ; ∆t is the time step ; and the superscripts indicate the time
at which a quantity is evaluated. Each term of the RHS is evaluated at a specific
time step depending on the physics with which it is associated.

The choice of the time step used for this evaluation is discussed below as well
as the implications for starting or restarting a model simulation. Note that the time
stepping calculation is generally performed in a single operation. With such a com-
plex and nonlinear system of equations it would be dangerous to let a prognostic
variable evolve in time for each term separately.

The three level scheme requires three arrays for each prognostic variable. For
each variable x there is xb (before), xn (now) and xa. The third array, although
referred to as xa (after) in the code, is usually not the variable at the after time
step ; but rather it is used to store the time derivative (RHS in (??)) prior to time-
stepping the equation. Generally, the time stepping is performed once at each time
step in the tranxt.F90 and dynnxt.F90 modules, except when using implicit vertical
diffusion or calculating sea surface height in which case time-splitting options are
used.

3.2 Non-Diffusive Part — Leapfrog Scheme

The time stepping used for processes other than diffusion is the well-known
leapfrog scheme [?]. This scheme is widely used for advection processes in low-
viscosity fluids. It is a time centred scheme, i.e. the RHS in (??) is evaluated at
time step t, the now time step. It may be used for momentum and tracer advection,
pressure gradient, and Coriolis terms, but not for diffusion terms. It is an efficient
method that achieves second-order accuracy with just one right hand side evalua-
tion per time step. Moreover, it does not artificially damp linear oscillatory motion
nor does it produce instability by amplifying the oscillations. These advantages are

3.3. Diffusive Part — Forward or Backward Scheme 39

somewhat diminished by the large phase-speed error of the leapfrog scheme, and
the unsuitability of leapfrog differencing for the representation of diffusion and
Rayleigh damping processes. However, the scheme allows the coexistence of a nu-
merical and a physical mode due to its leading third order dispersive error. In other
words a divergence of odd and even time steps may occur. To prevent it, the leap-
frog scheme is often used in association with a Robert-Asselin time filter (hereafter
the LF-RA scheme). This filter, first designed by ? and more comprehensively stu-
died by ?, is a kind of laplacian diffusion in time that mixes odd and even time
steps :

xtF = xt + γ
[
xt−∆t
F − 2xt + xt+∆t

]
(3.2)

where the subscript F denotes filtered values and γ is the Asselin coefficient. γ is
initialized as rn atfp (namelist parameter). Its default value is rn atfp=10−3 (see
§ ??), causing only a weak dissipation of high frequency motions ([?]). The addi-
tion of a time filter degrades the accuracy of the calculation from second to first or-
der. However, the second order truncation error is proportional to γ, which is small
compared to 1. Therefore, the LF-RA is a quasi second order accurate scheme.
The LF-RA scheme is preferred to other time differencing schemes such as predic-
tor corrector or trapezoidal schemes, because the user has an explicit and simple
control of the magnitude of the time diffusion of the scheme. When used with the
2nd order space centred discretisation of the advection terms in the momentum and
tracer equations, LF-RA avoids implicit numerical diffusion : diffusion is set expli-
citly by the user through the Robert-Asselin filter parameter and the viscosity and
diffusion coefficients.

3.3 Diffusive Part — Forward or Backward Scheme

The leapfrog differencing scheme is unsuitable for the representation of diffu-
sion and damping processes. For a tendancy Dx, representing a diffusion term or
a restoring term to a tracer climatology (when present, see § ??), a forward time
differencing scheme is used :

xt+∆t = xt−∆t + 2 ∆t Dx
t−∆t (3.3)

This is diffusive in time and conditionally stable. The conditions for stability
of second and fourth order horizontal diffusion schemes are [?] :

Ah <


e2

8 ∆t
laplacian diffusion

e4

64 ∆t
bilaplacian diffusion

(3.4)

where e is the smallest grid size in the two horizontal directions and Ah is the
mixing coefficient. The linear constraint (??) is a necessary condition, but not suf-
ficient. If it is not satisfied, even mildly, then the model soon becomes wildly uns-

40 Time Domain (STP)

table. The instability can be removed by either reducing the length of the time steps
or reducing the mixing coefficient.

For the vertical diffusion terms, a forward time differencing scheme can be
used, but usually the numerical stability condition imposes a strong constraint
on the time step. Two solutions are available in NEMO to overcome the stability
constraint : (a) a forward time differencing scheme using a time splitting tech-
nique (ln zdfexp = true) or (b) a backward (or implicit) time differencing scheme
(ln zdfexp = false). In (a), the master time step ∆t is cut into N fractional time
steps so that the stability criterion is reduced by a factor of N . The computation is
performed as follows :

xt−∆t
∗ = xt−∆t

x
t−∆t+L 2∆t

N
∗ = x

t−∆t+(L−1) 2∆t
N

∗ +
2∆t

N
DFt−∆t+(L−1) 2∆t

N for L = 1 to N

xt+∆t = xt+∆t
∗

(3.5)

with DF a vertical diffusion term. The number of fractional time steps, N , is gi-
ven by setting nn zdfexp, (namelist parameter). The scheme (b) is unconditionally
stable but diffusive. It can be written as follows :

xt+∆t = xt−∆t + 2 ∆t RHSt+∆t
x (3.6)

This scheme is rather time consuming since it requires a matrix inversion, but
it becomes attractive since a value of 3 or more is needed for N in the forward
time differencing scheme. For example, the finite difference approximation of the
temperature equation is :

T (k)t+1 − T (k)t−1

2 ∆t
≡ RHS +

1

e3t
δk

[
AvTw
e3w

δk+1/2

[
T t+1

]]
(3.7)

where RHS is the right hand side of the equation except for the vertical diffusion
term. We rewrite (??) as :

−c(k + 1) T t+1(k + 1) + d(k) T t+1(k)− c(k) T t+1(k − 1) ≡ b(k) (3.8)

where

c(k) = AvTw (k) / e3w(k)

d(k) = e3t(k) / (2∆t) + ck + ck+1

b(k) = e3t(k)
(
T t−1(k) / (2∆t) + RHS

)
(??) is a linear system of equations with an associated matrix which is tridiago-

nal. Moreover, c(k) and d(k) are positive and the diagonal term is greater than the
sum of the two extra-diagonal terms, therefore a special adaptation of the Gauss
elimination procedure is used to find the solution (see for example ?).

3.4. Hydrostatic Pressure Gradient — semi-implicit scheme 41

Update vertical coordinate

model operations

model time step

continuity equation

semi implicit hydrostatic pressure gradient

time filter

ssh equation

tracer equation

momentum equation

T T

T

T T

T

TT

T

T

TTT

T

FIGURE 3.1: Sketch of the leapfrog time stepping sequence in NEMO from ?. The
use of a semi-implicit computation of the hydrostatic pressure gradient requires the
tracer equation to be stepped forward prior to the momentum equation. The need for
knowledge of the vertical scale factor (here denoted as h) requires the sea surface
height and the continuity equation to be stepped forward prior to the computation of
the tracer equation. Note that the method for the evaluation of the surface pressure
gradient ∇ps is not presented here (see § ??).

3.4 Hydrostatic Pressure Gradient — semi-implicit scheme

The range of stability of the Leap-Frog scheme can be extended by a factor
of two by introducing a semi-implicit computation of the hydrostatic pressure gra-
dient term [?]. Instead of evaluating the pressure at t, a linear combination of va-
lues at t − ∆t, t and t + ∆t is used (see § ??). This technique, controlled by the

42 Time Domain (STP)

nn dynhpg rst namelist parameter, does not introduce a significant additional com-
putational cost when tracers and thus density is time stepped before the dynamics.
This time step ordering is used in NEMO (Fig.??).

This technique, used in several GCMs (NEMO, POP or MOM for instance),
makes the Leap-Frog scheme as efficient 1 as the Forward-Backward scheme used
in MOM [?] and more efficient than the LF-AM3 scheme (leapfrog time step-
ping combined with a third order Adams-Moulthon interpolation for the predictor
phase) used in ROMS [?].

In fact, this technique is efficient when the physical phenomenon that limits the
time-step is internal gravity waves (IGWs). Indeed, it is equivalent to applying a
time filter to the pressure gradient to eliminate high frequency IGWs. Obviously,
the doubling of the time-step is achievable only if no other factors control the time-
step, such as the stability limits associated with advection, diffusion or Coriolis
terms. For example, it is inefficient in low resolution global ocean configurations,
since inertial oscillations in the vicinity of the North Pole are the limiting factor
for the time step. It is also often inefficient in very high resolution configurations
where strong currents and small grid cells exert the strongest constraint on the time
step.

3.5 The Modified Leapfrog – Asselin Filter scheme

Significant changes have been introduced by ? in the LF-RA scheme in or-
der to ensure tracer conservation and to allow the use of a much smaller value of
the Asselin filter parameter. The modifications affect both the forcing and filtering
treatments in the LF-RA scheme.

In a classical LF-RA environment, the forcing term is centred in time, i.e. it is
time-stepped over a 2∆t period : xt = xt + 2∆tQt where Q is the forcing applied
to x, and the time filter is given by (??) so that Q is redistributed over several
time step. In the modified LF-RA environment, these two formulations have been
replaced by :

xt+∆t = xt−∆t + ∆t
(
Qt−∆t/2 +Qt+∆t/2

)
(3.9)

xtF = xt + γ
[
xt−∆t
F − 2xt + xt+∆t

]
− γ∆t

[
Qt+∆t/2 −Qt−∆t/2

]
(3.10)

The change in the forcing formulation given by (??) (see Fig.??) has a significant
effect : the forcing term no longer excites the divergence of odd and even time
steps [?]. This property improves the LF-RA scheme in two respects. First, the
LF-RA can now ensure the local and global conservation of tracers. Indeed, time
filtering is no longer required on the forcing part. The influence of the Asselin
filter on the forcing is be removed by adding a new term in the filter (last term in

1. The efficiency is defined as the maximum allowed Courant number of the time stepping
scheme divided by the number of computations of the right-hand side per time step.

3.6. Start/Restart strategy 43

0
time step

2 Q2 2 Q4

2 Q3

1 2 3 4 5

2 Q5Q1

time step

Q1/2 Q3/2 + Q5/2 Q7/2 + Q9/2

Q1/2 + Q3/2 Q5/2 + Q7/2

0 1 2 3 4 5

FIGURE 3.2: Illustration of forcing integration methods. (top) ”Traditional” formu-
lation : the forcing is defined at the same time as the variable to which it is applied
(integer value of the time step index) and it is applied over a 2∆t period. (bottom)
modified formulation : the forcing is defined in the middle of the time (integer and
a half value of the time step index) and the mean of two successive forcing values
(n− 1/2, n+ 1/2). is applied over a 2∆t period.

(??) compared to (??)). Since the filtering of the forcing was the source of non-
conservation in the classical LF-RA scheme, the modified formulation becomes
conservative [?]. Second, the LF-RA becomes a truly quasi-second order scheme.
Indeed, (??) used in combination with a careful treatment of static instability (§??)
and of the TKE physics (§??), the two other main sources of time step divergence,
allows a reduction by two orders of magnitude of the Asselin filter parameter.

Note that the forcing is now provided at the middle of a time step : Qt+∆t/2

is the forcing applied over the [t, t+ ∆t] time interval. This and the change in the
time filter, (??), allows an exact evaluation of the contribution due to the forcing
term between any two time steps, even if separated by only ∆t since the time filter
is no longer applied to the forcing term.

3.6 Start/Restart strategy
!---
&namrun ! parameters of the run
!---

nn_no = 0 ! job number (no more used...)
cn_exp = "ORCA2" ! experience name
nn_it000 = 1 ! first time step
nn_itend = 5475 ! last time step (std 5475)
nn_date0 = 010101 ! date at nit_0000 (format yyyymmdd)

! used if ln_rstart=F or (ln_rstart=T and nn_rstctl=0 or 1)
nn_leapy = 0 ! Leap year calendar (1) or not (0)
ln_rstart = .false. ! start from rest (F) or from a restart file (T)
nn_rstctl = 0 ! restart control => activated only if ln_rstart = T

! = 0 nn_date0 read in namelist ; nn_it000 : read in namelist
! = 1 nn_date0 read in namelist ; nn_it000 : check consistancy between namelist and restart
! = 2 nn_date0 read in restart ; nn_it000 : check consistancy between namelist and restart

cn_ocerst_in = "restart" ! suffix of ocean restart name (input)
cn_ocerst_out = "restart" ! suffix of ocean restart name (output)
nn_istate = 0 ! output the initial state (1) or not (0)
nn_stock = 5475 ! frequency of creation of a restart file (modulo referenced to 1)
nn_write = 5475 ! frequency of write in the output file (modulo referenced to nn_it000)
ln_dimgnnn = .false. ! DIMG file format: 1 file for all processors (F) or by processor (T)
ln_mskland = .false. ! mask land points in NetCDF outputs (costly: + ˜15%)

44 Time Domain (STP)

ln_clobber = .false. ! clobber (overwrite) an existing file
nn_chunksz = 0 ! chunksize (bytes) for NetCDF file (works only with iom_nf90 routines)

/

The first time step of this three level scheme when starting from initial condi-
tions is a forward step (Euler time integration) :

x1 = x0 + ∆t RHS0 (3.11)

This is done simply by keeping the leapfrog environment (i.e. the (??) three level
time stepping) but setting all x0 (before) and x1 (now) fields equal at the first time
step and using half the value of ∆t.

It is also possible to restart from a previous computation, by using a restart file.
The restart strategy is designed to ensure perfect restartability of the code : the user
should obtain the same results to machine precision either by running the model
for 2N time steps in one go, or by performing two consecutive experiments of N
steps with a restart. This requires saving two time levels and many auxiliary data
in the restart files in machine precision.

Note that when a semi-implicit scheme is used to evaluate the hydrostatic
pressure gradient (see §??), an extra three-dimensional field has to be added to
the restart file to ensure an exact restartability. This is done optionally via the
nn dynhpg rst namelist parameter, so that the size of the restart file can be reduced
when restartability is not a key issue (operational oceanography or in ensemble
simulations for seasonal forecasting).

Note the size of the time step used, ∆t, is also saved in the restart file. When
restarting, if the the time step has been changed, a restart using an Euler time
stepping scheme is imposed.

4 Space Domain (DOM)

46 Space Domain (DOM)

Having defined the continuous equations in Chap. ?? and chosen a time dis-
cretization Chap. ??, we need to choose a discretization on a grid, and numerical
algorithms. In the present chapter, we provide a general description of the stag-
gered grid used in NEMO, and other information relevant to the main directory
routines as well as the DOM (DOMain) directory.

4.1 Fundamentals of the Discretisation

4.1.1 Arrangement of Variables

The numerical techniques used to solve the Primitive Equations in this mo-
del are based on the traditional, centred second-order finite difference approxima-
tion. Special attention has been given to the homogeneity of the solution in the
three space directions. The arrangement of variables is the same in all directions.
It consists of cells centred on scalar points (t, S, p, ρ) with vector points (u, v, w)
defined in the centre of each face of the cells (Fig. ??). This is the generalisation to
three dimensions of the well-known “C” grid in Arakawa’s classification [?]. The
relative and planetary vorticity, ζ and f , are defined in the centre of each vertical
edge and the barotropic stream function ψ is defined at horizontal points overlying
the ζ and f -points.

The ocean mesh (i.e. the position of all the scalar and vector points) is defined
by the transformation that gives (λ ,ϕ ,z) as a function of (i, j, k). The grid-points
are located at integer or integer and a half value of (i, j, k) as indicated on Table
??. In all the following, subscripts u, v, w, f , uw, vw or fw indicate the position
of the grid-point where the scale factors are defined. Each scale factor is defined
as the local analytical value provided by (??). As a result, the mesh on which par-
tial derivatives ∂

∂λ ,
∂
∂ϕ , and ∂

∂z are evaluated is a uniform mesh with a grid size of
unity. Discrete partial derivatives are formulated by the traditional, centred second
order finite difference approximation while the scale factors are chosen equal to
their local analytical value. An important point here is that the partial derivative
of the scale factors must be evaluated by centred finite difference approximation,
not from their analytical expression. This preserves the symmetry of the discrete
set of equations and therefore satisfies many of the continuous properties (see Ap-
pendix ??). A similar, related remark can be made about the domain size : when
needed, an area, volume, or the total ocean depth must be evaluated as the sum of
the relevant scale factors (see (??)) in the next section).

4.1. Fundamentals of the Discretisation 47

u

w

w

v
u

vf

f

f

f

T

FIGURE 4.1: Arrangement of variables. t indicates scalar points where temperature,
salinity, density, pressure and horizontal divergence are defined. (u,v,w) indicates vec-
tor points, and f indicates vorticity points where both relative and planetary vorticities
are defined

4.1.2 Discrete Operators

Given the values of a variable q at adjacent points, the differencing and avera-
ging operators at the midpoint between them are :

δi[q] = q(i+ 1/2)− q(i− 1/2) (4.1a)

q i = {q(i+ 1/2) + q(i− 1/2)} / 2 (4.1b)

Similar operators are defined with respect to i+1/2, j, j+1/2, k, and k+1/2.
Following (??) and (??), the gradient of a variable q defined at a t-point has its three
components defined at u-, v- and w-points while its Laplacien is defined at t-point.
These operators have the following discrete forms in the curvilinear s-coordinate
system :

∇q ≡ 1

e1u
δi+1/2[q] i +

1

e2v
δj+1/2[q] j +

1

e3w
δk+1/2[q] k (4.2)

48 Space Domain (DOM)

TABLE 4.1: Location of grid-points as a function of integer or integer and a half
value of the column, line or level. This indexing is only used for the writing of the
semi-discrete equation. In the code, the indexing uses integer values only and has a
reverse direction in the vertical (see §??)

T i j k

u i+ 1/2 j k

v i j + 1/2 k

w i j k + 1/2

f i+ 1/2 j + 1/2 k

uw i+ 1/2 j k + 1/2

vw i j + 1/2 k + 1/2

fw i+ 1/2 j + 1/2 k + 1/2

∆q ≡ 1

e1t e2t e3t

(
δi

[
e2u e3u

e1u
δi+1/2[q]

]
+ δj

[
e1v e3v

e2v
δj+1/2[q]

])
+

1

e3t
δk

[
1

e3w
δk+1/2[q]

]
(4.3)

Following (??) and (??), a vector A = (a1, a2, a3) defined at vector points
(u, v, w) has its three curl components defined at vw-, uw, and f -points, and its
divergence defined at t-points :

∇×A ≡ 1
e2v e3vw

(
δj+1/2 [e3w a3]− δk+1/2 [e2v a2]

)
i (4.4)

+ 1
e2u e3uw

(
δk+1/2 [e1u a1]− δi+1/2 [e3w a3]

)
j (4.5)

+ 1
e1f e2f

(
δi+1/2 [e2v a2]− δj+1/2 [e1u a1]

)
k (4.6)

∇ ·A =
1

e1t e2t e3t
(δi [e2u e3u a1] + δj [e1v e3v a2]) +

1

e3t
δk [a3] (4.7)

In the special case of a pure z-coordinate system, (??) and (??) can be simpli-
fied. In this case, the vertical scale factor becomes a function of the single variable
k and thus does not depend on the horizontal location of a grid point. For example
(??) reduces to :

∇ ·A =
1

e1t e2t
(δi [e2u a1] + δj [e1v a2]) +

1

e3t
δk [a3]

The vertical average over the whole water column denoted by an overbar be-
comes for a quantity q which is a masked field (i.e. equal to zero inside solid area) :

q̄ =
1

H

∫ ko

kb
q e3q dk ≡

1

Hq

∑
k

q e3q (4.8)

4.1. Fundamentals of the Discretisation 49

where Hq is the ocean depth, which is the masked sum of the vertical scale factors
at q points, kb and ko are the bottom and surface k-indices, and the symbol ko refers
to a summation over all grid points of the same type in the direction indicated by
the subscript (here k).

In continuous form, the following properties are satisfied :

∇×∇q = 0 (4.9)

∇ · (∇×A) = 0 (4.10)

It is straightforward to demonstrate that these properties are verified locally in
discrete form as soon as the scalar q is taken at t-points and the vector A has its
components defined at vector points (u, v, w).

Let a and b be two fields defined on the mesh, with value zero inside continental
area. Using integration by parts it can be shown that the differencing operators
(δi, δj and δk) are anti-symmetric linear operators, and further that the averaging
operators · i, · k and · k) are symmetric linear operators, i.e.∑

i

ai δi [b] ≡ −
∑
i

δi+1/2 [a] bi+1/2 (4.11)∑
i

ai b
i ≡

∑
i

a i+1/2 bi+1/2 (4.12)

In other words, the adjoint of the differencing and averaging operators are
δ∗i = δi+1/2 and (· i)∗ = · i+1/2, respectively. These two properties will be used
extensively in the Appendix ?? to demonstrate integral conservative properties of
the discrete formulation chosen.

4.1.3 Numerical Indexing

The array representation used in the FORTRAN code requires an integer in-
dexing while the analytical definition of the mesh (see §??) is associated with the
use of integer values for t-points and both integer and integer and a half values
for all the other points. Therefore a specific integer indexing must be defined for
points other than t-points (i.e. velocity and vorticity grid-points). Furthermore, the
direction of the vertical indexing has been changed so that the surface level is at
k = 1.

Horizontal Indexing

The indexing in the horizontal plane has been chosen as shown in Fig.??. For
an increasing i index (j index), the t-point and the eastward u-point (northward v-
point) have the same index (see the dashed area in Fig.??). A t-point and its nearest
northeast f -point have the same i-and j-indices.

50 Space Domain (DOM)

i-1
i-1

i
i
i+1

i+1

j+1

j-1

j-1

j

j

j+1

u

v

T

f

FIGURE 4.2: Horizontal integer indexing used in the FORTRAN code. The dashed
area indicates the cell in which variables contained in arrays have the same i- and
j-indices

Vertical Indexing

In the vertical, the chosen indexing requires special attention since the k-axis
is re-orientated downward in the FORTRAN code compared to the indexing used
in the semi-discrete equations and given in §??. The sea surface corresponds to
the w-level k = 1 which is the same index as t-level just below (Fig.??). The last
w-level (k = jpk) either corresponds to the ocean floor or is inside the bathymetry
while the last t-level is always inside the bathymetry (Fig.??). Note that for an
increasing k index, a w-point and the t-point just below have the same k index, in
opposition to what is done in the horizontal plane where it is the t-point and the
nearest velocity points in the direction of the horizontal axis that have the same i

4.1. Fundamentals of the Discretisation 51

w

w
T

1
1

k

2

jpk

jpk-1
jpk-1

jpk-2
jpk-2

jpk

LEVELS

k
k+1 w

T

w
T

w
T

T

w

w

w
T

w
T

w
T

w
T

T

w

FIGURE 4.3: Vertical integer indexing used in the FORTRAN code. Note that the
k-axis is orientated downward. The dashed area indicates the cell in which variables
contained in arrays have the same k-index.

or j index (compare the dashed area in Fig.?? and ??). Since the scale factors are
chosen to be strictly positive, a minus sign appears in the FORTRAN code before
all the vertical derivatives of the discrete equations given in this documentation.

Domain Size

The total size of the computational domain is set by the parameters jpiglo,
jpjglo and jpk in the i, j and k directions respectively. They are given as para-
meters in the par oce.F90 module 1. The use of parameters rather than variables

1. When a specific configuration is used (ORCA2 global ocean, etc...) the parameter are ac-
tually defined in additional files introduced by par oce.F90 module via CPP include command. For

52 Space Domain (DOM)

(together with dynamic allocation of arrays) was chosen because it ensured that
the compiler would optimize the executable code efficiently, especially on vector
machines (optimization may be less efficient when the problem size is unknown
at the time of compilation). Nevertheless, it is possible to set up the code with full
dynamical allocation by using the AGRIF packaged [?]. Note that are other pa-
rameters in par oce.F90 that refer to the domain size. The two parameters jpidta
and jpjdta may be larger than jpiglo, jpjglo when the user wants to use only
a sub-region of a given configuration. This is the ”zoom” capability described in
§??. In most applications of the model, jpidta = jpiglo, jpjdta = jpjglo, and
jpizoom = jpjzoom = 1. Parameters jpi and jpj refer to the size of each pro-
cessor subdomain when the code is run in parallel using domain decomposition
(key mpp mpi defined, see §??).

4.2 Domain : Horizontal Grid (mesh) (domhgr.F90 module)

4.2.1 Coordinates and scale factors

The ocean mesh (i.e. the position of all the scalar and vector points) is defi-
ned by the transformation that gives (λ, ϕ, z) as a function of (i, j, k). The grid-
points are located at integer or integer and a half values of as indicated in Table ??.
The associated scale factors are defined using the analytical first derivative of the
transformation (??). These definitions are done in two modules, domhgr.F90 and
domzgr.F90, which provide the horizontal and vertical meshes, respectively. This
section deals with the horizontal mesh parameters.

In a horizontal plane, the location of all the model grid points is defined from
the analytical expressions of the longitude λ and latitude ϕ as a function of (i, j).
The horizontal scale factors are calculated using (??). For example, when the longi-
tude and latitude are function of a single value (i and j, respectively) (geographical
configuration of the mesh), the horizontal mesh definition reduces to define the
wanted λ(i), ϕ(j), and their derivatives λ′(i) ϕ′(j) in the domhgr.F90 module.
The model computes the grid-point positions and scale factors in the horizontal
plane as follows :

λt ≡ glamt = λ(i) ϕt ≡ gphit = ϕ(j)

λu ≡ glamu = λ(i+ 1/2) ϕu ≡ gphiu = ϕ(j)

λv ≡ glamv = λ(i) ϕv ≡ gphiv = ϕ(j + 1/2)

λf ≡ glamf = λ(i+ 1/2) ϕf ≡ gphif = ϕ(j + 1/2)

example, ORCA2 parameters are set in par ORCA R2.h90 file

4.2. Domain : Horizontal Grid (mesh) (domhgr) 53

e1t ≡ e1t = ra|λ′(i) cosϕ(j)| e2t ≡ e2t = ra|ϕ′(j)|
e1u ≡ e1t = ra|λ′(i+ 1/2) cosϕ(j)| e2u ≡ e2t = ra|ϕ′(j)|
e1v ≡ e1t = ra|λ′(i) cosϕ(j + 1/2)| e2v ≡ e2t = ra|ϕ′(j + 1/2)|
e1f ≡ e1t = ra|λ′(i+ 1/2) cosϕ(j + 1/2)| e2f ≡ e2t = ra|ϕ′(j + 1/2)|

where the last letter of each computational name indicates the grid point considered
and ra is the earth radius (defined in phycst.F90 along with all universal constants).
Note that the horizontal position of and scale factors at w-points are exactly equal
to those of t-points, thus no specific arrays are defined at w-points.

Note that the definition of the scale factors (i.e. as the analytical first deriva-
tive of the transformation that gives (λ, ϕ, z) as a function of (i, j, k)) is specific
to the NEMO model [?]. As an example, e1t is defined locally at a t-point, whe-
reas many other models on a C grid choose to define such a scale factor as the
distance between the U -points on each side of the t-point. Relying on an analyti-
cal transformation has two advantages : firstly, there is no ambiguity in the scale
factors appearing in the discrete equations, since they are first introduced in the
continuous equations ; secondly, analytical transformations encourage good prac-
tice by the definition of smoothly varying grids (rather than allowing the user to set
arbitrary jumps in thickness between adjacent layers) [?]. An example of the effect
of such a choice is shown in Fig. ??.

4.2.2 Choice of horizontal grid

The user has three options available in defining a horizontal grid, which involve
the parameter jphgr mesh of the par oce.F90 module.

jphgr mesh=0 The most general curvilinear orthogonal grids. The coordinates and
their first derivatives with respect to i and j are provided in a input file (co-
ordinates.nc), read in hgr read subroutine of the domhgr module.

jphgr mesh=1 to 5 A few simple analytical grids are provided (see below). For
other analytical grids, the domhgr.F90 module must be modified by the user.

There are two simple cases of geographical grids on the sphere. With jphgr mesh=1,
the grid (expressed in degrees) is regular in space, with grid sizes specified by para-
meters ppe1 deg and ppe2 deg, respectively. Such a geographical grid can be very
anisotropic at high latitudes because of the convergence of meridians (the zonal
scale factors e1 become much smaller than the meridional scale factors e2). The
Mercator grid (jphgr mesh=4) avoids this anisotropy by refining the meridional
scale factors in the same way as the zonal ones. In this case, meridional scale fac-
tors and latitudes are calculated analytically using the formulae appropriate for a
Mercator projection, based on ppe1 deg which is a reference grid spacing at the
equator (this applies even when the geographical equator is situated outside the
model domain). In these two cases (jphgr mesh=1 or 4), the grid position is de-
fined by the longitude and latitude of the south-westernmost point (ppglamt0 and

54 Space Domain (DOM)

Tk+1

Tk

Tk-1∆k-1 = 100 m

∆k-1 = 40 m

∆k-1 = 10 m
Wk+1/2

Wk-1/2

Wk-3/2

Wk+3/2
zk+1/2 = -10 m

zk-1/2= -50 m

zk-3/2= -150 m

zk+3/2 = 0 m

z

Tk+1

Tk

Tk-1 ek-1 = 98.75 m

ek-1 = 38.75 m

ek-1 = 8.75 m
Wk+1/2

Wk-1/2

Wk-3/2

Wk+3/2
ek+1/2 = 20 m

ek-1/2= 65 m

ek-3/2= 140 m

ek+3/2 = 5 m

z

(a) (b)

FIGURE 4.4: Comparison of (a) traditional definitions of grid-point position and
grid-size in the vertical, and (b) analytically derived grid-point position and scale
factors. For both grids here, the same w-point depth has been chosen but in (a) the
t-points are set half way between w-points while in (b) they are defined from an
analytical function : z(k) = 5 (i−1/2)3−45 (i−1/2)2 + 140 (i−1/2)−150. Note
the resulting difference between the value of the grid-size ∆k and those of the scale
factor ek.

ppgphi0). Note that for the Mercator grid the user need only provide an approxi-
mate starting latitude : the real latitude will be recalculated analytically, in order to
ensure that the equator corresponds to line passing through t- and u-points.

Rectangular grids ignoring the spherical geometry are defined with jphgr mesh
= 2, 3, 5. The domain is either an f -plane (jphgr mesh = 2, Coriolis factor is
constant) or a beta-plane (jphgr mesh = 3, the Coriolis factor is linear in the j-
direction). The grid size is uniform in meter in each direction, and given by the pa-
rameters ppe1 m and ppe2 m respectively. The zonal grid coordinate (glam arrays)
is in kilometers, starting at zero with the first t-point. The meridional coordinate
(gphi. arrays) is in kilometers, and the second t-point corresponds to coordinate
gphit = 0. The input parameter ppglam0 is ignored. ppgphi0 is used to set the
reference latitude for computation of the Coriolis parameter. In the case of the beta
plane, ppgphi0 corresponds to the center of the domain. Finally, the special case
jphgr mesh=5 corresponds to a beta plane in a rotated domain for the GYRE confi-
guration, representing a classical mid-latitude double gyre system. The rotation
allows us to maximize the jet length relative to the gyre areas (and the number of

4.3. Domain : Vertical Grid (domzgr) 55

grid points).
The choice of the grid must be consistent with the boundary conditions speci-

fied by the parameter jperio (see §??).

4.2.3 Output Grid files

All the arrays relating to a particular ocean model configuration (grid-point po-
sition, scale factors, masks) can be saved in files if nn msh 6= 0 (namelist parame-
ter). This can be particularly useful for plots and off-line diagnostics. In some cases,
the user may choose to make a local modification of a scale factor in the code. This
is the case in global configurations when restricting the width of a specific strait
(usually a one-grid-point strait that happens to be too wide due to insufficient mo-
del resolution). An example is Gibraltar Strait in the ORCA2 configuration. When
such modifications are done, the output grid written when nn msh 6= 0 is no more
equal to the input grid.

4.3 Domain : Vertical Grid (domzgr.F90 module)

!---
&namzgr ! vertical coordinate
!---

ln_zco = .false. ! z-coordinate - full steps (T/F) ("key_zco" may also be defined)
ln_zps = .true. ! z-coordinate - partial steps (T/F)
ln_sco = .false. ! s- or hybrid z-s-coordinate (T/F)

/

!---
&namdom ! space and time domain (bathymetry, mesh, timestep)
!---

nn_bathy = 1 ! compute (=0) or read (=1) the bathymetry file
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
nn_msh = 0 ! create (=1) a mesh file or not (=0)
rn_hmin = -3. ! min depth of the ocean (>0) or min number of ocean level (<0)
rn_e3zps_min= 20. ! partial step thickness is set larger than the minimum of
rn_e3zps_rat= 0.1 ! rn_e3zps_min and rn_e3zps_rat*e3t, with 0<rn_e3zps_rat<1

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nn_acc=0)
nn_baro = 64 ! number of barotropic time step ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nn_acc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nn_acc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nn_acc=1)

/

In the vertical, the model mesh is determined by four things : (1) the bathyme-
try given in meters ; (2) the number of levels of the model (jpk) ; (3) the analytical
transformation z(i, j, k) and the vertical scale factors (derivatives of the transfor-
mation) ; and (4) the masking system, i.e. the number of wet model levels at each
(i, j) column of points.

The choice of a vertical coordinate, even if it is made through a namelist para-
meter, must be done once of all at the beginning of an experiment. It is not inten-
ded as an option which can be enabled or disabled in the middle of an experiment.
Three main choices are offered (Fig. ??a to c) : z-coordinate with full step bathy-
metry (ln zco = true), z-coordinate with partial step bathymetry (ln zps = true),

56 Space Domain (DOM)

(d)

(f)

(e)

(c)

(b)

(a)

FIGURE 4.5: The ocean bottom as seen by the model : (a) z-coordinate with full step,
(b) z-coordinate with partial step, (c) s-coordinate : terrain following representation,
(d) hybrid s− z coordinate, (e) hybrid s− z coordinate with partial step, and (f) same
as (e) but with variable volume associated with the non-linear free surface. Note that
the variable volume option (key vvl) can be used with any of the 5 coordinates (a) to
(e).

or generalized, s-coordinate (ln sco = true). Hybridation of the three main coordi-
nates are available : s − z or s − zps coordinate (Fig. ??d and ??e). When using
the variable volume option key vvl (i.e. non-linear free surface), the coordinate
follow the time-variation of the free surface so that the transformation is time de-
pendent : z(i, j, k, t) (Fig. ??f). This option can be used with full step bathymetry
or s-coordinate (hybrid and partial step coordinates have not yet been tested in
NEMO v2.3).

Contrary to the horizontal grid, the vertical grid is computed in the code and no
provision is made for reading it from a file. The only input file is the bathymetry (in
meters) (bathy meter.nc) 2. After reading the bathymetry, the algorithm for vertical
grid definition differs between the different options :

zco set a reference coordinate transformation z0(k), and set z(i, j, k, t) = z0(k).

zps set a reference coordinate transformation z0(k), and calculate the thickness of
the deepest level at each (i, j) point using the bathymetry, to obtain the final
three-dimensional depth and scale factor arrays.

2. N.B. in full step z-coordinate, a bathy level.nc file can replace the bathy meter.nc file, so that
the computation of the number of wet ocean point in each water column is by-passed

4.3. Domain : Vertical Grid (domzgr) 57

sco smooth the bathymetry to fulfil the hydrostatic consistency criteria and set the
three-dimensional transformation.

s-z and s-zps smooth the bathymetry to fulfil the hydrostatic consistency criteria
and set the three-dimensional transformation z(i, j, k), and possibly intro-
duce masking of extra land points to better fit the original bathymetry file

The arrays describing the grid point depths and vertical scale factors are three
dimensional arrays (i, j, k) even in the case of z-coordinate with full step bottom
topography. In non-linear free surface (key vvl), their knowledge is required at
before, now and after time step, while they do not vary in time in linear free surface
case. To improve the code readability while providing this flexibility, the vertical
coordinate and scale factors are defined as functions of (i, j, k) with ”fs” as prefix
(examples : fse3t b, fse3t n, fse3t a, for the before, now and after scale factors
at t-point) that can be either three different arrays when key vvl is defined, or a
single fixed arrays. These functions are defined in the file domzgr substitute.h90
of the DOM directory. They are used throughout the code, and replaced by the
corresponding arrays at the time of pre-processing (CPP capability).

4.3.1 Meter Bathymetry

Three options are possible for defining the bathymetry, according to the name-
list variable nn bathy :

nn bathy = 0 a flat-bottom domain is defined. The total depth zw(jpk) is given by
the coordinate transformation. The domain can either be a closed basin or a
periodic channel depending on the parameter jperio.

nn bathy = -1 a domain with a bump of topography one third of the domain width
at the central latitude. This is meant for the ”EEL-R5” configuration, a per-
iodic or open boundary channel with a seamount.

nn bathy = 1 read a bathymetry. The bathy meter.nc file (Netcdf format) provides
the ocean depth (positive, in meters) at each grid point of the model grid. The
bathymetry is usually built by interpolating a standard bathymetry product
(e.g. ETOPO2) onto the horizontal ocean mesh. Defining the bathymetry
also defines the coastline : where the bathymetry is zero, no model levels are
defined (all levels are masked).

When a global ocean is coupled to an atmospheric model it is better to re-
present all large water bodies (e.g, great lakes, Caspian sea...) even if the model
resolution does not allow their communication with the rest of the ocean. This is
unnecessary when the ocean is forced by fixed atmospheric conditions, so these
seas can be removed from the ocean domain. The user has the option to set the
bathymetry in closed seas to zero (see §??), but the code has to be adapted to the
user’s configuration.

58 Space Domain (DOM)

depth
(meters)

scale factor
(meters)

vertical index
1 10 20 30

500

400

600

300

200

100

0

1000

0

2000

3000

4000

5000

FIGURE 4.6: Default vertical mesh for ORCA2 : 30 ocean levels (L30). Vertical level
functions for (a) T-point depth and (b) the associated scale factor as computed from
(??) using (??) in z-coordinate.

4.3.2 z-coordinate (ln zco=true) and reference coordinate

The reference coordinate transformation z0(k) defines the arrays gdept0 and
gdepw0 for t- and w-points, respectively. As indicated on Fig.?? jpk is the number
of w-levels. gdepw0(1) is the ocean surface. There are at most jpk-1 t-points inside
the ocean, the additional t-point at jk = jpk is below the sea floor and is not used.
The vertical location of w- and t-levels is defined from the analytic expression of
the depth z0(k) whose analytical derivative with respect to k provides the vertical
scale factors. The user must provide the analytical expression of both z0 and its first
derivative with respect to k. This is done in routine domzgr.F90 through statement
functions, using parameters provided in the par oce.h90 file.

It is possible to define a simple regular vertical grid by giving zero stretching
(ppacr=0). In that case, the parameters jpk (number of w-levels) and pphmax (total

4.3. Domain: Vertical Grid (domzgr) 59

ocean depth in meters) fully define the grid.
For climate-related studies it is often desirable to concentrate the vertical reso-

lution near the ocean surface. The following function is proposed as a standard for
a z-coordinate (with either full or partial steps) :

z0(k) = hsur − h0 k − h1 log [cosh ((k − hth)/hcr)]

e0
3(k) = |−h0 − h1 tanh ((k − hth)/hcr)|

(4.13)

where k = 1 to jpk for w-levels and k = 1 to k = 1 for T−levels. Such an expres-
sion allows us to define a nearly uniform vertical location of levels at the ocean top
and bottom with a smooth hyperbolic tangent transition in between (Fig. ??).

The most used vertical grid for ORCA2 has 10 m (500 m) resolution in the
surface (bottom) layers and a depth which varies from 0 at the sea surface to a
minimum of −5000 m. This leads to the following conditions :

e3(1 + 1/2) = 10.

e3(jpk − 1/2) = 500.

z(1) = 0.

z(jpk) = −5000.

(4.14)

With the choice of the stretching hcr = 3 and the number of levels jpk=31, the
four coefficients hsur, h0, h1, and hth in (??) have been determined such that (??) is
satisfied, through an optimisation procedure using a bisection method. For the first
standard ORCA2 vertical grid this led to the following values : hsur = 4762.96,
h0 = 255.58, h1 = 245.5813, and hth = 21.43336. The resulting depths and
scale factors as a function of the model levels are shown in Fig. ?? and given in
Table ??. Those values correspond to the parameters ppsur, ppa0, ppa1, ppkth in
the parameter file par oce.F90.

Rather than entering parameters hsur, h0, and h1 directly, it is possible to re-
calculate them. In that case the user sets ppsur=ppa0=ppa1=pp to be computed,
in par oce.F90, and specifies instead the four following parameters :

– ppacr=hcr : stretching factor (nondimensional). The larger ppacr, the smal-
ler the stretching. Values from 3 to 10 are usual.

– ppkth=hth : is approximately the model level at which maximum stretching
occurs (nondimensional, usually of order 1/2 or 2/3 of jpk)

– ppdzmin : minimum thickness for the top layer (in meters)
– pphmax : total depth of the ocean (meters).

As an example, for the 45 layers used in the DRAKKAR configuration those para-
meters are : jpk=46, ppacr=9, ppkth=23.563, ppdzmin=6m, pphmax=5750m.

4.3.3 z-coordinate with partial step (ln zps=.true.)
!---
&namdom ! space and time domain (bathymetry, mesh, timestep)
!---

nn_bathy = 1 ! compute (=0) or read (=1) the bathymetry file
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)

60 Space Domain (DOM)

TABLE 4.2: Default vertical mesh in z-coordinate for 30 layers ORCA2 configuration
as computed from (??) using the coefficients given in (??)

LEVEL gdept gdepw e3t e3w
1 5.00 0.00 10.00 10.00
2 15.00 10.00 10.00 10.00
3 25.00 20.00 10.00 10.00
4 35.01 30.00 10.01 10.00
5 45.01 40.01 10.01 10.01
6 55.03 50.02 10.02 10.02
7 65.06 60.04 10.04 10.03
8 75.13 70.09 10.09 10.06
9 85.25 80.18 10.17 10.12

10 95.49 90.35 10.33 10.24
11 105.97 100.69 10.65 10.47
12 116.90 111.36 11.27 10.91
13 128.70 122.65 12.47 11.77
14 142.20 135.16 14.78 13.43
15 158.96 150.03 19.23 16.65
16 181.96 169.42 27.66 22.78
17 216.65 197.37 43.26 34.30
18 272.48 241.13 70.88 55.21
19 364.30 312.74 116.11 90.99
20 511.53 429.72 181.55 146.43
21 732.20 611.89 261.03 220.35
22 1033.22 872.87 339.39 301.42
23 1405.70 1211.59 402.26 373.31
24 1830.89 1612.98 444.87 426.00
25 2289.77 2057.13 470.55 459.47
26 2768.24 2527.22 484.95 478.83
27 3257.48 3011.90 492.70 489.44
28 3752.44 3504.46 496.78 495.07
29 4250.40 4001.16 498.90 498.02
30 4749.91 4500.02 500.00 499.54
31 5250.23 5000.00 500.56 500.33

4.3. Domain : Vertical Grid (domzgr) 61

nn_msh = 0 ! create (=1) a mesh file or not (=0)
rn_hmin = -3. ! min depth of the ocean (>0) or min number of ocean level (<0)
rn_e3zps_min= 20. ! partial step thickness is set larger than the minimum of
rn_e3zps_rat= 0.1 ! rn_e3zps_min and rn_e3zps_rat*e3t, with 0<rn_e3zps_rat<1

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nn_acc=0)
nn_baro = 64 ! number of barotropic time step ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nn_acc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nn_acc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nn_acc=1)

/

In z-coordinate partial step, the depths of the model levels are defined by the
reference analytical function z0(k) as described in the previous section, except in
the bottom layer. The thickness of the bottom layer is allowed to vary as a function
of geographical location (λ, ϕ) to allow a better representation of the bathymetry,
especially in the case of small slopes (where the bathymetry varies by less than one
level thickness from one grid point to the next). The reference layer thicknesses e0

3t

have been defined in the absence of bathymetry. With partial steps, layers from 1
to jpk-2 can have a thickness smaller than e3t(jk). The model deepest layer (jpk-1)
is allowed to have either a smaller or larger thickness than e3t(jpk) : the maximum
thickness allowed is 2 ∗ e3t(jpk− 1). This has to be kept in mind when specifying
the maximum depth pphmax in partial steps : for example, with pphmax= 5750 m
for the DRAKKAR 45 layer grid, the maximum ocean depth allowed is actually
6000 m (the default thickness e3t(jpk − 1) being 250 m). Two variables in the
namdom namelist are used to define the partial step vertical grid. The mimimum
water thickness (in meters) allowed for a cell partially filled with bathymetry at
level jk is the minimum of rn e3zps min (thickness in meters, usually 20 m) or
e3t(jk) ∗ rn e3zps rat (a fraction, usually 10%, of the default thickness e3t(jk)).

Add a figure here of pstep especially at last ocean level

4.3.4 s-coordinate (ln sco=true)
!---
&namzgr_sco ! s-coordinate or hybrid z-s-coordinate
!---

ln_s_sh94 = .true. ! Song & Haidvogel 1994 hybrid S-sigma (T)|
ln_s_sf12 = .false. ! Siddorn & Furner 2012 hybrid S-z-sigma (T)| if both are false the NEMO tanh stretching is applied
ln_sigcrit = .false. ! use sigma coordinates below critical depth (T) or Z coordinates (F) for Siddorn & Furner stretch

! stretching coefficients for all functions
rn_sbot_min = 10.0 ! minimum depth of s-bottom surface (>0) (m)
rn_sbot_max = 7000.0 ! maximum depth of s-bottom surface (= ocean depth) (>0) (m)
rn_hc = 150.0 ! critical depth for transition to stretched coordinates

!!!!!!! Envelop bathymetry
rn_rmax = 0.3 ! maximum cut-off r-value allowed (0<r_max<1)

!!!!!!! SH94 stretching coefficients (ln_s_sh94 = .true.)
rn_theta = 6.0 ! surface control parameter (0<=theta<=20)
rn_bb = 0.8 ! stretching with SH94 s-sigma

!!!!!!! SF12 stretching coefficient (ln_s_sf12 = .true.)
rn_alpha = 4.4 ! stretching with SF12 s-sigma
rn_efold = 0.0 ! efold length scale for transition to stretched coord
rn_zs = 1.0 ! depth of surface grid box

! bottom cell depth (Zb) is a linear function of water depth Zb = H*a + b
rn_zb_a = 0.024 ! bathymetry scaling factor for calculating Zb
rn_zb_b = -0.2 ! offset for calculating Zb

!!!!!!!! Other stretching (not SH94 or SF12) [also uses rn_theta above]
rn_thetb = 1.0 ! bottom control parameter (0<=thetb<= 1)

/

In s-coordinate (ln sco = true), the depth and thickness of the model levels are
defined from the product of a depth field and either a stretching function or its

62 Space Domain (DOM)

derivative, respectively :

z(k) = h(i, j) z0(k)

e3(k) = h(i, j) z′0(k)
(4.15)

where h is the depth of the last w-level (z0(k)) defined at the t-point location
in the horizontal and z0(k) is a function which varies from 0 at the sea surface to
1 at the ocean bottom. The depth field h is not necessary the ocean depth, since
a mixed step-like and bottom-following representation of the topography can be
used (Fig. ??d-e) or an envelop bathymetry can be defined (Fig. ??f). The namelist
parameter rn rmax determines the slope at which the terrain-following coordinate
intersects the sea bed and becomes a pseudo z-coordinate. The coordinate can also
be hybridised by specifying rn sbot min and rn sbot max as the minimum and
maximum depths at which the terrain-following vertical coordinate is calculated.

Options for stretching the coordinate are provided as examples, but care must
be taken to ensure that the vertical stretch used is appropriate for the application.

The original default NEMO s-coordinate stretching is available if neither of the
other options are specified as true (ln sco SH94 = false and ln sco SF12 = false.)
This uses a depth independent tanh function for the stretching [?] :

z = smin + C (s) (H − smin) (4.16)

where smin is the depth at which the s-coordinate stretching starts and allows
a z-coordinate to placed on top of the stretched coordinate, and z is the depth (ne-
gative down from the asea surface).

s = − k

n− 1
and 0 ≤ k ≤ n− 1 (4.17)

C(s) =
[tanh (θ (s+ b))− tanh (θ b)]

2 sinh (θ)
(4.18)

A stretching function, modified from the commonly used ? stretching (ln sco SH94 = true),
is also available and is more commonly used for shelf seas modelling :

C (s) = (1− b) sinh (θs)

sinh (θ)
+ b

tanh
[
θ
(
s+ 1

2

)]
− tanh

(
θ
2

)
2 tanh

(
θ
2

) (4.19)

where Hc is the critical depth (rn hc) at which the coordinate transitions from
pure σ to the stretched coordinate, and θ (rn theta) and b (rn bb) are the surface
and bottom control parameters such that 0 6 θ 6 20, and 0 6 b 6 1. b has
been designed to allow surface and/or bottom increase of the vertical resolution
(Fig. ??).

4.3. Domain : Vertical Grid (domzgr) 63

FIGURE 4.7: Examples of the stretching function applied to a seamount ; from left
to right : surface, surface and bottom, and bottom intensified resolutions

Another example has been provided at version 3.5 (ln sco SF12) that allows a
fixed surface resolution in an analytical terrain-following stretching ?. In this case
the a stretching function γ is defined such that :

z = −γh with 0 ≤ γ ≤ 1 (4.20)

The function is defined with respect to σ, the unstretched terrain-following
coordinate :

γ = A

(
σ − 1

2

(
σ2 + f (σ)

))
+B

(
σ3 − f (σ)

)
+ f (σ) (4.21)

Where :

f (σ) = (α+ 2)σα+1 − (α+ 1)σα+2 and σ =
k

n− 1
(4.22)

This gives an analytical stretching of σ that is solvable inA andB as a function
of the user prescribed stretching parameter α (rn alpha) that stretches towards the
surface (α > 1.0) or the bottom (α < 1.0) and user prescribed surface (rn zs)
and bottom depths. The bottom cell depth in this example is given as a function of
water depth :

Zb = ha+ b (4.23)

where the namelist parameters rn zb a and rn zb b are a and b respectively.
This gives a smooth analytical stretching in computational space that is constrai-

ned to given specified surface and bottom grid cell thicknesses in real space. This
is not to be confused with the hybrid schemes that superimpose geopotential co-
ordinates on terrain following coordinates thus creating a non-analytical vertical
coordinate that therefore may suffer from large gradients in the vertical resolu-
tions. This stretching is less straightforward to implement than the ? stretching, but

64 Space Domain (DOM)

0 50 100 150 200 250 300 350

0

20

40

60

80

100

d
e
p
th
 (
m
)

FIGURE 4.8: A comparison of the ? S-coordinate (solid lines), a 50 level Z-
coordinate (contoured surfaces) and the ? S-coordinate (dashed lines) in the surface
100m for a idealised bathymetry that goes from 50m to 5500m depth. For clarity every
third coordinate surface is shown.

has the advantage of resolving diurnal processes in deep water and has generally
flatter slopes.

As with the ? stretching the stretch is only applied at depths greater than the
critical depth hc. In this example two options are available in depths shallower than
hc, with pure sigma being applied if the ln sigcrit is true and pure z-coordinates if
it is false (the z-coordinate being equal to the depths of the stretched coordinate at
hc.

Minimising the horizontal slope of the vertical coordinate is important in terrain-
following systems as large slopes lead to hydrostatic consistency. A hydrostatic
consistency parameter diagnostic following ? has been implemented, and is output
as part of the model mesh file at the start of the run.

4.3.5 z∗- or s∗-coordinate (add key vvl)

This option is described in the Report by Levier et al. (2007), available on the
NEMO web site.

4.3.6 level bathymetry and mask

Whatever the vertical coordinate used, the model offers the possibility of re-
presenting the bottom topography with steps that follow the face of the model cells
(step like topography) [?]. The distribution of the steps in the horizontal is defined
in a 2D integer array, mbathy, which gives the number of ocean levels (i.e. those

4.4. Domain : Initial State (istate and dtatsd) 65

that are not masked) at each t-point. mbathy is computed from the meter bathyme-
try using the definiton of gdept as the number of t-points which gdept ≤ bathy.

Modifications of the model bathymetry are performed in the bat ctl routine
(see domzgr.F90 module) after mbathy is computed. Isolated grid points that do
not communicate with another ocean point at the same level are eliminated.

From the mbathy array, the mask fields are defined as follows :

tmask(i, j, k) =

{
1 if k ≤ mbathy(i, j)

0 if k ≤ mbathy(i, j)

umask(i, j, k) = tmask(i, j, k) ∗ tmask(i+ 1, j, k)

vmask(i, j, k) = tmask(i, j, k) ∗ tmask(i, j + 1, k)

fmask(i, j, k) = tmask(i, j, k) ∗ tmask(i+ 1, j, k)

∗ tmask(i, j, k) ∗ tmask(i+ 1, j, k)

Note that wmask is not defined as it is exactly equal to tmask with the nume-
rical indexing used (§ ??). Moreover, the specification of closed lateral boundaries
requires that at least the first and last rows and columns of the mbathy array are set
to zero. In the particular case of an east-west cyclical boundary condition, mbathy
has its last column equal to the second one and its first column equal to the last but
one (and so too the mask arrays) (see § ??).

4.4 Domain : Initial State (istate.F90 and dtatsd.F90 modules)

!---
&namtsd ! data : Temperature & Salinity
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim !’yearly’ or ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_tem = ’data_1m_potential_temperature_nomask’, -1,’votemper’, .true. , .true., ’yearly’ , ’ ’ , ’ ’
sn_sal = ’data_1m_salinity_nomask’ , -1,’vosaline’, .true. , .true., ’yearly’ , ’’ , ’ ’
!
cn_dir = ’./’ ! root directory for the location of the runoff files
ln_tsd_init = .true. ! Initialisation of ocean T & S with T &S input data (T) or not (F)
ln_tsd_tradmp = .true. ! damping of ocean T & S toward T &S input data (T) or not (F)

/

By default, the ocean start from rest (the velocity field is set to zero) and the
initialization of temperature and salinity fields is controlled through the ln tsd ini
namelist parameter.

ln tsd init = .true. use a T and S input files that can be given on the model grid
itself or on their native input data grid. In the latter case, the data will be in-
terpolated on-the-fly both in the horizontal and the vertical to the model grid
(see § ??). The information relative to the input files are given in the sn tem
and sn sal structures. The computation is done in the dtatsd.F90 module.

ln tsd init = .false. use constant salinity value of 35.5 psu and an analytical profile
of temperature (typical of the tropical ocean), see istate t s subroutine called
from istate.F90 module.

5 Ocean Tracers (TRA)

Using the representation described in Chap. ??, several semi-discrete space
forms of the tracer equations are available depending on the vertical coordinate
used and on the physics used. In all the equations presented here, the masking has
been omitted for simplicity. One must be aware that all the quantities are masked
fields and that each time a mean or difference operator is used, the resulting field
is multiplied by a mask.

The two active tracers are potential temperature and salinity. Their prognostic
equations can be summarized as follows :

NXT = ADV + LDF + ZDF + SBC (+QSR) (+BBC) (+BBL) (+DMP)

NXT stands for next, referring to the time-stepping. From left to right, the
terms on the rhs of the tracer equations are the advection (ADV), the lateral dif-
fusion (LDF), the vertical diffusion (ZDF), the contributions from the external
forcings (SBC : Surface Boundary Condition, QSR : penetrative Solar Radiation,
and BBC : Bottom Boundary Condition), the contribution from the bottom boun-
dary Layer (BBL) parametrisation, and an internal damping (DMP) term. The
terms QSR, BBC, BBL and DMP are optional. The external forcings and para-
meterisations require complex inputs and complex calculations (e.g. bulk formu-
lae, estimation of mixing coefficients) that are carried out in the SBC, LDF and
ZDF modules and described in chapters §??, §?? and §??, respectively. Note that
tranpc.F90, the non-penetrative convection module, although (temporarily) loca-
ted in the NEMO/OPA/TRA directory, is described with the model vertical physics
(ZDF).

68 Ocean Tracers (TRA)

In the present chapter we also describe the diagnostic equations used to com-
pute the sea-water properties (density, Brunt-Vaisälä frequency, specific heat and
freezing point with associated modules eosbn2.F90 and phycst.F90).

The different options available to the user are managed by namelist logicals or
CPP keys. For each equation term ttt, the namelist logicals are ln trattt xxx, where
xxx is a 3 or 4 letter acronym corresponding to each optional scheme. The CPP
key (when it exists) is key trattt. The equivalent code can be found in the trattt or
trattt xxx module, in the NEMO/OPA/TRA directory.

The user has the option of extracting each tendency term on the rhs of the tracer
equation for output (key trdtra is defined), as described in Chap. ??.

5.1 Tracer Advection (traadv.F90)
!---
&namtra_adv ! advection scheme for tracer
!---

ln_traadv_cen2 = .false. ! 2nd order centered scheme
ln_traadv_tvd = .true. ! TVD scheme
ln_traadv_muscl = .false. ! MUSCL scheme
ln_traadv_muscl2 = .false. ! MUSCL2 scheme + cen2 at boundaries
ln_traadv_ubs = .false. ! UBS scheme
ln_traadv_qck = .false. ! QUCIKEST scheme

/

The advection tendency of a tracer in flux form is the divergence of the advec-
tive fluxes. Its discrete expression is given by :

ADVτ = − 1

bt
(δi [e2u e3u u τu] + δj [e1v e3v v τv])− 1

e3t
δk [w τw] (5.1)

where τ is either T or S, and bt = e1t e2t e3t is the volume of T -cells. The flux form
in (??) implicitly requires the use of the continuity equation. Indeed, it is obtained
by using the following equality : ∇ · (UT) = U · ∇T which results from the use
of the continuity equation, ∇ ·U = 0 or ∂te3 + e3 ∇ ·U = 0 in constant volume
or variable volume case, respectively. Therefore it is of paramount importance to
design the discrete analogue of the advection tendency so that it is consistent with
the continuity equation in order to enforce the conservation properties of the conti-
nuous equations. In other words, by replacing τ by the number 1 in (??) we recover
the discrete form of the continuity equation which is used to calculate the vertical
velocity.

The key difference between the advection schemes available in NEMO is the
choice made in space and time interpolation to define the value of the tracer at the
velocity points (Fig. ??).

Along solid lateral and bottom boundaries a zero tracer flux is automatically
specified, since the normal velocity is zero there. At the sea surface the boundary
condition depends on the type of sea surface chosen :

linear free surface : the first level thickness is constant in time : the vertical boun-
dary condition is applied at the fixed surface z = 0 rather than on the moving

5.1. Tracer Advection (traadv) 69

T

ii-1/2

Ti

Ui ∆t

Ui+1/2

Ti+1

Ti+1+Ti
2 ppm

ups

cen2 muscl

Ti-1

i-1 i+1/2 i+1

FIGURE 5.1: Schematic representation of some ways used to evaluate the tracer
value at u-point and the amount of tracer exchanged between two neighbouring grid
points. Upsteam biased scheme (ups) : the upstream value is used and the black area
is exchanged. Piecewise parabolic method (ppm) : a parabolic interpolation is used
and the black and dark grey areas are exchanged. Monotonic upstream scheme for
conservative laws (muscl) : a parabolic interpolation is used and black, dark grey and
grey areas are exchanged. Second order scheme (cen2) : the mean value is used and
black, dark grey, grey and light grey areas are exchanged. Note that this illustration
does not include the flux limiter used in ppm and muscl schemes.

surface z = η. There is a non-zero advective flux which is set for all advec-
tion schemes as τw|k=1/2 = Tk=1, i.e. the product of surface velocity (at
z = 0) by the first level tracer value.

non-linear free surface : (key vvl is defined) convergence/divergence in the first
ocean level moves the free surface up/down. There is no tracer advection
through it so that the advective fluxes through the surface are also zero

In all cases, this boundary condition retains local conservation of tracer. Global
conservation is obtained in both rigid-lid and non-linear free surface cases, but not
in the linear free surface case. Nevertheless, in the latter case, it is achieved to a
good approximation since the non-conservative term is the product of the time deri-
vative of the tracer and the free surface height, two quantities that are not correlated
(see §??, and also ???).

The velocity field that appears in (??) and (??) is the centred (now) eulerian
ocean velocity (see Chap. ??). When eddy induced velocity (eiv) parameterisation
is used it is the now effective velocity (i.e. the sum of the eulerian and eiv velocities)
which is used.

70 Ocean Tracers (TRA)

The choice of an advection scheme is made in the nam traadv namelist, by set-
ting to true one and only one of the logicals ln traadv xxx. The corresponding code
can be found in the traadv xxx.F90 module, where xxx is a 3 or 4 letter acronym
corresponding to each scheme. Details of the advection schemes are given below.
The choice of an advection scheme is a complex matter which depends on the
model physics, model resolution, type of tracer, as well as the issue of numerical
cost.

Note that (1) cen2, cen4 and TVD schemes require an explicit diffusion ope-
rator while the other schemes are diffusive enough so that they do not require ad-
ditional diffusion ; (2) cen2, cen4, MUSCL2, and UBS are not positive schemes 1

, implying that false extrema are permitted. Their use is not recommended on pas-
sive tracers ; (3) It is recommended that the same advection-diffusion scheme is
used on both active and passive tracers. Indeed, if a source or sink of a passive
tracer depends on an active one, the difference of treatment of active and passive
tracers can create very nice-looking frontal structures that are pure numerical arte-
facts. Nevertheless, most of our users set a different treatment on passive and active
tracers, that’s the reason why this possibility is offered. We strongly suggest them
to perform a sensitivity experiment using a same treatment to assess the robustness
of their results.

5.1.1 2nd order centred scheme (cen2) (ln traadv cen2=true)

In the centred second order formulation, the tracer at velocity points is eva-
luated as the mean of the two neighbouring T -point values. For example, in the
i-direction :

τ cen2
u = T

i+1/2 (5.2)

The scheme is non diffusive (i.e. it conserves the tracer variance, τ2) but dis-
persive (i.e. it may create false extrema). It is therefore notoriously noisy and must
be used in conjunction with an explicit diffusion operator to produce a sensible
solution. The associated time-stepping is performed using a leapfrog scheme in
conjunction with an Asselin time-filter, so T in (??) is the now tracer value. The
centered second order advection is computed in the traadv cen2.F90 module. In
this module, it is advantageous to combine the cen2 scheme with an upstream
scheme in specific areas which require a strong diffusion in order to avoid the
generation of false extrema. These areas are the vicinity of large river mouths,
some straits with coarse resolution, and the vicinity of ice cover area (i.e. when
the ocean temperature is close to the freezing point). This combined scheme has
been included for specific grid points in the ORCA2 and ORCA4 configurations
only. This is an obsolescent feature as the recommended advection scheme for the
ORCA configuration is TVD (see §??).

Note that using the cen2 scheme, the overall tracer advection is of second order
accuracy since both (??) and (??) have this order of accuracy.

1. negative values can appear in an initially strictly positive tracer field which is advected

5.1. Tracer Advection (traadv) 71

5.1.2 4nd order centred scheme (cen4) (ln traadv cen4=true)

In the 4th order formulation (to be implemented), tracer values are evaluated at
velocity points as a 4th order interpolation, and thus depend on the four neighbou-
ring T -points. For example, in the i-direction :

τ cen4
u = T − 1

6
δi
[
δi+1/2[T]

] i+1/2

(5.3)

Strictly speaking, the cen4 scheme is not a 4th order advection scheme but a 4th

order evaluation of advective fluxes, since the divergence of advective fluxes (??) is
kept at 2nd order. The phrase “4th order scheme” used in oceanographic literature
is usually associated with the scheme presented here. Introducing a true 4th order
advection scheme is feasible but, for consistency reasons, it requires changes in the
discretisation of the tracer advection together with changes in both the continuity
equation and the momentum advection terms.

A direct consequence of the pseudo-fourth order nature of the scheme is that it
is not non-diffusive, i.e. the global variance of a tracer is not preserved using cen4.
Furthermore, it must be used in conjunction with an explicit diffusion operator to
produce a sensible solution. The time-stepping is also performed using a leapfrog
scheme in conjunction with an Asselin time-filter, so T in (??) is the now tracer.

At a T -grid cell adjacent to a boundary (coastline, bottom and surface), an
additional hypothesis must be made to evaluate τ cen4

u . This hypothesis usually re-
duces the order of the scheme. Here we choose to set the gradient of T across the
boundary to zero. Alternative conditions can be specified, such as a reduction to a
second order scheme for these near boundary grid points.

5.1.3 Total Variance Dissipation scheme (TVD) (ln traadv tvd=true)

In the Total Variance Dissipation (TVD) formulation, the tracer at velocity
points is evaluated using a combination of an upstream and a centred scheme. For
example, in the i-direction :

τupsu =

{
Ti+1 if ui+1/2 < 0

Ti if ui+1/2 ≥ 0

τ tvdu = τupsu + cu
(
τ cen2
u − τupsu

) (5.4)

where cu is a flux limiter function taking values between 0 and 1. There exist
many ways to define cu, each corresponding to a different total variance decrea-
sing scheme. The one chosen in NEMO is described in ?. cu only departs from 1
when the advective term produces a local extremum in the tracer field. The resulting
scheme is quite expensive but positive. It can be used on both active and passive tra-
cers. This scheme is tested and compared with MUSCL and the MPDATA scheme

72 Ocean Tracers (TRA)

in ? ; note that in this paper it is referred to as ”FCT” (Flux corrected transport)
rather than TVD. The TVD scheme is implemented in the traadv tvd.F90 module.

For stability reasons (see §??), τ cen2
u is evaluated in (??) using the now tracer

while τupsu is evaluated using the before tracer. In other words, the advective part
of the scheme is time stepped with a leap-frog scheme while a forward scheme is
used for the diffusive part.

5.1.4 Monotone Upstream Scheme for Conservative Laws (MUSCL) (ln traadv muscl=T)

The Monotone Upstream Scheme for Conservative Laws (MUSCL) has been
implemented by ?. In its formulation, the tracer at velocity points is evaluated as-
suming a linear tracer variation between two T -points (Fig.??). For example, in the
i-direction :

τmusu =


τi +

1

2

(
1−

ui+1/2 ∆t

e1u

)
∂̃iτ if ui+1/2 > 0

τi+1/2 +
1

2

(
1 +

ui+1/2 ∆t

e1u

)
∂̃i+1/2τ if ui+1/2 < 0

(5.5)

where ∂̃iτ is the slope of the tracer on which a limitation is imposed to ensure the
positive character of the scheme.

The time stepping is performed using a forward scheme, that is the before tracer
field is used to evaluate τmusu .

For an ocean grid point adjacent to land and where the ocean velocity is direc-
ted toward land, two choices are available : an upstream flux (ln traadv muscl=true)
or a second order flux (ln traadv muscl2=true). Note that the latter choice does
not ensure the positive character of the scheme. Only the former can be used on
both active and passive tracers. The two MUSCL schemes are implemented in the
traadv tvd.F90 and traadv tvd2.F90 modules.

5.1.5 Upstream-Biased Scheme (UBS) (ln traadv ubs=true)

The UBS advection scheme is an upstream-biased third order scheme based on
an upstream-biased parabolic interpolation. It is also known as the Cell Averaged
QUICK scheme (Quadratic Upstream Interpolation for Convective Kinematics).
For example, in the i-direction :

τubsu = T
i+1/2 − 1

6

{
τ”i if ui+1/2 > 0

τ”i+1 if ui+1/2 < 0
(5.6)

where τ”i = δi
[
δi+1/2 [τ]

]
.

This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error
[?]. The overall performance of the advection scheme is similar to that reported in
?. It is a relatively good compromise between accuracy and smoothness. It is not
a positive scheme, meaning that false extrema are permitted, but the amplitude of

5.1. Tracer Advection (traadv) 73

such are significantly reduced over the centred second order method. Nevertheless
it is not recommended that it should be applied to a passive tracer that requires
positivity.

The intrinsic diffusion of UBS makes its use risky in the vertical direction
where the control of artificial diapycnal fluxes is of paramount importance. There-
fore the vertical flux is evaluated using the TVD scheme when ln traadv ubs=true.

For stability reasons (see §??), the first term in (??) (which corresponds to a
second order centred scheme) is evaluated using the now tracer (centred in time)
while the second term (which is the diffusive part of the scheme), is evaluated using
the before tracer (forward in time). This choice is discussed by ? in the context of
the QUICK advection scheme. UBS and QUICK schemes only differ by one co-
efficient. Replacing 1/6 with 1/8 in (??) leads to the QUICK advection scheme
[?]. This option is not available through a namelist parameter, since the 1/6 coef-
ficient is hard coded. Nevertheless it is quite easy to make the substitution in the
traadv ubs.F90 module and obtain a QUICK scheme.

Four different options are possible for the vertical component used in the UBS
scheme. τubsw can be evaluated using either (a) a centred 2nd order scheme, or (b)
a TVD scheme, or (c) an interpolation based on conservative parabolic splines
following the ? implementation of UBS in ROMS, or (d) a UBS. The 3rd case has
dispersion properties similar to an eighth-order accurate conventional scheme. The
current reference version uses method b)

Note that :
(1) When a high vertical resolution O(1m) is used, the model stability can

be controlled by vertical advection (not vertical diffusion which is usually solved
using an implicit scheme). Computer time can be saved by using a time-splitting
technique on vertical advection. Such a technique has been implemented and va-
lidated in ORCA05 with 301 levels. It is not available in the current reference
version.

(2) It is straightforward to rewrite (??) as follows :

τubsu = τ cen4
u +

1

12

{
+ τ”i if ui+1/2 > 0

− τ”i+1 if ui+1/2 < 0
(5.7)

or equivalently

ui+1/2 τ
ubs
u = ui+1/2 T −

1

6
δi
[
δi+1/2[T]

] i+1/2

−1

2
|u|i+1/2

1

6
δi+1/2[τ”i] (5.8)

(??) has several advantages. Firstly, it clearly reveals that the UBS scheme is
based on the fourth order scheme to which an upstream-biased diffusion term is
added. Secondly, this emphasises that the 4th order part (as well as the 2nd order
part as stated above) has to be evaluated at the now time step using (??). Thirdly,
the diffusion term is in fact a biharmonic operator with an eddy coefficient which
is simply proportional to the velocity : Almu = − 1

12 e1u
3 |u|. Note that NEMO v3.4

still uses (??), not (??).

74 Ocean Tracers (TRA)

5.1.6 QUICKEST scheme (QCK) (ln traadv qck=true)

The Quadratic Upstream Interpolation for Convective Kinematics with Esti-
mated Streaming Terms (QUICKEST) scheme proposed by ? is the third order
Godunov scheme. It is associated with the ULTIMATE QUICKEST limiter [?]. It
has been implemented in NEMO by G. Reffray (MERCATOR-ocean) and can be
found in the traadv qck.F90 module. The resulting scheme is quite expensive but
positive. It can be used on both active and passive tracers. However, the intrinsic
diffusion of QCK makes its use risky in the vertical direction where the control of
artificial diapycnal fluxes is of paramount importance. Therefore the vertical flux
is evaluated using the CEN2 scheme. This no longer guarantees the positivity of
the scheme. The use of TVD in the vertical direction (as for the UBS case) should
be implemented to restore this property.

5.1.7 Piecewise Parabolic Method (PPM) (ln traadv ppm=true)

The Piecewise Parabolic Method (PPM) proposed by Colella and Woodward
(1984) is based on a quadradic piecewise construction. Like the QCK scheme, it is
associated with the ULTIMATE QUICKEST limiter [?]. It has been implemented
in NEMO by G. Reffray (MERCATOR-ocean) but is not yet offered in the reference
version 3.3.

5.2 Tracer Lateral Diffusion (traldf.F90)
!--
&namtra_ldf ! lateral diffusion scheme for tracers
!--

! ! Operator type:
ln_traldf_lap = .true. ! laplacian operator
ln_traldf_bilap = .false. ! bilaplacian operator
! ! Direction of action:
ln_traldf_level = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential) (needs "key_ldfslp" when ln_sco=T)
ln_traldf_iso = .true. ! iso-neutral (needs "key_ldfslp")
! ! Griffies parameters (all need "key_ldfslp")
ln_traldf_grif = .false. ! use griffies triads
ln_traldf_gdia = .false. ! output griffies eddy velocities
ln_triad_iso = .false. ! pure lateral mixing in ML
ln_botmix_grif = .false. ! lateral mixing on bottom
! ! Coefficients
! Eddy-induced (GM) advection always used with Griffies; otherwise needs "key_traldf_eiv"
! Value rn_aeiv_0 is ignored unless = 0 with Held-Larichev spatially varying aeiv
! (key_traldf_c2d & key_traldf_eiv & key_orca_r2, _r1 or _r05)
rn_aeiv_0 = 2000. ! eddy induced velocity coefficient [m2/s]
rn_aht_0 = 2000. ! horizontal eddy diffusivity for tracers [m2/s]
rn_ahtb_0 = 0. ! background eddy diffusivity for ldf_iso [m2/s]
! (normally=0; not used with Griffies)

/

The options available for lateral diffusion are a laplacian (rotated or not) or a
biharmonic operator, the latter being more scale-selective (more diffusive at small
scales). The specification of eddy diffusivity coefficients (either constant or va-
riable in space and time) as well as the computation of the slope along which the
operators act, are performed in the ldftra.F90 and ldfslp.F90 modules, respectively.
This is described in Chap. ??. The lateral diffusion of tracers is evaluated using a
forward scheme, i.e. the tracers appearing in its expression are the before tracers in
time, except for the pure vertical component that appears when a rotation tensor is

5.2. Tracer Lateral Diffusion (traldf) 75

used. This latter term is solved implicitly together with the vertical diffusion term
(see §??).

5.2.1 Iso-level laplacian operator (lap) (ln traldf lap=true)

A laplacian diffusion operator (i.e. a harmonic operator) acting along the model
surfaces is given by :

DlT
T =

1

btT

(
δi

[
AlTu

e2u e3u

e1u
δi+1/2[T]

]
+ δj

[
AlTv

e1v e3v

e2v
δj+1/2[T]

])
(5.9)

where bt=e1t e2t e3t is the volume of T -cells. It is implemented in the traadv lap.F90
module.

This lateral operator is computed in traldf lap.F90. It is a horizontal operator
(i.e. acting along geopotential surfaces) in the z-coordinate with or without partial
steps, but is simply an iso-level operator in the s-coordinate. It is thus used when, in
addition to ln traldf lap=true, we have ln traldf level=true or ln traldf hor=ln zco=true.
In both cases, it significantly contributes to diapycnal mixing. It is therefore not re-
commended.

Note that in the partial step z-coordinate (ln zps=true), tracers in horizontally
adjacent cells are located at different depths in the vicinity of the bottom. In this
case, horizontal derivatives in (??) at the bottom level require a specific treatment.
They are calculated in the zpshde.F90 module, described in §??.

5.2.2 Rotated laplacian operator (iso) (ln traldf lap=true)

If the Griffies trad scheme is not employed (ln traldf grif =true ; see App.??)
the general form of the second order lateral tracer subgrid scale physics (??) takes
the following semi-discrete space form in z- and s-coordinates :

DlT
T =

1

bt

{
δi

[
AlTu

(
e2u e3u

e1u
δi+1/2[T]− e2u r1u δk+1/2[T]

i+1/2,k
)]

+ δj

[
AlTv

(
e1v e3v

e2v
δj+1/2[T]− e1v r2v δk+1/2[T]

j+1/2,k
)]

+ δk

[
AlTw

(
− e2w r1w δi+1/2[T]

i,k+1/2

− e1w r2w δj+1/2[T]
j,k+1/2

+
e1w e2w

e3w

(
r2

1w + r2
2w

)
δk+1/2[T]

)] }
(5.10)

where bt=e1t e2t e3t is the volume of T -cells, r1 and r2 are the slopes between the
surface of computation (z- or s-surfaces) and the surface along which the diffusion
operator acts (i.e. horizontal or iso-neutral surfaces). It is thus used when, in ad-
dition to ln traldf lap= true, we have ln traldf iso=true, or both ln traldf hor=true

76 Ocean Tracers (TRA)

and ln zco=true. The way these slopes are evaluated is given in §??. At the surface,
bottom and lateral boundaries, the turbulent fluxes of heat and salt are set to zero
using the mask technique (see §??).

The operator in (??) involves both lateral and vertical derivatives. For nume-
rical stability, the vertical second derivative must be solved using the same impli-
cit time scheme as that used in the vertical physics (see §??). For computer effi-
ciency reasons, this term is not computed in the traldf iso.F90 module, but in the
trazdf.F90 module where, if iso-neutral mixing is used, the vertical mixing coeffi-
cient is simply increased by e1w e2w

e3w

(
r2

1w + r2
2w

)
.

This formulation conserves the tracer but does not ensure the decrease of the
tracer variance. Nevertheless the treatment performed on the slopes (see §??) al-
lows the model to run safely without any additional background horizontal dif-
fusion [?]. An alternative scheme developed by ? which ensures tracer variance
decreases is also available in NEMO (ln traldf grif =true). A complete description
of the algorithm is given in App.??.

Note that in the partial step z-coordinate (ln zps=true), the horizontal deriva-
tives at the bottom level in (??) require a specific treatment. They are calculated in
module zpshde, described in §??.

5.2.3 Iso-level bilaplacian operator (bilap) (ln traldf bilap=true)

The lateral fourth order bilaplacian operator on tracers is obtained by applying
(??) twice. The operator requires an additional assumption on boundary condi-
tions : both first and third derivative terms normal to the coast are set to zero. It
is used when, in addition to ln traldf bilap=true, we have ln traldf level=true, or
both ln traldf hor=true and ln zco=false. In both cases, it can contribute diapycnal
mixing, although less than in the laplacian case. It is therefore not recommended.

Note that in the code, the bilaplacian routine does not call the laplacian rou-
tine twice but is rather a separate routine that can be found in the traldf bilap.F90
module. This is due to the fact that we introduce the eddy diffusivity coefficient,
A, in the operator as : ∇ · ∇ (A∇ · ∇T), instead of −∇ · a∇ (∇ · a∇T) where
a =

√
|A| and A < 0. This was a mistake : both formulations ensure the total

variance decrease, but the former requires a larger number of code-lines.

5.2.4 Rotated bilaplacian operator (bilapg) (ln traldf bilap=true)

The lateral fourth order operator formulation on tracers is obtained by applying
(??) twice. It requires an additional assumption on boundary conditions : first and
third derivative terms normal to the coast, normal to the bottom and normal to the
surface are set to zero. It can be found in the traldf bilapg.F90.

It is used when, in addition to ln traldf bilap=true, we have ln traldf iso= .true,
or both ln traldf hor=true and ln zco=true. This rotated bilaplacian operator has
never been seriously tested. There are no guarantees that it is either free of bugs
or correctly formulated. Moreover, the stability range of such an operator will be

5.3. Tracer Vertical Diffusion (trazdf) 77

probably quite narrow, requiring a significantly smaller time-step than the one used
with an unrotated operator.

5.3 Tracer Vertical Diffusion (trazdf.F90)
!---
&namzdf ! vertical physics
!---

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

The formulation of the vertical subgrid scale tracer physics is the same for all
the vertical coordinates, and is based on a laplacian operator. The vertical diffusion
operator given by (??) takes the following semi-discrete space form :

DvT
T =

1

e3t
δk

[
AvTw
e3w

δk+1/2[T]

]
DvS
T =

1

e3t
δk

[
AvSw
e3w

δk+1/2[S]

] (5.11)

where AvTw and AvSw are the vertical eddy diffusivity coefficients on temperature
and salinity, respectively. Generally, AvTw = AvSw except when double diffusive
mixing is parameterised (i.e. key zdfddm is defined). The way these coefficients
are evaluated is given in §?? (ZDF). Furthermore, when iso-neutral mixing is used,
both mixing coefficients are increased by e1w e2w

e3w

(
r2

1w + r2
2w

)
to account for the

vertical second derivative of (??).
At the surface and bottom boundaries, the turbulent fluxes of heat and salt must

be specified. At the surface they are prescribed from the surface forcing and added
in a dedicated routine (see §??), whilst at the bottom they are set to zero for heat and
salt unless a geothermal flux forcing is prescribed as a bottom boundary condition
(see §??).

The large eddy coefficient found in the mixed layer together with high vertical
resolution implies that in the case of explicit time stepping (ln zdfexp=true) there
would be too restrictive a constraint on the time step. Therefore, the default implicit
time stepping is preferred for the vertical diffusion since it overcomes the stability
constraint. A forward time differencing scheme (ln zdfexp=true) using a time split-
ting technique (nn zdfexp > 1) is provided as an alternative. Namelist variables
ln zdfexp and nn zdfexp apply to both tracers and dynamics.

78 Ocean Tracers (TRA)

5.4 External Forcing

5.4.1 Surface boundary condition (trasbc.F90)

The surface boundary condition for tracers is implemented in a separate module
(trasbc.F90) instead of entering as a boundary condition on the vertical diffusion
operator (as in the case of momentum). This has been found to enhance readability
of the code. The two formulations are completely equivalent ; the forcing terms in
trasbc are the surface fluxes divided by the thickness of the top model layer.

Due to interactions and mass exchange of water (Fmass) with other Earth sys-
tem components (i.e. atmosphere, sea-ice, land), the change in the heat and salt
content of the surface layer of the ocean is due both to the heat and salt fluxes cros-
sing the sea surface (not linked with Fmass) and to the heat and salt content of the
mass exchange.

The surface module (sbcmod.F90, see §??) provides the following forcing
fields (used on tracers) :
•Qns, the non-solar part of the net surface heat flux that crosses the sea surface

(i.e. the difference between the total surface heat flux and the fraction of the short
wave flux that penetrates into the water column, see §??)
• emp, the mass flux exchanged with the atmosphere (evaporation minus pre-

cipitation)
• empS , an equivalent mass flux taking into account the effect of ice-ocean

mass exchange
• rnf, the mass flux associated with runoff (see §?? for further detail of how it

acts on temperature and salinity tendencies)
The empS field is not simply the budget of evaporation-precipitation+freezing-

melting because the sea-ice is not currently embedded in the ocean but levitates
above it. There is no mass exchanged between the sea-ice and the ocean. Instead
we only take into account the salt flux associated with the non-zero salinity of sea-
ice, and the concentration/dilution effect due to the freezing/melting (F/M) process.
These two parts of the forcing are then converted into an equivalent mass flux
given by empS − emp. As a result of this mess, the surface boundary condition on
temperature and salinity is applied as follows :

In the nonlinear free surface case (key vvl is defined) :

F T =
1

ρo Cp e3t|k=1

(Qns − emp Cp T |k=1)
t

FS =
1

ρo e3t|k=1

((empS − emp) S|k=1)
t

(5.12)

In the linear free surface case (key vvl not defined) :

F T =
1

ρo Cp e3t|k=1

Qns
t

FS =
1

ρo e3t|k=1

(empS S|k=1)
t

(5.13)

5.4. External Forcing 79

where xt means that x is averaged over two consecutive time steps (t−∆t/2 and
t+ ∆t/2). Such time averaging prevents the divergence of odd and even time step
(see §??).

The two set of equations, (??) and (??), are obtained by assuming that the
temperature of precipitation and evaporation are equal to the ocean surface tempe-
rature and that their salinity is zero. Therefore, the heat content of the emp budget
must be added to the temperature equation in the variable volume case, while it
does not appear in the constant volume case. Similarly, the emp budget affects the
ocean surface salinity in the constant volume case (through the concentration dilu-
tion effect) while it does not appears explicitly in the variable volume case since
salinity change will be induced by volume change. In both constant and variable
volume cases, surface salinity will change with ice-ocean salt flux and F/M flux
(both contained in empS − emp) without mass exchanges.

Note that the concentration/dilution effect due to F/M is computed using a
constant ice salinity as well as a constant ocean salinity. This approximation sup-
presses the correlation between SSS and F/M flux, allowing the ice-ocean salt ex-
changes to be conservative. Indeed, if this approximation is not made, even if the
F/M budget is zero on average over the whole ocean domain and over the seasonal
cycle, the associated salt flux is not zero, since sea-surface salinity and F/M flux
are intrinsically correlated (high SSS are found where freezing is strong whilst low
SSS is usually associated with high melting areas).

Even using this approximation, an exact conservation of heat and salt content
is only achieved in the variable volume case. In the constant volume case, there is
a small imbalance associated with the product (∂tη−emp)∗SSS. Nevertheless, the
salt content variation is quite small and will not induce a long term drift as there is
no physical reason for (∂tη − emp) and SSS to be correlated [?]. Note that, while
quite small, the imbalance in the constant volume case is larger than the imbalance
associated with the Asselin time filter [?]. This is the reason why the modified filter
is not applied in the constant volume case.

5.4.2 Solar Radiation Penetration (traqsr.F90)
!---
&namtra_qsr ! penetrative solar radiation
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_chl =’chlorophyll’, -1 , ’CHLA’ , .true. , .true. , ’yearly’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the runoff files
ln_traqsr = .true. ! Light penetration (T) or not (F)
ln_qsr_rgb = .true. ! RGB (Red-Green-Blue) light penetration
ln_qsr_2bd = .false. ! 2 bands light penetration
ln_qsr_bio = .false. ! bio-model light penetration
nn_chldta = 1 ! RGB : Chl data (=1) or cst value (=0)
rn_abs = 0.58 ! RGB & 2 bands: fraction of light (rn_si1)
rn_si0 = 0.35 ! RGB & 2 bands: shortess depth of extinction
rn_si1 = 23.0 ! 2 bands: longest depth of extinction

/

When the penetrative solar radiation option is used (ln flxqsr=true), the so-
lar radiation penetrates the top few tens of meters of the ocean. If it is not used
(ln flxqsr=false) all the heat flux is absorbed in the first ocean level. Thus, in the

80 Ocean Tracers (TRA)

former case a term is added to the time evolution equation of temperature (??)
and the surface boundary condition is modified to take into account only the non-
penetrative part of the surface heat flux :

∂T

∂t
= . . .+

1

ρoCp e3

∂I

∂k

Qns = QTotal −Qsr
(5.14)

where Qsr is the penetrative part of the surface heat flux (i.e. the shortwave radia-
tion) and I is the downward irradiance (I|z=η = Qsr). The additional term in (??)
is discretized as follows :

1

ρoCp e3

∂I

∂k
≡ 1

ρoCp e3t
δk [Iw] (5.15)

The shortwave radiation,Qsr, consists of energy distributed across a wide spec-
tral range. The ocean is strongly absorbing for wavelengths longer than 700 nm
and these wavelengths contribute to heating the upper few tens of centimetres.
The fraction of Qsr that resides in these almost non-penetrative wavebands, R, is
∼ 58% (specified through namelist parameter rn abs). It is assumed to penetrate
the ocean with a decreasing exponential profile, with an e-folding depth scale, ξ0,
of a few tens of centimetres (typically ξ0 = 0.35 m set as rn si0 in the namtra qsr
namelist). For shorter wavelengths (400-700 nm), the ocean is more transparent,
and solar energy propagates to larger depths where it contributes to local heating.
The way this second part of the solar energy penetrates into the ocean depends on
which formulation is chosen. In the simple 2-waveband light penetration scheme
(ln qsr 2bd=true) a chlorophyll-independent monochromatic formulation is cho-
sen for the shorter wavelengths, leading to the following expression [?] :

I(z) = Qsr

[
Re−z/ξ0 + (1−R) e−z/ξ1

]
(5.16)

where ξ1 is the second extinction length scale associated with the shorter wave-
lengths. It is usually chosen to be 23 m by setting the rn si0 namelist parameter.
The set of default values (ξ0, ξ1,R) corresponds to a Type I water in Jerlov’s (1968)
classification (oligotrophic waters).

Such assumptions have been shown to provide a very crude and simplistic re-
presentation of observed light penetration profiles (?, see also Fig.??). Light ab-
sorption in the ocean depends on particle concentration and is spectrally selective. ?
has shown that an accurate representation of light penetration can be provided by a
61 waveband formulation. Unfortunately, such a model is very computationally ex-
pensive. Thus, ? have constructed a simplified version of this formulation in which
visible light is split into three wavebands : blue (400-500 nm), green (500-600 nm)
and red (600-700nm). For each wave-band, the chlorophyll-dependent attenuation
coefficient is fitted to the coefficients computed from the full spectral model of ?
(as modified by ?), assuming the same power-law relationship. As shown in Fig.??,

5.4. External Forcing 81

0

40

80

120

)
m(htpe

D

20 180100 260
I(z) (W/m2)

20 180100 260
I(z)(W/m 2)

(a)Chl=0.05 mg.m-3 Chl=0.5 mg.m-3 (b)

FIGURE 5.2: Penetration profile of the downward solar irradiance calculated by four
models. Two waveband chlorophyll-independent formulation (blue), a chlorophyll-
dependent monochromatic formulation (green), 4 waveband RGB formulation (red),
61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of (a)
Chl=0.05 mg/m3 and (b) Chl=0.5 mg/m3. From ?.

this formulation, called RGB (Red-Green-Blue), reproduces quite closely the light
penetration profiles predicted by the full spectal model, but with much greater com-
putational efficiency. The 2-bands formulation does not reproduce the full model
very well.

The RGB formulation is used when ln qsr rgb=true. The RGB attenuation co-
efficients (i.e. the inverses of the extinction length scales) are tabulated over 61
nonuniform chlorophyll classes ranging from 0.01 to 10 g.Chl/L (see the routine
trc oce rgb in trc oce.F90 module). Three types of chlorophyll can be chosen in
the RGB formulation : (1) a constant 0.05 g.Chl/L value everywhere (nn chdta=0) ;
(2) an observed time varying chlorophyll (nn chdta=1) ; (3) simulated time varying
chlorophyll by TOP biogeochemical model (ln qsr bio=true). In the latter case, the
RGB formulation is used to calculate both the phytoplankton light limitation in
PISCES or LOBSTER and the oceanic heating rate.

The trend in (??) associated with the penetration of the solar radiation is added
to the temperature trend, and the surface heat flux is modified in routine traqsr.F90.

When the z-coordinate is preferred to the s-coordinate, the depth of w−levels
does not significantly vary with location. The level at which the light has been to-
tally absorbed (i.e. it is less than the computer precision) is computed once, and the
trend associated with the penetration of the solar radiation is only added down to
that level. Finally, note that when the ocean is shallow (< 200 m), part of the solar
radiation can reach the ocean floor. In this case, we have chosen that all remaining
radiation is absorbed in the last ocean level (i.e. I is masked).

82 Ocean Tracers (TRA)

100E 160W 60W
L ongitude

50S

0

50N

L
at

it
u

d
e

40.00 80.00 120.00 160.00 200.00 240.00 280.00 320.00 360.00 400.00

Geothermal Heat flux (mW/m2)

FIGURE 5.3: Geothermal Heat flux (in mW.m−2) used by ?. It is inferred from the
age of the sea floor and the formulae of ?.

5.4.3 Bottom Boundary Condition (trabbc.F90)

!---
&nambbc ! bottom temperature boundary condition
!---

ln_trabbc = .true. ! Apply a geothermal heating at the ocean bottom
nn_geoflx = 2 ! geothermal heat flux: = 0 no flux

! = 1 constant flux
! = 2 variable flux (read in geothermal_heating.nc in mW/m2)

rn_geoflx_cst = 86.4e-3 ! Constant value of geothermal heat flux [W/m2]
/

Usually it is assumed that there is no exchange of heat or salt through the
ocean bottom, i.e. a no flux boundary condition is applied on active tracers at
the bottom. This is the default option in NEMO, and it is implemented using the
masking technique. However, there is a non-zero heat flux across the seafloor that
is associated with solid earth cooling. This flux is weak compared to surface fluxes
(a mean global value of ∼ 0.1 W/m2 [?]), but it warms systematically the ocean
and acts on the densest water masses. Taking this flux into account in a global
ocean model increases the deepest overturning cell (i.e. the one associated with
the Antarctic Bottom Water) by a few Sverdrups [?].

The presence of geothermal heating is controlled by setting the namelist pa-
rameter ln trabbc to true. Then, when nn geoflx is set to 1, a constant geothermal
heating is introduced whose value is given by the nn geoflx cst, which is also a
namelist parameter. When nn geoflx is set to 2, a spatially varying geothermal heat
flux is introduced which is provided in the geothermal heating.nc NetCDF file
(Fig.??) [?].

5.5. Bottom Boundary Layer (trabbl.F90 - key trabbl) 83

5.5 Bottom Boundary Layer (trabbl.F90 - key trabbl)
!---
&nambbl ! bottom boundary layer scheme
!---

nn_bbl_ldf = 1 ! diffusive bbl (=1) or not (=0)
nn_bbl_adv = 0 ! advective bbl (=1/2) or not (=0)
rn_ahtbbl = 1000. ! lateral mixing coefficient in the bbl [m2/s]
rn_gambbl = 10. ! advective bbl coefficient [s]

/

In a z-coordinate configuration, the bottom topography is represented by a se-
ries of discrete steps. This is not adequate to represent gravity driven downslope
flows. Such flows arise either downstream of sills such as the Strait of Gibraltar
or Denmark Strait, where dense water formed in marginal seas flows into a ba-
sin filled with less dense water, or along the continental slope when dense water
masses are formed on a continental shelf. The amount of entrainment that occurs
in these gravity plumes is critical in determining the density and volume flux of
the densest waters of the ocean, such as Antarctic Bottom Water, or North Atlan-
tic Deep Water. z-coordinate models tend to overestimate the entrainment, because
the gravity flow is mixed vertically by convection as it goes ”downstairs” following
the step topography, sometimes over a thickness much larger than the thickness of
the observed gravity plume. A similar problem occurs in the s-coordinate when
the thickness of the bottom level varies rapidly downstream of a sill [?], and the
thickness of the plume is not resolved.

The idea of the bottom boundary layer (BBL) parameterisation, first introdu-
ced by ?, is to allow a direct communication between two adjacent bottom cells at
different levels, whenever the densest water is located above the less dense water.
The communication can be by a diffusive flux (diffusive BBL), an advective flux
(advective BBL), or both. In the current implementation of the BBL, only the tra-
cers are modified, not the velocities. Furthermore, it only connects ocean bottom
cells, and therefore does not include all the improvements introduced by ?.

5.5.1 Diffusive Bottom Boundary layer (nn bbl ldf=1)

When applying sigma-diffusion (key trabbl defined and nn bbl ldf set to 1),
the diffusive flux between two adjacent cells at the ocean floor is given by

Fσ = Aσl ∇σT (5.17)

with ∇σ the lateral gradient operator taken between bottom cells, and Aσl the la-
teral diffusivity in the BBL. Following ?, the latter is prescribed with a spatial
dependence, i.e. in the conditional form

Aσl (i, j, t) =


Abbl if ∇σρ · ∇H < 0

0 otherwise
(5.18)

where Abbl is the BBL diffusivity coefficient, given by the namelist parameter
rn ahtbbl and usually set to a value much larger than the one used for lateral mixing

84 Ocean Tracers (TRA)

in the open ocean. The constraint in (??) implies that sigma-like diffusion only oc-
curs when the density above the sea floor, at the top of the slope, is larger than
in the deeper ocean (see green arrow in Fig.??). In practice, this constraint is ap-
plied separately in the two horizontal directions, and the density gradient in (??) is
evaluated with the log gradient formulation :

∇σρ/ρ = α∇σT + β∇σS (5.19)

where ρ, α and β are functions of T σ, Sσ and Hσ, the along bottom mean tempe-
rature, salinity and depth, respectively.

5.5.2 Advective Bottom Boundary Layer (nn bbl adv= 1 or 2)

When applying an advective BBL (nn bbl adv = 1 or 2), an overturning circu-
lation is added which connects two adjacent bottom grid-points only if dense water
overlies less dense water on the slope. The density difference causes dense water
to move down the slope.

nn bbl adv = 1 : the downslope velocity is chosen to be the Eulerian ocean
velocity just above the topographic step (see black arrow in Fig.??) [?]. It is a
conditional advection, that is, advection is allowed only if dense water overlies
less dense water on the slope (i.e. ∇σρ · ∇H < 0) and if the velocity is directed
towards greater depth (i.e. U · ∇H > 0).

nn bbl adv = 2 : the downslope velocity is chosen to be proportional to ∆ρ,
the density difference between the higher cell and lower cell densities [?]. The
advection is allowed only if dense water overlies less dense water on the slope (i.e.
∇σρ · ∇H < 0). For example, the resulting transport of the downslope flow, here
in the i-direction (Fig.??), is simply given by the following expression :

utrbbl = γ g
∆ρ

ρo
e1u min

(
e3ukup, e3ukdwn

)
(5.20)

where γ, expressed in seconds, is the coefficient of proportionality provided as
rn gambbl, a namelist parameter, and kup and kdwn are the vertical index of the
higher and lower cells, respectively. The parameter γ should take a different value
for each bathymetric step, but for simplicity, and because no direct estimation of
this parameter is available, a uniform value has been assumed. The possible values
for γ range between 1 and 10 s [?].

Scalar properties are advected by this additional transport (utrbbl, v
tr
bbl) using the

upwind scheme. Such a diffusive advective scheme has been chosen to mimic the
entrainment between the downslope plume and the surrounding water at interme-
diate depths. The entrainment is replaced by the vertical mixing implicit in the ad-
vection scheme. Let us consider as an example the case displayed in Fig.?? where
the density at level (i, kup) is larger than the one at level (i, kdwn). The advective
BBL scheme modifies the tracer time tendency of the ocean cells near the topo-
graphic step by the downslope flow (??), the horizontal (??) and the upward (??)

5.5. Bottom Boundary Layer (trabbl.F90 - key trabbl) 85

Τ i
kup

Τ i+1
kdwn

e3u
i
kup

i+1
kdwn

hT
i

hT
i+1

partial cell

i i+1i+1/2

e3u

FIGURE 5.4: Advective/diffusive Bottom Boundary Layer. The BBL parameterisa-
tion is activated when ρikup is larger than ρi+1

kdnw. Red arrows indicate the additional
overturning circulation due to the advective BBL. The transport of the downslope flow
is defined either as the transport of the bottom ocean cell (black arrow), or as a func-
tion of the along slope density gradient. The green arrow indicates the diffusive BBL
flux directly connecting kup and kdwn ocean bottom cells. connection

return flows as follows :

∂tT
do
kdw ≡ ∂tT dokdw +

utrbbl
bt
do
kdw

(
T shkup − T dokdw

)
(5.21)

∂tT
sh
kup ≡ ∂tT shkup +

utrbbl
bt
sh
kup

(
T dokup − T shkup

)
(5.22)

and for k = kdw − 1, ..., kup :

∂tT
do
k ≡ ∂tSdok +

utrbbl
bt
do
k

(
T dok+1 − T shk

)
(5.23)

where bt is the T -cell volume.

86 Ocean Tracers (TRA)

Note that the BBL transport, (utrbbl, v
tr
bbl), is available in the model outputs. It

has to be used to compute the effective velocity as well as the effective overturning
circulation.

5.6 Tracer damping (tradmp.F90)
!---
&namtra_dmp ! tracer: T & S newtonian damping
!---

ln_tradmp = .true. ! add a damping termn (T) or not (F)
nn_hdmp = -1 ! horizontal shape =-1, damping in Med and Red Seas only

! =XX, damping poleward of XX degrees (XX>0)
! + F(distance-to-coast) + Red and Med Seas

nn_zdmp = 0 ! vertical shape =0 damping throughout the water column
! =1 no damping in the mixing layer (kz criteria)
! =2 no damping in the mixed layer (rho crieria)

rn_surf = 50. ! surface time scale of damping [days]
rn_bot = 360. ! bottom time scale of damping [days]
rn_dep = 800. ! depth of transition between rn_surf and rn_bot [meters]
nn_file = 0 ! create a damping.coeff NetCDF file (=1) or not (=0)

/

In some applications it can be useful to add a Newtonian damping term into the
temperature and salinity equations :

∂T

∂t
= · · · − γ (T − To)

∂S

∂t
= · · · − γ (S − So)

(5.24)

where γ is the inverse of a time scale, and To and So are given temperature and
salinity fields (usually a climatology). The restoring term is added when the na-
melist parameter ln tradmp is set to true. It also requires that both ln tsd init and
ln tsd tradmp are set to true in namtsd namelist as well as sn tem and sn sal struc-
tures are correctly set (i.e. that To and So are provided in input files and read using
fldread.F90, see §??). The restoring coefficient γ is a three-dimensional array ini-
tialized by the user in routine dtacof also located in module tradmp.F90.

The two main cases in which (??) is used are (a) the specification of the boun-
dary conditions along artificial walls of a limited domain basin and (b) the compu-
tation of the velocity field associated with a given T -S field (for example to build
the initial state of a prognostic simulation, or to use the resulting velocity field for
a passive tracer study). The first case applies to regional models that have artificial
walls instead of open boundaries. In the vicinity of these walls, γ takes large values
(equivalent to a time scale of a few days) whereas it is zero in the interior of the
model domain. The second case corresponds to the use of the robust diagnostic
method [?]. It allows us to find the velocity field consistent with the model dyna-
mics whilst having a T , S field close to a given climatological field (To, So). The
time scale associated with So is generally not a constant but spatially varying in
order to respect other properties. For example, it is usually set to zero in the mixed
layer (defined either on a density or So criterion) [?] and in the equatorial region
[???] since these two regions have a short time scale of adjustment ; while smaller
γ are used in the deep ocean where the typical time scale is long [?]. In addition the
time scale is reduced (even to zero) along the western boundary to allow the model

5.7. Tracer time evolution (tranxt) 87

to reconstruct its own western boundary structure in equilibrium with its physics.
The choice of the shape of the Newtonian damping is controlled by two namelist
parameters nn hdmp and nn zdmp. The former allows us to specify : the width of
the equatorial band in which no damping is applied ; a decrease in the vicinity of
the coast ; and a damping everywhere in the Red and Med Seas. The latter sets
whether damping should act in the mixed layer or not. The time scale associated
with the damping depends on the depth as a hyperbolic tangent, with rn surf as
surface value, rn bot as bottom value and a transition depth of rn dep.

The robust diagnostic method is very efficient in preventing temperature drift
in intermediate waters but it produces artificial sources of heat and salt within the
ocean. It also has undesirable effects on the ocean convection. It tends to prevent
deep convection and subsequent deep-water formation, by stabilising the water
column too much.

An example of the computation of γ for a robust diagnostic experiment with
the ORCA2 model is provided in the tradmp.F90 module (subroutines dtacof and
cofdis which compute the coefficient and the distance to the bathymetry, respecti-
vely). These routines are provided as examples and can be customised by the user.

5.7 Tracer time evolution (tranxt.F90)
!---
&namdom ! space and time domain (bathymetry, mesh, timestep)
!---

nn_bathy = 1 ! compute (=0) or read (=1) the bathymetry file
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
nn_msh = 0 ! create (=1) a mesh file or not (=0)
rn_hmin = -3. ! min depth of the ocean (>0) or min number of ocean level (<0)
rn_e3zps_min= 20. ! partial step thickness is set larger than the minimum of
rn_e3zps_rat= 0.1 ! rn_e3zps_min and rn_e3zps_rat*e3t, with 0<rn_e3zps_rat<1

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nn_acc=0)
nn_baro = 64 ! number of barotropic time step ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nn_acc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nn_acc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nn_acc=1)

/

The general framework for tracer time stepping is a modified leap-frog scheme
[?], i.e. a three level centred time scheme associated with a Asselin time filter (cf.
§??) :

(e3tT)t+∆t = (e3tT)t−∆t
f +2 ∆t et3t RHSt

(e3tT)tf = (e3tT)t +γ
[
(e3tT)t−∆t

f − 2(e3tT)t + (e3tT)t+∆t
]

−γ∆t
[
Qt+∆t/2 −Qt−∆t/2

] (5.25)

where RHS is the right hand side of the temperature equation, the subscript f de-
notes filtered values, γ is the Asselin coefficient, and S is the total forcing ap-
plied on T (i.e. fluxes plus content in mass exchanges). γ is initialized as rn atfp

88 Ocean Tracers (TRA)

(namelist parameter). Its default value is rn atfp=10−3. Note that the forcing cor-
rection term in the filter is not applied in linear free surface (lk vvl=false) (see §??.
Not also that in constant volume case, the time stepping is performed on T , not on
its content, e3tT .

When the vertical mixing is solved implicitly, the update of the next tracer
fields is done in module trazdf.F90. In this case only the swapping of arrays and
the Asselin filtering is done in the tranxt.F90 module.

In order to prepare for the computation of the next time step, a swap of tracer
arrays is performed : T t−∆t = T t and T t = Tf .

5.8 Equation of State (eosbn2.F90)
!---
&nameos ! ocean physical parameters
!---

nn_eos = 0 ! type of equation of state and Brunt-Vaisala frequency
! = 0, UNESCO (formulation of Jackett and McDougall (1994) and of McDougall (1987))
! = 1, linear: rho(T) = rau0 * (1.028 - ralpha * T)
! = 2, linear: rho(T,S) = rau0 * (rbeta * S - ralpha * T)

rn_alpha = 2.0e-4 ! thermal expension coefficient (nn_eos= 1 or 2)
rn_beta = 7.7e-4 ! saline expension coefficient (nn_eos= 2)

/

5.8.1 Equation of State (nn eos = 0, 1 or 2)

It is necessary to know the equation of state for the ocean very accurately to
determine stability properties (especially the Brunt-Vaisälä frequency), particularly
in the deep ocean. The ocean seawater volumic mass, ρ, abusively called density,
is a non linear empirical function of in situ temperature, salinity and pressure. The
reference equation of state is that defined by the Joint Panel on Oceanographic
Tables and Standards [?]. It was the standard equation of state used in early re-
leases of OPA. However, even though this computation is fully vectorised, it is
quite time consuming (15 to 20% of the total CPU time) since it requires the prior
computation of the in situ temperature from the model potential temperature using
the [?] polynomial for adiabatic lapse rate and a 4th order Runge-Kutta integration
scheme. Since OPA6, we have used the ? equation of state for seawater instead. It
allows the computation of the in situ ocean density directly as a function of poten-
tial temperature relative to the surface (an NEMO variable), the practical salinity
(another NEMO variable) and the pressure (assuming no pressure variation along
geopotential surfaces, i.e. the pressure in decibars is approximated by the depth in
meters). Both the ? and ? equations of state have exactly the same except that the
values of the various coefficients have been adjusted by ? in order to directly use the
potential temperature instead of the in situ one. This reduces the CPU time of the
in situ density computation to about 3% of the total CPU time, while maintaining
a quite accurate equation of state.

In the computer code, a true density anomaly, da = ρ/ρo−1, is computed, with
ρo a reference volumic mass. Called rau0 in the code, ρo is defined in phycst.F90,
and a value of 1, 035 Kg/m3. This is a sensible choice for the reference density

5.8. Equation of State (eosbn2) 89

used in a Boussinesq ocean climate model, as, with the exception of only a small
percentage of the ocean, density in the World Ocean varies by no more than 2%
from 1, 035 kg/m3 [?].

The default option (namelist parameter nn eos=0) is the ? equation of state. Its
use is highly recommended. However, for process studies, it is often convenient to
use a linear approximation of the density. With such an equation of state there is no
longer a distinction between in situ and potential density and both cabbeling and
thermobaric effects are removed. Two linear formulations are available : a function
of T only (nn eos=1) and a function of both T and S (nn eos=2) :

da(T) = ρ(T)/ρo − 1 = 0.0285− α T
da(T, S) = ρ(T, S)/ρo − 1 = β S − α T

(5.26)

where α and β are the thermal and haline expansion coefficients, and ρo, the re-
ference volumic mass, rau0. (α and β can be modified through the rn alpha and
rn beta namelist parameters). Note that when da is a function of T only (nn eos=1),
the salinity is a passive tracer and can be used as such.

5.8.2 Brunt-Vaisälä Frequency (nn eos = 0, 1 or 2)

An accurate computation of the ocean stability (i.e. ofN , the brunt-Vaisälä fre-
quency) is of paramount importance as it is used in several ocean parameterisations
(namely TKE, KPP, Richardson number dependent vertical diffusion, enhanced
vertical diffusion, non-penetrative convection, iso-neutral diffusion). In particular,
one must be aware that N2 has to be computed with an in situ reference. The ex-
pression for N2 depends on the type of equation of state used (nn eos namelist
parameter).

For nn eos=0 (? equation of state), the ? polynomial expression is used (with
the pressure in decibar approximated by the depth in meters) :

N2 =
g

e3w
β
(
α/β δk+1/2[T]− δk+1/2[S]

)
(5.27)

where α and β are the thermal and haline expansion coefficients. They are a func-
tion of T k+1/2

, S̃ = S
k+1/2 − 35., and zw, with T the potential temperature and

S̃ a salinity anomaly. Note that both α and β depend on potential temperature and
salinity which are averaged at w-points prior to the computation instead of being
computed at T -points and then averaged to w-points.

When a linear equation of state is used (nn eos=1 or 2, (??) reduces to :

N2 =
g

e3w

(
β δk+1/2[S]− α δk+1/2[T]

)
(5.28)

where α and β are the constant coefficients used to defined the linear equation of
state (??).

90 Ocean Tracers (TRA)

5.8.3 Specific Heat (phycst.F90)

The specific heat of sea water, Cp, is a function of temperature, salinity and
pressure [?]. It is only used in the model to convert surface heat fluxes into surface
temperature increase and so the pressure dependence is neglected. The dependence
on T and S is weak. For example, with S = 35 psu, Cp increases from 3989
to 4002 when T varies from -2 ˚C to 31 ˚C. Therefore, Cp has been chosen as a
constant : Cp = 4.103 J Kg−1 ˚K−1. Its value is set in phycst.F90 module.

5.8.4 Freezing Point of Seawater

The freezing point of seawater is a function of salinity and pressure [?] :

Tf (S, p) =
(
−0.0575 + 1.710523 10−3

√
S − 2.154996 10−4 S

)
S

−7.53 10−3 p
(5.29)

(??) is only used to compute the potential freezing point of sea water (i.e. refe-
renced to the surface p = 0), thus the pressure dependent terms in (??) (last term)
have been dropped. The freezing point is computed through tfreez, a FORTRAN

function that can be found in eosbn2.F90.

5.9 Horizontal Derivative in zps-coordinate (zpshde.F90)

With partial bottom cells (ln zps=true), in general, tracers in horizontally ad-
jacent cells live at different depths. Horizontal gradients of tracers are needed for
horizontal diffusion (traldf.F90 module) and for the hydrostatic pressure gradient
(dynhpg.F90 module) to be active. Before taking horizontal gradients between the
tracers next to the bottom, a linear interpolation in the vertical is used to approxi-
mate the deeper tracer as if it actually lived at the depth of the shallower tracer point
(Fig. ??). For example, for temperature in the i-direction the needed interpolated
temperature, T̃ , is :

T̃ =



T i+1 −
(
ei+1

3w − ei3w
)

ei+1
3w

δkT
i+1 if ei+1

3w ≥ e
i
3w

T i +

(
ei+1

3w − ei3w
)

ei3w
δkT

i+1 if ei+1
3w < ei3w

5.9. Horizontal Derivative in zps-coordinate (zpshde) 91

∼

Τ i
k-1

Τ i
k

Τ i+1
k-1

Τ i+1
k

Τ i+1
k

e3w i
k

e3w i+1
k

ZT
i
k ZT

i+1
k

partial cell

i i+1i+1/2

FIGURE 5.5: Discretisation of the horizontal difference and average of tracers in the
z-partial step coordinate (ln zps=true) in the case (e3wi+1

k − e3wi
k) > 0. A linear

interpolation is used to estimate T̃ i+1
k , the tracer value at the depth of the shallower

tracer point of the two adjacent bottom T -points. The horizontal difference is then
given by : δi+1/2Tk = T̃ i+1

k − T i
k and the average by : T

i+1/2

k = (T̃
i+1/2
k − T i

k)/2.

92 Ocean Tracers (TRA)

and the resulting forms for the horizontal difference and the horizontal average
value of T at a U -point are :

δi+1/2T =


T̃ − T i if ei+1

3w ≥ ei3w

T i+1 − T̃ if ei+1
3w < ei3w

T
i+1/2

=


(T̃ − T i)/2 if ei+1

3w ≥ ei3w

(T i+1 − T̃)/2 if ei+1
3w < ei3w

(5.30)

The computation of horizontal derivative of tracers as well as of density is
performed once for all at each time step in zpshde.F90 module and stored in shared
arrays to be used when needed. It has to be emphasized that the procedure used to
compute the interpolated density, ρ̃, is not the same as that used for T and S. Instead
of forming a linear approximation of density, we compute ρ̃ from the interpolated
values of T and S, and the pressure at a u-point (in the equation of state pressure
is approximated by depth, see §??) :

ρ̃ = ρ(T̃ , S̃, zu) where zu = min
(
zi+1
T , ziT

)
(5.31)

This is a much better approximation as the variation of ρ with depth (and thus
pressure) is highly non-linear with a true equation of state and thus is badly ap-
proximated with a linear interpolation. This approximation is used to compute both
the horizontal pressure gradient (§??) and the slopes of neutral surfaces (§??)

Note that in almost all the advection schemes presented in this Chapter, both
averaging and differencing operators appear. Yet (??) has not been used in these
schemes : in contrast to diffusion and pressure gradient computations, no correc-
tion for partial steps is applied for advection. The main motivation is to preserve
the domain averaged mean variance of the advected field when using the 2nd order
centred scheme. Sensitivity of the advection schemes to the way horizontal ave-
rages are performed in the vicinity of partial cells should be further investigated in
the near future.

6 Ocean Dynamics (DYN)

Using the representation described in Chapter ??, several semi-discrete space
forms of the dynamical equations are available depending on the vertical coordinate
used and on the conservation properties of the vorticity term. In all the equations
presented here, the masking has been omitted for simplicity. One must be aware
that all the quantities are masked fields and that each time an average or difference
operator is used, the resulting field is multiplied by a mask.

The prognostic ocean dynamics equation can be summarized as follows :

NXT =

(
VOR + KEG + ZAD

COR + ADV

)
+ HPG + SPG + LDF + ZDF

NXT stands for next, referring to the time-stepping. The first group of terms on
the rhs of this equation corresponds to the Coriolis and advection terms that are
decomposed into either a vorticity part (VOR), a kinetic energy part (KEG) and
a vertical advection part (ZAD) in the vector invariant formulation, or a Coriolis
and advection part (COR+ADV) in the flux formulation. The terms following these
are the pressure gradient contributions (HPG, Hydrostatic Pressure Gradient, and
SPG, Surface Pressure Gradient) ; and contributions from lateral diffusion (LDF)
and vertical diffusion (ZDF), which are added to the rhs in the dynldf.F90 and
dynzdf.F90 modules. The vertical diffusion term includes the surface and bottom
stresses. The external forcings and parameterisations require complex inputs (sur-
face wind stress calculation using bulk formulae, estimation of mixing coefficients)
that are carried out in modules SBC, LDF and ZDF and are described in Chapters
??, ?? and ??, respectively.

In the present chapter we also describe the diagnostic equations used to com-
pute the horizontal divergence, curl of the velocities (divcur module) and the ver-
tical velocity (wzvmod module).

94 Ocean Dynamics (DYN)

The different options available to the user are managed by namelist variables.
For term ttt in the momentum equations, the logical namelist variables are ln dynttt xxx,
where xxx is a 3 or 4 letter acronym corresponding to each optional scheme. If a
CPP key is used for this term its name is key ttt. The corresponding code can be
found in the dynttt xxx module in the DYN directory, and it is usually computed in
the dyn ttt xxx subroutine.

The user has the option of extracting and outputting each tendency term from
the 3D momentum equations (key trddyn defined), as described in Chap.??. Fur-
thermore, the tendency terms associated with the 2D barotropic vorticity balance
(when key trdvor is defined) can be derived from the 3D terms.

6.1 Sea surface height and diagnostic variables (η, ζ , χ, w)

6.1.1 Horizontal divergence and relative vorticity (divcur.F90)

The vorticity is defined at an f -point (i.e. corner point) as follows :

ζ =
1

e1f e2f

(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
(6.1)

The horizontal divergence is defined at a T -point. It is given by :

χ =
1

e1t e2t e3t
(δi [e2u e3u u] + δj [e1v e3v v]) (6.2)

Note that although the vorticity has the same discrete expression in z- and
s-coordinates, its physical meaning is not identical. ζ is a pseudo vorticity along s-
surfaces (only pseudo because (u, v) are still defined along geopotential surfaces,
but are not necessarily defined at the same depth).

The vorticity and divergence at the before step are used in the computation of
the horizontal diffusion of momentum. Note that because they have been calcu-
lated prior to the Asselin filtering of the before velocities, the before vorticity and
divergence arrays must be included in the restart file to ensure perfect restartability.
The vorticity and divergence at the now time step are used for the computation of
the nonlinear advection and of the vertical velocity respectively.

6.1.2 Horizontal divergence and relative vorticity (sshwzv.F90)

The sea surface height is given by :

∂η

∂t
≡ 1

e1te2t

∑
k

{δi [e2u e3u u] + δj [e1v e3v v]} − emp
ρw

≡
∑
k

χ e3t −
emp
ρw

(6.3)

6.2. Coriolis and Advection: vector invariant form 95

where emp is the surface freshwater budget (evaporation minus precipitation), ex-
pressed in Kg/m2/s (which is equal to mm/s), and ρw=1,035 Kg/m3 is the reference
density of sea water (Boussinesq approximation). If river runoff is expressed as a
surface freshwater flux (see §??) then emp can be written as the evaporation mi-
nus precipitation, minus the river runoff. The sea-surface height is evaluated using
exactly the same time stepping scheme as the tracer equation (??) : a leapfrog
scheme in combination with an Asselin time filter, i.e. the velocity appearing in
(??) is centred in time (now velocity). This is of paramount importance. Repla-
cing T by the number 1 in the tracer equation and summing over the water column
must lead to the sea surface height equation otherwise tracer content will not be
conserved [??].

The vertical velocity is computed by an upward integration of the horizontal
divergence starting at the bottom, taking into account the change of the thickness
of the levels :

w|kb−1/2 = 0 where kb is the level just above the sea floor

w|k+1/2 = w|k−1/2 + e3t|k χ|k −
1

2∆t

(
et+1

3t

∣∣
k
− et−1

3t

∣∣
k

) (6.4)

In the case of a non-linear free surface (key vvl), the top vertical velocity is
−emp/ρw, as changes in the divergence of the barotropic transport are absorbed
into the change of the level thicknesses, re-orientated downward. In the case of
a linear free surface, the time derivative in (??) disappears. The upper boundary
condition applies at a fixed level z = 0. The top vertical velocity is thus equal to
the divergence of the barotropic transport (i.e. the first term in the right-hand-side
of (??)).

Note also that whereas the vertical velocity has the same discrete expression in
z- and s-coordinates, its physical meaning is not the same : in the second case, w
is the velocity normal to the s-surfaces. Note also that the k-axis is re-orientated
downwards in the FORTRAN code compared to the indexing used in the semi-
discrete equations such as (??) (see §??).

6.2 Coriolis and Advection : vector invariant form
!---
&namdyn_adv ! formulation of the momentum advection
!---

ln_dynadv_vec = .true. ! vector form (T) or flux form (F)
ln_dynadv_cen2= .false. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme

/

The vector invariant form of the momentum equations is the one most often
used in applications of the NEMO ocean model. The flux form option (see next
section) has been present since version 2. Coriolis and momentum advection terms
are evaluated using a leapfrog scheme, i.e. the velocity appearing in these expres-
sions is centred in time (now velocity). At the lateral boundaries either free slip, no
slip or partial slip boundary conditions are applied following Chap.??.

96 Ocean Dynamics (DYN)

6.2.1 Vorticity term (dynvor.F90)
!---
&namdyn_vor ! option of physics/algorithm (not control by CPP keys)
!---

ln_dynvor_ene = .false. ! energy conserving scheme
ln_dynvor_ens = .false. ! enstrophy conserving scheme
ln_dynvor_mix = .false. ! mixed scheme
ln_dynvor_een = .true. ! energy & enstrophy scheme
ln_dynvor_con = .false. ! consistency of BC with analytical eqs.

/

Four discretisations of the vorticity term (ln dynvor xxx=true) are available :
conserving potential enstrophy of horizontally non-divergent flow (ENS scheme) ;
conserving horizontal kinetic energy (ENE scheme) ; conserving potential enstro-
phy for the relative vorticity term and horizontal kinetic energy for the planetary
vorticity term (MIX scheme) ; or conserving both the potential enstrophy of hori-
zontally non-divergent flow and horizontal kinetic energy (EEN scheme) (see Ap-
pendix ??). In the case of ENS, ENE or MIX schemes the land sea mask may be
slightly modified to ensure the consistency of vorticity term with analytical equa-
tions (ln dynvor con=true). The vorticity terms are all computed in dedicated rou-
tines that can be found in the dynvor.F90 module.

Enstrophy conserving scheme (ln dynvor ens=true)

In the enstrophy conserving case (ENS scheme), the discrete formulation of the
vorticity term provides a global conservation of the enstrophy ([(ζ+f)/e3f]2 in s-
coordinates) for a horizontally non-divergent flow (i.e. χ=0), but does not conserve
the total kinetic energy. It is given by :

+
1

e1u

(
ζ + f

e3f

) i

(e1v e3v v)
i,j+1/2

− 1

e2v

(
ζ + f

e3f

) j

(e2u e3u u)
i+1/2,j

(6.5)

Energy conserving scheme (ln dynvor ene=true)

The kinetic energy conserving scheme (ENE scheme) conserves the global ki-
netic energy but not the global enstrophy. It is given by :

+
1

e1u

(
ζ + f

e3f

)
(e1v e3v v)

i+1/2
j

− 1

e2v

(
ζ + f

e3f

)
(e2u e3u u)

j+1/2
i

(6.6)

Mixed energy/enstrophy conserving scheme (ln dynvor mix=true)

For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture
of the two previous schemes is used. It consists of the ENS scheme (??) for the re-
lative vorticity term, and of the ENE scheme (??) applied to the planetary vorticity

6.2. Coriolis and Advection : vector invariant form 97

term.
+

1

e1u

(
ζ

e3f

) i

(e1v e3v v)
i,j+1/2

− 1

e1u

(
f

e3f

)
(e1v e3v v)

i+1/2
j

− 1

e2v

(
ζ

e3f

)j
(e2u e3u u)

i+1/2,j
+

1

e2v

(
f

e3f

)
(e2u e3u u)

j+1/2
i

(6.7)

Energy and enstrophy conserving scheme (ln dynvor een=true)

In both the ENS and ENE schemes, it is apparent that the combination of i
and j averages of the velocity allows for the presence of grid point oscillation
structures that will be invisible to the operator. These structures are computational
modes that will be at least partly damped by the momentum diffusion operator (i.e.
the subgrid-scale advection), but not by the resolved advection term. The ENS
and ENE schemes therefore do not contribute to dump any grid point noise in
the horizontal velocity field. Such noise would result in more noise in the vertical
velocity field, an undesirable feature. This is a well-known characteristic of C-
grid discretization where u and v are located at different grid points, a price worth
paying to avoid a double averaging in the pressure gradient term as in the B-grid.

A very nice solution to the problem of double averaging was proposed by ?.
The idea is to get rid of the double averaging by considering triad combinations
of vorticity. It is noteworthy that this solution is conceptually quite similar to the
one proposed by [?] for the discretization of the iso-neutral diffusion operator (see
App.??).

The ? vorticity advection scheme for a single layer is modified for spherical
coordinates as described by ? to obtain the EEN scheme. First consider the discrete
expression of the potential vorticity, q, defined at an f -point :

q =
ζ + f

e3f
(6.8)

where the relative vorticity is defined by (??), the Coriolis parameter is given by
f = 2 Ω sinϕf and the layer thickness at f -points is :

e3f = e3t
i+1/2,j+1/2 (6.9)

Note that a key point in (??) is that the averaging in the i- and j- directions uses
the masked vertical scale factor but is always divided by 4, not by the sum of the
masks at the four T -points. This preserves the continuity of e3f when one or more
of the neighbouring e3t tends to zero and extends by continuity the value of e3f

into the land areas. This feature is essential for the z-coordinate with partial steps.
Next, the vorticity triads, ijQ

ip
jp

can be defined at a T -point as the following triad
combinations of the neighbouring potential vorticities defined at f-points (Fig. ??) :

j
iQ

ip
jp

=
1

12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(6.10)

98 Ocean Dynamics (DYN)

T
F
V

i i+1

j

j+1

j-1

i i+1

j

j+1

i-1

FIGURE 6.1: Triads used in the energy and enstrophy conserving scheme (een) for
u-component (upper panel) and v-component (lower panel).

where the indices ip and kp take the values : ip = −1/2 or 1/2 and jp = −1/2 or
1/2.

Finally, the vorticity terms are represented as :
+q e3 v ≡ +

1

e1u

∑
ip, kp

i+1/2−ip
j Qip

jp
(e1v e3v v)

i+1/2−ip
j+jp

−q e3 u ≡ −
1

e2v

∑
ip, kp

i
j+1/2−jpQ

ip
jp

(e2u e3u u)
i+ip
j+1/2−jp

(6.11)

This EEN scheme in fact combines the conservation properties of the ENS and
ENE schemes. It conserves both total energy and potential enstrophy in the limit of
horizontally nondivergent flow (i.e. χ=0) (see Appendix ??). Applied to a realistic
ocean configuration, it has been shown that it leads to a significant reduction of the

6.3. Coriolis and Advection : flux form 99

noise in the vertical velocity field [?]. Furthermore, used in combination with a par-
tial steps representation of bottom topography, it improves the interaction between
current and topography, leading to a larger topostrophy of the flow [??].

6.2.2 Kinetic Energy Gradient term (dynkeg.F90)

As demonstrated in Appendix ??, there is a single discrete formulation of the
kinetic energy gradient term that, together with the formulation chosen for the ver-
tical advection (see below), conserves the total kinetic energy :

− 1

2 e1u
δi+1/2

[
u2

i
+ v2

j
]

− 1

2 e2v
δj+1/2

[
u2

i
+ v2

j
] (6.12)

6.2.3 Vertical advection term (dynzad.F90)

The discrete formulation of the vertical advection, together with the formula-
tion chosen for the gradient of kinetic energy (KE) term, conserves the total kinetic
energy. Indeed, the change of KE due to the vertical advection is exactly balanced
by the change of KE due to the gradient of KE (see Appendix ??).

− 1

e1u e2u e3u
e1t e2t w i+1/2 δk+1/2 [u]

k

− 1

e1v e2v e3v
e1t e2t w j+1/2 δk+1/2 [u]

k
(6.13)

6.3 Coriolis and Advection : flux form
!---
&namdyn_adv ! formulation of the momentum advection
!---

ln_dynadv_vec = .true. ! vector form (T) or flux form (F)
ln_dynadv_cen2= .false. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme

/

In the flux form (as in the vector invariant form), the Coriolis and momentum
advection terms are evaluated using a leapfrog scheme, i.e. the velocity appearing
in their expressions is centred in time (now velocity). At the lateral boundaries
either free slip, no slip or partial slip boundary conditions are applied following
Chap.??.

6.3.1 Coriolis plus curvature metric terms (dynvor.F90)

In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis
parameter has been modified to account for the ”metric” term. This altered Coriolis

100 Ocean Dynamics (DYN)

parameter is thus discretised at f -points. It is given by :

f +
1

e1e2

(
v
∂e2

∂i
− u∂e1

∂j

)
≡ f +

1

e1fe2f

(
vi+1/2δi+1/2 [e2u]− uj+1/2δj+1/2 [e1u]

)
(6.14)

Any of the (??), (??) and (??) schemes can be used to compute the product of
the Coriolis parameter and the vorticity. However, the energy-conserving scheme
(??) has exclusively been used to date. This term is evaluated using a leapfrog
scheme, i.e. the velocity is centred in time (now velocity).

6.3.2 Flux form Advection term (dynadv.F90)

The discrete expression of the advection term is given by :

1

e1u e2u e3u

(
δi+1/2

[
e2u e3u u

i ut
]

+ δj

[
e1u e3u v

i+1/2 uf

]
+δk

[
e1w e2w w

i+1/2 uuw

])
1

e1v e2v e3v

(
δi

[
e2u e3u u

j+1/2 vf

]
+ δj+1/2

[
e1u e3u v

i vt
]

+δk

[
e1w e2w w

j+1/2 vvw

])
(6.15)

Two advection schemes are available : a 2nd order centered finite difference
scheme, CEN2, or a 3rd order upstream biased scheme, UBS. The latter is descri-
bed in ?. The schemes are selected using the namelist logicals ln dynadv cen2 and
ln dynadv ubs. In flux form, the schemes differ by the choice of a space and time
interpolation to define the value of u and v at the centre of each face of u- and
v-cells, i.e. at the T -, f -, and uw-points for u and at the f -, T - and vw-points for
v.

2nd order centred scheme (cen2) (ln dynadv cen2=true)

In the centered 2nd order formulation, the velocity is evaluated as the mean of
the two neighbouring points :{

ucen2
T = ui ucen2

F = uj+1/2 ucen2
uw = uk+1/2

vcen2
F = vi+1/2 vcen2

F = vj vcen2
vw = vk+1/2

(6.16)

The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive
(i.e. it may create false extrema). It is therefore notoriously noisy and must be used
in conjunction with an explicit diffusion operator to produce a sensible solution.
The associated time-stepping is performed using a leapfrog scheme in conjunction
with an Asselin time-filter, so u and v are the now velocities.

6.4. Hydrostatic pressure gradient (dynhpg) 101

Upstream Biased Scheme (UBS) (ln dynadv ubs=true)

The UBS advection scheme is an upstream biased third order scheme based on
an upstream-biased parabolic interpolation. For example, the evaluation of uubsT is
done as follows :

uubsT = ui − 1

6

{
u”i−1/2 if e2u e3u u

i > 0

u”i+1/2 if e2u e3u u
i < 0

(6.17)

where u”i+1/2 = δi+1/2 [δi [u]]. This results in a dissipatively dominant (i.e. hyper-
diffusive) truncation error [?]. The overall performance of the advection scheme is
similar to that reported in ?. It is a relatively good compromise between accuracy
and smoothness. It is not a positive scheme, meaning that false extrema are per-
mitted. But the amplitudes of the false extrema are significantly reduced over those
in the centred second order method. As the scheme already includes a diffusion
component, it can be used without explicit lateral diffusion on momentum (i.e.
ln dynldf lap=ln dynldf bilap=false), and it is recommended to do so.

The UBS scheme is not used in all directions. In the vertical, the centred 2nd

order evaluation of the advection is preferred, i.e. uubsuw and uubsvw in (??) are used.
UBS is diffusive and is associated with vertical mixing of momentum.

For stability reasons, the first term in (??), which corresponds to a second or-
der centred scheme, is evaluated using the now velocity (centred in time), while
the second term, which is the diffusion part of the scheme, is evaluated using the
before velocity (forward in time). This is discussed by ? in the context of the Quick
advection scheme.

Note that the UBS and QUICK (Quadratic Upstream Interpolation for Convec-
tive Kinematics) schemes only differ by one coefficient. Replacing 1/6 by 1/8
in (??) leads to the QUICK advection scheme [?]. This option is not available
through a namelist parameter, since the 1/6 coefficient is hard coded. Nevertheless
it is quite easy to make the substitution in the dynadv ubs.F90 module and obtain
a QUICK scheme.

Note also that in the current version of dynadv ubs.F90, there is also the pos-
sibility of using a 4th order evaluation of the advective velocity as in ROMS. This
is an error and should be suppressed soon.

6.4 Hydrostatic pressure gradient (dynhpg.F90)
!---
&namdyn_hpg ! Hydrostatic pressure gradient option
!---

ln_hpg_zco = .false. ! z-coordinate - full steps
ln_hpg_zps = .true. ! z-coordinate - partial steps (interpolation)
ln_hpg_sco = .false. ! s-coordinate (standard jacobian formulation)
ln_hpg_djc = .false. ! s-coordinate (Density Jacobian with Cubic polynomial)
ln_hpg_prj = .false. ! s-coordinate (Pressure Jacobian scheme)
ln_dynhpg_imp = .false. ! time stepping: semi-implicit time scheme (T)

! centered time scheme (F)
/

The key distinction between the different algorithms used for the hydrostatic
pressure gradient is the vertical coordinate used, since HPG is a horizontal pressure

102 Ocean Dynamics (DYN)

gradient, i.e. computed along geopotential surfaces. As a result, any tilt of the
surface of the computational levels will require a specific treatment to compute the
hydrostatic pressure gradient.

The hydrostatic pressure gradient term is evaluated either using a leapfrog
scheme, i.e. the density appearing in its expression is centred in time (now ρ), or
a semi-implcit scheme. At the lateral boundaries either free slip, no slip or partial
slip boundary conditions are applied.

6.4.1 z-coordinate with full step (ln dynhpg zco=true)

The hydrostatic pressure can be obtained by integrating the hydrostatic equa-
tion vertically from the surface. However, the pressure is large at great depth while
its horizontal gradient is several orders of magnitude smaller. This may lead to large
truncation errors in the pressure gradient terms. Thus, the two horizontal compo-
nents of the hydrostatic pressure gradient are computed directly as follows :

for k = km (surface layer, jk = 1 in the code)
δi+1/2

[
ph
]∣∣∣
k=km

=
1

2
g δi+1/2 [e3w ρ]

∣∣
k=km

δj+1/2

[
ph
]∣∣∣
k=km

=
1

2
g δj+1/2 [e3w ρ]

∣∣
k=km

(6.18)

for 1 < k < km (interior layer)
δi+1/2

[
ph
]∣∣∣
k

= δi+1/2

[
ph
]∣∣∣
k−1

+
1

2
g δi+1/2

[
e3w ρ

k+1/2
]∣∣∣
k

δj+1/2

[
ph
]∣∣∣
k

= δj+1/2

[
ph
]∣∣∣
k−1

+
1

2
g δj+1/2

[
e3w ρ

k+1/2
]∣∣∣
k

(6.19)

Note that the 1/2 factor in (??) is adequate because of the definition of e3w as
the vertical derivative of the scale factor at the surface level (z = 0). Note also that
in case of variable volume level (key vvl defined), the surface pressure gradient is
included in (??) and (??) through the space and time variations of the vertical scale
factor e3w.

6.4.2 z-coordinate with partial step (ln dynhpg zps=true)

With partial bottom cells, tracers in horizontally adjacent cells generally live at
different depths. Before taking horizontal gradients between these tracer points, a
linear interpolation is used to approximate the deeper tracer as if it actually lived at
the depth of the shallower tracer point.

Apart from this modification, the horizontal hydrostatic pressure gradient eva-
luated in the z-coordinate with partial step is exactly as in the pure z-coordinate
case. As explained in detail in section §??, the nonlinearity of pressure effects in
the equation of state is such that it is better to interpolate temperature and salinity
vertically before computing the density. Horizontal gradients of temperature and

6.4. Hydrostatic pressure gradient (dynhpg) 103

salinity are needed for the TRA modules, which is the reason why the horizontal
gradients of density at the deepest model level are computed in module zpsdhe.F90
located in the TRA directory and described in §??.

6.4.3 s- and z-s-coordinates

Pressure gradient formulations in an s-coordinate have been the subject of a
vast number of papers (e.g., ??). A number of different pressure gradient options
are coded but the ROMS-like, density Jacobian with cubic polynomial method is
currently disabled whilst known bugs are under investigation.
• Traditional coding (see for example ? : (ln dynhpg sco=true)

− 1

ρo e1u
δi+1/2

[
ph
]

+
g ρi+1/2

ρo e1u
δi+1/2 [zt]

− 1

ρo e2v
δj+1/2

[
ph
]

+
g ρj+1/2

ρo e2v
δj+1/2 [zt]

(6.20)

Where the first term is the pressure gradient along coordinates, computed as
in (??) - (??), and zT is the depth of the T -point evaluated from the sum of the
vertical scale factors at the w-point (e3w).
• Pressure Jacobian scheme (prj) (a research paper in preparation) (ln dynhpg prj=true)
•Density Jacobian with cubic polynomial scheme (DJC) [?] (ln dynhpg djc=true)

(currently disabled ; under development)
Note that expression (??) is commonly used when the variable volume for-

mulation is activated (key vvl) because in that case, even with a flat bottom, the
coordinate surfaces are not horizontal but follow the free surface [?]. The pres-
sure jacobian scheme (ln dynhpg prj=true) is available as an improved option to
ln dynhpg sco=true when key vvl is active. The pressure Jacobian scheme uses a
constrained cubic spline to reconstruct the density profile across the water column.
This method maintains the monotonicity between the density nodes The pressure
can be calculated by analytical integration of the density profile and a pressure Ja-
cobian method is used to solve the horizontal pressure gradient. This method can
provide a more accurate calculation of the horizontal pressure gradient than the
standard scheme.

6.4.4 Time-scheme (ln dynhpg imp= true/false)

The default time differencing scheme used for the horizontal pressure gradient
is a leapfrog scheme and therefore the density used in all discrete expressions given
above is the now density, computed from the now temperature and salinity. In some
specific cases (usually high resolution simulations over an ocean domain which
includes weakly stratified regions) the physical phenomenon that controls the time-
step is internal gravity waves (IGWs). A semi-implicit scheme for doubling the
stability limit associated with IGWs can be used [??]. It involves the evaluation of
the hydrostatic pressure gradient as an average over the three time levels t−∆t, t,

104 Ocean Dynamics (DYN)

and t + ∆t (i.e. before, now and after time-steps), rather than at the central time
level t only, as in the standard leapfrog scheme.
• leapfrog scheme (ln dynhpg imp=true) :

ut+∆t − ut−∆t

2∆t
= · · · − 1

ρo e1u
δi+1/2

[
pth
]

(6.21)

• semi-implicit scheme (ln dynhpg imp=true) :

ut+∆t − ut−∆t

2∆t
= · · · − 1

4 ρo e1u
δi+1/2

[
pt+∆t
h + 2 pth + pt−∆t

h

]
(6.22)

The semi-implicit time scheme (??) is made possible without significant addi-
tional computation since the density can be updated to time level t + ∆t before
computing the horizontal hydrostatic pressure gradient. It can be easily shown that
the stability limit associated with the hydrostatic pressure gradient doubles using
(??) compared to that using the standard leapfrog scheme (??). Note that (??) is
equivalent to applying a time filter to the pressure gradient to eliminate high fre-
quency IGWs. Obviously, when using (??), the doubling of the time-step is achie-
vable only if no other factors control the time-step, such as the stability limits
associated with advection or diffusion.

In practice, the semi-implicit scheme is used when ln dynhpg imp=true. In this
case, we choose to apply the time filter to temperature and salinity used in the equa-
tion of state, instead of applying it to the hydrostatic pressure or to the density, so
that no additional storage array has to be defined. The density used to compute the
hydrostatic pressure gradient (whatever the formulation) is evaluated as follows :

ρt = ρ(T̃ , S̃, zt) with X̃ = 1/4
(
Xt+∆t + 2Xt +Xt−∆t

)
(6.23)

Note that in the semi-implicit case, it is necessary to save the filtered density,
an extra three-dimensional field, in the restart file to restart the model with exact
reproducibility. This option is controlled by nn dynhpg rst, a namelist parameter.

6.5 Surface pressure gradient (dynspg.F90)
!---
!namdyn_spg ! surface pressure gradient (CPP key only)
!---
! ! explicit free surface ("key_dynspg_exp")
! ! filtered free surface ("key_dynspg_flt")
! ! split-explicit free surface ("key_dynspg_ts")

The surface pressure gradient term is related to the representation of the free
surface (§??). The main distinction is between the fixed volume case (linear free
surface) and the variable volume case (nonlinear free surface, key vvl is defined).
In the linear free surface case (§??) the vertical scale factors e3 are fixed in time,
while they are time-dependent in the nonlinear case (§??). With both linear and

6.5. Surface pressure gradient (dynspg) 105

nonlinear free surface, external gravity waves are allowed in the equations, which
imposes a very small time step when an explicit time stepping is used. Two methods
are proposed to allow a longer time step for the three-dimensional equations : the
filtered free surface, which is a modification of the continuous equations (see (??)),
and the split-explicit free surface described below. The extra term introduced in the
filtered method is calculated implicitly, so that the update of the next velocities is
done in module dynspg flt.F90 and not in dynnxt.F90.

The form of the surface pressure gradient term depends on how the user wants
to handle the fast external gravity waves that are a solution of the analytical equa-
tion (§??). Three formulations are available, all controlled by a CPP key (ln dynspg xxx) :
an explicit formulation which requires a small time step ; a filtered free surface for-
mulation which allows a larger time step by adding a filtering term into the mo-
mentum equation ; and a split-explicit free surface formulation, described below,
which also allows a larger time step.

The extra term introduced in the filtered method is calculated implicitly, so that
a solver is used to compute it. As a consequence the update of the next velocities
is done in module dynspg flt.F90 and not in dynnxt.F90.

6.5.1 Explicit free surface (key dynspg exp)

In the explicit free surface formulation (key dynspg exp defined), the model
time step is chosen to be small enough to resolve the external gravity waves (ty-
pically a few tens of seconds). The surface pressure gradient, evaluated using a
leap-frog scheme (i.e. centered in time), is thus simply given by :

− 1

e1u ρo
δi+1/2 [ρ η]

− 1

e2v ρo
δj+1/2 [ρ η]

(6.24)

Note that in the non-linear free surface case (i.e. key vvl defined), the surface
pressure gradient is already included in the momentum tendency through the level
thickness variation allowed in the computation of the hydrostatic pressure gradient.
Thus, nothing is done in the dynspg exp.F90 module.

6.5.2 Split-Explicit free surface (key dynspg ts)

The split-explicit free surface formulation used in NEMO (key dynspg ts de-
fined), also called the time-splitting formulation, follows the one proposed by ?.
The general idea is to solve the free surface equation and the associated barotro-
pic velocity equations with a smaller time step than ∆t, the time step used for the
three dimensional prognostic variables (Fig. ??). The size of the small time step,
∆te (the external mode or barotropic time step) is provided through the nn baro
namelist parameter as : ∆te = ∆t/nn baro.

106 Ocean Dynamics (DYN)

t-∆t t t+2∆tt+∆t

M U η

t+1/2∆t t+3/2∆t

~ ~

∆τ

FIGURE 6.2: Schematic of the split-explicit time stepping scheme for the external
and internal modes. Time increases to the right. Internal mode time steps (which are
also the model time steps) are denoted by t−∆t, t, t+ ∆t, and t+ 2∆t. The curved
line represents a leap-frog time step, and the smaller time steps N∆te = 3

2∆t are
denoted by the zig-zag line. The vertically integrated forcing M(t) computed at the
model time step t represents the interaction between the external and internal motions.
While keeping M and freshwater forcing field fixed, a leap-frog integration carries
the external mode variables (surface height and vertically integrated velocity) from t
to t + 3

2∆t using N external time steps of length ∆te. Time averaging the external
fields over the 2

3N+1 time steps (endpoints included) centers the vertically integrated
velocity and the sea surface height at the model timestep t+∆t. These averaged values
are used to update M(t) with both the surface pressure gradient and the Coriolis force,
therefore providing the t+ ∆t velocity. The model time stepping scheme can then be
achieved by a baroclinic leap-frog time step that carries the surface height from t−∆t
to t+ ∆t.

The split-explicit formulation has a damping effect on external gravity waves,
which is weaker damping than that for the filtered free surface but still significant,
as shown by ? in the case of an analytical barotropic Kelvin wave.

6.5.3 Filtered free surface (key dynspg flt)

The filtered formulation follows the ? implementation. The extra term introdu-
ced in the equations (see §??) is solved implicitly. The elliptic solvers available in
the code are documented in §??.

Note that in the linear free surface formulation (key vvl not defined), the ocean
depth is time-independent and so is the matrix to be inverted. It is computed once
and for all and applies to all ocean time steps.

6.6 Lateral diffusion term (dynldf.F90)
!---
&namdyn_ldf ! lateral diffusion on momentum
!---

! ! Type of the operator :
ln_dynldf_lap = .true. ! laplacian operator
ln_dynldf_bilap = .false. ! bilaplacian operator
! ! Direction of action :
ln_dynldf_level = .false. ! iso-level
ln_dynldf_hor = .true. ! horizontal (geopotential) (require "key_ldfslp" in s-coord.)
ln_dynldf_iso = .false. ! iso-neutral (require "key_ldfslp")
! ! Coefficient

6.6. Lateral diffusion term (dynldf) 107

rn_ahm_0_lap = 40000. ! horizontal laplacian eddy viscosity [m2/s]
rn_ahmb_0 = 0. ! background eddy viscosity for ldf_iso [m2/s]
rn_ahm_0_blp = 0. ! horizontal bilaplacian eddy viscosity [m4/s]

/

The options available for lateral diffusion are to use either laplacian (rotated
or not) or biharmonic operators. The coefficients may be constant or spatially va-
riable ; the description of the coefficients is found in the chapter on lateral physics
(Chap.??). The lateral diffusion of momentum is evaluated using a forward scheme,
i.e. the velocity appearing in its expression is the before velocity in time, except
for the pure vertical component that appears when a tensor of rotation is used. This
latter term is solved implicitly together with the vertical diffusion term (see §??)

At the lateral boundaries either free slip, no slip or partial slip boundary condi-
tions are applied according to the user’s choice (see Chap.??).

6.6.1 Iso-level laplacian operator (ln dynldf lap=true)

For lateral iso-level diffusion, the discrete operator is :


DlU
u =

1

e1u
δi+1/2

[
AlmT χ

]
− 1

e2ue3u
δj

[
Almf e3fζ

]

DlU
v =

1

e2v
δj+1/2

[
AlmT χ

]
+

1

e1v e3v
δi

[
Almf e3fζ

] (6.25)

As explained in §??, this formulation (as the gradient of a divergence and curl
of the vorticity) preserves symmetry and ensures a complete separation between
the vorticity and divergence parts of the momentum diffusion.

6.6.2 Rotated laplacian operator (ln dynldf iso=true)

A rotation of the lateral momentum diffusion operator is needed in several
cases : for iso-neutral diffusion in the z-coordinate (ln dynldf iso=true) and for ei-
ther iso-neutral (ln dynldf iso=true) or geopotential (ln dynldf hor=true) diffusion
in the s-coordinate. In the partial step case, coordinates are horizontal except at
the deepest level and no rotation is performed when ln dynldf hor=true. The dif-
fusion operator is defined simply as the divergence of down gradient momentum
fluxes on each momentum component. It must be emphasized that this formulation
ignores constraints on the stress tensor such as symmetry. The resulting discrete

108 Ocean Dynamics (DYN)

representation is :

DlU
u =

1

e1u e2u e3u{
δi+1/2

[
AlmT

(
e2t e3t

e1t
δi[u]− e2t r1t δk+1/2[u]

i, k
)]

+ δj

[
Almf

(
e1f e3f

e2f
δj+1/2[u]− e1f r2f δk+1/2[u]

j+1/2, k
)]

+ δk

[
Almuw

(
−e2u r1uw δi+1/2[u]

i+1/2, k+1/2

− e1u r2uw δj+1/2[u]
j, k+1/2

+
e1u e2u

e3uw

(
r2

1uw + r2
2uw

)
δk+1/2[u]

)] }

DlV
v =

1

e1v e2v e3v{
δi+1/2

[
Almf

(
e2f e3f

e1f
δi+1/2[v]− e2f r1f δk+1/2[v]

i+1/2, k
)]

+ δj

[
AlmT

(
e1t e3t

e2t
δj [v]− e1t r2t δk+1/2[v]

j, k
)]

+ δk

[
Almvw

(
−e2v r1vw δi+1/2[v]

i+1/2, k+1/2

− e1v r2vw δj+1/2[v]
j+1/2, k+1/2

+
e1v e2v

e3vw

(
r2

1vw + r2
2vw

)
δk+1/2[v]

)] }

(6.26)

where r1 and r2 are the slopes between the surface along which the diffusion ope-
rator acts and the surface of computation (z- or s-surfaces). The way these slopes
are evaluated is given in the lateral physics chapter (Chap.??).

6.6.3 Iso-level bilaplacian operator (ln dynldf bilap=true)

The lateral fourth order operator formulation on momentum is obtained by
applying (??) twice. It requires an additional assumption on boundary conditions :
the first derivative term normal to the coast depends on the free or no-slip lateral
boundary conditions chosen, while the third derivative terms normal to the coast
are set to zero (see Chap.??).

6.7 Vertical diffusion term (dynzdf.F90)
!---
&namzdf ! vertical physics

6.7. Vertical diffusion term (dynzdf.F90) 109

!---
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

The large vertical diffusion coefficient found in the surface mixed layer toge-
ther with high vertical resolution implies that in the case of explicit time stepping
there would be too restrictive a constraint on the time step. Two time stepping
schemes can be used for the vertical diffusion term : (a) a forward time differen-
cing scheme (ln zdfexp=true) using a time splitting technique (nn zdfexp > 1) or
(b) a backward (or implicit) time differencing scheme (ln zdfexp=false) (see §??).
Note that namelist variables ln zdfexp and nn zdfexp apply to both tracers and dy-
namics.

The formulation of the vertical subgrid scale physics is the same whatever the
vertical coordinate is. The vertical diffusion operators given by (??) take the follo-
wing semi-discrete space form :

Dvm
u ≡ 1

e3u
δk

[
Avmuw
e3uw

δk+1/2[u]

]

Dvm
v ≡ 1

e3v
δk

[
Avmvw
e3vw

δk+1/2[v]

] (6.27)

where Avmuw and Avmvw are the vertical eddy viscosity and diffusivity coefficients.
The way these coefficients are evaluated depends on the vertical physics used (see
§??).

The surface boundary condition on momentum is the stress exerted by the wind.
At the surface, the momentum fluxes are prescribed as the boundary condition on
the vertical turbulent momentum fluxes,(

Avm

e3

∂Uh

∂k

)∣∣∣∣
z=1

=
1

ρo

(
τu
τv

)
(6.28)

where (τu, τv) are the two components of the wind stress vector in the (i,j) coor-
dinate system. The high mixing coefficients in the surface mixed layer ensure that
the surface wind stress is distributed in the vertical over the mixed layer depth. If
the vertical mixing coefficient is small (when no mixed layer scheme is used) the
surface stress enters only the top model level, as a body force. The surface wind
stress is calculated in the surface module routines (SBC, see Chap.??)

The turbulent flux of momentum at the bottom of the ocean is specified through
a bottom friction parameterisation (see §??)

110 Ocean Dynamics (DYN)

6.8 External Forcings

Besides the surface and bottom stresses (see the above section) which are in-
troduced as boundary conditions on the vertical mixing, two other forcings enter
the dynamical equations.

One is the effect of atmospheric pressure on the ocean dynamics. Another for-
cing term is the tidal potential. Both of which will be introduced into the reference
version soon.

6.9 Time evolution term (dynnxt.F90)
!---
&namdom ! space and time domain (bathymetry, mesh, timestep)
!---

nn_bathy = 1 ! compute (=0) or read (=1) the bathymetry file
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
nn_msh = 0 ! create (=1) a mesh file or not (=0)
rn_hmin = -3. ! min depth of the ocean (>0) or min number of ocean level (<0)
rn_e3zps_min= 20. ! partial step thickness is set larger than the minimum of
rn_e3zps_rat= 0.1 ! rn_e3zps_min and rn_e3zps_rat*e3t, with 0<rn_e3zps_rat<1

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nn_acc=0)
nn_baro = 64 ! number of barotropic time step ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nn_acc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nn_acc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nn_acc=1)

/

The general framework for dynamics time stepping is a leap-frog scheme, i.e. a
three level centred time scheme associated with an Asselin time filter (cf. Chap.??).
The scheme is applied to the velocity, except when using the flux form of momen-
tum advection (cf. §??) in the variable volume case (key vvl defined), where it has
to be applied to the thickness weighted velocity (see §??)
• vector invariant form or linear free surface (ln dynhpg vec=true ; key vvl not

defined) : ut+∆t = ut−∆t
f + 2∆t RHStu

utf = ut + γ
[
ut−∆t
f − 2ut + ut+∆t

] (6.29)

• flux form and nonlinear free surface (ln dynhpg vec=false ; key vvl defined) :

 (e3u u)t+∆t = (e3u u)t−∆t
f + 2∆t e3u RHStu

(e3u u)tf = (e3u u)t + γ
[
(e3u u)t−∆t

f − 2 (e3u u)t + (e3u u)t+∆t
] (6.30)

where RHS is the right hand side of the momentum equation, the subscript f de-
notes filtered values and γ is the Asselin coefficient. γ is initialized as nn atfp
(namelist parameter). Its default value is nn atfp = 10−3. In both cases, the modi-
fied Asselin filter is not applied since perfect conservation is not an issue for the
momentum equations.

6.10. Neptune effect (dynnept) 111

Note that with the filtered free surface, the update of the after velocities is done
in the dynsp flt.F90 module, and only array swapping and Asselin filtering is done
in dynnxt.F90.

6.10 Neptune effect (dynnept.F90)

The ”Neptune effect” (thus named in [?]) is a parameterisation of the poten-
tially large effect of topographic form stress (caused by eddies) in driving the
ocean circulation. Originally developed for low-resolution models, in which it was
applied via a Laplacian (second-order) diffusion-like term in the momentum equa-
tion, it can also be applied in eddy permitting or resolving models, in which a more
scale-selective bilaplacian (fourth-order) implementation is preferred. This mecha-
nism has a significant effect on boundary currents (including undercurrents), and
the upwelling of deep water near continental shelves.

The theoretical basis for the method can be found in [?], including the expla-
nation of why form stress is not necessarily a drag force, but may actually drive the
flow. [?] demonstrate the effects of the parameterisation in the GFDL-MOM mo-
del, at a horizontal resolution of about 1.8 degrees. [?] demonstrate the biharmonic
version of the parameterisation in a global run of the POP model, with an average
horizontal grid spacing of about 32km.

The NEMO implementation is a simplified form of that supplied by Greg Hol-
loway, the testing of which was described in [?]. The major simplification is that
a time invariant Neptune velocity field is assumed. This is computed only once,
during start-up, and made available to the rest of the code via a module. Vertical
diffusive terms are also ignored, and the model topography itself is used, rather
than a separate topographic dataset as in [?]. This implementation is only in the
iso-level formulation, as is the case anyway for the bilaplacian operator.

The velocity field is derived from a transport stream function given by :

ψ = −fL2H (6.31)

where L is a latitude-dependant length scale given by :

L = l1 + (l2 − l1)

(
1 + cos 2φ

2

)
(6.32)

where φ is latitude and l1 and l2 are polar and equatorial length scales respec-
tively. Neptune velocity components, u∗, v∗ are derived from the stremfunction
as :

u∗ = − 1

H

∂ψ

∂y
, v∗ =

1

H

∂ψ

∂x
(6.33)

!---
&nam_dynnept ! Neptune effect (simplified: lateral and vertical diffusions removed)
!---

112 Ocean Dynamics (DYN)

! Suggested lengthscale values are those of Eby & Holloway (1994) for a coarse model
ln_neptsimp = .false. ! yes/no use simplified neptune

ln_smooth_neptvel = .false. ! yes/no smooth zunep, zvnep
rn_tslse = 1.2e4 ! value of lengthscale L at the equator
rn_tslsp = 3.0e3 ! value of lengthscale L at the pole
! Specify whether to ramp down the Neptune velocity in shallow
! water, and if so the depth range controlling such ramping down
ln_neptramp = .false. ! ramp down Neptune velocity in shallow water
rn_htrmin = 100.0 ! min. depth of transition range
rn_htrmax = 200.0 ! max. depth of transition range

/

The Neptune effect is enabled when ln neptsimp=true (default=false). ln smooth neptvel
controls whether a scale-selective smoothing is applied to the Neptune effect flow
field (default=false) (this smoothing method is as used by Holloway). rn tslse and
rn tslsp are the equatorial and polar values respectively of the length-scale para-
meter L used in determining the Neptune stream function (??) and (??). Values at
intermediate latitudes are given by a cosine fit, mimicking the variation of the de-
formation radius with latitude. The default values of 12km and 3km are those given
in [?], appropriate for a coarse resolution model. The finer resolution study of [?]
increased the values of L by a factor of

√
2 to 17km and 4.2km, thus doubling the

stream function for a given topography.
The simple formulation for (u∗, v∗) can give unacceptably large velocities in

shallow water, and [?] add an offset to the depth in the denominator to control this
problem. In this implementation we offer instead (at the suggestion of G. Madec)
the option of ramping down the Neptune flow field to zero over a finite depth range.
The switch ln neptramp activates this option (default=false), in which case velo-
cities at depths greater than rn htrmax are unaltered, but ramp down linearly with
depth to zero at a depth of rn htrmin (and shallower).

7 Surface Boundary Condition (SBC, ICB)

114 Surface Boundary Condition (SBC, ICB)

!---
&namsbc ! Surface Boundary Condition (surface module)
!---

nn_fsbc = 5 ! frequency of surface boundary condition computation
! (also = the frequency of sea-ice model call)

ln_ana = .false. ! analytical formulation (T => fill namsbc_ana)
ln_flx = .false. ! flux formulation (T => fill namsbc_flx)
ln_blk_clio = .false. ! CLIO bulk formulation (T => fill namsbc_clio)
ln_blk_core = .true. ! CORE bulk formulation (T => fill namsbc_core)
ln_blk_mfs = .false. ! MFS bulk formulation (T => fill namsbc_mfs)
ln_cpl = .false. ! Coupled formulation (T => fill namsbc_cpl)
ln_apr_dyn = .false. ! Patm gradient added in ocean & ice Eqs. (T => fill namsbc_apr)
nn_ice = 2 ! =0 no ice boundary condition ,

! =1 use observed ice-cover ,
! =2 ice-model used ("key_lim3" or "key_lim2)

ln_dm2dc = .false. ! daily mean to diurnal cycle on short wave
ln_rnf = .true. ! runoffs (T => fill namsbc_rnf)
ln_ssr = .true. ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr)
nn_fwb = 3 ! FreshWater Budget: =0 unchecked

! =1 global mean of e-p-r set to zero at each time step
! =2 annual global mean of e-p-r set to zero
! =3 global emp set to zero and spread out over erp area

ln_cdgw = .false. ! Neutral drag coefficient read from wave model (T => fill namsbc_wave)
/

The ocean needs six fields as surface boundary condition :
– the two components of the surface ocean stress (τu , τv)
– the incoming solar and non solar heat fluxes (Qns , Qsr)
– the surface freshwater budget (emp, empS)

plus an optional field :
– the atmospheric pressure at the ocean surface (pa)

Five different ways to provide the first six fields to the ocean are available
which are controlled by namelist variables : an analytical formulation (ln ana = true),
a flux formulation (ln flx = true), a bulk formulae formulation (CORE (ln core = true),
CLIO (ln clio = true) or MFS 1 (ln mfs = true) bulk formulae) and a coupled formu-
lation (exchanges with a atmospheric model via the OASIS coupler) (ln cpl = true).
When used, the atmospheric pressure forces both ocean and ice dynamics (ln apr dyn = true).
The frequency at which the six or seven fields have to be updated is the nn fsbc
namelist parameter. When the fields are supplied from data files (flux and bulk for-
mulations), the input fields need not be supplied on the model grid. Instead a file
of coordinates and weights can be supplied which maps the data from the supplied
grid to the model points (so called ”Interpolation on the Fly”, see §??). In addition,
the resulting fields can be further modified using several namelist options. These
options control the rotation of vector components supplied relative to an east-north
coordinate system onto the local grid directions in the model ; the addition of a sur-
face restoring term to observed SST and/or SSS (ln ssr = true) ; the modification
of fluxes below ice-covered areas (using observed ice-cover or a sea-ice model)
(nn ice = 0,1, 2 or 3) ; the addition of river runoffs as surface freshwater fluxes or
lateral inflow (ln rnf = true) ; the addition of a freshwater flux adjustment in order
to avoid a mean sea-level drift (nn fwb = 0, 1 or 2) ; the transformation of the solar

1. Note that MFS bulk formulae compute fluxes only for the ocean component

7.1. Surface boundary condition for the ocean 115

radiation (if provided as daily mean) into a diurnal cycle (ln dm2dc = true) ; and a
neutral drag coefficient can be read from an external wave model (ln cdgw = true).
The latter option is possible only in case core or mfs bulk formulas are selected.

In this chapter, we first discuss where the surface boundary condition appears
in the model equations. Then we present the five ways of providing the surface
boundary condition, followed by the description of the atmospheric pressure and
the river runoff. Next the scheme for interpolation on the fly is described. Finally,
the different options that further modify the fluxes applied to the ocean are dis-
cussed. One of these is modification by icebergs (see §??), which act as drifting
sources of fresh water.

7.1 Surface boundary condition for the ocean

The surface ocean stress is the stress exerted by the wind and the sea-ice on
the ocean. The two components of stress are assumed to be interpolated onto the
ocean mesh, i.e. resolved onto the model (i,j) direction at u- and v-points They
are applied as a surface boundary condition of the computation of the momentum
vertical mixing trend (dynzdf.F90 module) :(

Avm

e3

∂Uh

∂k

)∣∣∣∣
z=1

=
1

ρo

(
τu
τv

)
(7.1)

where (τu, τv) = (utau, vtau) are the two components of the wind stress vector
in the (i, j) coordinate system.

The surface heat flux is decomposed into two parts, a non solar and a solar
heat flux, Qns and Qsr, respectively. The former is the non penetrative part of the
heat flux (i.e. the sum of sensible, latent and long wave heat fluxes). It is applied
as a surface boundary condition trend of the first level temperature time evolution
equation (trasbc.F90 module).

∂T

∂t
≡ · · · +

Qns
ρo Cp e3t

∣∣∣∣
k=1

(7.2)

Qsr is the penetrative part of the heat flux. It is applied as a 3D trends of the
temperature equation (traqsr.F90 module) when ln traqsr=True.

∂T

∂t
≡ · · · +

Qsr
ρoCp e3t

δk [Iw] (7.3)

where Iw is a non-dimensional function that describes the way the light penetrates
inside the water column. It is generally a sum of decreasing exponentials (see §??).

The surface freshwater budget is provided by fields : emp and empS which
may or may not be identical. Indeed, a surface freshwater flux has two effects :
it changes the volume of the ocean and it changes the surface concentration of
salt (and other tracers). Therefore it appears in the sea surface height as a volume

116 Surface Boundary Condition (SBC, ICB)

TABLE 7.1: Ocean variables provided by the ocean to the surface module (SBC).
The variable are averaged over nf sbc time step, i.e. the frequency of computation of
surface fluxes.

Variable description Model variable Units point
i-component of the surface current ssu m m.s−1 U
j-component of the surface current ssv m m.s−1 V
Sea surface temperature sst m ˚K T
Sea surface salinty sss m psu T

flux, emp (dynspg xxx modules), and in the salinity time evolution equations as a
concentration/dilution effect, empS (trasbc.F90 module).

∂η

∂t
≡ · · · + emp

∂S

∂t
≡ · · · +

empS S
e3t

∣∣∣∣
k=1

(7.4)

In the real ocean, emp = empS and the ocean salt content is conserved, but it
exist several numerical reasons why this equality should be broken. For example,
when the ocean is coupled to a sea-ice model, the water exchanged between ice and
ocean is slightly salty (mean sea-ice salinity is∼4 psu). In this case, empS take into
account both concentration/dilution effect associated with freezing/melting and the
salt flux between ice and ocean, while emp is only the volume flux. In addition, in
the current version of NEMO, the sea-ice is assumed to be above the ocean (the
so-called levitating sea-ice). Freezing/melting does not change the ocean volume
(no impact on emp) but it modifies the SSS.

Note that SST can also be modified by a freshwater flux. Precipitation (in par-
ticular solid precipitation) may have a temperature significantly different from the
SST. Due to the lack of information about the temperature of precipitation, we as-
sume it is equal to the SST. Therefore, no concentration/dilution term appears in
the temperature equation. It has to be emphasised that this absence does not mean
that there is no heat flux associated with precipitation ! Precipitation can change
the ocean volume and thus the ocean heat content. It is therefore associated with a
heat flux (not yet diagnosed in the model) [?]).

The ocean model provides the surface currents, temperature and salinity avera-
ged over nf sbc time-step (??).The computation of the mean is done in sbcmod.F90
module.

7.2. Input Data generic interface 117

7.2 Input Data generic interface

A generic interface has been introduced to manage the way input data (2D or
3D fields, like surface forcing or ocean T and S) are specify in NEMO. This task
is archieved by fldread.F90. The module was design with four main objectives in
mind :

1. optionally provide a time interpolation of the input data at model time-step,
whatever their input frequency is, and according to the different calendars
available in the model.

2. optionally provide an on-the-fly space interpolation from the native input
data grid to the model grid.

3. make the run duration independent from the period cover by the input files.

4. provide a simple user interface and a rather simple developer interface by
limiting the number of prerequisite information.

As a results the user have only to fill in for each variable a structure in the na-
melist file to defined the input data file and variable names, the frequency of the
data (in hours or months), whether its is climatological data or not, the period cove-
red by the input file (one year, month, week or day), and two additional parameters
for on-the-fly interpolation. When adding a new input variable, the developer has
to add the associated structure in the namelist, read this information by mirroring
the namelist read in sbc blk init for example, and simply call fld read to obtain the
desired input field at the model time-step and grid points.

The only constraints are that the input file is a NetCDF file, the file name fol-
lows a nomenclature (see §??), the period it cover is one year, month, week or day,
and, if on-the-fly interpolation is used, a file of weights must be supplied (see §??).

Note that when an input data is archived on a disc which is accessible directly
from the workspace where the code is executed, then the use can set the cn dir
to the pathway leading to the data. By default, the data are assumed to have been
copied so that cn dir=’./’.

7.2.1 Input Data specification (fldread.F90)

The structure associated with an input variable contains the following informa-
tion :

! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

where

File name : the stem name of the NetCDF file to be open. This stem will be com-
pleted automatically by the model, with the addition of a ’.nc’ at its end and
by date information and possibly a prefix (when using AGRIF). Tab.?? pro-
vides the resulting file name in all possible cases according to whether it is

118 Surface Boundary Condition (SBC, ICB)

a climatological file or not, and to the open/close frequency (see below for
definition).

TABLE 7.2: naming nomenclature for climatological or interannual input file, as
a function of the Open/close frequency. The stem name is assumed to be ’fn’. For
weekly files, the ’LLL’ corresponds to the first three letters of the first day of the week
(i.e. ’sun’,’sat’,’fri’,’thu’,’wed’,’tue’,’mon’). The ’YYYY’, ’MM’ and ’DD’ should be
replaced by the actual year/month/day, always coded with 4 or 2 digits. Note that (1) in
mpp, if the file is split over each subdomain, the suffix ’.nc’ is replaced by ’ PPPP.nc’,
where ’PPPP’ is the process number coded with 4 digits ; (2) when using AGRIF, the
prefix ’ N’ is added to files, where ’N’ is the child grid number.

daily or weekLLL monthly yearly
clim = false fn yYYYYmMMdDD fn yYYYYmMM fn yYYYY
clim = true not possible fn m ? ?.nc fn

Record frequency : the frequency of the records contained in the input file. Its
unit is in hours if it is positive (for example 24 for daily forcing) or in months
if negative (for example -1 for monthly forcing or -12 for annual forcing).
Note that this frequency must really be an integer and not a real. On some
computers, seting it to ’24.’ can be interpreted as 240 !

Variable name : the name of the variable to be read in the input NetCDF file.
Time interpolation : a logical to activate, or not, the time interpolation. If set

to ’false’, the forcing will have a steplike shape remaining constant during
each forcing period. For example, when using a daily forcing without time
interpolation, the forcing remaining constant from 00h00’00” to 23h59’59”.
If set to ’true’, the forcing will have a broken line shape. Records are assumed
to be dated the middle of the forcing period. For example, when using a
daily forcing with time interpolation, linear interpolation will be performed
between mid-day of two consecutive days.

Climatological forcing : a logical to specify if a input file contains climatological
forcing which can be cycle in time, or an interannual forcing which will
requires additional files if the period covered by the simulation exceed the
one of the file. See the above the file naming strategy which impacts the
expected name of the file to be opened.

Open/close frequency : the frequency at which forcing files must be opened/closed.
Four cases are coded : ’daily’, ’weekLLL’ (with ’LLL’ the first 3 letters of
the first day of the week), ’monthly’ and ’yearly’ which means the forcing
files will contain data for one day, one week, one month or one year. Files
are assumed to contain data from the beginning of the open/close period. For
example, the first record of a yearly file containing daily data is Jan 1st even
if the experiment is not starting at the beginning of the year.

Others : ’weights filename’ and ’pairing rotation’ are associted with on-the-fly
interpolation which is described in §??.

7.2. Input Data generic interface 119

Additional remarks :
(1) The time interpolation is a simple linear interpolation between two consecutive
records of the input data. The only tricky point is therefore to specify the date at
which we need to do the interpolation and the date of the records read in the in-
put files. Following ?, the date of a time step is set at the middle of the time step.
For example, for an experiment starting at 0h00’00” with a one hour time-step, a
time interpolation will be performed at the following time : 0h30’00”, 1h30’00”,
2h30’00”, etc. However, for forcing data related to the surface module, values are
not needed at every time-step but at every nn fsbc time-step. For example with
nn fsbc = 3, the surface module will be called at time-steps 1, 4, 7, etc. The date
used for the time interpolation is thus redefined to be at the middle of nn fsbc time-
step period. In the previous example, this leads to : 1h30’00”, 4h30’00”, 7h30’00”,
etc.
(2) For code readablility and maintenance issues, we don’t take into account the
NetCDF input file calendar. The calendar associated with the forcing field is build
according to the information provided by user in the record frequency, the open/close
frequency and the type of temporal interpolation. For example, the first record of a
yearly file containing daily data that will be interpolated in time is assumed to be
start Jan 1st at 12h00’00” and end Dec 31st at 12h00’00”.
(3) If a time interpolation is requested, the code will pick up the needed data in
the previous (next) file when interpolating data with the first (last) record of the
open/close period. For example, if the input file specifications are ”yearly, contai-
ning daily data to be interpolated in time”, the values given by the code between
00h00’00” and 11h59’59” on Jan 1st will be interpolated values between Dec 31st
12h00’00” and Jan 1st 12h00’00”. If the forcing is climatological, Dec and Jan will
be keep-up from the same year. However, if the forcing is not climatological, at the
end of the open/close period the code will automatically close the current file and
open the next one. Note that, if the experiment is starting (ending) at the beginning
(end) of an open/close period we do accept that the previous (next) file is not exis-
ting. In this case, the time interpolation will be performed between two identical
values. For example, when starting an experiment on Jan 1st of year Y with yearly
files and daily data to be interpolated, we do accept that the file related to year Y-1
is not existing. The value of Jan 1st will be used as the missing one for Dec 31st of
year Y-1. If the file of year Y-1 exists, the code will read its last record. Therefore,
this file can contain only one record corresponding to Dec 31st, a useful feature for
user considering that it is too heavy to manipulate the complete file for year Y-1.

7.2.2 Interpolation on-the-Fly

Interpolation on the Fly allows the user to supply input files required for the
surface forcing on grids other than the model grid. To do this he or she must supply,
in addition to the source data file, a file of weights to be used to interpolate from
the data grid to the model grid. The original development of this code used the
SCRIP package (freely available here under a copyright agreement). In principle,

http://climate.lanl.gov/Software/SCRIP

120 Surface Boundary Condition (SBC, ICB)

any package can be used to generate the weights, but the variables in the input
weights file must have the same names and meanings as assumed by the model.
Two methods are currently available : bilinear and bicubic interpolation.

Bilinear Interpolation

The input weights file in this case has two sets of variables : src01, src02, src03,
src04 and wgt01, wgt02, wgt03, wgt04. The ”src” variables correspond to the point
in the input grid to which the weight ”wgt” is to be applied. Each src value is an
integer corresponding to the index of a point in the input grid when written as a
one dimensional array. For example, for an input grid of size 5x10, point (3,2) is
referenced as point 8, since (2-1)*5+3=8. There are four of each variable because
bilinear interpolation uses the four points defining the grid box containing the point
to be interpolated. All of these arrays are on the model grid, so that values src01(i,j)
and wgt01(i,j) are used to generate a value for point (i,j) in the model.

Symbolically, the algorithm used is :

fm(i, j) = fm(i, j) +
4∑

k=1

wgt(k)f(idx(src(k))) (7.5)

where function idx() transforms a one dimensional index src(k) into a two dimen-
sional index, and wgt(1) corresponds to variable ”wgt01” for example.

Bicubic Interpolation

Again there are two sets of variables : ”src” and ”wgt”. But in this case there
are 16 of each. The symbolic algorithm used to calculate values on the model grid
is now :

fm(i, j) = fm(i, j)+
4∑

k=1

wgt(k)f(idx(src(k))) +
8∑

k=5

wgt(k)
∂f

∂i

∣∣∣∣
idx(src(k))

+

12∑
k=9

wgt(k)
∂f

∂j

∣∣∣∣
idx(src(k))

+

16∑
k=13

wgt(k)
∂2f

∂i∂j

∣∣∣∣
idx(src(k))

The gradients here are taken with respect to the horizontal indices and not distances
since the spatial dependency has been absorbed into the weights.

Implementation

To activate this option, a non-empty string should be supplied in the weights fi-
lename column of the relevant namelist ; if this is left as an empty string no action is
taken. In the model, weights files are read in and stored in a structured type (WGT)
in the fldread module, as and when they are first required. This initialisation proce-
dure determines whether the input data grid should be treated as cyclical or not by

7.2. Input Data generic interface 121

inspecting a global attribute stored in the weights input file. This attribute must be
called ”ew wrap” and be of integer type. If it is negative, the input non-model grid
is assumed not to be cyclic. If zero or greater, then the value represents the number
of columns that overlap. E.g. if the input grid has columns at longitudes 0, 1, 2,
, 359, then ew wrap should be set to 0 ; if longitudes are 0.5, 2.5, , 358.5, 360.5,
362.5, ew wrap should be 2. If the model does not find attribute ew wrap, then a
value of -999 is assumed. In this case the fld read routine defaults ew wrap to value
0 and therefore the grid is assumed to be cyclic with no overlapping columns. (In
fact this only matters when bicubic interpolation is required.) Note that no testing
is done to check the validity in the model, since there is no way of knowing the
name used for the longitude variable, so it is up to the user to make sure his or her
data is correctly represented.

Next the routine reads in the weights. Bicubic interpolation is assumed if it
finds a variable with name ”src05”, otherwise bilinear interpolation is used. The
WGT structure includes dynamic arrays both for the storage of the weights (on the
model grid), and when required, for reading in the variable to be interpolated (on
the input data grid). The size of the input data array is determined by examining
the values in the ”src” arrays to find the minimum and maximum i and j values
required. Since bicubic interpolation requires the calculation of gradients at each
point on the grid, the corresponding arrays are dimensioned with a halo of width
one grid point all the way around. When the array of points from the data file is
adjacent to an edge of the data grid, the halo is either a copy of the row/column
next to it (non-cyclical case), or is a copy of one from the first few columns on the
opposite side of the grid (cyclical case).

Limitations

1. The case where input data grids are not logically rectangular has not been
tested.

2. This code is not guaranteed to produce positive definite answers from posi-
tive definite inputs when a bicubic interpolation method is used.

3. The cyclic condition is only applied on left and right columns, and not to top
and bottom rows.

4. The gradients across the ends of a cyclical grid assume that the grid spacing
between the two columns involved are consistent with the weights used.

5. Neither interpolation scheme is conservative. (There is a conservative scheme
available in SCRIP, but this has not been implemented.)

Utilities

A set of utilities to create a weights file for a rectilinear input grid is available
(see the directory NEMOGCM/TOOLS/WEIGHTS).

122 Surface Boundary Condition (SBC, ICB)

7.2.3 Standalone Surface Boundary Condition Scheme
!---
&namsbc_sas ! analytical surface boundary condition
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_usp = ’sas_grid_U’ , 120 , ’vozocrtx’ , .true. , .true. , ’yearly’ , ’’ , ’’
sn_vsp = ’sas_grid_V’ , 120 , ’vomecrty’ , .true. , .true. , ’yearly’ , ’’ , ’’
sn_tem = ’sas_grid_T’ , 120 , ’sosstsst’ , .true. , .true. , ’yearly’ , ’’ , ’’
sn_sal = ’sas_grid_T’ , 120 , ’sosaline’ , .true. , .true. , ’yearly’ , ’’ , ’’
sn_ssh = ’sas_grid_T’ , 120 , ’sossheig’ , .true. , .true. , ’yearly’ , ’’ , ’’

ln_3d_uv = .true. ! specify whether we are supplying a 3D u,v field
cn_dir = ’./’ ! root directory for the location of the bulk files are

/

In some circumstances it may be useful to avoid calculating the 3D tempera-
ture, salinity and velocity fields and simply read them in from a previous run. For
example :

1. Multiple runs of the model are required in code development to see the affect
of different algorithms in the bulk formulae.

2. The effect of different parameter sets in the ice model is to be examined.

The StandAlone Surface scheme provides this utility. A new copy of the model
has to be compiled with a configuration based on ORCA2 SAS LIM. However no
namelist parameters need be changed from the settings of the previous run (except
perhaps nn date0) In this configuration, a few routines in the standard model are
overriden by new versions. Routines replaced are :

1. nemogcm.F90
This routine initialises the rest of the model and repeatedly calls the stp time
stepping routine (step.F90) Since the ocean state is not calculated all asso-
ciated initialisations have been removed.

2. step.F90
The main time stepping routine now only needs to call the sbc routine (and
a few utility functions).

3. sbcmod.F90
This has been cut down and now only calculates surface forcing and the
ice model required. New surface modules that can function when only the
surface level of the ocean state is defined can also be added (e.g. icebergs).

4. daymod.F90
No ocean restarts are read or written (though the ice model restarts are re-
tained), so calls to restart functions have been removed. This also means
that the calendar cannot be controlled by time in a restart file, so the user
must make sure that nn date0 in the model namelist is correct for his or her
purposes.

5. stpctl.F90
Since there is no free surface solver, references to it have been removed from
stp ctl module.

7.3. Analytical formulation (sbcana) 123

6. diawri.F90
All 3D data have been removed from the output. The surface temperature,
salinity and velocity components (which have been read in) are written along
with relevant forcing and ice data.

One new routine has been added :

1. sbcsas.F90 This module initialises the input files needed for reading tempe-
rature, salinity and velocity arrays at the surface. These filenames are sup-
plied in namelist namsbc sas. Unfortunately because of limitations with the
iom.F90 module, the full 3D fields from the mean files have to be read in and
interpolated in time, before using just the top level. Since fldread is used to
read in the data, Interpolation on the Fly may be used to change input data
resolution.

7.3 Analytical formulation (sbcana.F90 module)
!---
&namsbc_ana ! analytical surface boundary condition
!---

nn_tau000 = 0 ! gently increase the stress over the first ntau_rst time-steps
rn_utau0 = 0.5 ! uniform value for the i-stress
rn_vtau0 = 0.e0 ! uniform value for the j-stress
rn_qns0 = 0.e0 ! uniform value for the total heat flux
rn_qsr0 = 0.e0 ! uniform value for the solar radiation
rn_emp0 = 0.e0 ! uniform value for the freswater budget (E-P)

/

The analytical formulation of the surface boundary condition is the default
scheme. In this case, all the six fluxes needed by the ocean are assumed to be
uniform in space. They take constant values given in the namelist namsbc ana by
the variables rn utau0, rn vtau0, rn qns0, rn qsr0, and rn emp0 (emp = empS).
The runoff is set to zero. In addition, the wind is allowed to reach its nominal value
within a given number of time steps (nn tau000).

If a user wants to apply a different analytical forcing, the sbcana.F90 module
can be modified to use another scheme. As an example, the sbc ana gyre.F90 rou-
tine provides the analytical forcing for the GYRE configuration (see GYRE confi-
guration manual, in preparation).

7.4 Flux formulation (sbcflx.F90 module)
!---
&namsbc_flx ! surface boundary condition : flux formulation
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_utau = ’utau’ , 24 , ’utau’ , .false. , .false., ’yearly’ , ’’ , ’’
sn_vtau = ’vtau’ , 24 , ’vtau’ , .false. , .false., ’yearly’ , ’’ , ’’
sn_qtot = ’qtot’ , 24 , ’qtot’ , .false. , .false., ’yearly’ , ’’ , ’’
sn_qsr = ’qsr’ , 24 , ’qsr’ , .false. , .false., ’yearly’ , ’’ , ’’
sn_emp = ’emp’ , 24 , ’emp’ , .false. , .false., ’yearly’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the flux files
/

In the flux formulation (ln flx=true), the surface boundary condition fields are
directly read from input files. The user has to define in the namelist namsbc flx

124 Surface Boundary Condition (SBC, ICB)

the name of the file, the name of the variable read in the file, the time frequency at
which it is given (in hours), and a logical setting whether a time interpolation to the
model time step is required for this field. See §?? for a more detailed description
of the parameters.

Note that in general, a flux formulation is used in associated with a restoring
term to observed SST and/or SSS. See §?? for its specification.

7.5 Bulk formulation (sbcblk core.F90 sbcblk clio.F90 sbcblk mfs.F90 modules)

In the bulk formulation, the surface boundary condition fields are computed
using bulk formulae and atmospheric fields and ocean (and ice) variables.

The atmospheric fields used depend on the bulk formulae used. Three bulk
formulations are available : the CORE, the CLIO and the MFS bulk formulea. The
choice is made by setting to true one of the following namelist variable : ln core ;
ln clio or ln mfs.

Note : in forced mode, when a sea-ice model is used, a bulk formulation (CLIO
or CORE) have to be used. Therefore the two bulk (CLIO and CORE) formulea
include the computation of the fluxes over both an ocean and an ice surface.

7.5.1 CORE Bulk formulea (ln core=true, sbcblk core.F90)
!---
&namsbc_core ! namsbc_core CORE bulk formulea
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_wndi = ’u_10.15JUNE2009_orca2’ , 6 , ’U_10_MOD’, .false. , .true. , ’yearly’ , ’’ , ’Uwnd’
sn_wndj = ’v_10.15JUNE2009_orca2’ , 6 , ’V_10_MOD’, .false. , .true. , ’yearly’ , ’’ , ’Vwnd’
sn_qsr = ’ncar_rad.15JUNE2009_orca2’ , 24 , ’SWDN_MOD’, .false. , .true. , ’yearly’ , ’’ , ’’
sn_qlw = ’ncar_rad.15JUNE2009_orca2’ , 24 , ’LWDN_MOD’, .false. , .true. , ’yearly’ , ’’ , ’’
sn_tair = ’t_10.15JUNE2009_orca2’ , 6 , ’T_10_MOD’, .false. , .true. , ’yearly’ , ’’ , ’’
sn_humi = ’q_10.15JUNE2009_orca2’ , 6 , ’Q_10_MOD’, .false. , .true. , ’yearly’ , ’’ , ’’
sn_prec = ’ncar_precip.15JUNE2009_orca2’, -1 , ’PRC_MOD1’, .false. , .true. , ’yearly’ , ’’ , ’’
sn_snow = ’ncar_precip.15JUNE2009_orca2’, -1 , ’SNOW’ , .false. , .true. , ’yearly’ , ’’ , ’’
sn_tdif = ’taudif_core’ , 24 , ’taudif’ , .false. , .true. , ’yearly’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the bulk files
ln_2m = .false. ! air temperature and humidity referenced at 2m (T) instead 10m (F)
ln_taudif = .false. ! HF tau contribution: use "mean of stress module - module of the mean stress" data
rn_pfac = 1. ! multiplicative factor for precipitation (total & snow)

/

The CORE bulk formulae have been developed by ?. They have been designed
to handle the CORE forcing, a mixture of NCEP reanalysis and satellite data. They
use an inertial dissipative method to compute the turbulent transfer coefficients
(momentum, sensible heat and evaporation) from the 10 metre wind speed, air
temperature and specific humidity. This ? dataset is available through the GFDL
web site.

Note that substituting ERA40 to NCEP reanalysis fields does not require changes
in the bulk formulea themself. This is the so-called DRAKKAR Forcing Set (DFS)
[?].

The required 8 input fields are :
Note that the air velocity is provided at a tracer ocean point, not at a velocity

ocean point (u- and v-points). It is simpler and faster (less fields to be read), but it

http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html
http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html

7.5. Bulk formulation (sbcblk core, sbcblk clio or sbcblk mfs) 125

Variable desciption Model variable Units point
i-component of the 10m air velocity utau m.s−1 T
j-component of the 10m air velocity vtau m.s−1 T
10m air temperature tair ˚K T
Specific humidity humi % T
Incoming long wave radiation qlw W.m−2 T
Incoming short wave radiation qsr W.m−2 T
Total precipitation (liquid + solid) precip Kg.m−2.s−1 T
Solid precipitation snow Kg.m−2.s−1 T

is not the recommended method when the ocean grid size is the same or larger than
the one of the input atmospheric fields.

7.5.2 CLIO Bulk formulea (ln clio=true, sbcblk clio.F90)
!---
&namsbc_clio ! namsbc_clio CLIO bulk formulea
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_utau = ’taux_1m’ , -1 , ’sozotaux’, .true. , .true. , ’yearly’ , ’’ , ’’
sn_vtau = ’tauy_1m’ , -1 , ’sometauy’, .true. , .true. , ’yearly’ , ’’ , ’’
sn_wndm = ’flx’ , -1 , ’socliowi’, .true. , .true. , ’yearly’ , ’’ , ’’
sn_tair = ’flx’ , -1 , ’socliot2’, .true. , .true. , ’yearly’ , ’’ , ’’
sn_humi = ’flx’ , -1 , ’socliohu’, .true. , .true. , ’yearly’ , ’’ , ’’
sn_ccov = ’flx’ , -1 , ’socliocl’, .false. , .true. , ’yearly’ , ’’ , ’’
sn_prec = ’flx’ , -1 , ’socliopl’, .false. , .true. , ’yearly’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the bulk files are
/

The CLIO bulk formulae were developed several years ago for the Louvain-la-
neuve coupled ice-ocean model (CLIO, ?). They are simpler bulk formulae. They
assume the stress to be known and compute the radiative fluxes from a climatolo-
gical cloud cover.

The required 7 input fields are :

Variable desciption Model variable Units point
i-component of the ocean stress utau N.m−2 U
j-component of the ocean stress vtau N.m−2 V
Wind speed module vatm m.s−1 T
10m air temperature tair ˚K T
Specific humidity humi % T
Cloud cover % T
Total precipitation (liquid + solid) precip Kg.m−2.s−1 T
Solid precipitation snow Kg.m−2.s−1 T

As for the flux formulation, information about the input data required by the
model is provided in the namsbc blk core or namsbc blk clio namelist (see §??).

126 Surface Boundary Condition (SBC, ICB)

7.5.3 MFS Bulk formulea (ln mfs=true, sbcblk mfs.F90)
!---
&namsbc_mfs ! namsbc_mfs MFS bulk formulae
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_wndi = ’ecmwf’ , 6 , ’u10’ , .true. , .false. , ’daily’ ,’bicubic.nc’ , ’’
sn_wndj = ’ecmwf’ , 6 , ’v10’ , .true. , .false. , ’daily’ ,’bicubic.nc’ , ’’
sn_clc = ’ecmwf’ , 6 , ’clc’ , .true. , .false. , ’daily’ ,’bilinear.nc’, ’’
sn_msl = ’ecmwf’ , 6 , ’msl’ , .true. , .false. , ’daily’ ,’bicubic.nc’ , ’’
sn_tair = ’ecmwf’ , 6 , ’t2’ , .true. , .false. , ’daily’ ,’bicubic.nc’ , ’’
sn_rhm = ’ecmwf’ , 6 , ’rh’ , .true. , .false. , ’daily’ ,’bilinear.nc’, ’’
sn_prec = ’precip’ , 6 , ’precip’ , .true. , .false. , ’daily’ ,’bicubic’ , ’’

cn_dir = ’./ECMWF/’ ! root directory for the location of the bulk files
/

The MFS (Mediterranean Forecasting System) bulk formulae have been de-
veloped by ?. They have been designed to handle the ECMWF operational data
and are currently in use in the MFS operational system [?], [?]. The wind stress
computation uses a drag coefficient computed according to ?. The surface boun-
dary condition for temperature involves the balance between surface solar radia-
tion, net long-wave radiation, the latent and sensible heat fluxes. Solar radiation is
dependent on cloud cover and is computed by means of an astronomical formula
[?]. Albedo monthly values are from ? as means of the values at 40oN and 30oN
for the Atlantic Ocean (hence the same latitudinal band of the Mediterranean Sea).
The net long-wave radiation flux [?] is a function of air temperature, sea-surface
temperature, cloud cover and relative humidity. Sensible heat and latent heat fluxes
are computed by classical bulk formulae parameterized according to ?. Details on
the bulk formulae used can be found in ? and ?.

The required 7 input fields must be provided on the model Grid-T and are :
– Zonal Component of the 10m wind (ms−1) (sn windi)
– Meridional Component of the 10m wind (ms−1) (sn windj)
– Total Claud Cover (%) (sn clc)
– 2m Air Temperature (K) (sn tair)
– 2m Dew Point Temperature (K) (sn rhm)
– Total Precipitation Kgm−2s−1 (sn prec)
– Mean Sea Level Pressure (Pa) (sn msl)

7.6 Coupled formulation (sbccpl.F90 module)
!---
&namsbc_cpl ! coupled ocean/atmosphere model ("key_coupled")
!---
! ! description ! multiple ! vector ! vector ! vector !
! ! ! categories ! reference ! orientation ! grids !
! send
sn_snd_temp = ’weighted oce and ice’ , ’no’ , ’’ , ’’ , ’’
sn_snd_alb = ’weighted ice’ , ’no’ , ’’ , ’’ , ’’
sn_snd_thick = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_snd_crt = ’none’ , ’no’ , ’spherical’ , ’eastward-northward’ , ’T’
sn_snd_co2 = ’coupled’ , ’no’ , ’’ , ’’ , ’’
! receive
sn_rcv_w10m = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_taumod = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_tau = ’oce only’ , ’no’ , ’cartesian’ , ’eastward-northward’, ’U,V’
sn_rcv_dqnsdt = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_qsr = ’oce and ice’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_qns = ’oce and ice’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_emp = ’conservative’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_rnf = ’coupled’ , ’no’ , ’’ , ’’ , ’’

7.7. Atmospheric pressure (sbcapr) 127

sn_rcv_cal = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_co2 = ’coupled’ , ’no’ , ’’ , ’’ , ’’
/

In the coupled formulation of the surface boundary condition, the fluxes are
provided by the OASIS coupler at a frequency which is defined in the OASIS
coupler, while sea and ice surface temperature, ocean and ice albedo, and ocean
currents are sent to the atmospheric component.

A generalised coupled interface has been developed. It is currently interfaced
with OASIS 3 (key oasis3) and does not support OASIS 4 2. It has been success-
fully used to interface NEMO to most of the European atmospheric GCM (AR-
PEGE, ECHAM, ECMWF, HadAM, HadGAM, LMDz), as well as to WRF (Wea-
ther Research and Forecasting Model).

Note that in addition to the setting of ln cpl to true, the key coupled have to be
defined. The CPP key is mainly used in sea-ice to ensure that the atmospheric fluxes
are actually recieved by the ice-ocean system (no calculation of ice sublimation in
coupled mode). When PISCES biogeochemical model (key top and key pisces) is
also used in the coupled system, the whole carbon cycle is computed by defining
key cpl carbon cycle. In this case, CO2 fluxes will be exchanged between the
atmosphere and the ice-ocean system (and need to be activated in namsbc cpl).

The new namelist above allows control of various aspects of the coupling fields
(particularly for vectors) and now allows for any coupling fields to have multiple
sea ice categories (as required by LIM3 and CICE). When indicating a multi-
category coupling field in namsbc cpl the number of categories will be determined
by the number used in the sea ice model. In some limited cases it may be possible
to specify single category coupling fields even when the sea ice model is running
with multiple categories - in this case the user should examine the code to be sure
the assumptions made are satisfactory. In cases where this is definitely not possible
the model should abort with an error message. The new code has been tested using
ECHAM with LIM2, and HadGAM3 with CICE but although it will compile with
key lim3 additional minor code changes may be required to run using LIM3.

7.7 Atmospheric pressure (sbcapr.F90)
!---
&namsbc_apr ! Atmospheric pressure used as ocean forcing or in bulk
!---
! ! file name ! frequency (hours) ! variable ! time interpol. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_apr = ’patm’ , -1 ,’somslpre’, .true. , .true. , ’yearly’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the bulk files
rn_pref = 101000._wp ! reference atmospheric pressure [N/m2]/
ln_ref_apr = .false. ! ref. pressure: global mean Patm (T) or a constant (F)
ln_apr_obc = .false. ! inverse barometer added to OBC ssh data

/

The optional atmospheric pressure can be used to force ocean and ice dyna-
mics (ln apr dyn = true, namsbc namelist). The input atmospheric forcing defined
via sn apr structure (namsbc apr namelist) can be interpolated in time to the mo-
del time step, and even in space when the interpolation on-the-fly is used. When

2. The key oasis4 exist. It activates portion of the code that are still under development.

http://wrf-model.org/

128 Surface Boundary Condition (SBC, ICB)

used to force the dynamics, the atmospheric pressure is further transformed into an
equivalent inverse barometer sea surface height, ηib, using :

ηib = − 1

g ρo
(Patm − Po) (7.6)

where Patm is the atmospheric pressure and Po a reference atmospheric pressure.
A value of 101, 000 N/m2 is used unless ln ref apr is set to true. In this case Po
is set to the value of Patm averaged over the ocean domain, i.e. the mean value of
ηib is kept to zero at all time step.

The gradient of ηib is added to the RHS of the ocean momentum equation
(see dynspg.F90 for the ocean). For sea-ice, the sea surface height, ηm, which is
provided to the sea ice model is set to η − ηib (see sbcssr.F90 module). ηib can
be set in the output. This can simplify altimetry data and model comparison as
inverse barometer sea surface height is usually removed from these date prior to
their distribution.

When using time-splitting and BDY package for open boundaries conditions,
the equivalent inverse barometer sea surface height ηib can be added to BDY ssh
data : ln apr obc might be set to true.

7.8 Tidal Potential (sbctide.F90)

A module is available to use the tidal potential forcing and is activated with
with key tide.

!---
! nam_tide tide parameters (#ifdef key_tide)
!---
! ln_tide_pot = use tidal potential forcing
! nb_harmo = number of constituents used
! name(1) = ’M2’, ’K1’, etc name of constituent

&nam_tide
ln_tide_pot = .true.
nb_harmo = 11
clname(1) = ’M2’
clname(2) = ’S2’
clname(3) = ’N2’
clname(4) = ’K1’
clname(5) = ’O1’
clname(6) = ’Q1’
clname(7) = ’M4’
clname(8) = ’K2’
clname(9) = ’P1’
clname(10) = ’Mf’
clname(11) = ’Mm’

/

Concerning the tidal potential, some parameters are available in namelist :
- ln tide pot activate the tidal potential forcing
- nb harmo is the number of constituent used
- clname is the name of constituent
The tide is generated by the forces of gravity ot the Earth-Moon and Earth-Sun

sytem ; they are expressed as the gradient of the astronomical potential (~∇Πa).

7.9. River runoffs (sbcrnf) 129

The potential astronomical expressed, for the three types of tidal frequencies
following, by :
Tide long period :

Πa = gAk(
1

2
− 3

2
sin2φ)cos(ωkt+ V0k) (7.7)

diurnal Tide :
Πa = gAk(sin2φ)cos(ωkt+ λ+ V0k) (7.8)

Semi-diurnal tide :

Πa = gAk(cos
2φ)cos(ωkt+ 2λ+ V0k) (7.9)

Ak is the amplitude of the wave k, ωk the pulsation of the wave k, V0k the
astronomical phase of the wave k to Greenwich.

We make corrections to the astronomical potential. We obtain :

Π− gδ = (1 + k − h)ΠA(λ, φ) (7.10)

with k a number of Love estimated to 0.6 which parametrized the astronomical
tidal land, and h a number of Love to 0.3 which parametrized the parametrization
due to the astronomical tidal land.

7.9 River runoffs (sbcrnf.F90)
!---
&namsbc_rnf ! runoffs namelist surface boundary condition
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_rnf = ’runoff_core_monthly’, -1 , ’sorunoff’, .true. , .true. , ’yearly’ , ’’ , ’’
sn_cnf = ’runoff_core_monthly’, 0 , ’socoefr0’, .false. , .true. , ’yearly’ , ’’ , ’’
sn_s_rnf = ’runoffs’ , 24 , ’rosaline’, .true. , .true. , ’yearly’ , ’’ , ’’
sn_t_rnf = ’runoffs’ , 24 , ’rotemper’, .true. , .true. , ’yearly’ , ’’ , ’’
sn_dep_rnf = ’runoffs’ , 0 , ’rodepth’ , .false. , .true. , ’yearly’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the runoff files
ln_rnf_emp = .false. ! runoffs included into precipitation field (T) or into a file (F)
ln_rnf_mouth = .true. ! specific treatment at rivers mouths
rn_hrnf = 15.e0 ! depth over which enhanced vertical mixing is used
rn_avt_rnf = 1.e-3 ! value of the additional vertical mixing coef. [m2/s]
rn_rfact = 1.e0 ! multiplicative factor for runoff
ln_rnf_depth = .false. ! read in depth information for runoff
ln_rnf_tem = .false. ! read in temperature information for runoff
ln_rnf_sal = .false. ! read in salinity information for runoff

/

River runoff generally enters the ocean at a nonzero depth rather than through
the surface. Many models, however, have traditionally inserted river runoff to the
top model cell. This was the case in NEMO prior to the version 3.3, and was com-
bined with an option to increase vertical mixing near the river mouth.

However, with this method numerical and physical problems arise when the
top grid cells are of the order of one meter. This situation is common in coastal
modelling and is becoming more common in open ocean and climate modelling 3.

3. At least a top cells thickness of 1 meter and a 3 hours forcing frequency are required to properly
represent the diurnal cycle [?]. see also §??.

130 Surface Boundary Condition (SBC, ICB)

As such from V 3.3 onwards it is possible to add river runoff through a non-zero
depth, and for the temperature and salinity of the river to effect the surrounding
ocean. The user is able to specify, in a NetCDF input file, the temperature and
salinity of the river, along with the depth (in metres) which the river should be
added to.

Namelist options, ln rnf depth, ln rnf sal and ln rnf temp control whether the
river attributes (depth, salinity and temperature) are read in and used. If these are
set as false the river is added to the surface box only, assumed to be fresh (0 psu),
and/or taken as surface temperature respectively.

The runoff value and attributes are read in in sbcrnf. For temperature -999 is
taken as missing data and the river temperature is taken to be the surface temperatue
at the river point. For the depth parameter a value of -1 means the river is added
to the surface box only, and a value of -999 means the river is added through the
entire water column. After being read in the temperature and salinity variables are
multiplied by the amount of runoff (converted into m/s) to give the heat and salt
content of the river runoff. After the user specified depth is read ini, the number of
grid boxes this corresponds to is calculated and stored in the variable nz rnf . The
variable h dep is then calculated to be the depth (in metres) of the bottom of the
lowest box the river water is being added to (i.e. the total depth that river water is
being added to in the model).

The mass/volume addition due to the river runoff is, at each relevant depth le-
vel, added to the horizontal divergence (hdivn) in the subroutine sbc rnf div (called
from divcur.F90). This increases the diffusion term in the vicinity of the river, the-
reby simulating a momentum flux. The sea surface height is calculated using the
sum of the horizontal divergence terms, and so the river runoff indirectly forces an
increase in sea surface height.

The hdivn terms are used in the tracer advection modules to force vertical ve-
locities. This causes a mass of water, equal to the amount of runoff, to be moved
into the box above. The heat and salt content of the river runoff is not included in
this step, and so the tracer concentrations are diluted as water of ocean temperature
and salinity is moved upward out of the box and replaced by the same volume of
river water with no corresponding heat and salt addition.

For the linear free surface case, at the surface box the tracer advection causes
a flux of water (of equal volume to the runoff) through the sea surface out of the
domain, which causes a salt and heat flux out of the model. As such the volume of
water does not change, but the water is diluted.

For the non-linear free surface case (key vvl), no flux is allowed through the
surface. Instead in the surface box (as well as water moving up from the boxes
below) a volume of runoff water is added with no corresponding heat and salt
addition and so as happens in the lower boxes there is a dilution effect. (The runoff
addition to the top box along with the water being moved up through boxes below
means the surface box has a large increase in volume, whilst all other boxes remain
the same size)

7.10. Handling of icebergs (ICB) 131

In trasbc the addition of heat and salt due to the river runoff is added. This is
done in the same way for both vvl and non-vvl. The temperature and salinity are
increased through the specified depth according to the heat and salt content of the
river.

In the non-linear free surface case (vvl), near the end of the time step the change
in sea surface height is redistrubuted through the grid boxes, so that the original
ratios of grid box heights are restored. In doing this water is moved into boxes
below, throughout the water column, so the large volume addition to the surface
box is spread between all the grid boxes.

It is also possible for runnoff to be specified as a negative value for modelling
flow through straits, i.e. modelling the Baltic flow in and out of the North Sea.
When the flow is out of the domain there is no change in temperature and salinity,
regardless of the namelist options used, as the ocean water leaving the domain
removes heat and salt (at the same concentration) with it.

7.10 Handling of icebergs (ICB)
!---
&namberg ! iceberg parameters
!---

ln_icebergs = .true.
ln_bergdia = .true. ! Calculate budgets
nn_verbose_level = 1 ! Turn on more verbose output if level > 0
nn_verbose_write = 15 ! Timesteps between verbose messages
nn_sample_rate = 1 ! Timesteps between sampling for trajectory storage
rn_initial_mass = 8.8e7, 4.1e8, 3.3e9, 1.8e10, 3.8e10, 7.5e10, 1.2e11, 2.2e11, 3.9e11, 7.4e11
rn_distribution = 0.24, 0.12, 0.15, 0.18, 0.12, 0.07, 0.03, 0.03, 0.03, 0.02

! Ratio between effective and real iceberg mass (non-dim)
rn_mass_scaling = 2000, 200, 50, 20, 10, 5, 2, 1, 1, 1

! Total thickness of newly calved bergs (m)
rn_initial_thickness = 40., 67., 133., 175., 250., 250., 250., 250., 250., 250.
rn_rho_bergs = 850. ! Density of icebergs
rn_LoW_ratio = 1.5 ! Initial ratio L/W for newly calved icebergs
ln_operator_splitting = .true. ! Use first order operator splitting for thermodynamics
rn_bits_erosion_fraction = 0. ! Fraction of erosion melt flux to divert to bergy bits
rn_sicn_shift = 0. ! Shift of sea-ice concn in erosion flux (0<sicn_shift<1)
ln_passive_mode = .false. ! iceberg - ocean decoupling
nn_test_icebergs = 10 ! Create icebergs in absence of a calving file (-1 = no)
rn_test_box = -61.0, -55.0, 59.0, 65.0
rn_speed_limit = 0. ! CFL speed limit for a berg

! filename ! freq (hours) ! variable ! time interp. ! clim !’yearly’ or ! weights ! rotation !
! ! (<0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_icb = ’calving’ , -1 , ’calvingmask’, .true. , .true., ’yearly’ , ’ ’ , ’ ’

cn_dir = ’./’
/

Icebergs are modelled as lagrangian particles in NEMO. Their physical beha-
viour is controlled by equations as described in ?). (Note that the authors kindly
provided a copy of their code to act as a basis for implementation in NEMO.) Ice-
bergs are initially spawned into one of ten classes which have specific mass and
thickness as described by rn initial mass and rn initial thickness. Each class has
an associated scaling (rn mass scaling), which is an integer representing how many
icebergs of this class are being described as one lagrangian point (this reduces the
numerical problem of tracking every single iceberg). They are enabled by setting
ln icebergs = true.

Two initialisation schemes are possible.

132 Surface Boundary Condition (SBC, ICB)

nn test icebergs > 0 In this scheme, the value of nn test icebergs represents the
class of iceberg to generate (so between 1 and 10), and nn test icebergs
provides a lon/lat box in the domain at each grid point of which an ice-
berg is generated at the beginning of the run. (Note that this happens each
time the timestep equals nn nit000.) nn test icebergs is defined by four num-
bers in nn test box representing the corners of the geographical box : lon-
min,lonmax,latmin,latmax

nn test icebergs = -1 In this scheme the model reads a calving file supplied in the
sn icb parameter. This should be a file with a field on the configuration grid
(typically ORCA) representing ice accumulation rate at each model point.
These should be ocean points adjacent to land where icebergs are known
to calve. Most points in this input grid are going to have value zero. When
the model runs, ice is accumulated at each grid point which has a non-zero
source term. At each time step, a test is performed to see if there is enough
ice mass to calve an iceberg of each class in order (1 to 10). Note that this
is the initial mass multiplied by the number each particle represents (i.e.
the scaling). If there is enough ice, a new iceberg is spawned and the total
available ice reduced accordingly.

Icebergs are influenced by wind, waves and currents, bottom melt and erosion.
The latter act to disintegrate the iceberg. This is either all melted freshwater, or
(if rn bits erosion fraction > 0) into melt and additionally small ice bits which are
assumed to propagate with their larger parent and thus delay fluxing into the ocean.
Melt water (and other variables on the configuration grid) are written into the main
NEMO model output files.

Extensive diagnostics can be produced. Separate output files are maintained for
human-readable iceberg information. A separate file is produced for each processor
(independent of ln ctl). The amount of information is controlled by two integer
parameters :

nn verbose level takes a value between one and four and represents an increasing
number of points in the code at which variables are written, and an increasing
level of obscurity.

nn verbose write is the number of timesteps between writes

Iceberg trajectories can also be written out and this is enabled by setting nn sample rate> 0.
A non-zero value represents how many timesteps between writes of information
into the output file. These output files are in NETCDF format. When key mpp mpi
is defined, each output file contains only those icebergs in the corresponding pro-
cessor. Trajectory points are written out in the order of their parent iceberg in the
model’s ”linked list” of icebergs. So care is needed to recreate data for individual
icebergs, since its trajectory data may be spread across multiple files.

7.11. Miscellaneous options 133

Q
sr

∆t

analytical solution
reconstructed (mean of over ∆t)
analytical solution at ti

t1 t2 t3 t4 t5 t6
time of day (t)

FIGURE 7.1: Example of recontruction of the diurnal cycle variation of short wave
flux from daily mean values. The reconstructed diurnal cycle (black line) is chosen as
the mean value of the analytical cycle (blue line) over a time step, not as the mid time
step value of the analytically cycle (red square). From ?.

7.11 Miscellaneous options

7.11.1 Diurnal cycle (sbcdcy.F90)

? have shown that to capture 90% of the diurnal variability of SST requires
a vertical resolution in upper ocean of 1 m or better and a temporal resolution
of the surface fluxes of 3 h or less. Unfortunately high frequency forcing fields
are rare, not to say inexistent. Nevertheless, it is possible to obtain a reasonable
diurnal cycle of the SST knowning only short wave flux (SWF) at high frequency
[?]. Furthermore, only the knowledge of daily mean value of SWF is needed, as
higher frequency variations can be reconstructed from them, assuming that the
diurnal cycle of SWF is a scaling of the top of the atmosphere diurnal cycle of
incident SWF. The ? reconstruction algorithm is available in NEMO by setting
ln dm2dc = true (a namsbc namelist parameter) when using CORE bulk formulea
(ln blk core = true) or the flux formulation (ln flx = true). The reconstruction is
performed in the sbcdcy.F90 module. The detail of the algoritm used can be found
in the appendix A of ?. The algorithm preserve the daily mean incomming SWF as
the reconstructed SWF at a given time step is the mean value of the analytical cycle
over this time step (Fig.??). The use of diurnal cycle reconstruction requires the in-

134 Surface Boundary Condition (SBC, ICB)

time = 1h

0 50 100 150
0

20

40

60

80

100

120

140 time = 3h

0 50 100 150

time = 5h

0 50 100 150

time = 7h time = 9h time = 11h

time = 13h time = 15h time = 17h

time = 19h time = 21h time = 23h

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0 50 100 150 0 50 100 150 0 50 100 150

0 50 100 150 0 50 100 150 0 50 100 150

FIGURE 7.2: Example of recontruction of the diurnal cycle variation of short wave
flux from daily mean values on an ORCA2 grid with a time sampling of 2 hours (from
1am to 11pm). The display is on (i,j) plane.

put SWF to be daily (i.e. a frequency of 24 and a time interpolation set to true in
sn qsr namelist parameter). Furthermore, it is recommended to have a least 8 sur-
face module time step per day, that is ∆t nn fsbc < 10, 800 s = 3 h. An example
of recontructed SWF is given in Fig.?? for a 12 reconstructed diurnal cycle, one
every 2 hours (from 1am to 11pm).

Note also that the setting a diurnal cycle in SWF is highly recommended when
the top layer thickness approach 1 m or less, otherwise large error in SST can
appear due to an inconsistency between the scale of the vertical resolution and the
forcing acting on that scale.

7.11. Miscellaneous options 135

7.11.2 Rotation of vector pairs onto the model grid directions

When using a flux (ln flx=true) or bulk (ln clio=true or ln core=true) formu-
lation, pairs of vector components can be rotated from east-north directions onto
the local grid directions. This is particularly useful when interpolation on the fly
is used since here any vectors are likely to be defined relative to a rectilinear grid.
To activate this option a non-empty string is supplied in the rotation pair column
of the relevant namelist. The eastward component must start with ”U” and the nor-
thward component with ”V”. The remaining characters in the strings are used to
identify which pair of components go together. So for example, strings ”U1” and
”V1” next to ”utau” and ”vtau” would pair the wind stress components together
and rotate them on to the model grid directions ; ”U2” and ”V2” could be used
against a second pair of components, and so on. The extra characters used in the
strings are arbitrary. The rot rep routine from the geo2ocean.F90 module is used
to perform the rotation.

7.11.3 Surface restoring to observed SST and/or SSS (sbcssr.F90)
!---
&namsbc_ssr ! surface boundary condition : sea surface restoring
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_sst = ’sst_data’ , 24 , ’sst’ , .false. , .false., ’yearly’ , ’’ , ’’
sn_sss = ’sss_data’ , -1 , ’sss’ , .true. , .true. , ’yearly’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the runoff files
nn_sstr = 0 ! add a retroaction term in the surface heat flux (=1) or not (=0)
nn_sssr = 2 ! add a damping term in the surface freshwater flux (=2)

! or to SSS only (=1) or no damping term (=0)
rn_dqdt = -40. ! magnitude of the retroaction on temperature [W/m2/K]
rn_deds = -27.7 ! magnitude of the damping on salinity [mm/day]
ln_sssr_bnd = .true. ! flag to bound erp term (associated with nn_sssr=2)
rn_sssr_bnd = 4.e0 ! ABS(Max/Min) value of the damping erp term [mm/day]

/

In forced mode using a flux formulation (ln flx = true), a feedback term must
be added to the surface heat flux Qons :

Qns = Qons +
dQ

dT
(T |k=1 − SSTObs) (7.11)

where SST is a sea surface temperature field (observed or climatological), T is the
model surface layer temperature and dQ

dT is a negative feedback coefficient usually
taken equal to −40 W/m2/K. For a 50 m mixed-layer depth, this value corres-
ponds to a relaxation time scale of two months. This term ensures that if T perfectly
matches the supplied SST, then Q is equal to Qo.

In the fresh water budget, a feedback term can also be added. Converted into
an equivalent freshwater flux, it takes the following expression :

emp = empo + γ−1
s e3t

(S|k=1 − SSSObs)
S|k=1

(7.12)

where empo is a net surface fresh water flux (observed, climatological or an
atmospheric model product), SSSObs is a sea surface salinity (usually a time in-
terpolation of the monthly mean Polar Hydrographic Climatology [?]), S|k=1 is

136 Surface Boundary Condition (SBC, ICB)

the model surface layer salinity and γs is a negative feedback coefficient which
is provided as a namelist parameter. Unlike heat flux, there is no physical justifi-
cation for the feedback term in ?? as the atmosphere does not care about ocean
surface salinity [?]. The SSS restoring term should be viewed as a flux correction
on freshwater fluxes to reduce the uncertainties we have on the observed freshwater
budget.

7.11.4 Handling of ice-covered area (sbcice ...)

The presence at the sea surface of an ice covered area modifies all the fluxes
transmitted to the ocean. There are several way to handle sea-ice in the system
depending on the value of the nn ice namelist parameter.

nn ice = 0 there will never be sea-ice in the computational domain. This is a ty-
pical namelist value used for tropical ocean domain. The surface fluxes are
simply specified for an ice-free ocean. No specific things is done for sea-ice.

nn ice = 1 sea-ice can exist in the computational domain, but no sea-ice model
is used. An observed ice covered area is read in a file. Below this area, the
SST is restored to the freezing point and the heat fluxes are set to −4 W/m2

(−2 W/m2) in the northern (southern) hemisphere. The associated modi-
fication of the freshwater fluxes are done in such a way that the change in
buoyancy fluxes remains zero. This prevents deep convection to occur when
trying to reach the freezing point (and so ice covered area condition) while
the SSS is too large. This manner of managing sea-ice area, just by using
si IF case, is usually referred as the ice-if model. It can be found in the sb-
cice if.F90 module.

nn ice = 2 or more A full sea ice model is used. This model computes the ice-
ocean fluxes, that are combined with the air-sea fluxes using the ice fraction
of each model cell to provide the surface ocean fluxes. Note that the activa-
tion of a sea-ice model is is done by defining a CPP key (key lim2, key lim3
or key cice). The activation automatically overwrites the read value of nn ice
to its appropriate value (i.e. 2 for LIM-2, 3 for LIM-3 or 4 for CICE).

7.11.5 Interface to CICE (sbcice cice.F90)

It is now possible to couple a regional or global NEMO configuration (without
AGRIF) to the CICE sea-ice model by using key cice. The CICE code can be obtai-
ned from LANL and the additional ’hadgem3’ drivers will be required, even with
the latest code release. Input grid files consistent with those used in NEMO will
also be needed, and CICE CPP keys ORCA GRID, CICE IN NEMO and cou-
pled should be used (seek advice from UKMO if necessary). Currently the code
is only designed to work when using the CORE forcing option for NEMO (with
calc strair = true and calc Tsfc = true in the CICE name-list), or alternatively
when NEMO is coupled to the HadGAM3 atmosphere model (with calc strair = false

http://oceans11.lanl.gov/trac/CICE/

7.11. Miscellaneous options 137

and calc Tsfc = false). The code is intended to be used with nn fsbc set to 1 (al-
though coupling ocean and ice less frequently should work, it is possible the cal-
culation of some of the ocean-ice fluxes needs to be modified slightly - the user
should check that results are not significantly different to the standard case).

There are two options for the technical coupling between NEMO and CICE.
The standard version allows complete flexibility for the domain decompositions
in the individual models, but this is at the expense of global gather and scatter
operations in the coupling which become very expensive on larger numbers of pro-
cessors. The alternative option (using key nemocice decomp for both NEMO and
CICE) ensures that the domain decomposition is identical in both models (provi-
ded domain parameters are set appropriately, and processor shape = square-ice
and distribution wght = block in the CICE name-list) and allows much more ef-
ficient direct coupling on individual processors. This solution scales much better
although it is at the expense of having more idle CICE processors in areas where
there is no sea ice.

7.11.6 Freshwater budget control (sbcfwb.F90)

For global ocean simulation it can be useful to introduce a control of the mean
sea level in order to prevent unrealistic drift of the sea surface height due to inaccu-
racy in the freshwater fluxes. In NEMO, two way of controlling the the freshwater
budget.

nn fwb=0 no control at all. The mean sea level is free to drift, and will certainly
do so.

nn fwb=1 global mean emp set to zero at each model time step.

nn fwb=2 freshwater budget is adjusted from the previous year annual mean bud-
get which is read in the EMPave old.dat file. As the model uses the Boussi-
nesq approximation, the annual mean fresh water budget is simply evaluated
from the change in the mean sea level at January the first and saved in the
EMPav.dat file.

7.11.7 Neutral drag coefficient from external wave model (sbcwave.F90)
!---
&namsbc_wave ! External fields from wave model
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

sn_cdg = ’cdg_wave’ , 1 , ’drag_coeff’ , .true. , .false. , ’daily’ , ’’ , ’’
!

cn_dir_cdg = ’./’ ! root directory for the location of drag coefficient files
/

? ? In order to read a neutral drag coeff, from an external data source (i.e. a wave
model), the logical variable ln cdgw in namsbc namelist must be defined
.true.. The sbcwave.F90 module containing the routine sbc wave reads the
namelist namsbc wave (for external data names, locations, frequency, in-
terpolation and all the miscellanous options allowed by Input Data generic

138 Surface Boundary Condition (SBC, ICB)

Interface see §??) and a 2D field of neutral drag coefficient. Then using the
routine TURB CORE 1Z or TURB CORE 2Z, and starting from the neu-
tral drag coefficent provided, the drag coefficient is computed according to
stable/unstable conditions of the air-sea interface following ?.

8 Lateral Boundary Condition (LBC)

140 Lateral Boundary Condition (LBC)

8.1 Boundary Condition at the Coast (rn shlat)
!---
&namlbc ! lateral momentum boundary condition
!---

rn_shlat = 2. ! shlat = 0 ! 0 < shlat < 2 ! shlat = 2 ! 2 < shlat
! free slip ! partial slip ! no slip ! strong slip

/

The discrete representation of a domain with complex boundaries (coastlines
and bottom topography) leads to arrays that include large portions where a compu-
tation is not required as the model variables remain at zero. Nevertheless, vectorial
supercomputers are far more efficient when computing over a whole array, and the
readability of a code is greatly improved when boundary conditions are applied in
an automatic way rather than by a specific computation before or after each com-
putational loop. An efficient way to work over the whole domain while specifying
the boundary conditions, is to use multiplication by mask arrays in the computa-
tion. A mask array is a matrix whose elements are 1 in the ocean domain and 0
elsewhere. A simple multiplication of a variable by its own mask ensures that it
will remain zero over land areas. Since most of the boundary conditions consist of
a zero flux across the solid boundaries, they can be simply applied by multiplying
variables by the correct mask arrays, i.e. the mask array of the grid point where
the flux is evaluated. For example, the heat flux in the i-direction is evaluated at
u-points. Evaluating this quantity as,

AlT

e1

∂T

∂i
≡ AlTu
e1u

δi+1/2 [T] masku (8.1)

(where masku is the mask array at a u-point) ensures that the heat flux is zero inside
land and at the boundaries, since masku is zero at solid boundaries which in this
case are defined at u-points (normal velocity u remains zero at the coast) (Fig. ??).

For momentum the situation is a bit more complex as two boundary conditions
must be provided along the coast (one each for the normal and tangential veloci-
ties). The boundary of the ocean in the C-grid is defined by the velocity-faces. For
example, at a given T -level, the lateral boundary (a coastline or an intersection with
the bottom topography) is made of segments joining f -points, and normal velocity
points are located between two f−points (Fig. ??). The boundary condition on the
normal velocity (no flux through solid boundaries) can thus be easily implemented
using the mask system. The boundary condition on the tangential velocity requires
a more specific treatment. This boundary condition influences the relative vorticity
and momentum diffusive trends, and is required in order to compute the vorticity at
the coast. Four different types of lateral boundary condition are available, control-
led by the value of the rn shlat namelist parameter. (The value of the maskf array
along the coastline is set equal to this parameter.) These are :

8.1. Boundary Condition at the Coast (rn shlat) 141

land

ocean

T-point
f-point
u-, v-points

V=0 V=0

V=0

U=0

U=0

FIGURE 8.1: Lateral boundary (thick line) at T-level. The velocity normal to the
boundary is set to zero.

free-slip boundary condition (rn shlat=0) : the tangential velocity at the coast-
line is equal to the offshore velocity, i.e. the normal derivative of the tangen-
tial velocity is zero at the coast, so the vorticity : maskf array is set to zero
inside the land and just at the coast (Fig. ??-a).

no-slip boundary condition (rn shlat=2) : the tangential velocity vanishes at the
coastline. Assuming that the tangential velocity decreases linearly from the
closest ocean velocity grid point to the coastline, the normal derivative is
evaluated as if the velocities at the closest land velocity gridpoint and the
closest ocean velocity gridpoint were of the same magnitude but in the op-
posite direction (Fig. ??-b). Therefore, the vorticity along the coastlines is
given by :

ζ ≡ 2
(
δi+1/2 [e2vv]− δj+1/2 [e1uu]

)
/ (e1fe2f) ,

where u and v are masked fields. Setting the maskf array to 2 along the coast-
line provides a vorticity field computed with the no-slip boundary condition,
simply by multiplying it by the maskf :

ζ ≡ 1

e1f e2f

(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
maskf (8.2)

142 Lateral Boundary Condition (LBC)

V V

land ocean land ocean

V V

land ocean land ocean

fmask=0
fmask=2

fmask=1
fmask>2

0<fmask<2

(a) (b)

(c) (d)

FIGURE 8.2: lateral boundary condition (a) free-slip (rn shlat = 0) ; (b) no-slip
(rn shlat = 2) ; (c) ”partial” free-slip (0 < rn shlat < 2) and (d) ”strong” no-slip
(2 < rn shlat). Implied ”ghost” velocity inside land area is display in grey.

8.2. Model Domain Boundary Condition (jperio) 143

”partial” free-slip boundary condition (0<rn shlat<2) : the tangential velocity
at the coastline is smaller than the offshore velocity, i.e. there is a lateral fric-
tion but not strong enough to make the tangential velocity at the coast vanish
(Fig. ??-c). This can be selected by providing a value of maskf strictly in-
between 0 and 2.

”strong” no-slip boundary condition (2<rn shlat) : the viscous boundary layer
is assumed to be smaller than half the grid size (Fig. ??-d). The friction is
thus larger than in the no-slip case.

Note that when the bottom topography is entirely represented by the s-coor-
dinates (pure s-coordinate), the lateral boundary condition on tangential velocity is
of much less importance as it is only applied next to the coast where the minimum
water depth can be quite shallow.

The alternative numerical implementation of the no-slip boundary conditions
for an arbitrary coast line of ? is also available through the key noslip accurate
CPP key. It is based on a fourth order evaluation of the shear at the coast which, in
turn, allows a true second order scheme in the interior of the domain (i.e. the nume-
rical boundary scheme simulates the truncation error of the numerical scheme used
in the interior of the domain). ? found that such a technique considerably improves
the quality of the numerical solution. In NEMO, such spectacular improvements
have not been found in the half-degree global ocean (ORCA05), but significant
reductions of numerically induced coastal upwellings were found in an eddy re-
solving simulation of the Alboran Sea [?]. Nevertheless, since a no-slip boundary
condition is not recommended in an eddy permitting or resolving simulation [?],
the use of this option is also not recommended.

In practice, the no-slip accurate option changes the way the curl is evaluated
at the coast (see divcur.F90 module), and requires the nature of each coastline grid
point (convex or concave corners, straight north-south or east-west coast) to be
specified. This is performed in routine dom msk nsa in the domask.F90 module.

8.2 Model Domain Boundary Condition (jperio)

At the model domain boundaries several choices are offered : closed, cyclic
east-west, south symmetric across the equator, a north-fold, and combination closed-
north fold or cyclic-north-fold. The north-fold boundary condition is associated
with the 3-pole ORCA mesh.

8.2.1 Closed, cyclic, south symmetric (jperio = 0, 1 or 2)

The choice of closed, cyclic or symmetric model domain boundary condition is
made by setting jperio to 0, 1 or 2 in file par oce.F90. Each time such a boundary
condition is needed, it is set by a call to routine lbclnk.F90. The computation of
momentum and tracer trends proceeds from i = 2 to i = jpi − 1 and from j = 2

144 Lateral Boundary Condition (LBC)

row(jpj) = row(2)

row(1) = row(jpj-1) line(1) = -line(2)

line(1) = line(2)

T- or u-point
variables

v- or f-point
variables

(a) (b)

FIGURE 8.3: setting of (a) east-west cyclic (b) symmetric across the equator boun-
dary conditions.

to j = jpj − 1, i.e. in the model interior. To choose a lateral model boundary
condition is to specify the first and last rows and columns of the model variables.

For closed boundary (jperio=0) , solid walls are imposed at all model bounda-
ries : first and last rows and columns are set to zero.

For cyclic east-west boundary (jperio=1) , first and last rows are set to zero (clo-
sed) whilst the first column is set to the value of the last-but-one column and
the last column to the value of the second one (Fig. ??-a). Whatever flows
out of the eastern (western) end of the basin enters the western (eastern) end.
Note that there is no option for north-south cyclic or for doubly cyclic cases.

For symmetric boundary condition across the equator (jperio=2) , last rows, and
first and last columns are set to zero (closed). The row of symmetry is cho-
sen to be the u- and T−points equator line (j = 2, i.e. at the southern end of
the domain). For arrays defined at u− or T−points, the first row is set to the
value of the third row while for most of v- and f -point arrays (v, ζ, jψ, but
scalar arrays such as eddy coefficients) the first row is set to minus the value
of the second row (Fig. ??-b). Note that this boundary condition is not yet
available for the case of a massively parallel computer (key mpp defined).

8.2.2 North-fold (jperio = 3 to 6)

The north fold boundary condition has been introduced in order to handle the
north boundary of a three-polar ORCA grid. Such a grid has two poles in the nor-
thern hemisphere. to be completed...

8.3. Exchange with neighbouring processors (lbclnk, lib mpp) 145

FIGURE 8.4: North fold boundary with a T -point pivot and cyclic east-west boun-
dary condition (jperio = 4), as used in ORCA 2, 1/4, and 1/12. Pink shaded area
corresponds to the inner domain mask (see text).

8.3 Exchange with neighbouring processors (lbclnk.F90, lib mpp.F90)

For massively parallel processing (mpp), a domain decomposition method is
used. The basic idea of the method is to split the large computation domain of a
numerical experiment into several smaller domains and solve the set of equations
by addressing independent local problems. Each processor has its own local me-
mory and computes the model equation over a subdomain of the whole model do-
main. The subdomain boundary conditions are specified through communications
between processors which are organized by explicit statements (message passing
method).

A big advantage is that the method does not need many modifications of the ini-
tial FORTRAN code. From the modeller’s point of view, each sub domain running
on a processor is identical to the ”mono-domain” code. In addition, the programmer
manages the communications between subdomains, and the code is faster when the
number of processors is increased. The porting of OPA code on an iPSC860 was
achieved during Guyon’s PhD [Guyon et al. 1994, 1995] in collaboration with CE-
TIIS and ONERA. The implementation in the operational context and the studies
of performance on a T3D and T3E Cray computers have been made in collabo-
ration with IDRIS and CNRS. The present implementation is largely inspired by
Guyon’s work [Guyon 1995].

The parallelization strategy is defined by the physical characteristics of the
ocean model. Second order finite difference schemes lead to local discrete opera-
tors that depend at the very most on one neighbouring point. The only non-local
computations concern the vertical physics (implicit diffusion, 1.5 turbulent closure

146 Lateral Boundary Condition (LBC)

FIGURE 8.5: Positioning of a sub-domain when massively parallel processing is
used.

scheme, ...) (delocalization over the whole water column), and the solving of the
elliptic equation associated with the surface pressure gradient computation (delo-
calization over the whole horizontal domain). Therefore, a pencil strategy is used
for the data sub-structuration : the 3D initial domain is laid out on local proces-
sor memories following a 2D horizontal topological splitting. Each sub-domain
computes its own surface and bottom boundary conditions and has a side wall
overlapping interface which defines the lateral boundary conditions for computa-
tions in the inner sub-domain. The overlapping area consists of the two rows at
each edge of the sub-domain. After a computation, a communication phase starts :
each processor sends to its neighbouring processors the update values of the points
corresponding to the interior overlapping area to its neighbouring sub-domain (i.e.
the innermost of the two overlapping rows). The communication is done through
message passing. Usually the parallel virtual language, PVM, is used as it is a stan-
dard language available on nearly all MPP computers. More specific languages (i.e.
computer dependant languages) can be easily used to speed up the communication,
such as SHEM on a T3E computer. The data exchanges between processors are re-
quired at the very place where lateral domain boundary conditions are set in the
mono-domain computation (§III.10-c) : the lbc lnk routine which manages such
conditions is substituted by mpplnk.F or mpplnk2.F routine when running on an
MPP computer (key mpp mpi defined). It has to be pointed out that when using
the MPP version of the model, the east-west cyclic boundary condition is done
implicitly, whilst the south-symmetric boundary condition option is not available.

In the standard version of the OPA model, the splitting is regular and arithmetic.

8.3. Exchange with neighbouring processors (lbclnk, lib mpp) 147

the i-axis is divided by jpni and the j-axis by jpnj for a number of processors jpnij
most often equal to jpni × jpnj (model parameters set in par oce.F90). Each
processor is independent and without message passing or synchronous process ,
programs run alone and access just its own local memory. For this reason, the
main model dimensions are now the local dimensions of the subdomain (pencil)
that are named jpi, jpj, jpk. These dimensions include the internal domain and
the overlapping rows. The number of rows to exchange (known as the halo) is
usually set to one (jpreci=1, in par oce.F90). The whole domain dimensions are
named jpiglo, jpjglo and jpk. The relationship between the whole domain and a
sub-domain is :

jpi = (jpiglo− 2 ∗ jpreci+ (jpni− 1))/jpni+ 2 ∗ jpreci
jpj = (jpjglo− 2 ∗ jprecj + (jpnj − 1))/jpnj + 2 ∗ jprecj (8.3)

where jpni, jpnj are the number of processors following the i- and j-axis.
Figure IV.3 : example of a domain splitting with 9 processors and no east-west cyclic boundary conditions.

One also defines variables nldi and nlei which correspond to the internal do-
main bounds, and the variables nimpp and njmpp which are the position of the (1,1)
grid-point in the global domain. An element of Tl, a local array (subdomain) cor-
responds to an element of Tg, a global array (whole domain) by the relationship :

Tg(i+ nimpp− 1, j + njmpp− 1, k) = Tl(i, j, k), (8.4)

with 1 ≤ i ≤ jpi, 1 ≤ j ≤ jpj , and 1 ≤ k ≤ jpk.
Processors are numbered from 0 to jpnij − 1, the number is saved in the va-

riable nproc. In the standard version, a processor has no more than four neighbou-
ring processors named nono (for north), noea (east), noso (south) and nowe (west)
and two variables, nbondi and nbondj, indicate the relative position of the processor
(see Fig.IV.3) :

– nbondi = -1 an east neighbour, no west processor,
– nbondi = 0 an east neighbour, a west neighbour,
– nbondi = 1 no east processor, a west neighbour,
– nbondi = 2 no splitting following the i-axis.

During the simulation, processors exchange data with their neighbours. If there is
effectively a neighbour, the processor receives variables from this processor on its
overlapping row, and sends the data issued from internal domain corresponding to
the overlapping row of the other processor.

Figure IV.4 : pencil splitting with the additional outer halos
The NEMO model computes equation terms with the help of mask arrays (0

on land points and 1 on sea points). It is easily readable and very efficient in the
context of a computer with vectorial architecture. However, in the case of a scalar
processor, computations over the land regions become more expensive in terms of
CPU time. It is worse when we use a complex configuration with a realistic bathy-
metry like the global ocean where more than 50 % of points are land points. For this
reason, a pre-processing tool can be used to choose the mpp domain decomposition

148 Lateral Boundary Condition (LBC)

with a maximum number of only land points processors, which can then be elimi-
nated. (For example, the mpp optimiz tools, available from the DRAKKAR web
site.) This optimisation is dependent on the specific bathymetry employed. The user
then chooses optimal parameters jpni, jpnj and jpnij with jpnij < jpni × jpnj,
leading to the elimination of jpni × jpnj − jpnij land processors. When those
parameters are specified in module par oce.F90, the algorithm in the inimpp2 rou-
tine sets each processor’s parameters (nbound, nono, noea,...) so that the land-only
processors are not taken into account.

Note that the inimpp2 routine is general so that the original inimpp routine should be suppressed from the code.

When land processors are eliminated, the value corresponding to these loca-
tions in the model output files is zero. Note that this is a problem for a mesh output
file written by such a model configuration, because model users often divide by the
scale factors (e1t, e2t, etc) and do not expect the grid size to be zero, even on land.
It may be best not to eliminate land processors when running the model especially
to write the mesh files as outputs (when nn msh namelist parameter differs from
0).

(a) (b)

FIGURE 8.6: Example of Atlantic domain defined for the CLIPPER projet. Initial
grid is composed of 773 x 1236 horizontal points. (a) the domain is split onto 9 sub-
domains (jpni=9, jpnj=20). 52 subdomains are land areas. (b) 52 subdomains are eli-
minated (white rectangles) and the resulting number of processors really used during
the computation is jpnij=128.

8.4. Open Boundary Conditions (key obc) (OBC) 149

8.4 Open Boundary Conditions (key obc) (OBC)
!---
&namobc ! open boundaries parameters ("key_obc")
!---

ln_obc_clim = .false. ! climatological obc data files (T) or not (F)
ln_vol_cst = .true. ! impose the total volume conservation (T) or not (F)
ln_obc_fla = .false. ! Flather open boundary condition
nn_obcdta = 1 ! = 0 the obc data are equal to the initial state

! = 1 the obc data are read in ’obc.dta’ files
cn_obcdta = ’annual’ ! set to annual if obc datafile hold 1 year of data

! set to monthly if obc datafile hold 1 month of data
rn_dpein = 1. ! damping time scale for inflow at east open boundary
rn_dpwin = 1. ! - - - west - -
rn_dpnin = 1. ! - - - north - -
rn_dpsin = 1. ! - - - south - -
rn_dpeob = 3000. ! time relaxation (days) for the east open boundary
rn_dpwob = 15. ! - - - west - -
rn_dpnob = 3000. ! - - - north - -
rn_dpsob = 15. ! - - - south - -
rn_volemp = 1. ! = 0 the total volume change with the surface flux (E-P-R)

! = 1 the total volume remains constant
/

It is often necessary to implement a model configuration limited to an oceanic
region or a basin, which communicates with the rest of the global ocean through
”open boundaries”. As stated by ?, an open boundary is a computational border
where the aim of the calculations is to allow the perturbations generated inside the
computational domain to leave it without deterioration of the inner model solution.
However, an open boundary also has to let information from the outer ocean enter
the model and should support inflow and outflow conditions.

The open boundary package OBC is the first open boundary option developed
in NEMO (originally in OPA8.2). It allows the user to

– tell the model that a boundary is ”open” and not closed by a wall, for example
by modifying the calculation of the divergence of velocity there ;

– impose values of tracers and velocities at that boundary (values which may
be taken from a climatology) : this is the“fixed OBC” option.

– calculate boundary values by a sophisticated algorithm combining radiation
and relaxation (“radiative OBC” option)

The package resides in the OBC directory. It is described here in four parts : the
boundary geometry (parameters to be set in obc par.F90), the forcing data at the
boundaries (module obcdta.F90), the radiation algorithm involving the namelist
and module obcrad.F90, and a brief presentation of boundary update and restart
files.

8.4.1 Boundary geometry

First one has to realize that open boundaries may not necessarily be located
at the extremities of the computational domain. They may exist in the middle of
the domain, for example at Gibraltar Straits if one wants to avoid including the
Mediterranean in an Atlantic domain. This flexibility has been found necessary
for the CLIPPER project [?]. Because of the complexity of the geometry of ocean
basins, it may even be necessary to have more than one ”west” open boundary,
more than one ”north”, etc. This is not possible with the OBC option : only one
open boundary of each kind, west, east, south and north is allowed ; these names

150 Lateral Boundary Condition (LBC)

refer to the grid geometry (not to the direction of the geographical ”west”, ”east”,
etc).

The open boundary geometry is set by a series of parameters in the module
obc par.F90. For an eastern open boundary, parameters are lp obc east (true if
an east open boundary exists), jpieob the i-index along which the eastern open
boundary (eob) is located, jpjed the j-index at which it starts, and jpjef the j-index
where it ends (note d is for ”début” and f for ”fin” in French). Similar parameters
exist for the west, south and north cases (Table ??).

TABLE 8.1: Names of different indices relating to the open boundaries. In the case
of a completely open ocean domain with four ocean boundaries, the parameters take
exactly the values indicated.

Boundary and Constant index Starting index (début) Ending index (fin)
Logical flag
West jpiwob >= 2 jpjwd>= 2 jpjwf ¡= jpjglo-1
lp obc west i-index of a u point j of a T point j of a T point
East jpieob<=jpiglo-2 jpjed >= 2 jpjef<= jpjglo-1
lp obc east i-index of a u point j of a T point j of a T point
South jpjsob >= 2 jpisd >= 2 jpisf<=jpiglo-1
lp obc south j-index of a v point i of a T point i of a T point
North jpjnob <= jpjglo-2 jpind >= 2 jpinf<=jpiglo-1
lp obc north j-index of a v point i of a T point i of a T point

The open boundaries must be along coordinate lines. On the C-grid, the boun-
dary itself is along a line of normal velocity points : v points for a zonal open
boundary (the south or north one), and u points for a meridional open boundary
(the west or east one). Another constraint is that there still must be a row of masked
points all around the domain, as if the domain were a closed basin (unless periodic
conditions are used together with open boundary conditions). Therefore, an open
boundary cannot be located at the first/last index, namely, 1, jpiglo or jpjglo. Also,
the open boundary algorithm involves calculating the normal velocity points situa-
ted just on the boundary, as well as the tangential velocity and temperature and
salinity just outside the boundary. This means that for a west/south boundary, nor-
mal velocities and temperature are calculated at the same index jpiwob and jpjsob,
respectively. For an east/north boundary, the normal velocity is calculated at index
jpieob and jpjnob, but the “outside” temperature is at index jpieob+1 and jpjnob+1.
This means that jpieob, jpjnob cannot be bigger than jpiglo-2, jpjglo-2.

The starting and ending indices are to be thought of as T point indices : in many
cases they indicate the first land T -point, at the extremity of an open boundary (the
coast line follows the f grid points, see Fig. ?? for an example of a northern open
boundary). All indices are relative to the global domain. In the free surface case it
is possible to have “ocean corners”, that is, an open boundary starting and ending
in the ocean.

8.4. Open Boundary Conditions (key obc) (OBC) 151

FIGURE 8.7: Localization of the North open boundary points.

Although not compulsory, it is highly recommended that the bathymetry in the
vicinity of an open boundary follows the following rule : in the direction perpendi-
cular to the open line, the water depth should be constant for 4 grid points. This is
in order to ensure that the radiation condition, which involves model variables next
to the boundary, is calculated in a consistent way. On Fig.?? we indicate by an =
symbol, the points which should have the same depth. It means that at the 4 points
near the boundary, the bathymetry is cylindrical . The line behind the open T -line
must be 0 in the bathymetry file (as shown on Fig.?? for example).

8.4.2 Boundary data

It is necessary to provide information at the boundaries. The simplest case is
when this information does not change in time and is equal to the initial conditions
(namelist variable nn obcdta=0). This is the case for the standard configuration
EEL5 with open boundaries. When (nn obcdta=1), open boundary information is
read from netcdf files. For convenience the input files are supposed to be similar to
the ”history” NEMO output files, for dimension names and variable names. Open
boundary arrays must be dimensioned according to the parameters of table ?? : for
example, at the western boundary, arrays have a dimension of jpwf -jpwd+1 in the
horizontal and jpk in the vertical.

When ocean observations are used to generate the boundary data (a hydrogra-
phic section for example, as in ?) it happens often that only the velocity normal
to the boundary is known, which is the reason why the initial OBC code assumes
that only T , S, and the normal velocity (u or v) needs to be specified. As more and

152 Lateral Boundary Condition (LBC)

more global model solutions and ocean analysis products become available, it will
be possible to provide information about all the variables (including the tangential
velocity) so that the specification of four variables at each boundaries will become
standard. For the sea surface height, one must distinguish between the filtered free
surface case and the time-splitting or explicit treatment of the free surface. In the
first case, it is assumed that the user does not wish to represent high frequency
motions such as tides. The boundary condition is thus one of zero normal gradient
of sea surface height at the open boundaries, following ?. No information other
than the total velocity needs to be provided at the open boundaries in that case. In
the other two cases (time splitting or explicit free surface), the user must provide
barotropic information (sea surface height and barotropic velocities) and the use of
the Flather algorithm for barotropic variables is recommanded. However, this algo-
rithm has not yet been fully tested and bugs remain in NEMO v2.3. Users should
read the code carefully before using it. Finally, in the case of the rigid lid approxi-
mation the barotropic streamfunction must be provided, as documented in ?). This
option is no longer recommended but remains in NEMO V2.3.

One frequently encountered case is when an open boundary domain is construc-
ted from a global or larger scale NEMO configuration. Assuming the domain cor-
responds to indices ib : ie, jb : je of the global domain, the bathymetry and forcing
of the small domain can be created by using the following netcdf utility on the glo-
bal files : ncks -F −d x, ib, ie −d y, jb, je (part of the nco series of utilities, see
their website). The open boundary files can be constructed using ncks commands,
following table ??.

TABLE 8.2: Requirements for creating open boundary files from a global configura-
tion, appropriate for the subdomain of indices ib : ie, jb : je. “Index” designates the
i or j index along which the u of v boundary point is situated in the global configu-
ration, starting and ending with the j or i indices indicated. For example, to generate
file obcnorth V.nc, use the command ncks −F −d y, je− 2 −d x, ib+ 1, ie− 1

OBC Variable file name Index Start end
West T,S obcwest TS.nc ib+1 jb+1 je− 1

U obcwest U.nc ib+1 jb+1 je− 1
V obcwest V.nc ib+1 jb+1 je− 1

East T,S obceast TS.nc ie-1 jb+1 je− 1
U obceast U.nc ie-2 jb+1 je− 1
V obceast V.nc ie-1 jb+1 je− 1

South T,S obcsouth TS.nc jb+1 ib+1 ie− 1
U obcsouth U.nc jb+1 ib+1 ie− 1
V obcsouth V.nc jb+1 ib+1 ie− 1

North T,S obcnorth TS.nc je-1 ib+1 ie− 1
U obcnorth U.nc je-1 ib+1 ie− 1
V obcnorth V.nc je-2 ib+1 ie− 1

http://nco.sourceforge.net

8.4. Open Boundary Conditions (key obc) (OBC) 153

It is assumed that the open boundary files contain the variables for the period of
the model integration. If the boundary files contain one time frame, the boundary
data is held fixed in time. If the files contain 12 values, it is assumed that the input
is a climatology for a repeated annual cycle (corresponding to the case ln obc clim
=true). The case of an arbitrary number of time frames is not yet implemented
correctly ; the user is required to write his own code in the module obc dta.F90 to
deal with this situation.

8.4.3 Radiation algorithm

The art of open boundary management consists in applying a constraint strong
enough that the inner domain ”feels” the rest of the ocean, but weak enough that
perturbations are allowed to leave the domain with minimum false reflections of
energy. The constraints are specified separately at each boundary as time scales
for ”inflow” and ”outflow” as defined below. The time scales are set (in days) by
namelist parameters such as rn dpein, rn dpeob for the eastern open boundary for
example. When both time scales are zero for a given boundary (e.g. for the wes-
tern boundary, lp obc west=true, rn dpwob=0 and rn dpwin=0) this means that the
boundary in question is a ”fixed ” boundary where the solution is set exactly by
the boundary data. This is not recommended, except in combination with increa-
sed viscosity in a ”sponge” layer next to the boundary in order to avoid spurious
reflections.

The radiationrelaxation algorithm is applied when either relaxation time (for
”inflow” or ”outflow”) is non-zero. It has been developed and tested in the SPEM
model and its successor ROMS [??], which is an s-coordinate model on an Ara-
kawa C-grid. Although the algorithm has been numerically successful in the CLIP-
PER Atlantic models, the physics do not work as expected [?]. Users are invited to
consider open boundary conditions (OBC hereafter) with some scepticism [??].

The first part of the algorithm calculates a phase velocity to determine whether
perturbations tend to propagate toward, or away from, the boundary. Let us consi-
der a model variable φ. The phase velocities (Cφx,Cφy) for the variable φ, in the
directions normal and tangential to the boundary are

Cφx =
−φt

(φ2
x + φ2

y)
φx Cφy =

−φt
(φ2
x + φ2

y)
φy. (8.5)

Following ? and ? we retain only the normal component of the velocity, Cφx, set-
ting Cφy = 0 (but unlike the original Orlanski radiation algorithm we retain φy in
the expression for Cφx).

The discrete form of (??), described by ?, takes into account the two rows of
grid points situated inside the domain next to the boundary, and the three previous
time steps (n, n − 1, and n − 2). The same equation can then be discretized at
the boundary at time steps n − 1, n and n + 1 in order to extrapolate for the new
boundary value φn+1.

154 Lateral Boundary Condition (LBC)

In the open boundary algorithm as implemented in NEMO v2.3, the new boun-
dary values are updated differently depending on the sign of Cφx. Let us take an
eastern boundary as an example. The solution for variable φ at the boundary is gi-
ven by a generalized wave equation with phase velocity Cφ, with the addition of a
relaxation term, as :

φt = −Cφxφx +
1

τo
(φc − φ) (Cφx > 0), (8.6)

φt =
1

τi
(φc − φ) (Cφx < 0), (8.7)

where φc is the estimate of φ at the boundary, provided as boundary data. Note
that in (??), Cφx is bounded by the ratio δx/δt for stability reasons. When Cφx is
eastward (outward propagation), the radiation condition (??) is used. When Cφx is
westward (inward propagation), (??) is used with a strong relaxation to climato-
logy (usually τi = rn dpein =1 day). Equation (??) is solved with a Euler time-
stepping scheme. As a consequence, setting τi smaller than, or equal to the time
step is equivalent to a fixed boundary condition. A time scale of one day is usually
a good compromise which guarantees that the inflow conditions remain close to
climatology while ensuring numerical stability.

In the case of a western boundary located in the Eastern Atlantic, ? have been
able to implement the radiation algorithm without any boundary data, using per-
sistence from the previous time step instead. This solution has not worked in other
cases [?], so that the use of boundary data is recommended. Even in the outflow
condition (??), we have found it desirable to maintain a weak relaxation to climato-
logy. The time step is usually chosen so as to be larger than typical turbulent scales
(of order 1000 days).

The radiation condition is applied to the model variables : temperature, salinity,
tangential and normal velocities. For normal and tangential velocities, u and v,
radiation is applied with phase velocities calculated from u and v respectively. For
the radiation of tracers, we use the phase velocity calculated from the tangential
velocity in order to avoid calculating too many independent radiation velocities and
because tangential velocities and tracers have the same position along the boundary
on a C-grid.

8.4.4 Domain decomposition (key mpp mpi)

When key mpp mpi is active in the code, the computational domain is divided
into rectangles that are attributed each to a different processor. The open boundary
code is “mpp-compatible” up to a certain point. The radiation algorithm will not
work if there is an mpp subdomain boundary parallel to the open boundary at the
index of the boundary, or the grid point after (outside), or three grid points before
(inside). On the other hand, there is no problem if an mpp subdomain boundary
cuts the open boundary perpendicularly. These geometrical limitations must be
checked for by the user (there is no safeguard in the code). The general principle

8.5. Unstructured Open Boundary Conditions (key bdy) (BDY) 155

for the open boundary mpp code is that loops over the open boundaries not sure
what this means are performed on local indices (nie0, nie1, nje0, nje1 for an eastern
boundary for instance) that are initialized in module obc ini.F90. Those indices
have relevant values on the processors that contain a segment of an open boundary.
For processors that do not include an open boundary segment, the indices are such
that the calculations within the loops are not performed.

Arrays of climatological data that are read from files are seen by all proces-
sors and have the same dimensions for all (for instance, for the eastern boundary,
uedta(jpjglo,jpk,2)). On the other hand, the arrays for the calculation of radia-
tion are local to each processor (uebnd(jpj,jpk,3,3) for instance). This allowed the
CLIPPER model for example, to save on memory where the eastern boundary cros-
sed 8 processors so that jpj was much smaller than (jpjef -jpjed+1).

8.4.5 Volume conservation

It is necessary to control the volume inside a domain when using open boun-
daries. With fixed boundaries, it is enough to ensure that the total inflow/outflow
has reasonable values (either zero or a value compatible with an observed volume
balance). When using radiative boundary conditions it is necessary to have a vo-
lume constraint because each open boundary works independently from the others.
The methodology used to control this volume is identical to the one coded in the
ROMS model [?].

Explain obc vol. . .

OBC algorithm for update, OBC restart, list of routines where obc key appears. . .

OBC rigid lid ? . . .

8.5 Unstructured Open Boundary Conditions (key bdy) (BDY)
!---
&nambdy ! unstructured open boundaries ("key_bdy")
!---

nb_bdy = 2 ! number of open boundary sets
ln_coords_file = .true.,.false. ! =T : read bdy coordinates from file
cn_coords_file = ’coordinates.bdy.nc’,’’ ! bdy coordinates files
ln_mask_file = .false. ! =T : read mask from file
cn_mask_file = ’’ ! name of mask file (if ln_mask_file=.TRUE.)
nn_dyn2d = 2, 0 ! boundary conditions for barotropic fields
nn_dyn2d_dta = 3, 0 ! = 0, bdy data are equal to the initial state

! = 1, bdy data are read in ’bdydata .nc’ files
! = 2, use tidal harmonic forcing data from files
! = 3, use external data AND tidal harmonic forcing

nn_dyn3d = 0, 0 ! boundary conditions for baroclinic velocities
nn_dyn3d_dta = 0, 0 ! = 0, bdy data are equal to the initial state

! = 1, bdy data are read in ’bdydata .nc’ files
nn_tra = 1, 1 ! boundary conditions for T and S
nn_tra_dta = 1, 1 ! = 0, bdy data are equal to the initial state

! = 1, bdy data are read in ’bdydata .nc’ files
nn_rimwidth = 10, 5 ! width of the relaxation zone
ln_vol = .false. ! total volume correction (see nn_volctl parameter)
nn_volctl = 1 ! = 0, the total water flux across open boundaries is zero

/

!---
&nambdy_index ! open boundaries - definition ("key_bdy")
!---

nbdysege = 0
nbdysegw = 1

156 Lateral Boundary Condition (LBC)

jpiwob = 2
jpjwdt = 2
jpjwft = 191
nbdysegn = 1
jpjnob = 191
jpindt = 2
jpinft = 146
nbdysegs = 1
jpjsob = 2
jpisdt = 2
jpisft = 43

/

!---
&nambdy_dta ! open boundaries - external data ("key_bdy")
!---
! ! file name ! frequency (hours) ! variable ! time interpol. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

bn_ssh = ’amm12_bdyT_u2d’ , 24 , ’sossheig’ , .true. , .false. , ’daily’ , ’’ , ’’
bn_u2d = ’amm12_bdyU_u2d’ , 24 , ’vobtcrtx’ , .true. , .false. , ’daily’ , ’’ , ’’
bn_v2d = ’amm12_bdyV_u2d’ , 24 , ’vobtcrty’ , .true. , .false. , ’daily’ , ’’ , ’’
bn_u3d = ’amm12_bdyU_u3d’ , 24 , ’vozocrtx’ , .true. , .false. , ’daily’ , ’’ , ’’
bn_v3d = ’amm12_bdyV_u3d’ , 24 , ’vomecrty’ , .true. , .false. , ’daily’ , ’’ , ’’
bn_tem = ’amm12_bdyT_tra’ , 24 , ’votemper’ , .true. , .false. , ’daily’ , ’’ , ’’
bn_sal = ’amm12_bdyT_tra’ , 24 , ’vosaline’ , .true. , .false. , ’daily’ , ’’ , ’’
cn_dir = ’bdydta/’
ln_full_vel = .false.

/

!---
&nambdy_dta ! open boundaries - external data ("key_bdy")
!---
! ! file name ! frequency (hours) ! variable ! time interpol. ! clim ! ’yearly’/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing !

bn_tem = ’amm12_bdyT_clim’ , -1 , ’votemper’ , .true. , .true. , ’daily’ , ’’ , ’’
bn_sal = ’amm12_bdyT_clim’ , -1 , ’vosaline’ , .true. , .true. , ’daily’ , ’’ , ’’
cn_dir = ’bdydta/’
ln_full_vel = .false.

/

The BDY module is an alternative implementation of open boundary condi-
tions for regional configurations. It implements the Flow Relaxation Scheme algo-
rithm for temperature, salinity, velocities and ice fields, and the Flather radiation
condition for the depth-mean transports. The specification of the location of the
open boundary is completely flexible and allows for example the open boundary to
follow an isobath or other irregular contour.

The BDY module was modelled on the OBC module and shares many features
and a similar coding structure [?].

The BDY module is completely rewritten at NEMO 3.4 and there is a new set
of namelists. Boundary data files used with earlier versions of NEMO may need
to be re-ordered to work with this version. See the section on the Input Boundary
Data Files for details.

8.5.1 The namelists

It is possible to define more than one boundary “set” and apply different boun-
dary conditions to each set. The number of boundary sets is defined by nb bdy.
Each boundary set may be defined as a set of straight line segments in a namelist
(ln coords file=.false.) or read in from a file (ln coords file=.true.). If the set is de-
fined in a namelist, then the namelists nambdy index must be included separately,
one for each set. If the set is defined by a file, then a “coordinates.bdy.nc” file must
be provided. The coordinates.bdy file is analagous to the usual NEMO “coordi-
nates.nc” file. In the example above, there are two boundary sets, the first of which

8.5. Unstructured Open Boundary Conditions (key bdy) (BDY) 157

is defined via a file and the second is defined in a namelist. For more details of the
definition of the boundary geometry see section ??.

For each boundary set a boundary condition has to be chosen for the barotropic
solution (“u2d” : sea-surface height and barotropic velocities), for the baroclinic
velocities (“u3d”), and for the active tracers 1 (“tra”). For each set of variables
there is a choice of algorithm and a choice for the data, eg. for the active tracers the
algorithm is set by nn tra and the choice of data is set by nn tra dta.

The choice of algorithm is currently as follows :

0. No boundary condition applied. So the solution will “see” the land points
around the edge of the edge of the domain.

1. Flow Relaxation Scheme (FRS) available for all variables.
2. Flather radiation scheme for the barotropic variables. The Flather scheme is

not compatible with the filtered free surface (dynspg ts).

The main choice for the boundary data is to use initial conditions as boundary
data (nn tra dta=0) or to use external data from a file (nn tra dta=1). For the baro-
tropic solution there is also the option to use tidal harmonic forcing either by itself
or in addition to other external data.

If external boundary data is required then the nambdy dta namelist must be
defined. One nambdy dta namelist is required for each boundary set in the order in
which the boundary sets are defined in nambdy. In the example given, two boun-
dary sets have been defined and so there are two nambdy dta namelists. The boun-
dary data is read in using the fldread module, so the nambdy dta namelist is in the
format required for fldread. For each variable required, the filename, the frequency
of the files and the frequency of the data in the files is given. Also whether or not
time-interpolation is required and whether the data is climatological (time-cyclic)
data. Note that on-the-fly spatial interpolation of boundary data is not available at
this version.

In the example namelists given, two boundary sets are defined. The first set
is defined via a file and applies FRS conditions to temperature and salinity and
Flather conditions to the barotropic variables. External data is provided in daily
files (from a large-scale model). Tidal harmonic forcing is also used. The second
set is defined in a namelist. FRS conditions are applied on temperature and salinity
and climatological data is read from external files.

8.5.2 The Flow Relaxation Scheme

The Flow Relaxation Scheme (FRS) [??], applies a simple relaxation of the
model fields to externally-specified values over a zone next to the edge of the model
domain. Given a model prognostic variable Φ

Φ(d) = α(d)Φe(d) + (1− α(d))Φm(d) d = 1, N (8.8)

1. The BDY module does not deal with passive tracers at this version

158 Lateral Boundary Condition (LBC)

where Φm is the model solution and Φe is the specified external field, d gives the
discrete distance from the model boundary and α is a parameter that varies from 1
at d = 1 to a small value at d = N . It can be shown that this scheme is equivalent
to adding a relaxation term to the prognostic equation for Φ of the form :

−1

τ
(Φ− Φe) (8.9)

where the relaxation time scale τ is given by a function of α and the model time
step ∆t :

τ =
1− α
α

∆t (8.10)

Thus the model solution is completely prescribed by the external conditions at the
edge of the model domain and is relaxed towards the external conditions over the
rest of the FRS zone. The application of a relaxation zone helps to prevent spurious
reflection of outgoing signals from the model boundary.

The function α is specified as a tanh function :

α(d) = 1− tanh

(
d− 1

2

)
, d = 1, N (8.11)

The width of the FRS zone is specified in the namelist as nn rimwidth. This is
typically set to a value between 8 and 10.

8.5.3 The Flather radiation scheme

The ? scheme is a radiation condition on the normal, depth-mean transport
across the open boundary. It takes the form

U = Ue +
c

h
(η − ηe) , (8.12)

where U is the depth-mean velocity normal to the boundary and η is the sea surface
height, both from the model. The subscript e indicates the same fields from external
sources. The speed of external gravity waves is given by c =

√
gh, and h is the

depth of the water column. The depth-mean normal velocity along the edge of
the model domain is set equal to the external depth-mean normal velocity, plus a
correction term that allows gravity waves generated internally to exit the model
boundary. Note that the sea-surface height gradient in (??) is a spatial gradient
across the model boundary, so that ηe is defined on the T points with nbr = 1 and
η is defined on the T points with nbr = 2. U and Ue are defined on the U or V
points with nbr = 1, i.e. between the two T grid points.

8.5.4 Boundary geometry

Each open boundary set is defined as a list of points. The information is stored
in the arrays nbi, nbj, and nbr in the idx bdy structure. The nbi and nbj arrays

8.5. Unstructured Open Boundary Conditions (key bdy) (BDY) 159

define the local (i, j) indices of each point in the boundary zone and the nbr array
defines the discrete distance from the boundary with nbr = 1 meaning that the
point is next to the edge of the model domain and nbr > 1 showing that the point
is increasingly further away from the edge of the model domain. A set of nbi, nbj,
and nbr arrays is defined for each of the T , U and V grids. Figure ?? shows an
example of an irregular boundary.

The boundary geometry for each set may be defined in a namelist nambdy index
or by reading in a “coordinates.bdy.nc” file. The nambdy index namelist defines a
series of straight-line segments for north, east, south and west boundaries. For the
northern boundary, nbdysegn gives the number of segments, jpjnob gives the j in-
dex for each segment and jpindt and jpinft give the start and end i indices for each
segment with similar for the other boundaries. These segments define a list of T
grid points along the outermost row of the boundary (nbr = 1). The code deduces
the U and V points and also the points for nbr > 1 if nn rimwidth > 1.

The boundary geometry may also be defined from a “coordinates.bdy.nc” file.
Figure ?? gives an example of the header information from such a file. The file
should contain the index arrays for each of the T , U and V grids. The arrays must
be in order of increasing nbr. Note that the nbi, nbj values in the file are global
values and are converted to local values in the code. Typically this file will be used
to generate external boundary data via interpolation and so will also contain the
latitudes and longitudes of each point as shown. However, this is not necessary to
run the model.

For some choices of irregular boundary the model domain may contain areas
of ocean which are not part of the computational domain. For example if an open
boundary is defined along an isobath, say at the shelf break, then the areas of ocean
outside of this boundary will need to be masked out. This can be done by reading
a mask file defined as cn mask file in the nam bdy namelist. Only one mask file is
used even if multiple boundary sets are defined.

8.5.5 Input boundary data files

The data files contain the data arrays in the order in which the points are defined
in the nbi and nbj arrays. The data arrays are dimensioned on : a time dimension ;
xb which is the index of the boundary data point in the horizontal ; and yb which
is a degenerate dimension of 1 to enable the file to be read by the standard NEMO
I/O routines. The 3D fields also have a depth dimension.

At Version 3.4 there are new restrictions on the order in which the boundary
points are defined (and therefore restrictions on the order of the data in the file). In
particular :

1. The data points must be in order of increasing nbr, ie. all the nbr = 1 points,
then all the nbr = 2 points etc.

2. All the data for a particular boundary set must be in the same order. (Prior

160 Lateral Boundary Condition (LBC)

FIGURE 8.8: Example of geometry of unstructured open boundary

to 3.4 it was possible to define barotropic data in a different order to the data
for tracers and baroclinic velocities).

These restrictions mean that data files used with previous versions of the model
may not work with version 3.4. A fortran utility bdy reorder exists in the TOOLS
directory which will re-order the data in old BDY data files.

8.5.6 Volume correction

There is an option to force the total volume in the regional model to be constant,
similar to the option in the OBC module. This is controlled by the nn volctl para-
meter in the namelist. A value of nn volctl = 0 indicates that this option is not used.
If nn volctl = 1 then a correction is applied to the normal velocities around the
boundary at each timestep to ensure that the integrated volume flow through the
boundary is zero. If nn volctl = 2 then the calculation of the volume change on the
timestep includes the change due to the freshwater flux across the surface and the
correction velocity corrects for this as well.

If more than one boundary set is used then volume correction is applied to all
boundaries at once.

8.5. Unstructured Open Boundary Conditions (key bdy) (BDY) 161

netcdf med12.obc.coordinates {
dimensions:

yb = 1 ;
xbT = 3218 ;
xbU = 3200 ;
xbV = 3201 ;

variables:
int nbit(yb, xbT) ;
int nbiu(yb, xbU) ;
int nbiv(yb, xbV) ;
int nbjt(yb, xbT) ;
int nbju(yb, xbU) ;
int nbjv(yb, xbV) ;
int nbrt(yb, xbT) ;
int nbru(yb, xbU) ;
int nbrv(yb, xbV) ;
float e1t(yb, xbT) ;

e1t:units = "metres" ;
float e1u(yb, xbU) ;

e1u:units = "metres" ;
float e1v(yb, xbV) ;

e1v:units = "metres" ;
float e2t(yb, xbT) ;

e2t:units = "metres" ;
float e2u(yb, xbU) ;

e2u:units = "metres" ;
float e2v(yb, xbV) ;

e2v:units = "metres" ;
float glamt(yb, xbT) ;

glamt:units = "degrees_east" ;
float glamu(yb, xbU) ;

glamu:units = "degrees_east" ;
float glamv(yb, xbV) ;

glamv:units = "degrees_east" ;
float gphit(yb, xbT) ;

gphit:units = "degrees_north" ;
float gphiu(yb, xbU) ;

gphiu:units = "degrees_north" ;
float gphiv(yb, xbV) ;

gphiv:units = "degrees_north" ;

// global attributes:
:file_name = "med12.obc.coordinates.reorder.nc" ;
:rimwidth = 9 ;
:NCO = "3.9.9" ;

}

FIGURE 8.9: Example of the header for a coordinates.bdy.nc file

8.5.7 Tidal harmonic forcing
!---

162 Lateral Boundary Condition (LBC)

&nambdy_tide ! tidal forcing at open boundaries
!---

filtide = ’bdydta/amm12_bdytide_’ ! file name root of tidal forcing files
tide_cpt(1) =’Q1’ ! names of tidal components used
tide_cpt(2) =’O1’ ! names of tidal components used
tide_cpt(3) =’P1’ ! names of tidal components used
tide_cpt(4) =’S1’ ! names of tidal components used
tide_cpt(5) =’K1’ ! names of tidal components used
tide_cpt(6) =’2N2’ ! names of tidal components used
tide_cpt(7) =’MU2’ ! names of tidal components used
tide_cpt(8) =’N2’ ! names of tidal components used
tide_cpt(9) =’NU2’ ! names of tidal components used
tide_cpt(10) =’M2’ ! names of tidal components used
tide_cpt(11) =’L2’ ! names of tidal components used
tide_cpt(12) =’T2’ ! names of tidal components used
tide_cpt(13) =’S2’ ! names of tidal components used
tide_cpt(14) =’K2’ ! names of tidal components used
tide_cpt(15) =’M4’ ! names of tidal components used
tide_speed(1) = 13.398661 ! phase speeds of tidal components (deg/hour)
tide_speed(2) = 13.943036 ! phase speeds of tidal components (deg/hour)
tide_speed(3) = 14.958932 ! phase speeds of tidal components (deg/hour)
tide_speed(4) = 15.000001 ! phase speeds of tidal components (deg/hour)
tide_speed(5) = 15.041069 ! phase speeds of tidal components (deg/hour)
tide_speed(6) = 27.895355 ! phase speeds of tidal components (deg/hour)
tide_speed(7) = 27.968210 ! phase speeds of tidal components (deg/hour)
tide_speed(8) = 28.439730 ! phase speeds of tidal components (deg/hour)
tide_speed(9) = 28.512585 ! phase speeds of tidal components (deg/hour)
tide_speed(10) = 28.984106 ! phase speeds of tidal components (deg/hour)
tide_speed(11) = 29.528479 ! phase speeds of tidal components (deg/hour)
tide_speed(12) = 29.958935 ! phase speeds of tidal components (deg/hour)
tide_speed(13) = 30.000002 ! phase speeds of tidal components (deg/hour)
tide_speed(14) = 30.082138 ! phase speeds of tidal components (deg/hour)
tide_speed(15) = 57.968212 ! phase speeds of tidal components (deg/hour)
ln_tide_date = .true. ! adjust tidal harmonics for start date of run

/

To be written....

9 Lateral Ocean Physics (LDF)

164 Lateral Ocean Physics (LDF)

The lateral physics terms in the momentum and tracer equations have been
described in §?? and their discrete formulation in §?? and §??). In this section we
further discuss each lateral physics option. Choosing one lateral physics scheme
means for the user defining, (1) the space and time variations of the eddy coef-
ficients ; (2) the direction along which the lateral diffusive fluxes are evaluated
(model level, geopotential or isopycnal surfaces) ; and (3) the type of operator used
(harmonic, or biharmonic operators, and for tracers only, eddy induced advection
on tracers). These three aspects of the lateral diffusion are set through namelist pa-
rameters and CPP keys (see the nam traldf and nam dynldf below). Note that this
chapter describes the default implementation of iso-neutral tracer mixing, and Grif-
fies’s implementation, which is used if traldf grif =true, is described in Appdx??
!--
&namtra_ldf ! lateral diffusion scheme for tracers
!--

! ! Operator type:
ln_traldf_lap = .true. ! laplacian operator
ln_traldf_bilap = .false. ! bilaplacian operator
! ! Direction of action:
ln_traldf_level = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential) (needs "key_ldfslp" when ln_sco=T)
ln_traldf_iso = .true. ! iso-neutral (needs "key_ldfslp")
! ! Griffies parameters (all need "key_ldfslp")
ln_traldf_grif = .false. ! use griffies triads
ln_traldf_gdia = .false. ! output griffies eddy velocities
ln_triad_iso = .false. ! pure lateral mixing in ML
ln_botmix_grif = .false. ! lateral mixing on bottom
! ! Coefficients
! Eddy-induced (GM) advection always used with Griffies; otherwise needs "key_traldf_eiv"
! Value rn_aeiv_0 is ignored unless = 0 with Held-Larichev spatially varying aeiv
! (key_traldf_c2d & key_traldf_eiv & key_orca_r2, _r1 or _r05)
rn_aeiv_0 = 2000. ! eddy induced velocity coefficient [m2/s]
rn_aht_0 = 2000. ! horizontal eddy diffusivity for tracers [m2/s]
rn_ahtb_0 = 0. ! background eddy diffusivity for ldf_iso [m2/s]
! (normally=0; not used with Griffies)

/

!---
&namdyn_ldf ! lateral diffusion on momentum
!---

! ! Type of the operator :
ln_dynldf_lap = .true. ! laplacian operator
ln_dynldf_bilap = .false. ! bilaplacian operator
! ! Direction of action :
ln_dynldf_level = .false. ! iso-level
ln_dynldf_hor = .true. ! horizontal (geopotential) (require "key_ldfslp" in s-coord.)
ln_dynldf_iso = .false. ! iso-neutral (require "key_ldfslp")
! ! Coefficient
rn_ahm_0_lap = 40000. ! horizontal laplacian eddy viscosity [m2/s]
rn_ahmb_0 = 0. ! background eddy viscosity for ldf_iso [m2/s]
rn_ahm_0_blp = 0. ! horizontal bilaplacian eddy viscosity [m4/s]

/

9.1 Lateral Mixing Coefficient (ldftra.F90, ldfdyn.F90)

Introducing a space variation in the lateral eddy mixing coefficients changes the
model core memory requirement, adding up to four extra three-dimensional arrays
for the geopotential or isopycnal second order operator applied to momentum. Six
CPP keys control the space variation of eddy coefficients : three for momentum and
three for tracer. The three choices allow : a space variation in the three space direc-
tions (key traldf c3d, key dynldf c3d), in the horizontal plane (key traldf c2d,

9.1. Lateral Mixing Coefficient (ldftra, ldfdyn) 165

key dynldf c2d), or in the vertical only (key traldf c1d, key dynldf c1d). The
default option is a constant value over the whole ocean on both momentum and
tracers.

The number of additional arrays that have to be defined and the gridpoint po-
sition at which they are defined depend on both the space variation chosen and
the type of operator used. The resulting eddy viscosity and diffusivity coefficients
can be a function of more than one variable. Changes in the computer code when
switching from one option to another have been minimized by introducing the
eddy coefficients as statement functions (include file ldftra substitute.h90 and ldf-
dyn substitute.h90). The functions are replaced by their actual meaning during
the preprocessing step (CPP). The specification of the space variation of the co-
efficient is made in ldftra.F90 and ldfdyn.F90, or more precisely in include files
traldf cNd.h90 and dynldf cNd.h90, with N=1, 2 or 3. The user can modify these
include files as he/she wishes. The way the mixing coefficient are set in the refe-
rence version can be briefly described as follows :

Constant Mixing Coefficients (default option)

When none of the key dynldf ... and key traldf ... keys are defined, a constant
value is used over the whole ocean for momentum and tracers, which is specified
through the rn ahm0 and rn aht0 namelist parameters.

Vertically varying Mixing Coefficients (key traldf c1d and key dynldf c1d)

The 1D option is only available when using the z-coordinate with full step.
Indeed in all the other types of vertical coordinate, the depth is a 3D function of
(i,j,k) and therefore, introducing depth-dependent mixing coefficients will require
3D arrays. In the 1D option, a hyperbolic variation of the lateral mixing coefficient
is introduced in which the surface value is rn aht0 (rn ahm0), the bottom value
is 1/4 of the surface value, and the transition takes place around z=300 m with a
width of 300 m (i.e. both the depth and the width of the inflection point are set to
300 m). This profile is hard coded in file traldf c1d.h90, but can be easily modified
by users.

Horizontally Varying Mixing Coefficients (key traldf c2d and key dynldf c2d)

By default the horizontal variation of the eddy coefficient depends on the local
mesh size and the type of operator used :

Al =


max(e1, e2)

emax
Alo for laplacian operator

max(e1, e2)3

e3
max

Alo for bilaplacian operator
(9.1)

where emax is the maximum of e1 and e2 taken over the whole masked ocean do-
main, and Alo is the rn ahm0 (momentum) or rn aht0 (tracer) namelist parameter.

166 Lateral Ocean Physics (LDF)

This variation is intended to reflect the lesser need for subgrid scale eddy mixing
where the grid size is smaller in the domain. It was introduced in the context of
the DYNAMO modelling project [?]. Note that such a grid scale dependance of
mixing coefficients significantly increase the range of stability of model configura-
tions presenting large changes in grid pacing such as global ocean models. Indeed,
in such a case, a constant mixing coefficient can lead to a blow up of the model due
to large coefficient compare to the smallest grid size (see §??), especially when
using a bilaplacian operator.

Other formulations can be introduced by the user for a given configuration. For
example, in the ORCA2 global ocean model (key orca r2), the laplacian viscosity
operator uses rn ahm0 = 4.104 m2/s poleward of 20◦ north and south and decreases
linearly to rn aht0 = 2.103 m2/s at the equator [??]. This modification can be found
in routine ldf dyn c2d orca defined in ldfdyn c2d.F90. Similar modified horizontal
variations can be found with the Antarctic or Arctic sub-domain options of ORCA2
and ORCA05 (key antarctic or key arctic defined, see ldfdyn antarctic.h90 and
ldfdyn arctic.h90).

Space Varying Mixing Coefficients (key traldf c3d and key dynldf c3d)

The 3D space variation of the mixing coefficient is simply the combination of
the 1D and 2D cases, i.e. a hyperbolic tangent variation with depth associated with
a grid size dependence of the magnitude of the coefficient.

Space and Time Varying Mixing Coefficients

There is no default specification of space and time varying mixing coefficient.
The only case available is specific to the ORCA2 and ORCA05 global ocean confi-
gurations (key orca r2 or key orca r05). It provides only a tracer mixing coef-
ficient for eddy induced velocity (ORCA2) or both iso-neutral and eddy induced
velocity (ORCA05) that depends on the local growth rate of baroclinic instability.
This specification is actually used when an ORCA key and both key traldf eiv and
key traldf c2d are defined.

The following points are relevant when the eddy coefficient varies spatially :
(1) the momentum diffusion operator acting along model level surfaces is writ-

ten in terms of curl and divergent components of the horizontal current (see §??).
Although the eddy coefficient could be set to different values in these two terms,
this option is not currently available.

(2) with an horizontally varying viscosity, the quadratic integral constraints on
enstrophy and on the square of the horizontal divergence for operators acting along
model-surfaces are no longer satisfied (Appendix ??).

(3) for isopycnal diffusion on momentum or tracers, an additional purely ho-
rizontal background diffusion with uniform coefficient can be added by setting a

9.2. Direction of Lateral Mixing (ldfslp) 167

non zero value of rn ahmb0 or rn ahtb0, a background horizontal eddy viscosity or
diffusivity coefficient (namelist parameters whose default values are 0). However,
the technique used to compute the isopycnal slopes is intended to get rid of such a
background diffusion, since it introduces spurious diapycnal diffusion (see §??).

(4) when an eddy induced advection term is used (key traldf eiv), Aeiv, the
eddy induced coefficient has to be defined. Its space variations are controlled by
the same CPP variable as for the eddy diffusivity coefficient (i.e. key traldf cNd).

(5) the eddy coefficient associated with a biharmonic operator must be set to a
negative value.

(6) it is possible to use both the laplacian and biharmonic operators concur-
rently.

(7) it is possible to run without explicit lateral diffusion on momentum (ln dynldf lap
= ln dynldf bilap = false). This is recommended when using the UBS advection
scheme on momentum (ln dynadv ubs = true, see ??) and can be useful for testing
purposes.

9.2 Direction of Lateral Mixing (ldfslp.F90)

A direction for lateral mixing has to be defined when the desired operator does
not act along the model levels. This occurs when (a) horizontal mixing is required
on tracer or momentum (ln traldf hor or ln dynldf hor) in s- or mixed s-z- coor-
dinates, and (b) isoneutral mixing is required whatever the vertical coordinate is.
This direction of mixing is defined by its slopes in the i- and j-directions at the face
of the cell of the quantity to be diffused. For a tracer, this leads to the following
four slopes : r1u, r1w, r2v, r2w (see (??)), while for momentum the slopes are r1t,
r1uw, r2f , r2uw for u and r1f , r1vw, r2t, r2vw for v.

9.2.1 slopes for tracer geopotential mixing in the s-coordinate

In s-coordinates, geopotential mixing (i.e. horizontal mixing) r1 and r2 are
the slopes between the geopotential and computational surfaces. Their discrete for-
mulation is found by locally solving (??) when the diffusive fluxes in the three
directions are set to zero and T is assumed to be horizontally uniform, i.e. a linear

168 Lateral Ocean Physics (LDF)

function of zT , the depth of a T -point.

r1u =
e3u(

e1u e3w
i+1/2, k

) δi+1/2[zt] ≈ 1

e1u
δi+1/2[zt]

r2v =
e3v(

e2v e3w
j+1/2, k

) δj+1/2[zt] ≈ 1

e2v
δj+1/2[zt]

r1w =
1

e1w
δi+1/2[zt]

i, k+1/2
≈ 1

e1w
δi+1/2[zuw]

r2w =
1

e2w
δj+1/2[zt]

j, k+1/2
≈ 1

e2w
δj+1/2[zvw]

(9.2)

These slopes are computed once in ldfslp init when ln sco=True, and either
ln traldf hor=True or ln dynldf hor=True.

9.2.2 Slopes for tracer iso-neutral mixing

In iso-neutral mixing r1 and r2 are the slopes between the iso-neutral and com-
putational surfaces. Their formulation does not depend on the vertical coordinate
used. Their discrete formulation is found using the fact that the diffusive fluxes of
locally referenced potential density (i.e. insitu density) vanish. So, substituting T
by ρ in (??) and setting the diffusive fluxes in the three directions to zero leads to
the following definition for the neutral slopes :

r1u =
e3u

e1u

δi+1/2[ρ]

δk+1/2[ρ]
i+1/2, k

r2v =
e3v

e2v

δj+1/2 [ρ]

δk+1/2[ρ]
j+1/2, k

r1w =
e3w

e1w

δi+1/2[ρ]
i, k+1/2

δk+1/2[ρ]

r2w =
e3w

e2w

δj+1/2[ρ]
j, k+1/2

δk+1/2[ρ]

(9.3)

As the mixing is performed along neutral surfaces, the gradient of ρ in (??)
has to be evaluated at the same local pressure (which, in decibars, is approximated
by the depth in meters in the model). Therefore (??) cannot be used as such, but
further transformation is needed depending on the vertical coordinate used :

z-coordinate with full step : in (??) the densities appearing in the i and j deriva-
tives are taken at the same depth, thus the insitu density can be used. This is
not the case for the vertical derivatives : δk+1/2[ρ] is replaced by −ρN2/g,

9.2. Direction of Lateral Mixing (ldfslp) 169

where N2 is the local Brunt-Vaisälä frequency evaluated following ? (see
§??).

z-coordinate with partial step : this case is identical to the full step case except
that at partial step level, the horizontal density gradient is evaluated as des-
cribed in §??.

s- or hybrid s-z- coordinate : in the current release of NEMO, iso-neutral mixing
is only employed for s-coordinates if the Griffies scheme is used (traldf grif =true ;
see Appdx ??). In other words, iso-neutral mixing will only be accurately
represented with a linear equation of state (nn eos=1 or 2). In the case of
a ”true” equation of state, the evaluation of i and j derivatives in (??) will
include a pressure dependent part, leading to the wrong evaluation of the
neutral slopes.
Note : The solution for s-coordinate passes trough the use of different (and
better) expression for the constraint on iso-neutral fluxes. Following ?, ins-
tead of specifying directly that there is a zero neutral diffusive flux of locally
referenced potential density, we stay in the T -S plane and consider the ba-
lance between the neutral direction diffusive fluxes of potential temperature
and salinity :

α F(T) = β F(S) (9.4)

This constraint leads to the following definition for the slopes :

r1u =
e3u

e1u

αu δi+1/2[T]− βu δi+1/2[S]

αu δk+1/2[T]
i+1/2, k

− βu δk+1/2[S]
i+1/2, k

r2v =
e3v

e2v

αv δj+1/2[T]− βv δj+1/2[S]

αv δk+1/2[T]
j+1/2, k

− βv δk+1/2[S]
j+1/2, k

r1w =
e3w

e1w

αw δi+1/2[T]
i, k+1/2

− βw δi+1/2[S]
i, k+1/2

αw δk+1/2[T]− βw δk+1/2[S]

r2w =
e3w

e2w

αw δj+1/2[T]
j, k+1/2

− βw δj+1/2[S]
j, k+1/2

αw δk+1/2[T]− βw δk+1/2[S]

(9.5)

where α and β, the thermal expansion and saline contraction coefficients
introduced in §??, have to be evaluated at the three velocity points. In order
to save computation time, they should be approximated by the mean of their
values at T -points (for example in the case of α : αu = αT

i+1/2, αv =
αT

j+1/2 and αw = αT
k+1/2).

Note that such a formulation could be also used in the z-coordinate and z-
coordinate with partial steps cases.

This implementation is a rather old one. It is similar to the one proposed by
Cox [1987], except for the background horizontal diffusion. Indeed, the Cox im-
plementation of isopycnal diffusion in GFDL-type models requires a minimum

170 Lateral Ocean Physics (LDF)

background horizontal diffusion for numerical stability reasons. To overcome this
problem, several techniques have been proposed in which the numerical schemes
of the ocean model are modified [??]. Griffies’s scheme is now available in NEMO
if traldf grif iso is set true ; see Appdx ??. Here, another strategy is presented
[?] : a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents
the development of grid point noise generated by the iso-neutral diffusion operator
(Fig. ??). This allows an iso-neutral diffusion scheme without additional back-
ground horizontal mixing. This technique can be viewed as a diffusion operator
that acts along large-scale (2 ∆x) iso-neutral surfaces. The diapycnal diffusion
required for numerical stability is thus minimized and its net effect on the flow is
quite small when compared to the effect of an horizontal background mixing.

Nevertheless, this iso-neutral operator does not ensure that variance cannot in-
crease, contrary to the ? operator which has that property.

FIGURE 9.1: averaging procedure for isopycnal slope computation.

For numerical stability reasons [??], the slopes must also be bounded by 1/100
everywhere. This constraint is applied in a piecewise linear fashion, increasing
from zero at the surface to 1/100 at 70 metres and thereafter decreasing to zero at
the bottom of the ocean. (the fact that the eddies ”feel” the surface motivates this
flattening of isopycnals near the surface).

add here a discussion about the flattening of the slopes, vs tapering the coefficient.

9.2. Direction of Lateral Mixing (ldfslp) 171

interior
ocean

iso-neutral
surface

bounded by
the surface

slopes

de
pt

h

0

slopes

de
pt

h

0

slopes

de
pt

h

0

mixed
layer(a)

(b)

(c)

?
?

mixed
layer

mixed
layer

interior
ocean

interior
ocean

iso-neutral
surface

iso-neutral
surface

10-2

?

FIGURE 9.2: Vertical profile of the slope used for lateral mixing in the mixed layer :
(a) in the real ocean the slope is the iso-neutral slope in the ocean interior, which has to
be adjusted at the surface boundary (i.e. it must tend to zero at the surface since there
is no mixing across the air-sea interface : wall boundary condition). Nevertheless, the
profile between the surface zero value and the interior iso-neutral one is unknown, and
especially the value at the base of the mixed layer ; (b) profile of slope using a linear
tapering of the slope near the surface and imposing a maximum slope of 1/100 ; (c)
profile of slope actually used in NEMO : a linear decrease of the slope from zero at
the surface to its ocean interior value computed just below the mixed layer. Note the
huge change in the slope at the base of the mixed layer between (b) and (c).

172 Lateral Ocean Physics (LDF)

9.2.3 slopes for momentum iso-neutral mixing

The iso-neutral diffusion operator on momentum is the same as the one used
on tracers but applied to each component of the velocity separately (see (??) in
section ??). The slopes between the surface along which the diffusion operator
acts and the surface of computation (z- or s-surfaces) are defined at T -, f -, and
uw- points for the u-component, and T -, f - and vw- points for the v-component.
They are computed from the slopes used for tracer diffusion, i.e. (??) and (??) :

r1t = r1u
i r1f = r1u

i+1/2

r2f = r2v
j+1/2 r2t = r2v

j

r1uw = r1w
i+1/2 and r1vw = r1w

j+1/2

r2uw = r2w
j+1/2 r2vw = r2w

j+1/2

(9.6)

The major issue remaining is in the specification of the boundary conditions.
The same boundary conditions are chosen as those used for lateral diffusion along
model level surfaces, i.e. using the shear computed along the model levels and with
no additional friction at the ocean bottom (see §??).

9.3 Eddy Induced Velocity (traadv eiv.F90, ldfeiv.F90)

When Gent and McWilliams [1990] diffusion is used (key traldf eiv defined),
an eddy induced tracer advection term is added, the formulation of which depends
on the slopes of iso-neutral surfaces. Contrary to the case of iso-neutral mixing,
the slopes used here are referenced to the geopotential surfaces, i.e. (??) is used in
z-coordinates, and the sum (??) + (??) in s-coordinates. The eddy induced velocity
is given by :

u∗ =
1

e2ue3u
δk

[
e2uA

eiv
uw r1w

i+1/2
]

v∗ =
1

e1ue3v
δk

[
e1v A

eiv
vw r2w

j+1/2
]

w∗ =
1

e1we2w

{
δi

[
e2uA

eiv
uw r1w

i+1/2
]

+ δj

[
e1v A

eiv
vw r2w

j+1/2
]} (9.7)

where Aeiv is the eddy induced velocity coefficient whose value is set through
rn aeiv, a nam traldf namelist parameter. The three components of the eddy indu-
ced velocity are computed and add to the eulerian velocity in traadv eiv.F90. This
has been preferred to a separate computation of the advective trends associated with
the eiv velocity, since it allows us to take advantage of all the advection schemes
offered for the tracers (see §??) and not just the 2nd order advection scheme as in
previous releases of OPA [?]. This is particularly useful for passive tracers where
positivity of the advection scheme is of paramount importance.

At the surface, lateral and bottom boundaries, the eddy induced velocity, and
thus the advective eddy fluxes of heat and salt, are set to zero.

10 Vertical Ocean Physics (ZDF)

174 Vertical Ocean Physics (ZDF)

10.1 Vertical Mixing

The discrete form of the ocean subgrid scale physics has been presented in §??
and §??. At the surface and bottom boundaries, the turbulent fluxes of momentum,
heat and salt have to be defined. At the surface they are prescribed from the surface
forcing (see Chap. ??), while at the bottom they are set to zero for heat and salt,
unless a geothermal flux forcing is prescribed as a bottom boundary condition (i.e.
key trabbl defined, see §??), and specified through a bottom friction parameteri-
sation for momentum (see §??).

In this section we briefly discuss the various choices offered to compute the
vertical eddy viscosity and diffusivity coefficients, Avmu , Avmv and AvT (AvS), de-
fined at uw-, vw- and w- points, respectively (see §?? and §??). These coefficients
can be assumed to be either constant, or a function of the local Richardson number,
or computed from a turbulent closure model (either TKE or KPP formulation). The
computation of these coefficients is initialized in the zdfini.F90 module and per-
formed in the zdfric.F90, zdftke.F90 or zdfkpp.F90 modules. The trends due to the
vertical momentum and tracer diffusion, including the surface forcing, are com-
puted and added to the general trend in the dynzdf.F90 and trazdf.F90 modules,
respectively. These trends can be computed using either a forward time stepping
scheme (namelist parameter ln zdfexp=true) or a backward time stepping scheme
(ln zdfexp=false) depending on the magnitude of the mixing coefficients, and thus
of the formulation used (see §??).

10.1.1 Constant (key zdfcst)
!---
&namzdf ! vertical physics
!---

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

When key zdfcst is defined, the momentum and tracer vertical eddy coeffi-
cients are set to constant values over the whole ocean. This is the crudest way to
define the vertical ocean physics. It is recommended that this option is only used
in process studies, not in basin scale simulations. Typical values used in this case
are :

Avmu = Avmv = 1.2 10−4 m2.s−1

AvT = AvS = 1.2 10−5 m2.s−1

10.1. Vertical Mixing 175

These values are set through the rn avm0 and rn avt0 namelist parameters.
In all cases, do not use values smaller that those associated with the molecular
viscosity and diffusivity, that is ∼ 10−6 m2.s−1 for momentum, ∼ 10−7 m2.s−1

for temperature and ∼ 10−9 m2.s−1 for salinity.

10.1.2 Richardson Number Dependent (key zdfric)
!---
&namzdf_ric ! richardson number dependent vertical diffusion ("key_zdfric")
!---

rn_avmri = 100.e-4 ! maximum value of the vertical viscosity
rn_alp = 5. ! coefficient of the parameterization
nn_ric = 2 ! coefficient of the parameterization
rn_ekmfc = 0.7 ! Factor in the Ekman depth Equation
rn_mldmin = 1.0 ! minimum allowable mixed-layer depth estimate (m)
rn_mldmax =1000.0 ! maximum allowable mixed-layer depth estimate (m)
rn_wtmix = 10.0 ! vertical eddy viscosity coeff [m2/s] in the mixed-layer
rn_wvmix = 10.0 ! vertical eddy diffusion coeff [m2/s] in the mixed-layer
ln_mldw = .true. ! Flag to use or not the mized layer depth param.

/

When key zdfric is defined, a local Richardson number dependent formulation
for the vertical momentum and tracer eddy coefficients is set. The vertical mixing
coefficients are diagnosed from the large scale variables computed by the model. In
situ measurements have been used to link vertical turbulent activity to large scale
ocean structures. The hypothesis of a mixing mainly maintained by the growth
of Kelvin-Helmholtz like instabilities leads to a dependency between the vertical
eddy coefficients and the local Richardson number (i.e. the ratio of stratification to
vertical shear). Following ?, the following formulation has been implemented :

AvT =
AvTric

(1 + a Ri)n
+AvTb

Avm =
AvT

(1 + a Ri)
+Avmb

(10.1)

where Ri = N2/ (∂zUh)2 is the local Richardson number, N is the local Brunt-
Vaisälä frequency (see §??), AvTb and Avmb are the constant background values set
as in the constant case (see §??), and AvTric = 10−4 m2.s−1 is the maximum value
that can be reached by the coefficient when Ri ≤ 0, a = 5 and n = 2. The last
three values can be modified by setting the rn avmri, rn alp and nn ric namelist
parameters, respectively.

A simple mixing-layer model to transfer and dissipate the atmospheric forcings
(wind-stress and buoyancy fluxes) can be activated setting the ln mldw =.true. in
the namelist.

In this case, the local depth of turbulent wind-mixing or ”Ekman depth” he(x, y, t)
is evaluated and the vertical eddy coefficients prescribed within this layer.

This depth is assumed proportional to the ”depth of frictional influence” that is
limited by rotation :

he = Ek
u∗

f0
(10.2)

where, Ek is an empirical parameter, u∗ is the friction velocity and f0 is the Co-
riolis parameter.

176 Vertical Ocean Physics (ZDF)

In this similarity height relationship, the turbulent friction velocity :

u∗ =

√
|τ |
ρo

(10.3)

is computed from the wind stress vector |τ | and the reference density ρo. The
final he is further constrained by the adjustable bounds rn mldmin and rn mldmax.
Once he is computed, the vertical eddy coefficients within he are set to the empiri-
cal values rn wtmix and rn wvmix [?].

10.1.3 TKE Turbulent Closure Scheme (key zdftke)
!---
&namzdf_tke ! turbulent eddy kinetic dependent vertical diffusion ("key_zdftke")
!---

rn_ediff = 0.1 ! coef. for vertical eddy coef. (avt=rn_ediff*mxl*sqrt(e))
rn_ediss = 0.7 ! coef. of the Kolmogoroff dissipation
rn_ebb = 67.83 ! coef. of the surface input of tke (=67.83 suggested when ln_mxl0=T)
rn_emin = 1.e-6 ! minimum value of tke [m2/s2]
rn_emin0 = 1.e-4 ! surface minimum value of tke [m2/s2]
nn_mxl = 2 ! mixing length: = 0 bounded by the distance to surface and bottom

! = 1 bounded by the local vertical scale factor
! = 2 first vertical derivative of mixing length bounded by 1
! = 3 as =2 with distinct disspipative an mixing length scale

nn_pdl = 1 ! Prandtl number function of richarson number (=1, avt=pdl(Ri)*avm) or not (=0, avt=avm)
ln_mxl0 = .true. ! surface mixing length scale = F(wind stress) (T) or not (F)
rn_mxl0 = 0.04 ! surface buoyancy lenght scale minimum value
ln_lc = .true. ! Langmuir cell parameterisation (Axell 2002)
rn_lc = 0.15 ! coef. associated to Langmuir cells
nn_etau = 1 ! penetration of tke below the mixed layer (ML) due to internal & intertial waves

! = 0 no penetration
! = 1 add a tke source below the ML
! = 2 add a tke source just at the base of the ML
! = 3 as = 1 applied on HF part of the stress ("key_coupled")

rn_efr = 0.05 ! fraction of surface tke value which penetrates below the ML (nn_etau=1 or 2)
nn_htau = 1 ! type of exponential decrease of tke penetration below the ML

! = 0 constant 10 m length scale
! = 1 0.5m at the equator to 30m poleward of 40 degrees

/

The vertical eddy viscosity and diffusivity coefficients are computed from a
TKE turbulent closure model based on a prognostic equation for ē, the turbulent
kinetic energy, and a closure assumption for the turbulent length scales. This tur-
bulent closure model has been developed by ? in the atmospheric case, adapted by
? for the oceanic case, and embedded in OPA, the ancestor of NEMO, by ? for
equatorial Atlantic simulations. Since then, significant modifications have been in-
troduced by ? in both the implementation and the formulation of the mixing length
scale. The time evolution of ē is the result of the production of ē through vertical
shear, its destruction through stratification, its vertical diffusion, and its dissipation
of ? type :

∂ē

∂t
=
Km

e3
2

[(
∂u

∂k

)2

+

(
∂v

∂k

)2
]
−KρN

2 +
1

e3

∂

∂k

[
Avm

e3

∂ē

∂k

]
− cε

ē3/2

lε
(10.4)

Km = Ck lk
√
ē

Kρ = Avm/Prt
(10.5)

10.1. Vertical Mixing 177

whereN is the local Brunt-Vaisälä frequency (see §??), lε and lκ are the dissipation
and mixing length scales, Prt is the Prandtl number, Km and Kρ are the vertical
eddy viscosity and diffusivity coefficients. The constants Ck = 0.1 and Cε =√

2/2 ≈ 0.7 are designed to deal with vertical mixing at any depth [?]. They are
set through namelist parameters nn ediff and nn ediss. Prt can be set to unity or,
following ?, be a function of the local Richardson number, Ri :

Prt =


1 if Ri ≤ 0.2

5Ri if 0.2 ≤ Ri ≤ 2

10 if 2 ≤ Ri
The choice of Prt is controlled by the nn pdl namelist parameter.

At the sea surface, the value of ē is prescribed from the wind stress field as
ēo = ebb|τ |/ρo, with ebb the rn ebb namelist parameter. The default value of ebb
is 3.75. [?]), however a much larger value can be used when taking into account
the surface wave breaking (see below Eq. (??)). The bottom value of TKE is assu-
med to be equal to the value of the level just above. The time integration of the ē
equation may formally lead to negative values because the numerical scheme does
not ensure its positivity. To overcome this problem, a cut-off in the minimum value
of ē is used (rn emin namelist parameter). Following ?, the cut-off value is set to√

2/2 10−6 m2.s−2. This allows the subsequent formulations to match that of ? for
the diffusion in the thermocline and deep ocean :Kρ = 10−3/N . In addition, a cut-
off is applied on Km and Kρ to avoid numerical instabilities associated with too
weak vertical diffusion. They must be specified at least larger than the molecular
values, and are set through rn avm0 and rn avt0 (namzdf namelist, see §??).

Turbulent length scale

For computational efficiency, the original formulation of the turbulent length
scales proposed by ? has been simplified. Four formulations are proposed, the
choice of which is controlled by the nn mxl namelist parameter. The first two are
based on the following first order approximation [?] :

lk = lε =
√

2ē /N (10.6)

which is valid in a stable stratified region with constant values of the Brunt- Vaisälä fre-
quency. The resulting length scale is bounded by the distance to the surface or to the
bottom (nn mxl = 0) or by the local vertical scale factor (nn mxl = 1). ? notice that
this simplification has two major drawbacks : it makes no sense for locally unstable
stratification and the computation no longer uses all the information contained in
the vertical density profile. To overcome these drawbacks, ? introduces the nn mxl
= 2 or 3 cases, which add an extra assumption concerning the vertical gradient of
the computed length scale. So, the length scales are first evaluated as in (??) and
then bounded such that :

1

e3

∣∣∣∣ ∂l∂k
∣∣∣∣ ≤ 1 with l = lk = lε (10.7)

178 Vertical Ocean Physics (ZDF)

0 10 20 30 40 50

100

80

60

40

20

0
D

ep
th

 (m
)

Mixing length scale(m)
60 70 80 90 100

l = 2 ēN

lup

ldwn

l

lk

FIGURE 10.1: Illustration of the mixing length computation.

(??) means that the vertical variations of the length scale cannot be larger than
the variations of depth. It provides a better approximation of the ? formulation
while being much less time consuming. In particular, it allows the length scale
to be limited not only by the distance to the surface or to the ocean bottom but
also by the distance to a strongly stratified portion of the water column such as
the thermocline (Fig. ??). In order to impose the (??) constraint, we introduce two
additional length scales : lup and ldwn, the upward and downward length scales,
and evaluate the dissipation and mixing length scales as (and note that here we use
numerical indexing) :

l(k)
up = min

(
l(k) , l(k+1)

up + e
(k)
3t

)
from k = 1 to jpk

l
(k)
dwn = min

(
l(k) , l

(k−1)
dwn + e

(k−1)
3t

)
from k = jpk to 1

(10.8)

where l(k) is computed using (??), i.e. l(k) =

√
2ē(k)/N2(k).

In the nn mxl = 2 case, the dissipation and mixing length scales take the same
value : lk = lε = min (lup , ldwn), while in the nn mxl = 3 case, the dissipation
and mixing turbulent length scales are give as in ? :

lk =
√
lup ldwn

lε = min (lup , ldwn)
(10.9)

At the ocean surface, a non zero length scale is set through the rn lmin0 name-
list parameter. Usually the surface scale is given by lo = κ zo where κ = 0.4 is

10.1. Vertical Mixing 179

von Karman’s constant and zo the roughness parameter of the surface. Assuming
zo = 0.1 m [?] leads to a 0.04 m, the default value of rn lsurf . In the ocean interior
a minimum length scale is set to recover the molecular viscosity when ē reach its
minimum value (1.10−6 = Ck lmin

√
ēmin).

Surface wave breaking parameterization

Following ?, the TKE turbulence closure model has been modified to include
the effect of surface wave breaking energetics. This results in a reduction of sum-
mertime surface temperature when the mixed layer is relatively shallow. The ? mo-
difications acts on surface length scale and TKE values and air-sea drag coefficient.
The latter concerns the bulk formulea and is not discussed here.

Following ?, the boundary condition on surface TKE value is :

ēo =
1

2
(15.8αCB)2/3 |τ |

ρo
(10.10)

where αCB is the ? constant of proportionality which depends on the ”wave age”,
ranging from 57 for mature waves to 146 for younger waves [?]. The boundary
condition on the turbulent length scale follows the Charnock’s relation :

lo = κβ
|τ |
g ρo

(10.11)

where κ = 0.40 is the von Karman constant, and β is the Charnock’s constant.
? suggest β = 2.105 the value chosen by ? citing observation evidence, and
αCB = 100 the Craig and Banner’s value. As the surface boundary condition on
TKE is prescribed through ēo = ebb|τ |/ρo, with ebb the rn ebb namelist parame-
ter, setting rn ebb = 67.83 corresponds to αCB = 100. further setting ln lsurf to
true applies (??) as surface boundary condition on length scale, with β hard coded
to the Stacet’s value. Note that a minimal threshold of rn emin0= 10−4 m2.s−2

(namelist parameters) is applied on surface ē value.

Langmuir cells

Langmuir circulations (LC) can be described as ordered large-scale vertical
motions in the surface layer of the oceans. Although LC have nothing to do with
convection, the circulation pattern is rather similar to so-called convective rolls in
the atmospheric boundary layer. The detailed physics behind LC is described in, for
example, ?. The prevailing explanation is that LC arise from a nonlinear interaction
between the Stokes drift and wind drift currents.

Here we introduced in the TKE turbulent closure the simple parameterization
of Langmuir circulations proposed by [?] for a k − ε turbulent closure. The pa-
rameterization, tuned against large-eddy simulation, includes the whole effect of
LC in an extra source terms of TKE, PLC . The presence of PLC in (??), the TKE
equation, is controlled by setting ln lc to true in the namtke namelist.

180 Vertical Ocean Physics (ZDF)

By making an analogy with the characteristic convective velocity scale (e.g.,
?), PLC is assumed to be :

PLC(z) =
w3
LC(z)

HLC
(10.12)

where wLC(z) is the vertical velocity profile of LC, and HLC is the LC depth.
With no information about the wave field, wLC is assumed to be proportional to
the Stokes drift us = 0.377 |τ |1/2, where |τ | is the surface wind stress module 1.
For the vertical variation, wLC is assumed to be zero at the surface as well as at a
finite depth HLC (which is often close to the mixed layer depth), and simply varies
as a sine function in between (a first-order profile for the Langmuir cell structures).
The resulting expression for wLC is :

wLC =

{
cLC us sin(−π z/HLC) if −z ≤ HLC

0 otherwise
(10.13)

where cLC = 0.15 has been chosen by [?] as a good compromise to fit LES data.
The chosen value yields maximum vertical velocities wLC of the order of a few
centimeters per second. The value of cLC is set through the rn lc namelist parame-
ter, having in mind that it should stay between 0.15 and 0.54 [?].

The HLC is estimated in a similar way as the turbulent length scale of TKE
equations : HLC is depth to which a water parcel with kinetic energy due to Stoke
drift can reach on its own by converting its kinetic energy to potential energy,
according to

−
∫ 0

−HLC
N2 z dz =

1

2
u2
s (10.14)

Mixing just below the mixed layer

To be add here a description of ”penetration of TKE” and the associated name-
list parameters nn etau, rn efr and nn htau.

10.1.4 TKE discretization considerations (key zdftke)

The production of turbulence by vertical shear (the first term of the right hand
side of (??)) should balance the loss of kinetic energy associated with the vertical
momentum diffusion (first line in (??)). To do so a special care have to be taken for
both the time and space discretization of the TKE equation [??].

Let us first address the time stepping issue. Fig. ?? shows how the two-level
Leap-Frog time stepping of the momentum and tracer equations interplays with the
one-level forward time stepping of TKE equation. With this framework, the total

1. Following ?, the surface Stoke drift velocity may be expressed as us = 0.016 |U10m|. Assu-
ming an air density of ρa = 1.22Kg/m3 and a drag coefficient of 1.5 10−3 give the expression
used of us as a function of the module of surface stress

10.1. Vertical Mixing 181

t-∆t t+∆tt
momentum

TKE

tracer

FIGURE 10.2: Illustration of the TKE time integration and its links to the momentum
and tracer time integration.

loss of kinetic energy (in 1D for the demonstration) due to the vertical momentum
diffusion is obtained by multiplying this quantity by ut and summing the result

182 Vertical Ocean Physics (ZDF)

vertically :

∫ η

−H
ut ∂z

(
Km

t (∂zu)t+∆t
)
dz

=
[
utKm

t (∂zu)t+∆t
]η
−H
−
∫ η

−H
Km

t ∂zu
t ∂zu

t+∆t dz

(10.15)

Here, the vertical diffusion of momentum is discretized backward in time with a
coefficient, Km, known at time t (Fig. ??), as it is required when using the TKE
scheme (see §??). The first term of the right hand side of (??) represents the kinetic
energy transfer at the surface (atmospheric forcing) and at the bottom (friction ef-
fect). The second term is always negative. It is the dissipation rate of kinetic energy,
and thus minus the shear production rate of ē. (??) implies that, to be energetically
consistent, the production rate of ē used to compute (ē)t (and thus Km

t) should
be expressed as Km

t−∆t (∂zu)t−∆t (∂zu)t (and not by the more straightforward
Km (∂zu)2 expression taken at time t or t−∆t).

A similar consideration applies on the destruction rate of ē due to stratification
(second term of the right hand side of (??)). This term must balance the input
of potential energy resulting from vertical mixing. The rate of change of potential
energy (in 1D for the demonstration) due vertical mixing is obtained by multiplying
vertical density diffusion tendency by g z and and summing the result vertically :

∫ η

−H
g z ∂z

(
Kρ

t (∂kρ)t+∆t
)
dz

=
[
g z Kρ

t (∂zρ)t+∆t
]η
−H
−
∫ η

−H
g Kρ

t (∂kρ)t+∆t dz

= −
[
z Kρ

t (N2)t+∆t
]η
−H

+

∫ η

−H
ρt+∆tKρ

t (N2)t+∆t dz

(10.16)

where we use N2 = −g ∂kρ/(e3ρ). The first term of the right hand side of (??) is
always zero because there is no diffusive flux through the ocean surface and bot-
tom). The second term is minus the destruction rate of ē due to stratification. The-
refore (??) implies that, to be energetically consistent, the product Kρ

t−∆t (N2)t

should be used in (??), the TKE equation.
Let us now address the space discretization issue. The vertical eddy coefficients

are defined at w-point whereas the horizontal velocity components are in the centre
of the side faces of a t-box in staggered C-grid (Fig.??). A space averaging is thus
required to obtain the shear TKE production term. By redoing the (??) in the 3D
case, it can be shown that the product of eddy coefficient by the shear at t and
t − ∆t must be performed prior to the averaging. Furthermore, the possible time
variation of e3 (key vvl case) have to be taken into account.

The above energetic considerations leads to the following final discrete form

10.1. Vertical Mixing 183

for the TKE equation :

(ē)t − (ē)t−∆t

∆t
≡

{((
Km

i+1/2
)t−∆t δk+1/2[ut+∆t]

e3ut+∆t

δk+1/2[ut]

e3ut

) i

+

((
Km

j+1/2
)t−∆t δk+1/2[vt+∆t]

e3vt+∆t

δk+1/2[vt]

e3vt

) j}
−Kρ

t−∆t (N2)t

+
1

e3wt+∆t
δk+1/2

[
Km

t−∆t δk[(ē)
t+∆t]

e3wt+∆t

]
−cε

(√
ē

lε

)t−∆t

(ē)t+∆t

(10.17)

where the last two terms in (??) (vertical diffusion and Kolmogorov dissipation) are
time stepped using a backward scheme (see§??). Note that the Kolmogorov term
has been linearized in time in order to render the implicit computation possible.
The restart of the TKE scheme requires the storage of ē, Km, Kρ and lε as they
all appear in the right hand side of (??). For the latter, it is in fact the ratio

√
ē/lε

which is stored.

10.1.5 GLS Generic Length Scale (key zdfgls)
!---
&namzdf_gls ! GLS vertical diffusion ("key_zdfgls")
!---

rn_emin = 1.e-6 ! minimum value of e [m2/s2]
rn_epsmin = 1.e-12 ! minimum value of eps [m2/s3]
ln_length_lim = .true. ! limit on the dissipation rate under stable stratification (Galperin et al., 1988)
rn_clim_galp = 0.53 ! galperin limit
ln_crban = .true. ! Use Craig & Banner (1994) surface wave mixing parametrisation
ln_sigpsi = .true. ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case
rn_crban = 100. ! Craig and Banner 1994 constant for wb tke flux
rn_charn = 70000. ! Charnock constant for wb induced roughness length
nn_tkebc_surf = 1 ! surface tke condition (0/1/2=Dir/Neum/Dir Mellor-Blumberg)
nn_tkebc_bot = 1 ! bottom tke condition (0/1=Dir/Neum)
nn_psibc_surf = 1 ! surface psi condition (0/1/2=Dir/Neum/Dir Mellor-Blumberg)
nn_psibc_bot = 1 ! bottom psi condition (0/1=Dir/Neum)
nn_stab_func = 2 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
nn_clos = 1 ! predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen)

/

The Generic Length Scale (GLS) scheme is a turbulent closure scheme based
on two prognostic equations : one for the turbulent kinetic energy ē, and another for
the generic length scale, ψ [??]. This later variable is defined as : ψ = C0µ

p ēm ln,
where the triplet (p,m, n) value given in Tab.?? allows to recover a number of
well-known turbulent closures (k-kl [?], k-ε [?], k-ω [?] among others [??]). The
GLS scheme is given by the following set of equations :

∂ē

∂t
=

Km

σee3

[(
∂u

∂k

)2

+

(
∂v

∂k

)2
]
−KρN

2 +
1

e3

∂

∂k

[
Km

e3

∂ē

∂k

]
− ε (10.18)

184 Vertical Ocean Physics (ZDF)

∂ψ

∂t
=
ψ

ē

{
C1Km

σψe3

[(
∂u

∂k

)2

+

(
∂v

∂k

)2
]
− C3KρN

2 − C2 ε Fw

}

+
1

e3

∂

∂k

[
Km

e3

∂ψ

∂k

] (10.19)

Km = Cµ
√
ē l

Kρ = Cµ′
√
ē l

(10.20)

ε = C0µ
ē3/2

l
(10.21)

where N is the local Brunt-Vaisälä frequency (see §??) and ε the dissipation rate.
The constantsC1,C2,C3, σe, σψ and the wall function (Fw) depends of the choice
of the turbulence model. Four different turbulent models are pre-defined (Tab.??).
They are made available through the nn clo namelist parameter.

TABLE 10.1: Set of predefined GLS parameters, or equivalently predefined turbu-
lence models available with key zdfgls and controlled by the nn clos namelist para-
meter.

k − kl k − ε k − ω generic
nn clo 0 1 2 3

(p, n,m) (0 , 1 , 1) (3 , 1.5 , -1) (-1 , 0.5 , -1) (2 , 1 , -0.67)
σk 2.44 1. 2. 0.8
σψ 2.44 1.3 2. 1.07
C1 0.9 1.44 0.555 1.
C2 0.5 1.92 0.833 1.22
C3 1. 1. 1. 1.
Fwall Yes – – –

In the Mellor-Yamada model, the negativity of n allows to use a wall function
to force the convergence of the mixing length towards Kzb (K : Kappa and zb :
rugosity length) value near physical boundaries (logarithmic boundary layer law).
Cµ and Cµ′ are calculated from stability function proposed by ?, or by ? or one of
the two functions suggested by ? (nn stab func = 0, 1, 2 or 3, resp.). The value of
C0µ depends of the choice of the stability function.

The surface and bottom boundary condition on both ē and ψ can be calculated
thanks to Dirichlet or Neumann condition through nn tkebc surf and nn tkebc bot,
resp. As for TKE closure , the wave effect on the mixing is considered when
ln crban = true [??]. The rn crban namelist parameter is αCB in (??) and rn charn
provides the value of β in (??).

10.2. Convection 185

The ψ equation is known to fail in stably stratified flows, and for this rea-
son almost all authors apply a clipping of the length scale as an ad hoc remedy.
With this clipping, the maximum permissible length scale is determined by lmax =
clim
√

2ē/N . A value of clim = 0.53 is often used [?]. ? show that the value of
the clipping factor is of crucial importance for the entrainment depth predicted
in stably stratified situations, and that its value has to be chosen in accordance
with the algebraic model for the turbulent fluxes. The clipping is only activated if
ln length lim=true, and the clim is set to the rn clim galp value.

The time and space discretization of the GLS equations follows the same ener-
getic consideration as for the TKE case described in §?? [?]. Examples of perfor-
mance of the 4 turbulent closure scheme can be found in ?.

10.1.6 K Profile Parametrisation (KPP) (key zdfkpp)
!--
&namzdf_kpp ! K-Profile Parameterization dependent vertical mixing ("key_zdfkpp", and optionally:
!-- "key_kppcustom" or "key_kpplktb")

ln_kpprimix = .true. ! shear instability mixing
rn_difmiw = 1.0e-04 ! constant internal wave viscosity [m2/s]
rn_difsiw = 0.1e-04 ! constant internal wave diffusivity [m2/s]
rn_riinfty = 0.8 ! local Richardson Number limit for shear instability
rn_difri = 0.0050 ! maximum shear mixing at Rig = 0 [m2/s]
rn_bvsqcon = -0.01e-07 ! Brunt-Vaisala squared for maximum convection [1/s2]
rn_difcon = 1. ! maximum mixing in interior convection [m2/s]
nn_avb = 0 ! horizontal averaged (=1) or not (=0) on avt and amv
nn_ave = 1 ! constant (=0) or profile (=1) background on avt

/

The KKP scheme has been implemented by J. Chanut ...
Add a description of KPP here.

10.2 Convection
!---
&namzdf ! vertical physics
!---

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

Static instabilities (i.e. light potential densities under heavy ones) may occur
at particular ocean grid points. In nature, convective processes quickly re-establish
the static stability of the water column. These processes have been removed from
the model via the hydrostatic assumption so they must be parameterized. Three pa-
rameterisations are available to deal with convective processes : a non-penetrative
convective adjustment or an enhanced vertical diffusion, or/and the use of a turbu-
lent closure scheme.

186 Vertical Ocean Physics (ZDF)

10.2.1 Non-Penetrative Convective Adjustment (ln tranpc=.true.)
!---
&namzdf ! vertical physics
!---

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

initial profile

2nd step

1

2

3

4

5

LE
V

EL
S

1st step

FIGURE 10.3: Example of an unstable density profile treated by the non penetrative
convective adjustment algorithm. 1st step : the initial profile is checked from the sur-
face to the bottom. It is found to be unstable between levels 3 and 4. They are mixed.
The resulting ρ is still larger than ρ(5) : levels 3 to 5 are mixed. The resulting ρ is still
larger than ρ(6) : levels 3 to 6 are mixed. The 1st step ends since the density profile
is then stable below the level 3. 2nd step : the new ρ profile is checked following the
same procedure as in 1st step : levels 2 to 5 are mixed. The new density profile is
checked. It is found stable : end of algorithm.

The non-penetrative convective adjustment is used when ln zdfnpc=true. It is
applied at each nn npc time step and mixes downwards instantaneously the stati-
cally unstable portion of the water column, but only until the density structure be-
comes neutrally stable (i.e. until the mixed portion of the water column has exactly
the density of the water just below) [?]. The associated algorithm is an iterative
process used in the following way (Fig. ??) : starting from the top of the ocean,

10.2. Convection 187

the first instability is found. Assume in the following that the instability is located
between levels k and k+1. The potential temperature and salinity in the two levels
are vertically mixed, conserving the heat and salt contents of the water column.
The new density is then computed by a linear approximation. If the new density
profile is still unstable between levels k+ 1 and k+ 2, levels k, k+ 1 and k+ 2 are
then mixed. This process is repeated until stability is established below the level k
(the mixing process can go down to the ocean bottom). The algorithm is repeated
to check if the density profile between level k − 1 and k is unstable and/or if there
is no deeper instability.

This algorithm is significantly different from mixing statically unstable levels
two by two. The latter procedure cannot converge with a finite number of itera-
tions for some vertical profiles while the algorithm used in NEMO converges for
any profile in a number of iterations which is less than the number of vertical le-
vels. This property is of paramount importance as pointed out by ? : it avoids the
existence of permanent and unrealistic static instabilities at the sea surface. This
non-penetrative convective algorithm has been proved successful in studies of the
deep water formation in the north-western Mediterranean Sea [???].

Note that in the current implementation of this algorithm presents several li-
mitations. First, potential density referenced to the sea surface is used to check
whether the density profile is stable or not. This is a strong simplification which
leads to large errors for realistic ocean simulations. Indeed, many water masses of
the world ocean, especially Antarctic Bottom Water, are unstable when represented
in surface-referenced potential density. The scheme will erroneously mix them up.
Second, the mixing of potential density is assumed to be linear. This assures the
convergence of the algorithm even when the equation of state is non-linear. Small
static instabilities can thus persist due to cabbeling : they will be treated at the next
time step. Third, temperature and salinity, and thus density, are mixed, but the cor-
responding velocity fields remain unchanged. When using a Richardson Number
dependent eddy viscosity, the mixing of momentum is done through the vertical
diffusion : after a static adjustment, the Richardson Number is zero and thus the
eddy viscosity coefficient is at a maximum. When this convective adjustment al-
gorithm is used with constant vertical eddy viscosity, spurious solutions can occur
since the vertical momentum diffusion remains small even after a static adjust-
ment. In that case, we recommend the addition of momentum mixing in a manner
that mimics the mixing in temperature and salinity [??].

10.2.2 Enhanced Vertical Diffusion (ln zdfevd=true)
!---
&namzdf ! vertical physics
!---

rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc

188 Vertical Ocean Physics (ZDF)

nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

The enhanced vertical diffusion parameterisation is used when ln zdfevd=true.
In this case, the vertical eddy mixing coefficients are assigned very large values
(a typical value is 10 m2s−1) in regions where the stratification is unstable (i.e.
when N2 the Brunt-Vaisälä frequency is negative) [??]. This is done either on
tracers only (nn evdm=0) or on both momentum and tracers (nn evdm=1).

In practice, where N2 ≤ 10−12, AvTT and AvST , and if nn evdm=1, the four
neighbouring Avmu and Avmv values also, are set equal to the namelist parameter
rn avevd. A typical value for rn avevd is between 1 and 100 m2.s−1. This pa-
rameterisation of convective processes is less time consuming than the convective
adjustment algorithm presented above when mixing both tracers and momentum
in the case of static instabilities. It requires the use of an implicit time stepping on
vertical diffusion terms (i.e. ln zdfexp=false).

Note that the stability test is performed on both before and now values of N2.
This removes a potential source of divergence of odd and even time step in a leap-
frog environment [?] (see §??).

10.2.3 Turbulent Closure Scheme (key zdftke or key zdfgls)

The turbulent closure scheme presented in §?? and §?? (key zdftke or key zdftke
is defined) in theory solves the problem of statically unstable density profiles. In
such a case, the term corresponding to the destruction of turbulent kinetic energy
through stratification in (??) or (??) becomes a source term, since N2 is nega-
tive. It results in large values of AvTT and AvTT , and also the four neighbouring
Avmu and Avmv (up to 1 m2s−1). These large values restore the static stability of
the water column in a way similar to that of the enhanced vertical diffusion parame-
terisation (§??). However, in the vicinity of the sea surface (first ocean layer), the
eddy coefficients computed by the turbulent closure scheme do not usually exceed
10−2m.s−1, because the mixing length scale is bounded by the distance to the sea
surface. It can thus be useful to combine the enhanced vertical diffusion with the
turbulent closure scheme, i.e. setting the ln zdfnpc namelist parameter to true and
defining the turbulent closure CPP key all together.

The KPP turbulent closure scheme already includes enhanced vertical diffusion
in the case of convection, as governed by the variables bvsqcon and difcon found
in zdfkpp.F90, therefore ln zdfevd=false should be used with the KPP scheme.

10.3 Double Diffusion Mixing (key zdfddm)
!---
&namzdf_ddm ! double diffusive mixing parameterization ("key_zdfddm")
!---

rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio

/

10.3. Double Diffusion Mixing (key zdfddm) 189

FIGURE 10.4: From ? : (a) Diapycnal diffusivitiesAvT
f andAvS

f for temperature and
salt in regions of salt fingering. Heavy curves denote A∗v = 10−3 m2.s−1 and thin
curvesA∗v = 10−4 m2.s−1 ; (b) diapycnal diffusivitiesAvT

d andAvS
d for temperature

and salt in regions of diffusive convection. Heavy curves denote the Federov parame-
terisation and thin curves the Kelley parameterisation. The latter is not implemented
in NEMO.

Double diffusion occurs when relatively warm, salty water overlies cooler, fre-
sher water, or vice versa. The former condition leads to salt fingering and the lat-
ter to diffusive convection. Double-diffusive phenomena contribute to diapycnal
mixing in extensive regions of the ocean. ? include a parameterisation of such phe-
nomena in a global ocean model and show that it leads to relatively minor changes
in circulation but exerts significant regional influences on temperature and salinity.
This parameterisation has been introduced in zdfddm.F90 module and is controlled
by the key zdfddm CPP key.

Diapycnal mixing of S and T are described by diapycnal diffusion coefficients

AvT = AvTo +AvTf +AvTd

AvS = AvSo +AvSf +AvSd

where subscript f represents mixing by salt fingering, d by diffusive convection,
and o by processes other than double diffusion. The rates of double-diffusive mixing
depend on the buoyancy ratio Rρ = α∂zT/β∂zS, where α and β are coefficients
of thermal expansion and saline contraction (see §??). To represent mixing of S
and T by salt fingering, we adopt the diapycnal diffusivities suggested by Schmitt
(1981) :

AvSf =

{
A∗v

1+(Rρ/Rc)n
if Rρ > 1 and N2 > 0

0 otherwise
(10.22)

AvTf = 0.7 AvSf /Rρ (10.23)

The factor 0.7 in (??) reflects the measured ratio αFT /βFS ≈ 0.7 of buoyancy

190 Vertical Ocean Physics (ZDF)

flux of heat to buoyancy flux of salt (e.g., ?). Following ?, we adopt Rc = 1.6,
n = 6, and A∗v = 10−4 m2.s−1.

To represent mixing of S and T by diffusive layering, the diapycnal diffusivities
suggested by Federov (1988) is used :

AvTd =

{
1.3635 exp

(
4.6 exp

[
−0.54 (R−1

ρ − 1)
])

if 0 < Rρ < 1 and N2 > 0

0 otherwise

(10.24)

AvSd =


AvTd (1.85Rρ − 0.85) if 0.5 ≤ Rρ < 1 and N2 > 0

AvTd 0.15 Rρ if 0 < Rρ < 0.5 and N2 > 0

0 otherwise

(10.25)

The dependencies of (??) to (??) onRρ are illustrated in Fig. ??. Implementing
this requires computing Rρ at each grid point on every time step. This is done in
eosbn2.F90 at the same time as N2 is computed. This avoids duplication in the
computation of α and β (which is usually quite expensive).

10.4 Bottom Friction (zdfbfr.F90 module)
!---
&nambfr ! bottom friction
!---

nn_bfr = 1 ! type of bottom friction : = 0 : free slip, = 1 : linear friction
! = 2 : nonlinear friction

rn_bfri1 = 4.e-4 ! bottom drag coefficient (linear case)
rn_bfri2 = 1.e-3 ! bottom drag coefficient (non linear case)
rn_bfeb2 = 2.5e-3 ! bottom turbulent kinetic energy background (m2/s2)
ln_bfr2d = .false. ! horizontal variation of the bottom friction coef (read a 2D mask file)
rn_bfrien = 50. ! local multiplying factor of bfr (ln_bfr2d=T)
ln_bfrimp = .false. ! implicit bottom friction (requires ln_zdfexp = .false. if true)

/

Both the surface momentum flux (wind stress) and the bottom momentum flux
(bottom friction) enter the equations as a condition on the vertical diffusive flux.
For the bottom boundary layer, one has :

Avm (∂Uh/∂z) = FU
h (10.26)

where FU
h is represents the downward flux of horizontal momentum outside the

logarithmic turbulent boundary layer (thickness of the order of 1 m in the ocean).
How FU

h influences the interior depends on the vertical resolution of the model
near the bottom relative to the Ekman layer depth. For example, in order to obtain
an Ekman layer depth d =

√
2 Avm/f = 50 m, one needs a vertical diffusion

coefficient Avm = 0.125 m2s−1 (for a Coriolis frequency f = 10−4 m2s−1). With
a background diffusion coefficient Avm = 10−4 m2s−1, the Ekman layer depth is
only 1.4 m. When the vertical mixing coefficient is this small, using a flux condition
is equivalent to entering the viscous forces (either wind stress or bottom friction)
as a body force over the depth of the top or bottom model layer. To illustrate this,
consider the equation for u at k, the last ocean level :

∂uk
∂t

=
1

e3u

[
Avmuw
e3uw

δk+1/2 [u]−Fuh
]
≈ −
Fuh
e3u

(10.27)

10.4. Bottom Friction (zdfbfr) 191

If the bottom layer thickness is 200 m, the Ekman transport will be distributed over
that depth. On the other hand, if the vertical resolution is high (1 m or less) and
a turbulent closure model is used, the turbulent Ekman layer will be represented
explicitly by the model. However, the logarithmic layer is never represented in
current primitive equation model applications : it is necessary to parameterize the
flux Fuh . Two choices are available in NEMO : a linear and a quadratic bottom
friction. Note that in both cases, the rotation between the interior velocity and the
bottom friction is neglected in the present release of NEMO.

In the code, the bottom friction is imposed by adding the trend due to the bot-
tom friction to the general momentum trend in dynbfr.F90. For the time-split sur-
face pressure gradient algorithm, the momentum trend due to the barotropic com-
ponent needs to be handled separately. For this purpose it is convenient to compute
and store coefficients which can be simply combined with bottom velocities and
geometric values to provide the momentum trend due to bottom friction. These
coefficients are computed in zdfbfr.F90 and generally take the form cU

b where :

∂Uh

∂t
= −
FU
h

e3u
=

cU
b

e3u
Ub
h (10.28)

where Ub
h = (ub , vb) is the near-bottom, horizontal, ocean velocity.

10.4.1 Linear Bottom Friction (nn botfr = 0 or 1)

The linear bottom friction parameterisation (including the special case of a
free-slip condition) assumes that the bottom friction is proportional to the interior
velocity (i.e. the velocity of the last model level) :

FU
h =

Avm

e3

∂Uh

∂k
= r Ub

h (10.29)

where r is a friction coefficient expressed in ms−1. This coefficient is generally es-
timated by setting a typical decay time τ in the deep ocean, and setting r = H/τ ,
whereH is the ocean depth. Commonly accepted values of τ are of the order of 100
to 200 days [?]. A value τ−1 = 10−7 s−1 equivalent to 115 days, is usually used
in quasi-geostrophic models. One may consider the linear friction as an approxi-
mation of quadratic friction, r ≈ 2 CD Uav (?, Eq. 9.6.6). For example, with a
drag coefficient CD = 0.002, a typical speed of tidal currents of Uav = 0.1 m s−1,
and assuming an ocean depth H = 4000 m, the resulting friction coefficient is
r = 4 10−4 m s−1. This is the default value used in NEMO. It corresponds to a
decay time scale of 115 days. It can be changed by specifying rn bfric1 (namelist
parameter).

For the linear friction case the coefficients defined in the general expression
(??) are :

cub = −r
cvb = −r

(10.30)

192 Vertical Ocean Physics (ZDF)

When nn botfr=1, the value of r used is rn bfric1. Setting nn botfr=0 is equivalent
to setting r = 0 and leads to a free-slip bottom boundary condition. These values
are assigned in zdfbfr.F90. From v3.2 onwards there is support for local enhance-
ment of these values via an externally defined 2D mask array (ln bfr2d=true) given
in the bfr coef.nc input NetCDF file. The mask values should vary from 0 to 1.
Locations with a non-zero mask value will have the friction coefficient increased
by mask value*rn bfrien*rn bfric1.

10.4.2 Non-Linear Bottom Friction (nn botfr = 2)

The non-linear bottom friction parameterisation assumes that the bottom fric-
tion is quadratic :

FU
h =

Avm

e3

∂Uh

∂k
= CD

√
u2
b + v2

b + eb Ub
h (10.31)

where CD is a drag coefficient, and eb a bottom turbulent kinetic energy due to
tides, internal waves breaking and other short time scale currents. A typical value
of the drag coefficient is CD = 10−3. As an example, the CME experiment [?]
uses CD = 10−3 and eb = 2.5 10−3m2 s−2, while the FRAM experiment [?] uses
CD = 1.4 10−3 and eb = 2.5 10−3m2 s−2. The CME choices have been set as
default values (rn bfric2 and rn bfeb2 namelist parameters).

As for the linear case, the bottom friction is imposed in the code by adding the
trend due to the bottom friction to the general momentum trend in dynbfr.F90. For
the non-linear friction case the terms computed in zdfbfr.F90 are :

cub = − CD
[
u2 +

(
¯̄vi+1,j

)2
+ eb

]1/2

cvb = − CD
[(

¯̄ui,j+1
)2

+ v2 + eb

]1/2
(10.32)

The coefficients that control the strength of the non-linear bottom friction are
initialised as namelist parameters : CD= rn bfri2, and eb =rn bfeb2. Note for ap-
plications which treat tides explicitly a low or even zero value of rn bfeb2 is re-
commended. From v3.2 onwards a local enhancement of CD is possible via an
externally defined 2D mask array (ln bfr2d=true). See previous section for details.

10.4.3 Bottom Friction stability considerations

Some care needs to exercised over the choice of parameters to ensure that the
implementation of bottom friction does not induce numerical instability. For the
purposes of stability analysis, an approximation to (??) is :

∆u = −Fh
u

e3u
2∆t

= − ru
e3u

2∆t
(10.33)

10.4. Bottom Friction (zdfbfr) 193

where linear bottom friction and a leapfrog timestep have been assumed. To ensure
that the bottom friction cannot reverse the direction of flow it is necessary to have :

|∆u| < |u| (10.34)

which, using (??), gives :

r
2∆t

e3u
< 1 ⇒ r <

e3u

2∆t
(10.35)

This same inequality can also be derived in the non-linear bottom friction case if
a velocity of 1 m.s−1 is assumed. Alternatively, this criterion can be rearranged to
suggest a minimum bottom box thickness to ensure stability :

e3u > 2 r ∆t (10.36)

which it may be necessary to impose if partial steps are being used. For example, if
|u| = 1 m.s−1, rdt = 1800 s, r = 10−3 then e3u should be greater than 3.6 m. For
most applications, with physically sensible parameters these restrictions should
not be of concern. But caution may be necessary if attempts are made to locally
enhance the bottom friction parameters. To ensure stability limits are imposed on
the bottom friction coefficients both during initialisation and at each time step.
Checks at initialisation are made in zdfbfr.F90 (assuming a 1 m.s−1 velocity in
the non-linear case). The number of breaches of the stability criterion are reported
as well as the minimum and maximum values that have been set. The criterion is
also checked at each time step, using the actual velocity, in dynbfr.F90. Values of
the bottom friction coefficient are reduced as necessary to ensure stability ; these
changes are not reported.

Limits on the bottom friction coefficient are not imposed if the user has elected
to handle the bottom friction implicitly (see §??). The number of potential breaches
of the explicit stability criterion are still reported for information purposes.

10.4.4 Implicit Bottom Friction (ln bfrimp=T)

An optional implicit form of bottom friction has been implemented to improve
model stability. We recommend this option for shelf sea and coastal ocean appli-
cations, especially for split-explicit time splitting. This option can be invoked by
setting ln bfrimp to true in the nambfr namelist. This option requires ln zdfexp to
be false in the namzdf namelist.

This implementation is realised in dynzdf imp.F90 and dynspg ts.F90. In dynzdf imp.F90,
the bottom boundary condition is implemented implicitly.(

Avm

e3

∂Uh

∂k

)∣∣∣∣
mbk

=

(
cubu

n+1
mbk

cvbv
n+1
mbk

)
(10.37)

wherembk is the layer number of the bottom wet layer. superscript n+1 means
the velocity used in the friction formula is to be calculated, so, it is implicit.

194 Vertical Ocean Physics (ZDF)

If split-explicit time splitting is used, care must be taken to avoid the double
counting of the bottom friction in the 2-D barotropic momentum equations. As
NEMO only updates the barotropic pressure gradient and Coriolis’ forcing terms
in the 2-D barotropic calculation, we need to remove the bottom friction induced by
these two terms which has been included in the 3-D momentum trend and update
it with the latest value. On the other hand, the bottom friction contributed by the
other terms (e.g. the advection term, viscosity term) has been included in the 3-D
momentum equations and should not be added in the 2-D barotropic mode.

The implementation of the implicit bottom friction in dynspg ts.F90 is done in
two steps as the following :

Umed − Um−1

2∆t
= −g∇η − fk× Um + cb

(
Umed − Um−1

)
(10.38)

Um+1 − Umed

2∆t
= T+

(
g∇η′ + fk× U

′
)
−2∆tbccb

(
g∇η′ + fk× ub

)
(10.39)

where T is the vertical integrated 3-D momentum trend. We assume the leap-
frog time-stepping is used here. ∆t is the barotropic mode time step and ∆tbc is
the baroclinic mode time step. cb is the friction coefficient. η is the sea surface level
calculated in the barotropic loops while η

′
is the sea surface level used in the 3-D

baroclinic mode. ub is the bottom layer horizontal velocity.

10.4.5 Bottom Friction with split-explicit time splitting (ln bfrimp=F)

When calculating the momentum trend due to bottom friction in dynbfr.F90,
the bottom velocity at the before time step is used. This velocity includes both
the baroclinic and barotropic components which is appropriate when using either
the explicit or filtered surface pressure gradient algorithms (key dynspg exp or
key dynspg flt). Extra attention is required, however, when using split-explicit
time stepping (key dynspg ts). In this case the free surface equation is solved with
a small time step rn rdt/nn baro, while the three dimensional prognostic variables
are solved with the longer time step of rn rdt seconds. The trend in the barotropic
momentum due to bottom friction appropriate to this method is that given by the
selected parameterisation (i.e. linear or non-linear bottom friction) computed with
the evolving velocities at each barotropic timestep.

In the case of non-linear bottom friction, we have elected to partially linea-
rise the problem by keeping the coefficients fixed throughout the barotropic time-
stepping to those computed in zdfbfr.F90 using the now timestep. This decision
allows an efficient use of the cUb coefficients to :

1. On entry to dyn spg ts, remove the contribution of the before barotropic ve-
locity to the bottom friction component of the vertically integrated momen-
tum trend. Note the same stability check that is carried out on the bottom

10.5. Tidal Mixing (key zdftmx) 195

friction coefficient in dynbfr.F90 has to be applied here to ensure that the
trend removed matches that which was added in dynbfr.F90.

2. At each barotropic step, compute the contribution of the current barotropic
velocity to the trend due to bottom friction. Add this contribution to the ver-
tically integrated momentum trend. This contribution is handled implicitly
which eliminates the need to impose a stability criteria on the values of the
bottom friction coefficient within the barotropic loop.

Note that the use of an implicit formulation within the barotropic loop for the
bottom friction trend means that any limiting of the bottom friction coefficient in
dynbfr.F90 does not adversely affect the solution when using split-explicit time
splitting. This is because the major contribution to bottom friction is likely to come
from the barotropic component which uses the unrestricted value of the coeffi-
cient. However, if the limiting is thought to be having a major effect (a more likely
prospect in coastal and shelf seas applications) then the fully implicit form of the
bottom friction should be used (see §??) which can be selected by setting ln bfrimp
= true.

Otherwise, the implicit formulation takes the form :

Ū t+∆t =
[
Ū t−∆t + 2∆t RHS

]
/ [1− 2∆t cub /He] (10.40)

where Ū is the barotropic velocity, He is the full depth (including sea surface
height), cub is the bottom friction coefficient as calculated in zdf bfr and RHS re-
presents all the components to the vertically integrated momentum trend except for
that due to bottom friction.

10.5 Tidal Mixing (key zdftmx)
!---
&namzdf_tmx ! tidal mixing parameterization ("key_zdftmx")
!---

rn_htmx = 500. ! vertical decay scale for turbulence (meters)
rn_n2min = 1.e-8 ! threshold of the Brunt-Vaisala frequency (s-1)
rn_tfe = 0.333 ! tidal dissipation efficiency
rn_me = 0.2 ! mixing efficiency
ln_tmx_itf = .true. ! ITF specific parameterisation
rn_tfe_itf = 1. ! ITF tidal dissipation efficiency

/

10.5.1 Bottom intensified tidal mixing

The parameterization of tidal mixing follows the general formulation for the
vertical eddy diffusivity proposed by ? and first introduced in an OGCM by [?].
In this formulation an additional vertical diffusivity resulting from internal tide
breaking, AvTtides is expressed as a function of E(x, y), the energy transfer from
barotropic tides to baroclinic tides :

AvTtides = q Γ
E(x, y)F (z)

ρN2
(10.41)

196 Vertical Ocean Physics (ZDF)

where Γ is the mixing efficiency, N the Brunt-Vaisälä frequency (see §??), ρ the
density, q the tidal dissipation efficiency, and F (z) the vertical structure function.

The mixing efficiency of turbulence is set by Γ (rn me namelist parameter) and
is usually taken to be the canonical value of Γ = 0.2 (Osborn 1980). The tidal dissi-
pation efficiency is given by the parameter q (rn tfe namelist parameter) represents
the part of the internal wave energy flux E(x, y) that is dissipated locally, with the
remaining 1 − q radiating away as low mode internal waves and contributing to
the background internal wave field. A value of q = 1/3 is typically used ?. The
vertical structure function F (z) models the distribution of the turbulent mixing in
the vertical. It is implemented as a simple exponential decaying upward away from
the bottom, with a vertical scale of ho (rn htmx namelist parameter, with a typical
value of 500m) [?],

F (i, j, k) =
e−

H+z
ho

ho

(
1− e−

H
ho

) (10.42)

and is normalized so that vertical integral over the water column is unity.
The associated vertical viscosity is calculated from the vertical diffusivity as-

suming a Prandtl number of 1, i.e. Avmtides = AvTtides. In the limit of N → 0 (or
becoming negative), the vertical diffusivity is capped at 300 cm2/s and impose a
lower limit on N2 of rn n2min usually set to 10−8s−2. These bounds are usually
rarely encountered.

The internal wave energy map, E(x, y) in (??), is derived from a barotropic
model of the tides utilizing a parameterization of the conversion of barotropic ti-
dal energy into internal waves. The essential goal of the parameterization is to
represent the momentum exchange between the barotropic tides and the unrepre-
sented internal waves induced by the tidal flow over rough topography in a strati-
fied ocean. In the current version of NEMO, the map is built from the output of the
barotropic global ocean tide model MOG2D-G [?]. This model provides the dis-
sipation associated with internal wave energy for the M2 and K1 tides component
(Fig. ??). The S2 dissipation is simply approximated as being 1/4 of the M2 one.
The internal wave energy is thus : E(x, y) = 1.25EM2 + EK1. Its global mean
value is 1.1 TW, in agreement with independent estimates [??].

10.5.2 Indonesian area specific treatment (ln zdftmx itf)

When the Indonesian Through Flow (ITF) area is included in the model do-
main, a specific treatment of tidal induced mixing in this area can be used. It is
activated through the namelist logical ln tmx itf , and the user must provide an in-
put NetCDF file, mask itf.nc, which contains a mask array defining the ITF area
where the specific treatment is applied.

When ln tmx itf =true, the two key parameters q and F (z) are adjusted follo-
wing the parameterisation developed by ? :

First, the Indonesian archipelago is a complex geographic region with a series
of large, deep, semi-enclosed basins connected via numerous narrow straits. Once

10.5. Tidal Mixing (key zdftmx) 197

FIGURE 10.5: (a) M2 and (b) K1 internal wave drag energy from ? (W/m2).

generated, internal tides remain confined within this semi-enclosed area and hardly
radiate away. Therefore all the internal tides energy is consumed within this area.
So it is assumed that q = 1, i.e. all the energy generated is available for mixing.
Note that for test purposed, the ITF tidal dissipation efficiency is a namelist para-
meter (rn tfe itf). A value of 1 or close to is this recommended for this parameter.

Second, the vertical structure function, F (z), is no more associated with a bot-
tom intensification of the mixing, but with a maximum of energy available within
the thermocline. ? have suggested that the vertical distribution of the energy dissi-
pation proportional to N2 below the core of the thermocline and to N above. The

198 Vertical Ocean Physics (ZDF)

resulting F (z) is :

F (i, j, k) ∼


q ΓE(i, j)

ρN
∫
Ndz

when ∂zN < 0

q ΓE(i, j)

ρ
∫
N2dz

when ∂zN > 0

(10.43)

Averaged over the ITF area, the resulting tidal mixing coefficient is 1.5 cm2/s,
which agrees with the independent estimates inferred from observations. Introdu-
ced in a regional OGCM, the parameterization improves the water mass characte-
ristics in the different Indonesian seas, suggesting that the horizontal and vertical
distributions of the mixing are adequately prescribed [???]. Note also that such a
parameterisation has a significant impact on the behaviour of global coupled GCMs
[?].

11 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

200 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

11.1 Old Model Output (default or key dimgout)

The model outputs are of three types : the restart file, the output listing, and the
output file(s). The restart file is used internally by the code when the user wants to
start the model with initial conditions defined by a previous simulation. It contains
all the information that is necessary in order for there to be no changes in the mo-
del results (even at the computer precision) between a run performed with several
restarts and the same run performed in one step. It should be noted that this re-
quires that the restart file contain two consecutive time steps for all the prognostic
variables, and that it is saved in the same binary format as the one used by the
computer that is to read it (in particular, 32 bits binary IEEE format must not be
used for this file). The output listing and file(s) are predefined but should be che-
cked and eventually adapted to the user’s needs. The output listing is stored in the
ocean.output file. The information is printed from within the code on the logical
unit numout. To locate these prints, use the UNIX command ”grep -i numout” in
the source code directory.

In the standard configuration, the user will find the model results in NetCDF
files containing mean values (or instantaneous values if key diainstant is defined)
for every time-step where output is demanded. These outputs are defined in the
diawri.F90 module. When defining key dimgout, the output are written in DIMG
format, an IEEE output format.

Since version 3.2, an I/O server has been added which provides more flexibility
in the choice of the fields to be output as well as how the writing work is distributed
over the processors in massively parallel computing. It is presented in next section.

11.2 Standard model Output (IOM)

Since version 3.2, iom put is the NEMO output interface. It was designed to
be simple to use, flexible and efficient. Two main functionalities are covered by
iom put : (1) the control of the output files through an external xml file defined by
the user ; (2) the distribution (or not) of all task related to output files on dedicated
processors. The first functionality allows the user to specify, without touching any-
thing into the code, the way he want to output data :
- choice of output frequencies that can be different for each file (including real
months and years)
- choice of file contents : decide which data will be written in which file (the same
data can be outputted in different files)
- possibility to extract a subdomain (for example all TAO-PIRATA-RAMA moo-
rings are already defined)
- choice of the temporal operation to perform : mean, instantaneous, min, max

11.2. Standard model Output (IOM) 201

- extremely large choice of data available
- redefine variables name and long name
In addition, iom put allows the user to output any variable (scalar, 2D or 3D) in
the code in a very easy way. All details of iom put functionalities are listed in the
following subsections. An example of the iodef.xml file that control the outputs
can be found here : NEMOGCM/CONFIG/ORCA2 LIM/EXP00/iodef.xml

The second functionality targets outputs performances when running on a very
large number of processes. The idea is to dedicate N specific processes to write
the outputs, where N is defined by the user. In the current version, this functiona-
lity is technically working however, its performance are usually poor (for known
reasons). Users can therefore test this functionality but they must be aware that ex-
pected performance improvement will not be achieved before the release 3.4. An
example of xmlio server.def NEMOGCM/CONFIG/ORCA2 LIM/EXP00/xmlio server.def

11.2.1 Basic knowledge

XML basic rules

XML tags begin with the less-than character (”<”) and end with the greater-
than character (”>”). You use tags to mark the start and end of elements, which are
the logical units of information in an XML document. In addition to marking the
beginning of an element, XML start tags also provide a place to specify attributes.
An attribute specifies a single property for an element, using a name/value pair, for
example : See here for more details.

Structure of the xml file used in NEMO

The xml file is split into 3 parts :

field definition : define all variables that can be output
all lines in between the following two tags

<field_definition ...>
</field_definition ...>

file definition : define the netcdf files to be created and the variables they will
contain
all lines in between the following two tags

<field_definition>
</field_definition>

axis and grid definitions : define the horizontal and vertical grids
all lines in between the following two set of two tags

<axis_definition ...>
</axis_definition ...> and
<grid_definition ...>
</grid_definition ...>

http://www.xmlnews.org/docs/xml-basics.html

202 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

Inheritance and group

Xml extensively uses the concept of inheritance.

example 1 :

<field_definition operation="ave(X)" >
<field id="sst" /> <!-- averaged sst -->
<field id="sss" operation="inst(X)"/> <!-- instantaneous sss -->

</field_definition>

The field ”sst” which is part (or a child) of the field definition will inherit the
value ”ave(X)” of the attribute ”operation” from its parent ”field definition”. Note
that a child can overwrite the attribute definition inherited from its parents. In the
example above, the field ”sss” will therefore output instantaneous values instead of
average values.

example 2 : Use (or overwrite) attributes value of a field when listing the va-
riables included in a file

<field_definition>
<field id="sst" description="sea surface temperature" />
<field id="sss" description="sea surface salinity" />

</field_definition>

<file_definition>
<file id="file_1" />

<field ref="sst" /> <!-- default def -->
<field ref="sss" description="my description" /> <!-- overwrite -->

</file>
</file_definition>

With the help of the inheritance, the concept of group allow to define a set of
attributes for several fields or files.

example 3, group of fields : define a group ”T grid variables” identified with
the name ”grid T”. By default variables of this group have no vertical axis but,
following inheritance rules, ”axis ref” can be redefined for the field ”toce” that is
a 3D variable.<field_definition>

<group id="grid_T" axis_ref="none" grid_ref="T_grid_variables">
<field id="sst"/>
<field id="sss"/>
<field id="toce" axis_ref="deptht"/> <!-- overwrite axis def -->

</group>
</field_definition>

example 4, group of files : define a group of file with the attribute output freq
equal to 432000 (5 days)<file_definition>

<group id="5d" output_freq="432000"> <!-- 5d files -->
<file id="5d_grid_T" name="auto"> <!-- T grid file -->
...
</file>
<file id="5d_grid_U" name="auto"> <!-- U grid file -->
...
</file>

</group>
</file_definition>

11.2. Standard model Output (IOM) 203

Control of the xml attributes from NEMO

The values of some attributes are automatically defined by NEMO (and any
definition given in the xml file is overwritten). By convention, these attributes are
defined to ”auto” (for string) or ”0000” (for integer) in the xml file (but this is not
necessary).

Here is the list of these attributes :

tag ids affected by automatic name attribute value
definition of some of their attributes attribute

field definition freq op rn rdt
SBC freq op rn rdt × nn fsbc

1h, 2h, 3h, 4h, 6h, 12h grid T, grid U, name filename defined by
1d, 3d, 5d grid V, grid W, a call to roudia nam
1m, 2m, 3m, 4m, 6m icemod, ptrc T, following NEMO
1y, 2y, 5y, 10y diad T, scalar nomenclature

EqT, EqU, EqW jbegin, ni, according to the grid
name suffix

TAO, RAMA and PIRATA moorings ibegin, jbegin, according to the grid
name suffix

11.2.2 Detailed functionalities

Tag list

context : define the model using the xml file. Id is the only attribute accepted.
Its value must be ”nemo” or ”n nemo” for the nth AGRIF zoom. Child of
simulation tag.

field : define the field to be output. Accepted attributes are axis ref, description, en-
able, freq op, grid ref, id (if child of field definition), level, operation, name,
ref (if child of file), unit, zoom ref. Child of field definition, file or group of
fields tag.

field definition : definition of the part of the xml file corresponding to the field
definition. Accept the same attributes as field tag. Child of context tag.

group : define a group of file or field. Accept the same attributes as file or field.

file : define the output file’s characteristics. Accepted attributes are description, en-
able, output freq, output level, id, name, name suffix. Child of file definition
or group of files tag.

file definition : definition of the part of the xml file corresponding to the file defi-
nition. Accept the same attributes as file tag. Child of context tag.

axis : definition of the vertical axis. Accepted attributes are description, id, posi-
tive, size, unit. Child of axis definition tag.

204 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

axis definition : definition of the part of the xml file corresponding to the vertical
axis definition. Accept the same attributes as axis tag. Child of context tag

grid : definition of the horizontal grid. Accepted attributes are description and id.
Child of axis definition tag.

grid definition : definition of the part of the xml file corresponding to the horizon-
tal grid definition. Accept the same attributes as grid tag. Child of context tag

zoom : definition of a subdomain of an horizontal grid. Accepted attributes are
description, id, i/jbegin, ni/j. Child of grid tag.

Attributes list

Applied to a tag or a group of tags.
Another table, perhaps ?
Attribute Applied to ? Definition Comment axis ref field String defining the

vertical axis of the variable. It refers to the id of the vertical axis defined in the axis
tag. Use ”non” if the variable has no vertical axis

axis ref : field attribute. String defining the vertical axis of the variable. It refers
to the id of the vertical axis defined in the axis tag. Use ”none” if the variable
has no vertical axis

description : this attribute can be applied to all tags but it is used only with the
field tag. In this case, the value of description will be used to define, in the
output netcdf file, the attributes long name and standard name of the va-
riable.

enabled : field and file attribute. Logical to switch on/off the output of a field or a
file.

freq op : field attribute (automatically defined, see part 1.4 (”control of the xml
attributes”)). An integer defining the frequency in seconds at which NEMO
is calling iom put for this variable. It corresponds to the model time step
(rn rdt in the namelist) except for the variables computed at the frequency of
the surface boundary condition (rn rdt ? nn fsbc in the namelist).

grid ref : field attribute. String defining the horizontal grid of the variable. It refers
to the id of the grid tag.

ibegin : zoom attribute. Integer defining the zoom starting point along x direction.
Automatically defined for TAO/RAMA/PIRATA moorings (see part 1.4).

id : exists for all tag. This is a string defining the name to a specific tag that will be
used later to refer to this tag. Tags of the same category must have different
ids.

jbegin : zoom attribute. Integer defining the zoom starting point along y direc-
tion. Automatically defined for TAO/RAMA/PIRATA moorings and equato-
rial section (see part 1.4).

11.2. Standard model Output (IOM) 205

level : field attribute. Integer from 0 to 10 defining the output priority of a field.
See output level attribute definition

operation : field attribute. String defining the type of temporal operation to per-
form on a variable. Possible choices are ”ave(X)” for temporal mean, ”inst(X)”
for instantaneous, ”t min(X)” for temporal min and ”t max(X)” for temporal
max.

output freq : file attribute. Integer defining the operation frequency in seconds.
For example 86400 for daily mean.

output level : file attribute. Integer from 0 to 10 defining the output priority of
variables in a file : all variables listed in the file with a level smaller or equal
to output level will be output. Other variables won’t be output even if they
are listed in the file.

positive : axis attribute (always .FALSE.). Logical defining the vertical axis conven-
tion used in NEMO (positive downward). Define the attribute positive of the
variable in the netcdf output file.

prec : field attribute. Integer defining the output precision. Not implemented, we
always output real4 arrays.

name : field or file attribute. String defining the name of a variable or a file. If
the name of a file is undefined, its id is used as a name. 2 files must have
different names. Files with specific ids will have their name automatically
defined (see part 1.4). Note that is name will be automatically completed by
the cpu number (if needed) and ”.nc”

name suffix : file attribute. String defining a suffix to be inserted after the name
and before the cpu number and the ”.nc” termination. Files with specific ids
have an automatic definition of their suffix (see part 1.4).

ni : zoom attribute. Integer defining the zoom extent along x direction. Automati-
cally defined for equatorial sections (see part 1.4).

nj : zoom attribute. Integer defining the zoom extent along x direction.
ref : field attribute. String referring to the id of the field we want to add in a file.
size : axis attribute. use unknown...
unit : field attribute. String defining the unit of a variable and the associated attri-

bute in the netcdf output file.
zoom ref : field attribute. String defining the subdomain of data on which the file

should be written (to ouput data only in a limited area). It refers to the id of
a zoom defined in the zoom tag.

11.2.3 IO SERVER

Attached or detached mode ?

Iom put is based on the io server developed by Yann Meurdesoif from IPSL
(see here for the source code or see its copy in NEMOGCM/EXTERNAL direc-

http://forge.ipsl.jussieu.fr/ioserver/browser

206 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

tory). This server can be used in ”attached mode” (as a library) or in ”detached mo-
de” (as an external executable on n cpus). In attached mode, each cpu of NEMO
will output its own subdomain. In detached mode, the io server will gather data
from NEMO and output them split over n files with n the number of cpu dedicated
to the io server.

Control the io server : the namelist file xmlio server.def

The control of the use of the io server is done through the namelist file of the
io server called xmlio server.def.

using server : logical, switch to use the server in attached or detached mode
(.TRUE. corresponding to detached mode).

using oasis : logical, set to .TRUE. if NEMO is used in coupled mode.
client id = ”oceanx” : character, used only in coupled mode. Specify the id

used in OASIS to refer to NEMO. The same id must be used to refer to NEMO in
the $NBMODEL part of OASIS namcouple in the call of prim init comp proto in
cpl oasis3f90

server id = ”ionemo” : character, used only in coupled mode. Specify the id
used in OASIS to refer to the IO SERVER when used in detached mode. Use the
same id to refer to the io server in the $NBMODEL part of OASIS namcouple.

global mpi buffer size : integer ; define the size in Mb of the MPI buffer used
by the io server.

Number of cpu used by the io server in detached mode

The number of cpu used by the io server is specified only when launching the
model. Here is an example of 2 cpus for the io server and 6 cpu for opa using
mpirun :

-p 2 -e ./ioserver
-p 6 -e ./opa

11.2.4 Practical issues

Add your own outputs

It is very easy to add you own outputs with iom put. 4 points must be followed.

1- in NEMO code, add a
CALL iom put(’identifier’, array)
where you want to output a 2D or 3D array.

2- don’t forget to add
USE iom! I/O manager library
in the list of used modules in the upper part of your module.

3- in the file definition part of the xml file, add the definition of your variable using
the same identifier you used in the f90 code.

11.2. Standard model Output (IOM) 207

<field_definition>
...
<field id="identifier" description="blabla" />
...

</field_definition>

attributes axis ref and grid ref must be consistent with the size of the array
to pass to iom put. if your array is computed within the surface module each
nn fsbc time step, add the field definition within the group defined with the
id ”SBC” : <group id=”SBC”...>

4- add your field in one of the output files

<file id="file_1" .../>
...
<field ref="identifier" />
...

</file>

Several time axes in the output file

If your output file contains variables with different operations (see operation
definition), IOIPSL will create one specific time axis for each operation. Note that
inst(X) will have a time axis corresponding to the end each output period whereas
all other operators will have a time axis centred in the middle of the output periods.

Error/bug messages from IOIPSL

If you get the following error in the standard output file :

FATAL ERROR FROM ROUTINE flio_dom_set
--> too many domains simultaneously defined
--> please unset useless domains
--> by calling flio_dom_unset

You must increase the value of dom max nb in fliocom.f90 (multiply it by 10
for example).

If you mix, in the same file, variables with different freq op (see definition
above), like for example variables from the surface module with other variables,
IOIPSL will print in the standard output file warning messages saying there may
be a bug.

WARNING FROM ROUTINE histvar_seq
--> There were 10 errors in the learned sequence of variables
--> for file 4
--> This looks like a bug, please report it.

Don’t worry, there is no bug, everything is properly working !

208 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

11.3 NetCDF4 Support (key netcdf4)

Since version 3.3, support for NetCDF4 chunking and (loss-less) compression
has been included. These options build on the standard NetCDF output and allow
the user control over the size of the chunks via namelist settings. Chunking and
compression can lead to significant reductions in file sizes for a small runtime
overhead. For a fuller discussion on chunking and other performance issues the
reader is referred to the NetCDF4 documentation found here.

The new features are only available when the code has been linked with a
NetCDF4 library (version 4.1 onwards, recommended) which has been built with
HDF5 support (version 1.8.4 onwards, recommended). Datasets created with chun-
king and compression are not backwards compatible with NetCDF3 ”classic” for-
mat but most analysis codes can be relinked simply with the new libraries and
will then read both NetCDF3 and NetCDF4 files. NEMO executables linked with
NetCDF4 libraries can be made to produce NetCDF3 files by setting the ln nc4zip
logical to false in the namnc4 namelist :

!---
&namnc4 ! netcdf4 chunking and compression settings ("key_netcdf4")
!---

nn_nchunks_i= 4 ! number of chunks in i-dimension
nn_nchunks_j= 4 ! number of chunks in j-dimension
nn_nchunks_k= 31 ! number of chunks in k-dimension

! setting nn_nchunks_k = jpk will give a chunk size of 1 in the vertical which
! is optimal for postprocessing which works exclusively with horizontal slabs

ln_nc4zip = .true. ! (T) use netcdf4 chunking and compression
! (F) ignore chunking information and produce netcdf3-compatible files

/

If key netcdf4 has not been defined, these namelist parameters are not read.
In this case, ln nc4zip is set false and dummy routines for a few NetCDF4-specific
functions are defined. These functions will not be used but need to be included so
that compilation is possible with NetCDF3 libraries.

When using NetCDF4 libraries, key netcdf4 should be defined even if the in-
tention is to create only NetCDF3-compatible files. This is necessary to avoid du-
plication between the dummy routines and the actual routines present in the library.
Most compilers will fail at compile time when faced with such duplication. Thus
when linking with NetCDF4 libraries the user must define key netcdf4 and control
the type of NetCDF file produced via the namelist parameter.

Chunking and compression is applied only to 4D fields and there is no advan-
tage in chunking across more than one time dimension since previously written
chunks would have to be read back and decompressed before being added to. The-
refore, user control over chunk sizes is provided only for the three space dimen-
sions. The user sets an approximate number of chunks along each spatial axis. The
actual size of the chunks will depend on global domain size for mono-processors
or, more likely, the local processor domain size for distributed processing. The de-
rived values are subject to practical minimum values (to avoid wastefully small
chunk sizes) and cannot be greater than the domain size in any dimension. The
algorithm used is :

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html#Chunking

11.4. Tracer/Dynamics Trends (TRD) 209

ichunksz(1) = MIN(idomain_size,MAX((idomain_size-1)/nn_nchunks_i + 1 ,16))
ichunksz(2) = MIN(jdomain_size,MAX((jdomain_size-1)/nn_nchunks_j + 1 ,16))
ichunksz(3) = MIN(kdomain_size,MAX((kdomain_size-1)/nn_nchunks_k + 1 , 1))
ichunksz(4) = 1

As an example, setting :

nn_nchunks_i=4, nn_nchunks_j=4 and nn_nchunks_k=31

for a standard ORCA2 LIM configuration gives chunksizes of 46x38x1 respec-
tively in the mono-processor case (i.e. global domain of 182x149x31). An illus-
tration of the potential space savings that NetCDF4 chunking and compression
provides is given in table ?? which compares the results of two short runs of the
ORCA2 LIM reference configuration with a 4x2 mpi partitioning. Note the varia-
tion in the compression ratio achieved which reflects chiefly the dry to wet volume
ratio of each processing region.

When key iomput is activated with key netcdf4 chunking and compression
parameters for fields produced via iom put calls are set via an equivalent and
identically named namelist to namnc4 in xmlio server.def . Typically this name-
list serves the mean files whilst the namnc4 in the main namelist file continues
to serve the restart files. This duplication is unfortunate but appropriate since, if
using io servers, the domain sizes of the individual files produced by the io server
processes may be different to those produced by the invidual processing regions
and different chunking choices may be desired.

11.4 Tracer/Dynamics Trends (key trdtra, key trddyn,
key trddvor, key trdmld)
!---
&namtrd ! diagnostics on dynamics and/or tracer trends ("key_trddyn" and/or "key_trdtra")
! ! or mixed-layer trends or barotropic vorticity ("key_trdmld" or "key_trdvor")
!---

nn_trd = 365 ! time step frequency dynamics and tracers trends
nn_ctls = 0 ! control surface type in mixed-layer trends (0,1 or n<jpk)
rn_ucf = 1. ! unit conversion factor (=1 -> /seconds ; =86400. -> /day)
cn_trdrst_in = "restart_mld" ! suffix of ocean restart name (input)
cn_trdrst_out = "restart_mld" ! suffix of ocean restart name (output)
ln_trdmld_restart = .false. ! restart for ML diagnostics
ln_trdmld_instant = .false. ! flag to diagnose trends of instantantaneous or mean ML T/S

/

When key trddyn and/or key trddyn CPP variables are defined, each trend
of the dynamics and/or temperature and salinity time evolution equations is sto-
red in three-dimensional arrays just after their computation (i.e. at the end of
each dyn · · · .F90 and/or tra · · · .F90 routines). These trends are then used in
trdmod.F90 (see TRD directory) every nn trd time-steps.

What is done depends on the CPP keys defined :

key trddyn, key trdtra : a check of the basin averaged properties of the momen-
tum and/or tracer equations is performed ;

key trdvor : a vertical summation of the moment tendencies is performed, then
the curl is computed to obtain the barotropic vorticity tendencies which are
output ;

210 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

TABLE 11.1: Filesize comparison between NetCDF3 and NetCDF4 with chunking
and compression

Filename NetCDF3 NetCDF4 Reduction
filesize filesize %

(KB) (KB)
ORCA2 restart 0000.nc 16420 8860 47%
ORCA2 restart 0001.nc 16064 11456 29%
ORCA2 restart 0002.nc 16064 9744 40%
ORCA2 restart 0003.nc 16420 9404 43%
ORCA2 restart 0004.nc 16200 5844 64%
ORCA2 restart 0005.nc 15848 8172 49%
ORCA2 restart 0006.nc 15848 8012 50%
ORCA2 restart 0007.nc 16200 5148 69%
ORCA2 2d grid T 0000.nc 2200 1504 32%
ORCA2 2d grid T 0001.nc 2200 1748 21%
ORCA2 2d grid T 0002.nc 2200 1592 28%
ORCA2 2d grid T 0003.nc 2200 1540 30%
ORCA2 2d grid T 0004.nc 2200 1204 46%
ORCA2 2d grid T 0005.nc 2200 1444 35%
ORCA2 2d grid T 0006.nc 2200 1428 36%
ORCA2 2d grid T 0007.nc 2200 1148 48%
...
ORCA2 2d grid W 0000.nc 4416 2240 50%
ORCA2 2d grid W 0001.nc 4416 2924 34%
ORCA2 2d grid W 0002.nc 4416 2512 44%
ORCA2 2d grid W 0003.nc 4416 2368 47%
ORCA2 2d grid W 0004.nc 4416 1432 68%
ORCA2 2d grid W 0005.nc 4416 1972 56%
ORCA2 2d grid W 0006.nc 4416 2028 55%
ORCA2 2d grid W 0007.nc 4416 1368 70%

11.5. On-line Floats trajectories (FLO) (key floats) 211

key trdmld : output of the tracer tendencies averaged vertically either over the
mixed layer (nn ctls=0), or over a fixed number of model levels (nn ctls>1
provides the number of level), or over a spatially varying but temporally
fixed number of levels (typically the base of the winter mixed layer) read in
ctlsurf idx.nc (nn ctls=1) ;

The units in the output file can be changed using the nn ucf namelist parameter.
For example, in case of salinity tendency the units are given by PSU/s/nn ucf .
Setting nn ucf =86400 (i.e. the number of second in a day) provides the tendencies
in PSU/d.

When key trdmld is defined, two time averaging procedure are proposed. Set-
ting ln trdmld instant to true, a simple time averaging is performed, so that the
resulting tendency is the contribution to the change of a quantity between the two
instantaneous values taken at the extremities of the time averaging period. Set-
ting ln trdmld instant to false, a double time averaging is performed, so that the
resulting tendency is the contribution to the change of a quantity between two
time mean values. The later option requires the use of an extra file, restart mld.nc
(ln trdmld restart=true), to restart a run.

Note that the mixed layer tendency diagnostic can also be used on biogeoche-
mical models via the key trdtrc and key trdmld trc CPP keys.

11.5 On-line Floats trajectories (FLO) (key floats)
!---
&namflo ! float parameters ("key_float")
!---

jpnfl = 1 ! total number of floats during the run
jpnnewflo = 0 ! number of floats for the restart
ln_rstflo = .false. ! float restart (T) or not (F)
nn_writefl = 75 ! frequency of writing in float output file
nn_stockfl = 5475 ! frequency of creation of the float restart file
ln_argo = .false. ! Argo type floats (stay at the surface each 10 days)
ln_flork4 = .false. ! trajectories computed with a 4th order Runge-Kutta (T)

! or computed with Blanke’ scheme (F)
ln_ariane = .true. ! Input with Ariane tool convention(T)
ln_ascii = .true. ! Output with Ariane tool netcdf convention(T) or ascii file (F)

/

The on-line computation of floats advected either by the three dimensional ve-
locity field or constraint to remain at a given depth (w = 0 in the computation)
have been introduced in the system during the CLIPPER project. The algorithm
used is based either on the work of ? (default option), or on a 4th Runge-Hutta
algorithm (ln flork4=true). Note that the ? algorithm have the advantage of pro-
viding trajectories which are consistent with the numeric of the code, so that the
trajectories never intercept the bathymetry.

Input data : initial coordinates

Initial coordinates can be given with Ariane Tools convention (IJK coordinates
,(ln ariane=true)) or with longitude and latitude.

In case of Ariane convention, input filename is ”init float ariane”. Its format
is :

212 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

I J K nisobfl itrash itrash
with :

- I,J,K : indexes of initial position
- nisobfl : 0 for an isobar float, 1 for a float following the w velocity
- itrash : set to zero ; it is a dummy variable to respect Ariane Tools convention
- itrash :set to zero ; it is a dummy variable to respect Ariane Tools convention

Example :
100.00000 90.00000 -1.50000 1.00000 0.00000
102.00000 90.00000 -1.50000 1.00000 0.00000
104.00000 90.00000 -1.50000 1.00000 0.00000
106.00000 90.00000 -1.50000 1.00000 0.00000
108.00000 90.00000 -1.50000 1.00000 0.00000

In the other case (longitude and latitude), input filename is ”init float”. Its
format is :

Long Lat depth nisobfl ngrpfl itrash
with :

- Long, Lat, depth : Longitude, latitude, depth
- nisobfl : 0 for an isobar float, 1 for a float following the w velocity
- ngrpfl : number to identify searcher group
- itrash :set to 1 ; it is a dummy variable.

Example :
20.0 0.0 0.0 0 1 1

-21.0 0.0 0.0 0 1 1
-22.0 0.0 0.0 0 1 1
-23.0 0.0 0.0 0 1 1
-24.0 0.0 0.0 0 1 1

jpnfl is the total number of floats during the run. When initial positions are read
in a restart file (ln rstflo= .TRUE.), jpnflnewflo can be added in the initialization
file.

Output data

nn writefl is the frequency of writing in float output file and nn stockfl is the
frequency of creation of the float restart file.

Output data can be written in ascii files (ln flo ascii = .TRUE.). In that case,
output filename is is trajec float.

Another possiblity of writing format is Netcdf (ln flo ascii = .FALSE.). There
are 2 possibilities :

- if (key iomput) is used, outputs are selected in iodef.xml. Here it is an example
of specification to put in files description section :

<group id="1d_grid_T" name="auto" description="ocean T grid variables" > }
<file id="floats" description="floats variables"> }\\

11.6. Harmonic analysis of tidal constituents (key diaharm) 213

<field ref="traj_lon" name="floats_longitude" freq_op="86400" />}
<field ref="traj_lat" name="floats_latitude" freq_op="86400" />}
<field ref="traj_dep" name="floats_depth" freq_op="86400" />}
<field ref="traj_temp" name="floats_temperature" freq_op="86400" />}
<field ref="traj_salt" name="floats_salinity" freq_op="86400" />}
<field ref="traj_dens" name="floats_density" freq_op="86400" />}
<field ref="traj_group" name="floats_group" freq_op="86400" />}

</file>}
</group>}

- if (key iomput) is not used, a file called trajec float.nc will be created by
IOIPSL library.

See also here the web site describing the off-line use of this marvellous diag-
nostic tool.

11.6 Harmonic analysis of tidal constituents (key diaharm)

A module is available to compute the amplitude and phase for tidal waves. This
diagnostic is actived with key diaharm.
!---
&nam_diaharm ! Harmonic analysis of tidal constituents (’key_diaharm’)
!---

nit000_han=1 ! First time step used for harmonic analysis
nitend_han=105 ! Last time step used for harmonic analysis
nstep_han=1 ! Time step frequency for harmonic analysis
nb_ana=1 ! Number of harmonics to analyse
tname(1)=’M2’ ! Name of tidal constituents

/

Concerning the on-line Harmonic analysis, some parameters are available in
namelist :

- nit000 han is the first time step used for harmonic analysis
- nitend han is the last time step used for harmonic analysis
- nstep han is the time step frequency for harmonic analysis
- nb ana is the number of harmonics to analyse
- tname is an array with names of tidal constituents to analyse
nit000 han and nitend han must be between nit000 and nitend of

the simulation. The restart capability is not implemented.
The Harmonic analysis solve this equation :

hi −A0 +
nb ana∑
j=1

[Ajcos(νjtj − φj)] = ei (11.1)

With Aj ,νj ,φj , the amplitude, frequency and phase for each wave and ei the
error. hi is the sea level for the time ti and A0 is the mean sea level.
We can rewrite this equation :

hi −A0 +

nb ana∑
j=1

[Cjcos(νjtj) + Sjsin(νjtj)] = ei (11.2)

with Aj =
√
C2
j + S2

j et φj = arctan(Sj/Cj).
We obtain in output Cj and Sj for each tidal wave.

http://stockage.univ-brest.fr/~grima/Ariane/

214 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

11.7 Transports across sections (key diadct)

A module is available to compute the transport of volume, heat and salt through
sections. This diagnostic is actived with key diadct.

Each section is defined by the coordinates of its 2 extremities. The pathways
between them are contructed using tools which can be found in NEMOGCM/TOOLS/SECTIONS DIADCT
and are written in a binary file section ijglobal.diadct ORCA2 LIMwhich
is later read in by NEMO to compute on-line transports.

The on-line transports module creates three output ascii files :
- volume transport for volume transports (unit : 106m3s−1)
- heat transport for heat transports (unit : 1015W)
- salt transport for salt transports (unit : 109Kgs−1)

Namelist parameters control how frequently the flows are summed and the time
scales over which they are averaged, as well as the level of output for debugging :

!---
&namdct ! transports through sections
!---

nn_dct = 15 ! time step frequency for transports computing
nn_dctwri = 15 ! time step frequency for transports writing
nn_secdebug = 0 ! 0 : no section to debug

! -1 : debug all section
! 0 < n : debug section number n

/

nn dct : frequency of instantaneous transports computing
nn dctwri : frequency of writing (mean of instantaneous transports)
nn debug : debugging of the section

To create a binary file containing the pathway of each section

In NEMOGCM/TOOLS/SECTIONS DIADCT/run, the file list sections.ascii global
contains a list of all the sections that are to be computed (this list of sections is ba-
sed on MERSEA project metrics).

Another file is available for the GYRE configuration (list sections.ascii GYRE).
Each section is defined by :

long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section name
with :

- long1 lat1 , coordinates of the first extremity of the section ;
- long2 lat2 , coordinates of the second extremity of the section ;
- nclass the number of bounds of your classes (e.g. 3 bounds for 2 classes) ;
- okstrpond to compute heat and salt transport, nostrpond if no ;
- ice to compute surface and volume ice transports, noice if no.

The results of the computing of transports, and the directions of positive and nega-
tive flow do not depend on the order of the 2 extremities in this file.

If nclass =/ 0,the next lines contain the class type and the nclass bounds :
long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section name

11.7. Transports across sections (key diadct) 215

classtype
zbound1
zbound2
.
.
nclass-1
nclass

where classtype can be :
- zsal for salinity classes
- ztem for temperature classes
- zlay for depth classes
- zsigi for insitu density classes
- zsigp for potential density classes

The script job.ksh computes the pathway for each section and creates a bi-
nary file section ijglobal.diadct ORCA2 LIM which is read by NEMO.

It is possible to use this tools for new configuations : job.ksh has to be up-
dated with the coordinates file name and path.

Examples of two sections, the ACC Drake Passage with no classes, and the
ATL Cuba Florida with 4 temperature clases (5 class bounds), are shown :
-68. -54.5 -60. -64.7 00 okstrpond noice ACC Drake Passage
-80.5 22.5 -80.5 25.5 05 nostrpond noice ATL Cuba Florida
ztem
-2.0
4.5
7.0
12.0
40.0

To read the output files

The output format is :
date, time-step number, section number, section name, section

slope coefficient, class number, class name, class bound 1 ,

classe bound2, transport direction1 , transport direction2, transport total

For sections with classes, the first nclass-1 lines correspond to the transport
for each class and the last line corresponds to the total transport summed over all
classes. For sections with no classes, class number 1 corresponds to total
class and this class is called N, meaning none.

transport direction1 is the positive part of the transport (> = 0).

216 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

transport direction2 is the negative part of the transport (< = 0).

The section slope coefficient gives information about the significance
of transports signs and direction :

section slope coefficient section type direction 1 direction 2 total transport
0. horizontal northward southward postive : northward

1000. vertical eastward westward postive : eastward
=/0, =/ 1000. diagonal eastward westward postive : eastward

11.8 Other Diagnostics (key diahth, key diaar5)

Aside from the standard model variables, other diagnostics can be computed
on-line. The available ready-to-add diagnostics routines can be found in directory
DIA. Among the available diagnostics the following ones are obtained when defi-
ning the key diahth CPP key :

- the mixed layer depth (based on a density criterion, ?) (diahth.F90)
- the turbocline depth (based on a turbulent mixing coefficient criterion) (diahth.F90)
- the depth of the 20˚C isotherm (diahth.F90)
- the depth of the thermocline (maximum of the vertical temperature gradient)

(diahth.F90)
The poleward heat and salt transports, their advective and diffusive component,

and the meriodional stream function can be computed on-line in diaptr.F90 by
setting ln diaptr to true (see the namptr namelist below). When ln subbas = true,
transports and stream function are computed for the Atlantic, Indian, Pacific and
Indo-Pacific Oceans (defined north of 30˚S) as well as for the World Ocean. The
sub-basin decomposition requires an input file (subbasins.nc) which contains three
2D mask arrays, the Indo-Pacific mask been deduced from the sum of the Indian
and Pacific mask (Fig ??).

!---
&namptr ! Poleward Transport Diagnostic
!---

ln_diaptr = .false. ! Poleward heat and salt transport (T) or not (F)
ln_diaznl = .true. ! Add zonal means and meridional stream functions
ln_subbas = .true. ! Atlantic/Pacific/Indian basins computation (T) or not

! (orca configuration only, need input basins mask file named "subbasins.nc"
ln_ptrcomp = .true. ! Add decomposition : overturning
nn_fptr = 1 ! Frequency of ptr computation [time step]
nn_fwri = 15 ! Frequency of ptr outputs [time step]

/

In addition, a series of diagnostics has been added in the diaar5.F90. They cor-
responds to outputs that are required for AR5 simulations (see Section ?? below
for one of them). Activating those outputs requires to define the key diaar5 CPP
key.

11.9. Diagnosing the Steric effect in sea surface height 217

FIGURE 11.1: Decomposition of the World Ocean (here ORCA2) into sub-basin used
in to compute the heat and salt transports as well as the meridional stream-function :
Atlantic basin (red), Pacific basin (green), Indian basin (bleue), Indo-Pacific basin
(bleue+green). Note that semi-enclosed seas (Red, Med and Baltic seas) as well as
Hudson Bay are removed from the sub-basins. Note also that the Arctic Ocean has
been split into Atlantic and Pacific basins along the North fold line.

11.9 Diagnosing the Steric effect in sea surface height

Changes in steric sea level are caused when changes in the density of the water
column imply an expansion or contraction of the column. It is essentially pro-
duced through surface heating/cooling and to a lesser extent through non-linear
effects of the equation of state (cabbeling, thermobaricity...). Non-Boussinesq mo-
dels contain all ocean effects within the ocean acting on the sea level. In particu-
lar, they include the steric effect. In contrast, Boussinesq models, such as NEMO,
conserve volume, rather than mass, and so do not properly represent expansion or
contraction. The steric effect is therefore not explicitely represented. This approxi-
mation does not represent a serious error with respect to the flow field calculated by
the model [?], but extra attention is required when investigating sea level, as steric
changes are an important contribution to local changes in sea level on seasonal and
climatic time scales. This is especially true for investigation into sea level rise due
to global warming.

Fortunately, the steric contribution to the sea level consists of a spatially uni-
form component that can be diagnosed by considering the mass budget of the world
ocean [?]. In order to better understand how global mean sea level evolves and thus
how the steric sea level can be diagnosed, we compare, in the following, the non-
Boussinesq and Boussinesq cases.

Let denote M the total mass of liquid seawater (M =
∫
D ρdv), V the total

volume of seawater (V =
∫
D dv), A the total surface of the ocean (A =

∫
S ds),

218 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

ρ̄ the global mean seawater (in situ) density (ρ̄ = 1/V
∫
D ρ dv), and η̄ the global

mean sea level (η̄ = 1/A
∫
S η ds).

A non-Boussinesq fluid conserves mass. It satisfies the following relations :

M = V ρ̄
V = A η̄

(11.3)

Temporal changes in total mass is obtained from the density conservation equation :

1

e3
∂t(e3 ρ) +∇(ρU) =

emp
e3

∣∣∣∣
surface

(11.4)

where ρ is the in situ density, and emp the surface mass exchanges with the other
media of the Earth system (atmosphere, sea-ice, land). Its global averaged leads to
the total mass change

∂tM = A emp (11.5)

where emp =
∫
S emp ds is the net mass flux through the ocean surface. Bringing

(??) and the time derivative of (??) together leads to the evolution equation of the
mean sea level

∂tη̄ =
emp
ρ̄
− V
A
∂tρ̄

ρ̄
(11.6)

The first term in equation (??) alters sea level by adding or subtracting mass from
the ocean. The second term arises from temporal changes in the global mean den-
sity ; i.e. from steric effects.

In a Boussinesq fluid, ρ is replaced by ρo in all the equation except when ρ
appears multiplied by the gravity (i.e. in the hydrostatic balance of the primitive
Equations). In particular, the mass conservation equation, (??), degenerates into
the incompressibility equation :

1

e3
∂t(e3) +∇(U) =

emp
ρo e3

∣∣∣∣
surface

(11.7)

and the global average of this equation now gives the temporal change of the total
volume,

∂tV = A emp
ρo

(11.8)

Only the volume is conserved, not mass, or, more precisely, the mass which is
conserved is the Boussinesq mass,Mo = ρoV . The total volume (or equivalently
the global mean sea level) is altered only by net volume fluxes across the ocean
surface, not by changes in mean mass of the ocean : the steric effect is missing in a
Boussinesq fluid.

Nevertheless, following [?], the steric effect on the volume can be diagnosed
by considering the mass budget of the ocean. The apparent changes in M, mass
of the ocean, which are not induced by surface mass flux must be compensated by
a spatially uniform change in the mean sea level due to expansion/contraction of

11.9. Diagnosing the Steric effect in sea surface height 219

the ocean [?]. In others words, the Boussinesq mass,Mo, can be related toM, the
total mass of the ocean seen by the Boussinesq model, via the steric contribution
to the sea level, ηs, a spatially uniform variable, as follows :

Mo =M+ ρo ηsA (11.9)

Any change in M which cannot be explained by the net mass flux through the
ocean surface is converted into a mean change in sea level. Introducing the total
density anomaly, D =

∫
D da dv, where da = (ρ − ρo)/ρo is the density anomaly

used in NEMO (cf. §??) in (??) leads to a very simple form for the steric height :

ηs = − 1

A
D (11.10)

The above formulation of the steric height of a Boussinesq ocean requires four
remarks. First, one can be tempted to define ρo as the initial value of M/V , i.e.
set Dt=0 = 0, so that the initial steric height is zero. We do not recommend that.
Indeed, in this case ρo depends on the initial state of the ocean. Since ρo has a
direct effect on the dynamics of the ocean (it appears in the pressure gradient term
of the momentum equation) it is definitively not a good idea when inter-comparing
experiments. We better recommend to fixe once for all ρo to 1035 Kgm−3. This
value is a sensible choice for the reference density used in a Boussinesq ocean
climate model since, with the exception of only a small percentage of the ocean,
density in the World Ocean varies by no more than 2% from this value (?, page
47).

Second, we have assumed here that the total ocean surface,A, does not change
when the sea level is changing as it is the case in all global ocean GCMs (wetting
and drying of grid point is not allowed).

Third, the discretisation of (??) depends on the type of free surface which is
considered. In the non linear free surface case, i.e. key vvl defined, it is given by

ηs = −
∑

i, j, k da e1te2te3t∑
i, j, k e1te2te3t

(11.11)

whereas in the linear free surface, the volume above the z=0 surface must be ex-
plicitly taken into account to better approximate the total ocean mass and thus the
steric sea level :

ηs = −
∑

i, j, k da e1te2te3t +
∑

i, j da e1te2tη∑
i, j, k e1te2te3t +

∑
i, j e1te2tη

(11.12)

The fourth and last remark concerns the effective sea level and the presence of
sea-ice. In the real ocean, sea ice (and snow above it) depresses the liquid seawater
through its mass loading. This depression is a result of the mass of sea ice/snow sys-
tem acting on the liquid ocean. There is, however, no dynamical effect associated
with these depressions in the liquid ocean sea level, so that there are no associated

220 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

ocean currents. Hence, the dynamically relevant sea level is the effective sea level,
i.e. the sea level as if sea ice (and snow) were converted to liquid seawater [?].
However, in the current version of NEMO the sea-ice is levitating above the ocean
without mass exchanges between ice and ocean. Therefore the model effective sea
level is always given by η + ηs, whether or not there is sea ice present.

In AR5 outputs, the thermosteric sea level is demanded. It is steric sea level due
to changes in ocean density arising just from changes in temperature. It is given by :

ηs = − 1

A

∫
D
da(T, So, po) dv (11.13)

where So and po are the initial salinity and pressure, respectively.
Both steric and thermosteric sea level are computed in diaar5.F90 which needs

the key diaar5 defined to be called.

12 Observation and model comparison (OBS)

Authors : D. Lea, M. Martin, K. Mogensen, A. Vidard, A. Weaver...

222 Observation and model comparison (OBS)

The observation and model comparison code (OBS) reads in observation files
(profile temperature and salinity, sea surface temperature, sea level anomaly, sea
ice concentration, and velocity) and calculates an interpolated model equivalent
value at the observation location and nearest model timestep. The resulting data
are saved in a “feedback” file (or files). The code was originally developed for
use with the NEMOVAR data assimilation code, but can be used for validation or
verification of model or any other data assimilation system.

The OBS code is called from opa.F90 for model initialisation and to calculate
the model equivalent values for observations on the 0th timestep. The code is then
called again after each timestep from step.F90. To build with the OBS code active
key diaobs must be set.

For all data types a 2D horizontal interpolator is needed to interpolate the model
fields to the observation location. For in situ profiles, a 1D vertical interpolator is
needed in addition to provide model fields at the observation depths. Currently this
only works in z-level model configurations, but is being developed to work with
a generalised vertical coordinate system. Temperature data from moored buoys
(TAO, TRITON, PIRATA) in the ENACT/ENSEMBLES data-base are available
as daily averaged quantities. For this type of observation the observation operator
will compare such observations to the model temperature fields averaged over one
day. The relevant observation type may be specified in the namelist using endai-
lyavtypes. Otherwise the model value from the nearest timestep to the observation
time is used.

The code is controlled by the namelist nam obs. See the following sections for
more details on setting up the namelist.

Section ?? introduces a test example of the observation operator code inclu-
ding where to obtain data and how to setup the namelist. Section ?? introduces
some more technical details of the different observation types used and also shows
a more complete namelist. Section ?? introduces some of the theoretical aspects
of the observation operator including interpolation methods and running on mul-
tiple processors. Section ?? introduces some utilities to help working with the files
produced by the OBS code.

12.1 Running the observation operator code example

This section describes an example of running the observation operator code
using profile data which can be freely downloaded. It shows how to adapt an exis-
ting run and build of NEMO to run the observation operator.

1. Compile NEMO with key diaobs set.

2. Download some ENSEMBLES EN3 data from http ://www.hadobs.org. Choose
observations which are valid for the period of your test run because the ob-

http://www.hadobs.org

12.1. Running the observation operator code example 223

servation operator compares the model and observations for a matching date
and time.

3. Add the following to the NEMO namelist to run the observation operator on
this data. Set the enactfiles namelist parameter to the observation file name :

!---
! namobs observation usage switch
!---
!
! ln_t3d Logical switch for T profile observations
! ln_s3d Logical switch for S profile observations
! ln_ena Logical switch for ENACT insitu data set
! ln_cor Logical switch for Coriolis insitu data set
! ln_profb Logical switch for feedback insitu data set
! ln_sla Logical switch for SLA observations
! ln_sladt Logical switch for AVISO SLA data
! ln_slafb Logical switch for feedback SLA data
! ln_ssh Logical switch for SSH observations
! ln_sst Logical switch for SST observations
! ln_reysst Logical switch for Reynolds observations
! ln_ghrsst Logical switch for GHRSST observations
! ln_sstfb Logical switch for feedback SST data
! ln_sss Logical switch for SSS observations
! ln_seaice Logical switch for Sea Ice observations
! ln_vel3d Logical switch for velocity observations
! ln_velavcur Logical switch for velocity daily av. cur.
! ln_velhrcur Logical switch for velocity high freq. cur.
! ln_velavadcp Logical switch for velocity daily av. ADCP
! ln_velhradcp Logical switch for velocity high freq. ADCP
! ln_velfb Logical switch for feedback velocity data
! ln_grid_global Global distribtion of observations
! ln_grid_search_lookup Logical switch for obs grid search w/lookup table
! grid_search_file Grid search lookup file header
! enactfiles ENACT input observation file names
! coriofiles Coriolis input observation file name
! profbfiles Profile feedback input observation file name
! ln_profb_enatim Enact feedback input time setting switch
! slafilesact Active SLA input observation file name
! slafilespas Passive SLA input observation file name
! slafbfiles Feedback SLA input observation file name
! sstfiles GHRSST input observation file name
! sstfbfiles Feedback SST input observation file name
! seaicefiles Sea Ice input observation file name
! velavcurfiles Vel. cur. daily av. input file name
! velhvcurfiles Vel. cur. high freq. input file name
! velavadcpfiles Vel. ADCP daily av. input file name
! velhvadcpfiles Vel. ADCP high freq. input file name
! velfbfiles Vel. feedback input observation file name
! dobsini Initial date in window YYYYMMDD.HHMMSS
! dobsend Final date in window YYYYMMDD.HHMMSS
! n1dint Type of vertical interpolation method
! n2dint Type of horizontal interpolation method
! ln_nea Rejection of observations near land switch
! nmsshc MSSH correction scheme
! mdtcorr MDT correction
! mdtcutoff MDT cutoff for computed correction
! ln_altbias Logical switch for alt bias
! ln_ignmis Logical switch for ignoring missing files
! endailyavtypes ENACT daily average types
&namobs
ln_t3d = .true.
ln_s3d = .true.
ln_ena = .true.
enactfiles = ’enact.1.nc’
ln_grid_global = .true.
ln_grid_search_lookup = .true.
ln_ignmis = .true.

/

The options ln t3d and ln s3d switch on the temperature and salinity pro-
file observation operator code. The ln ena switch turns on the reading of EN-
ACT/ENSEMBLES type profile data. The filename or array of filenames are spe-
cified using the enactfiles variable. The model grid points for a particular ob-
servation latitude and longitude are found using the grid searching part of the
code. This can be expensive, particularly for large numbers of observations, set-
ting ln grid search lookup allows the use of a lookup table which is saved into an

224 Observation and model comparison (OBS)

“xypos“ file (or files). This will need to be generated the first time if it does not
exist in the run directory. However, once produced it will significantly speed up
future grid searches. Setting ln grid global means that the code distributes the ob-
servations evenly between processors. Alternatively each processor will work with
observations located within the model subdomain (see section ??).

A number of utilities are now provided to plot the feedback files, convert and
recombine the files. These are explained in more detail in section ??.

12.2 Technical details

Here we show a more complete example namelist and also show the NetCDF
headers of the observation files that may be used with the observation operator

!---
&namobs ! observation usage switch (’key_diaobs’)
!---

ln_t3d = .false. ! Logical switch for T profile observations
ln_s3d = .false. ! Logical switch for S profile observations
ln_ena = .false. ! Logical switch for ENACT insitu data set
! ! ln_cor Logical switch for Coriolis insitu data set
ln_profb = .false. ! Logical switch for feedback insitu data set
ln_sla = .false. ! Logical switch for SLA observations

ln_sladt = .false. ! Logical switch for AVISO SLA data

ln_slafb = .false. ! Logical switch for feedback SLA data
! ln_ssh Logical switch for SSH observations

ln_sst = .false. ! Logical switch for SST observations
! ln_reysst Logical switch for Reynolds observations
! ln_ghrsst Logical switch for GHRSST observations

ln_sstfb = .false. ! Logical switch for feedback SST data
! ln_sss Logical switch for SSS observations
! ln_seaice Logical switch for Sea Ice observations
! ln_vel3d Logical switch for velocity observations
! ln_velavcur Logical switch for velocity daily av. cur.
! ln_velhrcur Logical switch for velocity high freq. cur.
! ln_velavadcp Logical switch for velocity daily av. ADCP
! ln_velhradcp Logical switch for velocity high freq. ADCP
! ln_velfb Logical switch for feedback velocity data
! ln_grid_global Global distribtion of observations
! ln_grid_search_lookup Logical switch for obs grid search w/lookup table
! grid_search_file Grid search lookup file header
! enactfiles ENACT input observation file names
! coriofiles Coriolis input observation file name

! ! profbfiles: Profile feedback input observation file name
profbfiles = ’profiles_01.nc’

! ln_profb_enatim Enact feedback input time setting switch
! slafilesact Active SLA input observation file name
! slafilespas Passive SLA input observation file name

! ! slafbfiles: Feedback SLA input observation file name
slafbfiles = ’sla_01.nc’

! sstfiles GHRSST input observation file name
! ! sstfbfiles: Feedback SST input observation file name
sstfbfiles = ’sst_01.nc’ ’sst_02.nc’ ’sst_03.nc’ ’sst_04.nc’ ’sst_05.nc’

! seaicefiles Sea Ice input observation file name
! velavcurfiles Vel. cur. daily av. input file name
! velhvcurfiles Vel. cur. high freq. input file name
! velavadcpfiles Vel. ADCP daily av. input file name
! velhvadcpfiles Vel. ADCP high freq. input file name
! velfbfiles Vel. feedback input observation file name
! dobsini Initial date in window YYYYMMDD.HHMMSS
! dobsend Final date in window YYYYMMDD.HHMMSS
! n1dint Type of vertical interpolation method
! n2dint Type of horizontal interpolation method
! ln_nea Rejection of observations near land switch

nmsshc = 0 ! MSSH correction scheme
! mdtcorr MDT correction
! mdtcutoff MDT cutoff for computed correction

ln_altbias = .false. ! Logical switch for alt bias
ln_ignmis = .true. ! Logical switch for ignoring missing files

12.2. Technical details 225

! endailyavtypes ENACT daily average types
ln_grid_global = .true.
ln_grid_search_lookup = .false.

/

This name list uses the ”feedback” type observation file input format for pro-
file, sea level anomaly and sea surface temperature data. All the observation files
must be in NetCDF format. Some example headers (produced using ncdump -h)
for profile data, sea level anomaly and sea surface temperature are in the following
subsections.

12.2.1 Profile feedback type observation file header

netcdf profiles_01 {
dimensions:

N_OBS = 603 ;
N_LEVELS = 150 ;
N_VARS = 2 ;
N_QCF = 2 ;
N_ENTRIES = 1 ;
N_EXTRA = 1 ;
STRINGNAM = 8 ;
STRINGGRID = 1 ;
STRINGWMO = 8 ;
STRINGTYP = 4 ;
STRINGJULD = 14 ;

variables:
char VARIABLES(N_VARS, STRINGNAM) ;

VARIABLES:long_name = "List of variables in feedback files" ;
char ENTRIES(N_ENTRIES, STRINGNAM) ;

ENTRIES:long_name = "List of additional entries for each variable in feedback files" ;
char EXTRA(N_EXTRA, STRINGNAM) ;

EXTRA:long_name = "List of extra variables" ;
char STATION_IDENTIFIER(N_OBS, STRINGWMO) ;

STATION_IDENTIFIER:long_name = "Station identifier" ;
char STATION_TYPE(N_OBS, STRINGTYP) ;

STATION_TYPE:long_name = "Code instrument type" ;
double LONGITUDE(N_OBS) ;

LONGITUDE:long_name = "Longitude" ;
LONGITUDE:units = "degrees_east" ;
LONGITUDE:_Fillvalue = 99999.f ;

double LATITUDE(N_OBS) ;
LATITUDE:long_name = "Latitude" ;
LATITUDE:units = "degrees_north" ;
LATITUDE:_Fillvalue = 99999.f ;

double DEPTH(N_OBS, N_LEVELS) ;
DEPTH:long_name = "Depth" ;
DEPTH:units = "metre" ;
DEPTH:_Fillvalue = 99999.f ;

int DEPTH_QC(N_OBS, N_LEVELS) ;
DEPTH_QC:long_name = "Quality on depth" ;
DEPTH_QC:Conventions = "q where q =[0,9]" ;
DEPTH_QC:_Fillvalue = 0 ;

int DEPTH_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
DEPTH_QC_FLAGS:long_name = "Quality flags on depth" ;
DEPTH_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;

double JULD(N_OBS) ;
JULD:long_name = "Julian day" ;
JULD:units = "days since JULD_REFERENCE" ;
JULD:Conventions = "relative julian days with decimal part (as parts of day)" ;
JULD:_Fillvalue = 99999.f ;

char JULD_REFERENCE(STRINGJULD) ;
JULD_REFERENCE:long_name = "Date of reference for julian days" ;
JULD_REFERENCE:Conventions = "YYYYMMDDHHMMSS" ;

int OBSERVATION_QC(N_OBS) ;
OBSERVATION_QC:long_name = "Quality on observation" ;
OBSERVATION_QC:Conventions = "q where q =[0,9]" ;
OBSERVATION_QC:_Fillvalue = 0 ;

int OBSERVATION_QC_FLAGS(N_OBS, N_QCF) ;
OBSERVATION_QC_FLAGS:long_name = "Quality flags on observation" ;
OBSERVATION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
OBSERVATION_QC_FLAGS:_Fillvalue = 0 ;

int POSITION_QC(N_OBS) ;
POSITION_QC:long_name = "Quality on position (latitude and longitude)" ;
POSITION_QC:Conventions = "q where q =[0,9]" ;

226 Observation and model comparison (OBS)

POSITION_QC:_Fillvalue = 0 ;
int POSITION_QC_FLAGS(N_OBS, N_QCF) ;

POSITION_QC_FLAGS:long_name = "Quality flags on position" ;
POSITION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POSITION_QC_FLAGS:_Fillvalue = 0 ;

int JULD_QC(N_OBS) ;
JULD_QC:long_name = "Quality on date and time" ;
JULD_QC:Conventions = "q where q =[0,9]" ;
JULD_QC:_Fillvalue = 0 ;

int JULD_QC_FLAGS(N_OBS, N_QCF) ;
JULD_QC_FLAGS:long_name = "Quality flags on date and time" ;
JULD_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
JULD_QC_FLAGS:_Fillvalue = 0 ;

int ORIGINAL_FILE_INDEX(N_OBS) ;
ORIGINAL_FILE_INDEX:long_name = "Index in original data file" ;
ORIGINAL_FILE_INDEX:_Fillvalue = -99999 ;

float POTM_OBS(N_OBS, N_LEVELS) ;
POTM_OBS:long_name = "Potential temperature" ;
POTM_OBS:units = "Degrees Celsius" ;
POTM_OBS:_Fillvalue = 99999.f ;

float POTM_Hx(N_OBS, N_LEVELS) ;
POTM_Hx:long_name = "Model interpolated potential temperature" ;
POTM_Hx:units = "Degrees Celsius" ;
POTM_Hx:_Fillvalue = 99999.f ;

int POTM_QC(N_OBS) ;
POTM_QC:long_name = "Quality on potential temperature" ;
POTM_QC:Conventions = "q where q =[0,9]" ;
POTM_QC:_Fillvalue = 0 ;

int POTM_QC_FLAGS(N_OBS, N_QCF) ;
POTM_QC_FLAGS:long_name = "Quality flags on potential temperature" ;
POTM_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POTM_QC_FLAGS:_Fillvalue = 0 ;

int POTM_LEVEL_QC(N_OBS, N_LEVELS) ;
POTM_LEVEL_QC:long_name = "Quality for each level on potential temperature" ;
POTM_LEVEL_QC:Conventions = "q where q =[0,9]" ;
POTM_LEVEL_QC:_Fillvalue = 0 ;

int POTM_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
POTM_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on potential temperature" ;
POTM_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POTM_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int POTM_IOBSI(N_OBS) ;
POTM_IOBSI:long_name = "ORCA grid search I coordinate" ;

int POTM_IOBSJ(N_OBS) ;
POTM_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int POTM_IOBSK(N_OBS, N_LEVELS) ;
POTM_IOBSK:long_name = "ORCA grid search K coordinate" ;

char POTM_GRID(STRINGGRID) ;
POTM_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

float PSAL_OBS(N_OBS, N_LEVELS) ;
PSAL_OBS:long_name = "Practical salinity" ;
PSAL_OBS:units = "PSU" ;
PSAL_OBS:_Fillvalue = 99999.f ;

float PSAL_Hx(N_OBS, N_LEVELS) ;
PSAL_Hx:long_name = "Model interpolated practical salinity" ;
PSAL_Hx:units = "PSU" ;
PSAL_Hx:_Fillvalue = 99999.f ;

int PSAL_QC(N_OBS) ;
PSAL_QC:long_name = "Quality on practical salinity" ;
PSAL_QC:Conventions = "q where q =[0,9]" ;
PSAL_QC:_Fillvalue = 0 ;

int PSAL_QC_FLAGS(N_OBS, N_QCF) ;
PSAL_QC_FLAGS:long_name = "Quality flags on practical salinity" ;
PSAL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
PSAL_QC_FLAGS:_Fillvalue = 0 ;

int PSAL_LEVEL_QC(N_OBS, N_LEVELS) ;
PSAL_LEVEL_QC:long_name = "Quality for each level on practical salinity" ;
PSAL_LEVEL_QC:Conventions = "q where q =[0,9]" ;
PSAL_LEVEL_QC:_Fillvalue = 0 ;

int PSAL_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
PSAL_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on practical salinity" ;
PSAL_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
PSAL_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int PSAL_IOBSI(N_OBS) ;
PSAL_IOBSI:long_name = "ORCA grid search I coordinate" ;

int PSAL_IOBSJ(N_OBS) ;
PSAL_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int PSAL_IOBSK(N_OBS, N_LEVELS) ;
PSAL_IOBSK:long_name = "ORCA grid search K coordinate" ;

char PSAL_GRID(STRINGGRID) ;
PSAL_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

float TEMP(N_OBS, N_LEVELS) ;
TEMP:long_name = "Insitu temperature" ;
TEMP:units = "Degrees Celsius" ;
TEMP:_Fillvalue = 99999.f ;

12.2. Technical details 227

// global attributes:
:title = "NEMO observation operator output" ;
:Convention = "NEMO unified observation operator output" ;

}

12.2.2 Sea level anomaly feedback type observation file header

netcdf sla_01 {
dimensions:

N_OBS = 41301 ;
N_LEVELS = 1 ;
N_VARS = 1 ;
N_QCF = 2 ;
N_ENTRIES = 1 ;
N_EXTRA = 1 ;
STRINGNAM = 8 ;
STRINGGRID = 1 ;
STRINGWMO = 8 ;
STRINGTYP = 4 ;
STRINGJULD = 14 ;

variables:
char VARIABLES(N_VARS, STRINGNAM) ;

VARIABLES:long_name = "List of variables in feedback files" ;
char ENTRIES(N_ENTRIES, STRINGNAM) ;

ENTRIES:long_name = "List of additional entries for each variable in feedback files" ;
char EXTRA(N_EXTRA, STRINGNAM) ;

EXTRA:long_name = "List of extra variables" ;
char STATION_IDENTIFIER(N_OBS, STRINGWMO) ;

STATION_IDENTIFIER:long_name = "Station identifier" ;
char STATION_TYPE(N_OBS, STRINGTYP) ;

STATION_TYPE:long_name = "Code instrument type" ;
double LONGITUDE(N_OBS) ;

LONGITUDE:long_name = "Longitude" ;
LONGITUDE:units = "degrees_east" ;
LONGITUDE:_Fillvalue = 99999.f ;

double LATITUDE(N_OBS) ;
LATITUDE:long_name = "Latitude" ;
LATITUDE:units = "degrees_north" ;
LATITUDE:_Fillvalue = 99999.f ;

double DEPTH(N_OBS, N_LEVELS) ;
DEPTH:long_name = "Depth" ;
DEPTH:units = "metre" ;
DEPTH:_Fillvalue = 99999.f ;

int DEPTH_QC(N_OBS, N_LEVELS) ;
DEPTH_QC:long_name = "Quality on depth" ;
DEPTH_QC:Conventions = "q where q =[0,9]" ;
DEPTH_QC:_Fillvalue = 0 ;

int DEPTH_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
DEPTH_QC_FLAGS:long_name = "Quality flags on depth" ;
DEPTH_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;

double JULD(N_OBS) ;
JULD:long_name = "Julian day" ;
JULD:units = "days since JULD_REFERENCE" ;
JULD:Conventions = "relative julian days with decimal part (as parts of day)" ;
JULD:_Fillvalue = 99999.f ;

char JULD_REFERENCE(STRINGJULD) ;
JULD_REFERENCE:long_name = "Date of reference for julian days" ;
JULD_REFERENCE:Conventions = "YYYYMMDDHHMMSS" ;

int OBSERVATION_QC(N_OBS) ;
OBSERVATION_QC:long_name = "Quality on observation" ;
OBSERVATION_QC:Conventions = "q where q =[0,9]" ;
OBSERVATION_QC:_Fillvalue = 0 ;

int OBSERVATION_QC_FLAGS(N_OBS, N_QCF) ;
OBSERVATION_QC_FLAGS:long_name = "Quality flags on observation" ;
OBSERVATION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
OBSERVATION_QC_FLAGS:_Fillvalue = 0 ;

int POSITION_QC(N_OBS) ;
POSITION_QC:long_name = "Quality on position (latitude and longitude)" ;
POSITION_QC:Conventions = "q where q =[0,9]" ;
POSITION_QC:_Fillvalue = 0 ;

int POSITION_QC_FLAGS(N_OBS, N_QCF) ;
POSITION_QC_FLAGS:long_name = "Quality flags on position" ;
POSITION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POSITION_QC_FLAGS:_Fillvalue = 0 ;

int JULD_QC(N_OBS) ;
JULD_QC:long_name = "Quality on date and time" ;
JULD_QC:Conventions = "q where q =[0,9]" ;
JULD_QC:_Fillvalue = 0 ;

228 Observation and model comparison (OBS)

int JULD_QC_FLAGS(N_OBS, N_QCF) ;
JULD_QC_FLAGS:long_name = "Quality flags on date and time" ;
JULD_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
JULD_QC_FLAGS:_Fillvalue = 0 ;

int ORIGINAL_FILE_INDEX(N_OBS) ;
ORIGINAL_FILE_INDEX:long_name = "Index in original data file" ;
ORIGINAL_FILE_INDEX:_Fillvalue = -99999 ;

float SLA_OBS(N_OBS, N_LEVELS) ;
SLA_OBS:long_name = "Sea level anomaly" ;
SLA_OBS:units = "metre" ;
SLA_OBS:_Fillvalue = 99999.f ;

float SLA_Hx(N_OBS, N_LEVELS) ;
SLA_Hx:long_name = "Model interpolated sea level anomaly" ;
SLA_Hx:units = "metre" ;
SLA_Hx:_Fillvalue = 99999.f ;

int SLA_QC(N_OBS) ;
SLA_QC:long_name = "Quality on sea level anomaly" ;
SLA_QC:Conventions = "q where q =[0,9]" ;
SLA_QC:_Fillvalue = 0 ;

int SLA_QC_FLAGS(N_OBS, N_QCF) ;
SLA_QC_FLAGS:long_name = "Quality flags on sea level anomaly" ;
SLA_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SLA_QC_FLAGS:_Fillvalue = 0 ;

int SLA_LEVEL_QC(N_OBS, N_LEVELS) ;
SLA_LEVEL_QC:long_name = "Quality for each level on sea level anomaly" ;
SLA_LEVEL_QC:Conventions = "q where q =[0,9]" ;
SLA_LEVEL_QC:_Fillvalue = 0 ;

int SLA_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
SLA_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on sea level anomaly" ;
SLA_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SLA_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int SLA_IOBSI(N_OBS) ;
SLA_IOBSI:long_name = "ORCA grid search I coordinate" ;

int SLA_IOBSJ(N_OBS) ;
SLA_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int SLA_IOBSK(N_OBS, N_LEVELS) ;
SLA_IOBSK:long_name = "ORCA grid search K coordinate" ;

char SLA_GRID(STRINGGRID) ;
SLA_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

float MDT(N_OBS, N_LEVELS) ;
MDT:long_name = "Mean Dynamic Topography" ;
MDT:units = "metre" ;
MDT:_Fillvalue = 99999.f ;

// global attributes:
:title = "NEMO observation operator output" ;
:Convention = "NEMO unified observation operator output" ;

}

The mean dynamic topography (MDT) must be provided in a separate file de-
fined on the model grid called slaReferenceLevel.nc. The MDT is required in order
to produce the model equivalent sea level anomaly from the model sea surface
height. Below is an example header for this file (on the ORCA025 grid).

dimensions:
x = 1442 ;
y = 1021 ;

variables:
float nav_lon(y, x) ;

nav_lon:units = "degrees_east" ;
float nav_lat(y, x) ;

nav_lat:units = "degrees_north" ;
float sossheig(y, x) ;

sossheig:_FillValue = -1.e+30f ;
sossheig:coordinates = "nav_lon nav_lat" ;
sossheig:long_name = "Mean Dynamic Topography" ;
sossheig:units = "metres" ;
sossheig:grid = "orca025T" ;

12.2.3 Sea surface temperature feedback type observation file header

12.2. Technical details 229

netcdf sst_01 {
dimensions:

N_OBS = 33099 ;
N_LEVELS = 1 ;
N_VARS = 1 ;
N_QCF = 2 ;
N_ENTRIES = 1 ;
STRINGNAM = 8 ;
STRINGGRID = 1 ;
STRINGWMO = 8 ;
STRINGTYP = 4 ;
STRINGJULD = 14 ;

variables:
char VARIABLES(N_VARS, STRINGNAM) ;

VARIABLES:long_name = "List of variables in feedback files" ;
char ENTRIES(N_ENTRIES, STRINGNAM) ;

ENTRIES:long_name = "List of additional entries for each variable in feedback files" ;
char STATION_IDENTIFIER(N_OBS, STRINGWMO) ;

STATION_IDENTIFIER:long_name = "Station identifier" ;
char STATION_TYPE(N_OBS, STRINGTYP) ;

STATION_TYPE:long_name = "Code instrument type" ;
double LONGITUDE(N_OBS) ;

LONGITUDE:long_name = "Longitude" ;
LONGITUDE:units = "degrees_east" ;
LONGITUDE:_Fillvalue = 99999.f ;

double LATITUDE(N_OBS) ;
LATITUDE:long_name = "Latitude" ;
LATITUDE:units = "degrees_north" ;
LATITUDE:_Fillvalue = 99999.f ;

double DEPTH(N_OBS, N_LEVELS) ;
DEPTH:long_name = "Depth" ;
DEPTH:units = "metre" ;
DEPTH:_Fillvalue = 99999.f ;

int DEPTH_QC(N_OBS, N_LEVELS) ;
DEPTH_QC:long_name = "Quality on depth" ;
DEPTH_QC:Conventions = "q where q =[0,9]" ;
DEPTH_QC:_Fillvalue = 0 ;

int DEPTH_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
DEPTH_QC_FLAGS:long_name = "Quality flags on depth" ;
DEPTH_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;

double JULD(N_OBS) ;
JULD:long_name = "Julian day" ;
JULD:units = "days since JULD_REFERENCE" ;
JULD:Conventions = "relative julian days with decimal part (as parts of day)" ;
JULD:_Fillvalue = 99999.f ;

char JULD_REFERENCE(STRINGJULD) ;
JULD_REFERENCE:long_name = "Date of reference for julian days" ;
JULD_REFERENCE:Conventions = "YYYYMMDDHHMMSS" ;

int OBSERVATION_QC(N_OBS) ;
OBSERVATION_QC:long_name = "Quality on observation" ;
OBSERVATION_QC:Conventions = "q where q =[0,9]" ;
OBSERVATION_QC:_Fillvalue = 0 ;

int OBSERVATION_QC_FLAGS(N_OBS, N_QCF) ;
OBSERVATION_QC_FLAGS:long_name = "Quality flags on observation" ;
OBSERVATION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
OBSERVATION_QC_FLAGS:_Fillvalue = 0 ;

int POSITION_QC(N_OBS) ;
POSITION_QC:long_name = "Quality on position (latitude and longitude)" ;
POSITION_QC:Conventions = "q where q =[0,9]" ;
POSITION_QC:_Fillvalue = 0 ;

int POSITION_QC_FLAGS(N_OBS, N_QCF) ;
POSITION_QC_FLAGS:long_name = "Quality flags on position" ;
POSITION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POSITION_QC_FLAGS:_Fillvalue = 0 ;

int JULD_QC(N_OBS) ;
JULD_QC:long_name = "Quality on date and time" ;
JULD_QC:Conventions = "q where q =[0,9]" ;
JULD_QC:_Fillvalue = 0 ;

int JULD_QC_FLAGS(N_OBS, N_QCF) ;
JULD_QC_FLAGS:long_name = "Quality flags on date and time" ;
JULD_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
JULD_QC_FLAGS:_Fillvalue = 0 ;

int ORIGINAL_FILE_INDEX(N_OBS) ;
ORIGINAL_FILE_INDEX:long_name = "Index in original data file" ;
ORIGINAL_FILE_INDEX:_Fillvalue = -99999 ;

float SST_OBS(N_OBS, N_LEVELS) ;
SST_OBS:long_name = "Sea surface temperature" ;
SST_OBS:units = "Degree centigrade" ;
SST_OBS:_Fillvalue = 99999.f ;

float SST_Hx(N_OBS, N_LEVELS) ;
SST_Hx:long_name = "Model interpolated sea surface temperature" ;
SST_Hx:units = "Degree centigrade" ;
SST_Hx:_Fillvalue = 99999.f ;

int SST_QC(N_OBS) ;

230 Observation and model comparison (OBS)

SST_QC:long_name = "Quality on sea surface temperature" ;
SST_QC:Conventions = "q where q =[0,9]" ;
SST_QC:_Fillvalue = 0 ;

int SST_QC_FLAGS(N_OBS, N_QCF) ;
SST_QC_FLAGS:long_name = "Quality flags on sea surface temperature" ;
SST_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SST_QC_FLAGS:_Fillvalue = 0 ;

int SST_LEVEL_QC(N_OBS, N_LEVELS) ;
SST_LEVEL_QC:long_name = "Quality for each level on sea surface temperature" ;
SST_LEVEL_QC:Conventions = "q where q =[0,9]" ;
SST_LEVEL_QC:_Fillvalue = 0 ;

int SST_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
SST_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on sea surface temperature" ;
SST_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SST_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int SST_IOBSI(N_OBS) ;
SST_IOBSI:long_name = "ORCA grid search I coordinate" ;

int SST_IOBSJ(N_OBS) ;
SST_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int SST_IOBSK(N_OBS, N_LEVELS) ;
SST_IOBSK:long_name = "ORCA grid search K coordinate" ;

char SST_GRID(STRINGGRID) ;
SST_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

// global attributes:
:title = "NEMO observation operator output" ;
:Convention = "NEMO unified observation operator output" ;

}

12.3 Theoretical details

12.3.1 Horizontal interpolation methods

Consider an observation point P with with longitude and latitude (λP, φP) and
the four nearest neighbouring model grid points A, B, C and D with longitude and
latitude (λA, φA), (λB, φB) etc. All horizontal interpolation methods implemented
in NEMO estimate the value of a model variable x at point P as a weighted linear
combination of the values of the model variables at the grid points A, B etc. :

xP =
1

w
(wAxA + wBxB + wCxC + wDxD) (12.1)

where wA, wB etc. are the respective weights for the model field at points A, B
etc., and w = wA + wB + wC + wD.

Four different possibilities are available for computing the weights.

1. Great-Circle distance-weighted interpolation. The weights are computed
as a function of the great-circle distance s(P, ·) between P and the model
grid points A, B etc. For example, the weight given to the field xA is speci-
fied as the product of the distances from P to the other points :

wA = s(P,B) s(P,C) s(P,D)

where

s (P,M) = cos−1{sinφP sinφM + cosφP cosφM cos(λM − λP)}(12.2)

and M corresponds to B, C or D. A more stable form of the great-circle
distance formula for small distances (x near 1) involves the arcsine function

12.3. Theoretical details 231

(e.g. see p. 101 of ? :

s (P,M) = sin−1
{√

1− x2
}

where

x = aMaP + bMbP + cMcP

and

aM = sinφM,

aP = sinφP,

bM = cosφM cosφM,

bP = cosφP cosφP,

cM = cosφM sinφM,

cP = cosφP sinφP.

2. Great-Circle distance-weighted interpolation with small angle approxi-
mation. Similar to the previous interpolation but with the distance s compu-
ted as

s (P,M) =

√
(φM − φP)2 + (λM − λP)2 cos2 φM (12.3)

where M corresponds to A, B, C or D.

3. Bilinear interpolation for a regular spaced grid. The interpolation is split
into two 1D interpolations in the longitude and latitude directions, respecti-
vely.

4. Bilinear remapping interpolation for a general grid. An iterative scheme
that involves first mapping a quadrilateral cell into a cell with coordinates
(0,0), (1,0), (0,1) and (1,1). This method is based on the SCRIP interpolation
package [?].

12.3.2 Grid search

For many grids used by the NEMO model, such as the ORCA family, the ho-
rizontal grid coordinates i and j are not simple functions of latitude and longitude.
Therefore, it is not always straightforward to determine the grid points surroun-
ding any given observational position. Before the interpolation can be performed, a
search algorithm is then required to determine the corner points of the quadrilateral
cell in which the observation is located. This is the most difficult and time consu-
ming part of the 2D interpolation procedure. A robust test for determining if an ob-
servation falls within a given quadrilateral cell is as follows. Let P(λP, φP) denote
the observation point, and let A(λA, φA), B(λB, φB), C(λC, φC) and D(λD, φD)

232 Observation and model comparison (OBS)

denote the bottom left, bottom right, top left and top right corner points of the cell,
respectively. To determine if P is inside the cell, we verify that the cross-products

rPA × rPC = [(λA − λP)(φC − φP)− (λC − λP)(φA − φP)] k̂

rPB × rPA = [(λB − λP)(φA − φP)− (λA − λP)(φB − φP)] k̂

rPC × rPD = [(λC − λP)(φD − φP)− (λD − λP)(φC − φP)] k̂

rPD × rPB = [(λD − λP)(φB − φP)− (λB − λP)(φD − φP)] k̂

(12.4)

point in the opposite direction to the unit normal k̂ (i.e., that the coefficients of
k̂ are negative), where rPA, rPB, etc. correspond to the vectors between points P
and A, P and B, etc.. The method used is similar to the method used in the SCRIP
interpolation package [?].

In order to speed up the grid search, there is the possibility to construct a loo-
kup table for a user specified resolution. This lookup table contains the lower and
upper bounds on the i and j indices to be searched for on a regular grid. For each
observation position, the closest point on the regular grid of this position is com-
puted and the i and j ranges of this point searched to determine the precise four
points surrounding the observation.

12.3.3 Parallel aspects of horizontal interpolation

For horizontal interpolation, there is the basic problem that the observations
are unevenly distributed on the globe. In numerical models, it is common to divide
the model grid into subgrids (or domains) where each subgrid is executed on a
single processing element with explicit message passing for exchange of informa-
tion along the domain boundaries when running on a massively parallel processor
(MPP) system. This approach is used by NEMO.

For observations there is no natural distribution since the observations are not
equally distributed on the globe. Two options have been made available : 1) geo-
graphical distribution ; and 2) round-robin.

Geographical distribution of observations among processors

This is the simplest option in which the observations are distributed according
to the domain of the grid-point parallelization. Figure ?? shows an example of
the distribution of the in situ data on processors with a different colour for each
observation on a given processor for a 4 × 2 decomposition with ORCA2. The
grid-point domain decomposition is clearly visible on the plot.

The advantage of this approach is that all information needed for horizontal in-
terpolation is available without any MPP communication. Of course, this is under
the assumption that we are only using a 2 × 2 grid-point stencil for the interpola-
tion (e.g., bilinear interpolation). For higher order interpolation schemes this is no
longer valid. A disadvantage with the above scheme is that the number of observa-
tions on each processor can be very different. If the cost of the actual interpolation

12.3. Theoretical details 233

340°E320°E300°E280°E260°E240°E220°E200°E180°E160°E140°E120°E100°E80°E60°E40°E20°E

340°E320°E300°E280°E260°E240°E220°E200°E180°E160°E140°E120°E100°E80°E60°E40°E20°E

80°N

70°N

60°N

50°N

40°N

30°N

20°N

10°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

80°N

70°N

60°N

50°N

40°N

30°N

20°N

10°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

Magics++ 2.4.1 - cranmer - ne1 - Mon Mar 3 14:05:09 2008

FIGURE 12.1: Example of the distribution of observations with the geographical
distribution of observational data.

234 Observation and model comparison (OBS)

340°E320°E300°E280°E260°E240°E220°E200°E180°E160°E140°E120°E100°E80°E60°E40°E20°E

340°E320°E300°E280°E260°E240°E220°E200°E180°E160°E140°E120°E100°E80°E60°E40°E20°E

80°N

70°N

60°N

50°N

40°N

30°N

20°N

10°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

80°N

70°N

60°N

50°N

40°N

30°N

20°N

10°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

Magics++ 2.4.1 - cranmer - ne1 - Mon Mar 3 14:08:38 2008

FIGURE 12.2: Example of the distribution of observations with the round-robin dis-
tribution of observational data.

is expensive relative to the communication of data needed for interpolation, this
could lead to load imbalance.

Round-robin distribution of observations among processors

An alternative approach is to distribute the observations equally among proces-
sors and use message passing in order to retrieve the stencil for interpolation. The
simplest distribution of the observations is to distribute them using a round-robin
scheme. Figure ?? shows the distribution of the in situ data on processors for the
round-robin distribution of observations with a different colour for each observa-
tion on a given processor for a 4 × 2 decomposition with ORCA2 for the same
input data as in Fig. ??. The observations are now clearly randomly distributed on
the globe. In order to be able to perform horizontal interpolation in this case, a
subroutine has been developed that retrieves any grid points in the global space.

12.3. Theoretical details 235

12.3.4 Vertical interpolation operator

Vertical interpolation is achieved using either a cubic spline or linear interpo-
lation. For the cubic spline, the top and bottom boundary conditions for the second
derivative of the interpolating polynomial in the spline are set to zero. At the bot-
tom boundary, this is done using the land-ocean mask.

236 Observation and model comparison (OBS)

12.4 Observation Utilities

Some tools for viewing and processing of observation and feedback files are
provided in the NEMO repository for convenience. These include OBSTOOLS
which are a collection of Fortran programs which are helpful to deal with feedback
files. They do such tasks as observation file conversion, printing of file contents,
some basic statistical analysis of feedback files. The other tool is an IDL program
called dataplot which uses a graphical interface to visualise observations and feed-
back files. OBSTOOLS and dataplot are described in more detail below.

12.4.1 Obstools

A series of Fortran utilities is provided with NEMO called OBSTOOLS. This
are helpful in handling observation files and the feedback file output from the
NEMO observation operator. The utilities are as follows

corio2fb

The program corio2fb converts profile observation files from the Coriolis for-
mat to the standard feedback format. The program is called in the following way :

corio2fb.exe outputfile inputfile1 inputfile2 ...

enact2fb

The program enact2fb converts profile observation files from the ENACT for-
mat to the standard feedback format. The program is called in the following way :

enact2fb.exe outputfile inputfile1 inputfile2 ...

fbcomb

The program fbcomb combines multiple feedback files produced by individual
processors in an MPI run of NEMO into a single feedback file. The program is
called in the following way :

fbcomb.exe outputfile inputfile1 inputfile2 ...

12.4. Observation Utilities 237

fbmatchup

The program fbmatchup will match observations from two feedback files. The
program is called in the following way :

fbmatchup.exe outputfile inputfile1 varname1 inputfile2 varname2 ...

fbprint

The program fbprint will print the contents of a feedback file or files to standard
output. Selected information can be output using optional arguments. The program
is called in the following way :

fbprint.exe [options] inputfile

options:
-b shorter output
-q Select observations based on QC flags
-Q Select observations based on QC flags
-B Select observations based on QC flags
-u unsorted
-s ID select station ID
-t TYPE select observation type
-v NUM1-NUM2 select variable range to print by number

(default all)
-a NUM1-NUM2 select additional variable range to print by number

(default all)
-e NUM1-NUM2 select extra variable range to print by number

(default all)
-d output date range
-D print depths
-z use zipped files

fbsel

The program fbsel will select or subsample observations. The program is called
in the following way :

fbsel.exe <input filename> <output filename>

fbstat

The program fbstat will output summary statistics in different global areas into
a number of files. The program is called in the following way :

fbstat.exe [-nmlev] <filenames>

238 Observation and model comparison (OBS)

fbthin

The program fbthin will thin the data to 1 degree resolution. The code could
easily be modified to thin to a different resolution. The program is called in the
following way :

fbthin.exe inputfile outputfile

sla2fb

The program sla2fb will convert an AVISO SLA format file to feedback format.
The program is called in the following way :

sla2fb.exe [-s type] outputfile inputfile1 inputfile2 ...

Option:
-s Select altimeter data_source

vel2fb

The program vel2fb will convert TAO/PIRATA/RAMA currents files to feed-
back format. The program is called in the following way :

vel2fb.exe outputfile inputfile1 inputfile2 ...

12.4.2 building the obstools

To build the obstools use in the tools directory use ./maketools -n OBSTOOLS
-m [ARCH].

12.4.3 Dataplot

An IDL program called dataplot is included which uses a graphical interface to
visualise observations and feedback files. It is possible to zoom in, plot individual
profiles and calculate some basic statistics. To plot some data run IDL and then :

IDL> dataplot, "filename"

To read multiple files into dataplot, for example multiple feedback files from
different processors or from different days, the easiest method is to use the spawn
command to generate a list of files which can then be passed to dataplot.

12.4. Observation Utilities 239

IDL> spawn, ’ls profb*.nc’, files
IDL> dataplot, files

Fig ?? shows the main window which is launched when dataplot starts. This
is split into three parts. At the top there is a menu bar which contains a variety of
drop down menus. Areas - zooms into prespecified regions ; plot - plots the data
as a timeseries or a T-S diagram if appropriate ; Find - allows data to be searched ;
Config - sets various configuration options.

The middle part is a plot of the geographical location of the observations. This
will plot the observation value, the model background value or observation minus
background value depending on the option selected in the radio button at the bottom
of the window. The plotting colour range can be changed by clicking on the colour
bar. The title of the plot gives some basic information about the date range and
depth range shown, the extreme values, and the mean and rms values. It is possible
to zoom in using a drag-box. You may also zoom in or out using the mouse wheel.

The bottom part of the window controls what is visible in the plot above. There
are two bars which select the level range plotted (for profile data). The other bars
below select the date range shown. The bottom of the figure allows the option to
plot the mean, root mean square, standard deviation or mean square values. As
mentioned above you can choose to plot the observation value, the model back-
ground value or observation minus background value. The next group of radio but-
tons selects the map projection. This can either be regular latitude longitude grid,
or north or south polar stereographic. The next group of radio buttons will plot bad
observations, switch to salinity and plot density for profile observations. The right-
most group of buttons will print the plot window as a postscript, save it as png, or
exit from dataplot.

If a profile point is clicked with the mouse button a plot of the observation and
background values as a function of depth (Fig ??).

240 Observation and model comparison (OBS)

FIGURE 12.3: Main window of dataplot.

FIGURE 12.4: Profile plot from dataplot produced by right clicking on a point in the
main window.

13 Apply assimilation increments (ASM)

Authors : D. Lea, M. Martin, K. Mogensen, A. Weaver, ...

242 Apply assimilation increments (ASM)

The ASM code adds the functionality to apply increments to the model va-
riables : temperature, salinity, sea surface height, velocity and sea ice concentra-
tion. These are read into the model from a NetCDF file which may be produced
by separate data assimilation code. The code can also output model background
fields which are used as an input to data assimilation code. This is all controlled
by the namelist nam asminc. There is a brief description of all the namelist options
provided. To build the ASM code key asminc must be set.

13.1 Direct initialization

Direct initialization (DI) refers to the instantaneous correction of the model
background state using the analysis increment. DI is used when ln asmdin is set to
true.

13.2 Incremental Analysis Updates

Rather than updating the model state directly with the analysis increment, it
may be preferable to introduce the increment gradually into the ocean model in
order to minimize spurious adjustment processes. This technique is referred to as
Incremental Analysis Updates (IAU) [?]. IAU is a common technique used with
3D assimilation methods such as 3D-Var or OI. IAU is used when ln asmiau is set
to true.

With IAU, the model state trajectory x in the assimilation window (t0 ≤ ti ≤
tN) is corrected by adding the analysis increments for temperature, salinity, hori-
zontal velocity and SSH as additional tendency terms to the prognostic equations :

xa(ti) = M(ti, t0)[xb(t0)] + Fiδx̃
a (13.1)

where Fi is a weighting function for applying the increments δx̃a defined such
that

∑N
i=1 Fi = 1. xb denotes the model initial state and xa is the model state

after the increments are applied. To control the adjustment time of the model to
the increment, the increment can be applied over an arbitrary sub-window, tm ≤
ti ≤ tn, of the main assimilation window, where t0 ≤ tm ≤ ti and ti ≤ tn ≤ tN ,
Typically the increments are spread evenly over the full window. In addition, two
different weighting functions have been implemented. The first function employs
constant weights,

F
(1)
i =


0 if ti < tm
1/M if tm < ti ≤ tn
0 if ti > tn

(13.2)

where M = m − n. The second function employs peaked hat-like weights in
order to give maximum weight in the centre of the sub-window, with the weighting

13.3. Divergence damping initialisation 243

reduced linearly to a small value at the window end-points :

F
(2)
i =


0 if ti < tm
α i if tm ≤ ti ≤ tM/2

α (M − i+ 1) if tM/2 < ti ≤ tn
0 if ti > tn

(13.3)

where α−1 =
∑M/2

i=1 2i and M is assumed to be even. The weights described by
(??) provide a smoother transition of the analysis trajectory from one assimilation
cycle to the next than that described by (??).

13.3 Divergence damping initialisation

The velocity increments may be initialized by the iterative application of a di-
vergence damping operator. In iteration step n new estimates of velocity increments
unI and vnI are updated by :

unI = un−1
I +

1

e1u
δi+1/2

(
AD χn−1

I

)

vnI = vn−1
I +

1

e2v
δj+1/2

(
AD χn−1

I

) , (13.4)

where

χn−1
I =

1

e1t e2t e3t

(
δi
[
e2u e3u u

n−1
I

]
+ δj

[
e1v e3v v

n−1
I

])
. (13.5)

By the application of (??) and (??) the divergence is filtered in each iteration, and
the vorticity is left unchanged. In the presence of coastal boundaries with zero
velocity increments perpendicular to the coast the divergence is strongly damped.
This type of the initialisation reduces the vertical velocity magnitude and alleviates
the problem of the excessive unphysical vertical mixing in the first steps of the
model integration [??]. Diffusion coefficients are defined as AD = αe1te2t, where
α = 0.2. The divergence damping is activated by assigning to nn divdmp in the
nam asminc namelist a value greater than zero. By choosing this value to be of the
order of 100 the increments in the vertical velocity will be significantly reduced.

13.4 Implementation details

Here we show an example namelist and the header of an example assimilation
increments file on the ORCA2 grid.

!---
&nam_asminc ! assimilation increments (’key_asminc’)
!---

ln_bkgwri = .false. ! Logical switch for writing out background state

244 Apply assimilation increments (ASM)

ln_trainc = .false. ! Logical switch for applying tracer increments
ln_dyninc = .false. ! Logical switch for applying velocity increments
ln_sshinc = .false. ! Logical switch for applying SSH increments
ln_asmdin = .false. ! Logical switch for Direct Initialization (DI)
ln_asmiau = .false. ! Logical switch for Incremental Analysis Updating (IAU)
nitbkg = 0 ! Timestep of background in [0,nitend-nit000-1]
nitdin = 0 ! Timestep of background for DI in [0,nitend-nit000-1]
nitiaustr = 1 ! Timestep of start of IAU interval in [0,nitend-nit000-1]
nitiaufin = 15 ! Timestep of end of IAU interval in [0,nitend-nit000-1]
niaufn = 0 ! Type of IAU weighting function
ln_salfix = .false. ! Logical switch for ensuring that the sa > salfixmin
salfixmin = -9999 ! Minimum salinity after applying the increments
ndivdmp = 0 ! Number of iterations of divergence damping operator

/

The header of an assimilation increments file produced using the NetCDF tool
ncdump -h is shown below

netcdf assim_background_increments {
dimensions:

x = 182 ;
y = 149 ;
z = 31 ;
t = UNLIMITED ; // (1 currently)

variables:
float nav_lon(y, x) ;
float nav_lat(y, x) ;
float nav_lev(z) ;
double time_counter(t) ;
double time ;
double z_inc_dateb ;
double z_inc_datef ;
double bckint(t, z, y, x) ;
double bckins(t, z, y, x) ;
double bckinu(t, z, y, x) ;
double bckinv(t, z, y, x) ;
double bckineta(t, y, x) ;

// global attributes:
:DOMAIN_number_total = 1 ;
:DOMAIN_number = 0 ;
:DOMAIN_dimensions_ids = 1, 2 ;
:DOMAIN_size_global = 182, 149 ;
:DOMAIN_size_local = 182, 149 ;
:DOMAIN_position_first = 1, 1 ;
:DOMAIN_position_last = 182, 149 ;
:DOMAIN_halo_size_start = 0, 0 ;
:DOMAIN_halo_size_end = 0, 0 ;
:DOMAIN_type = "BOX" ;

}

14 Miscellaneous Topics

246 Miscellaneous Topics

14.1 Representation of Unresolved Straits

In climate modeling, it often occurs that a crucial connections between wa-
ter masses is broken as the grid mesh is too coarse to resolve narrow straits. For
example, coarse grid spacing typically closes off the Mediterranean from the At-
lantic at the Strait of Gibraltar. In this case, it is important for climate models to
include the effects of salty water entering the Atlantic from the Mediterranean. Li-
kewise, it is important for the Mediterranean to replenish its supply of water from
the Atlantic to balance the net evaporation occurring over the Mediterranean re-
gion. This problem occurs even in eddy permitting simulations. For example, in
ORCA 1/4˚several straits of the Indonesian archipelago (Ombai, Lombok...) are
much narrow than even a single ocean grid-point.

We describe briefly here the three methods that can be used in NEMO to handle
such improperly resolved straits. The first two consist of opening the strait by hand
while ensuring that the mass exchanges through the strait are not too large by either
artificially reducing the surface of the strait grid-cells or, locally increasing the
lateral friction. In the third one, the strait is closed but exchanges of mass, heat
and salt across the land are allowed. Note that such modifications are so specific
to a given configuration that no attempt has been made to set them in a generic
way. However, examples of how they can be set up is given in the ORCA 2˚and
0.5˚configurations (search for key orca r2 or key orca r05 in the code).

14.1.1 Hand made geometry changes

• reduced scale factor in the cross-strait direction to a value in better agreement
with the true mean width of the strait. (Fig. ??). This technique is sometime called
”partially open face” or ”partially closed cells”. The key issue here is only to reduce
the faces of T -cell (i.e. change the value of the horizontal scale factors at u- or
v-point) but not the volume of the T -cell. Indeed, reducing the volume of strait T -
cell can easily produce a numerical instability at that grid point that would require
a reduction of the model time step. The changes associated with strait management
are done in domhgr.F90, just after the definition or reading of the horizontal scale
factors.
• increase of the viscous boundary layer thickness by local increase of the

fmask value at the coast (Fig. ??). This is done in dommsk.F90 together with the
setting of the coastal value of fmask (see Section ??)

14.1.2 Cross Land Advection (tracla.F90)
!---
&namcla ! cross land advection
!---

nn_cla = 0 ! advection between 2 ocean pts separates by land

14.1. Representation of Unresolved Straits 247

10oW 8oW 6oW 4oW 2oW 0o

34oN

36oN

38oN

10oW 8oW 6oW 4oW 2oW 0o

34oN

36oN

38oN

Viscous Boundary
layer

fmask set to value > 2

FIGURE 14.1: Example of the Gibraltar strait defined in a 1˚× 1˚ mesh. Top : using
partially open cells. The meridional scale factor at v-point is reduced on both sides of
the strait to account for the real width of the strait (about 20 km). Note that the scale
factors of the strait T -point remains unchanged. Bottom : using viscous boundary
layers. The four fmask parameters along the strait coastlines are set to a value larger
than 4, i.e. ”strong” no-slip case (see Fig.??) creating a large viscous boundary layer
that allows a reduced transport through the strait.

248 Miscellaneous Topics

/

Add a short description of CLA staff here or in lateral boundary condition chapter ?

14.2 Closed seas (closea.F90)

Add here a short description of the way closed seas are managed

14.3 Sub-Domain Functionality (jpizoom, jpjzoom)

The sub-domain functionality, also improperly called the zoom option (impro-
perly because it is not associated with a change in model resolution) is a quite
simple function that allows a simulation over a sub-domain of an already defined
configuration (i.e. without defining a new mesh, initial state and forcings). This
option can be useful for testing the user settings of surface boundary conditions,
or the initial ocean state of a huge ocean model configuration while having a small
computer memory requirement. It can also be used to easily test specific physics
in a sub-domain (for example, see [?] for a test of the coupling used in the global
ocean version of OPA between sea-ice and ocean model over the Arctic or Antarc-
tic ocean, using a sub-domain). In the standard model, this option does not include
any specific treatment for the ocean boundaries of the sub-domain : they are consi-
dered as artificial vertical walls. Nevertheless, it is quite easy to add a restoring
term toward a climatology in the vicinity of such boundaries (see §??).

In order to easily define a sub-domain over which the computation can be per-
formed, the dimension of all input arrays (ocean mesh, bathymetry, forcing, initial
state, ...) are defined as jpidta, jpjdta and jpkdta (par oce.F90 module), while the
computational domain is defined through jpiglo, jpjglo and jpk (par oce.F90 mo-
dule). When running the model over the whole domain, the user sets jpiglo=jpidta
jpjglo=jpjdta and jpk=jpkdta. When running the model over a sub-domain, the user
has to provide the size of the sub-domain, (jpiglo, jpjglo, jpkglo), and the indices
of the south western corner as jpizoom and jpjzoom in the par oce.F90 module
(Fig. ??).

Note that a third set of dimensions exist, jpi, jpj and jpk which is actually used
to perform the computation. It is set by default to jpi=jpjglo and jpj=jpjglo, except
for massively parallel computing where the computational domain is laid out on
local processor memories following a 2D horizontal splitting.

14.4 Accelerating the Convergence (nn acc = 1)
!---
&namdom ! space and time domain (bathymetry, mesh, timestep)
!---

nn_bathy = 1 ! compute (=0) or read (=1) the bathymetry file
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
nn_msh = 0 ! create (=1) a mesh file or not (=0)
rn_hmin = -3. ! min depth of the ocean (>0) or min number of ocean level (<0)
rn_e3zps_min= 20. ! partial step thickness is set larger than the minimum of
rn_e3zps_rat= 0.1 ! rn_e3zps_min and rn_e3zps_rat*e3t, with 0<rn_e3zps_rat<1

14.4. Accelerating the Convergence (nn acc = 1) 249

jpjdta

jpidta1
1

jpjzoom

jpizoom

input data
domain

model
domain

jpiglo1
1

jpjglo

FIGURE 14.2: Position of a model domain compared to the data input domain when
the zoom functionality is used.

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nn_acc=0)
nn_baro = 64 ! number of barotropic time step ("key_dynspg_ts")
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)

! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nn_acc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nn_acc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nn_acc=1)

/

Searching an equilibrium state with an global ocean model requires a very
long time integration period (a few thousand years for a global model). Due to
the size of the time step required for numerical stability (less than a few hours),
this usually requires a large elapsed time. In order to overcome this problem, ?
introduces a technique that is intended to accelerate the spin up to equilibrium.
It uses a larger time step in the tracer evolution equations than in the momentum
evolution equations. It does not affect the equilibrium solution but modifies the
trajectory to reach it.

The acceleration of convergence option is used when nn acc=1. In that case,
∆t = rn rdt is the time step of dynamics while ∆̃t = rdttra is the tracer time-
step. the former is set from the rn rdt namelist parameter while the latter is com-
puted using a hyperbolic tangent profile and the following namelist parameters :
rn rdtmin, rn rdtmax and rn rdth. Those three parameters correspond to the sur-
face value the deep ocean value and the depth at which the transition occurs, res-

250 Miscellaneous Topics

pectively. The set of prognostic equations to solve becomes :

∂Uh

∂t
≡

Ut+1
h − Ut−1

h

2∆t
= . . .

∂T

∂t
≡ T t+1 − T t−1

2∆̃t
= . . .

∂S

∂t
≡ St+1 − St−1

2∆̃t
= . . .

(14.1)

? has examined the consequences of this distorted physics. Free waves have a
slower phase speed, their meridional structure is slightly modified, and the growth
rate of baroclinically unstable waves is reduced but with a wider range of insta-
bility. This technique is efficient for searching for an equilibrium state in coarse
resolution models. However its application is not suitable for many oceanic pro-
blems : it cannot be used for transient or time evolving problems (in particular, it is
very questionable to use this technique when there is a seasonal cycle in the forcing
fields), and it cannot be used in high-resolution models where baroclinically uns-
table processes are important. Moreover, the vertical variation of ∆̃t implies that
the heat and salt contents are no longer conserved due to the vertical coupling of the
ocean level through both advection and diffusion. Therefore rn rdtmin = rn rdtmax
should be a more clever choice.

14.5 Accuracy and Reproducibility (lib fortran.F90)

14.5.1 Issues with intrinsinc SIGN function (key nosignedzero)

The SIGN(A, B) is the FORTRAN intrinsic function delivers the magnitude of A
with the sign of B. For example, SIGN(-3.0,2.0) has the value 3.0. The problematic
case is when the second argument is zero, because, on platforms that support IEEE
arithmetic, zero is actually a signed number. There is a positive zero and a negative
zero.

In FORTRAN 90, the processor was required always to deliver a positive re-
sult for SIGN(A, B) if B was zero. Nevertheless, in FORTRAN 95, the processor
is allowed to do the correct thing and deliver ABS(A) when B is a positive zero
and -ABS(A) when B is a negative zero. This change in the specification becomes
apparent only when B is of type real, and is zero, and the processor is capable
of distinguishing between positive and negative zero, and B is negative real zero.
Then SIGN delivers a negative result where, under FORTRAN 90 rules, it used to
return a positive result. This change may be especially sensitive for the ice model,
so we overwrite the intrinsinc function with our own function simply performing :

IF(B >= 0.e0) THEN ; SIGN(A,B) = ABS(A)
ELSE ; SIGN(A,B) =-ABS(A)
ENDIF

This feature can be found in lib fortran.F90 module and is effective when key nosignedzero

14.5. Accuracy and Reproducibility (lib fortran.F90) 251

is defined. We use a CPP key as the overwritting of a intrinsic function can present
performance issues with some computers/compilers.

14.5.2 MPP reproducibility

The numerical reproducibility of simulations on distributed memory parallel
computers is a critical issue. In particular, within NEMO global summation of dis-
tributed arrays is most susceptible to rounding errors, and their propagation and ac-
cumulation cause uncertainty in final simulation reproducibility on different num-
bers of processors. To avoid so, based on ? review of different technics, we use a so
called self-compensated summation method. The idea is to estimate the roundoff
error, store it in a buffer, and then add it back in the next addition.

Suppose we need to calculate b = a1 + a2 + a3. The following algorithm will
allow to split the sum in two (sum1 = a1 + a2 and b = sum2 = sum1 + a3) with
exactly the same rounding errors as the sum performed all at once.

sum1 = a1 + a2

error1 = a2 + (a1 − sum1)

sum2 = sum1 + a3 + error1

error2 = a3 + error1 + (sum1 − sum2)

b = sum2

This feature can be found in lib fortran.F90 module and is effective when key mpp rep.
In that case, all calls to glob sum function (summation over the entire basin exclu-
ding duplicated rows and columns due to cyclic or north fold boundary condition
as well as overlap MPP areas). Note this implementation may be sensitive to the
optimization level.

14.5.3 MPP scalability

The default method of communicating values across the north-fold in distribu-
ted memory applications (key mpp mpi) uses a MPI ALLGATHER function to
exchange values from each processing region in the northern row with every other
processing region in the northern row. This enables a global width array contai-
ning the top 4 rows to be collated on every northern row processor and then folded
with a simple algorithm. Although conceptually simple, this ”All to All” commu-
nication will hamper performance scalability for large numbers of northern row
processors. From version 3.4 onwards an alternative method is available which
only performs direct ”Peer to Peer” communications between each processor and
its immediate ”neighbours” across the fold line. This is achieved by using the de-
fault MPI ALLGATHER method during initialisation to help identify the ”ac-
tive” neighbours. Stored lists of these neighbours are then used in all subsequent
north-fold exchanges to restrict exchanges to those between associated regions.

252 Miscellaneous Topics

The collated global width array for each region is thus only partially filled but is
guaranteed to be set at all the locations actually required by each individual for the
fold operation. This alternative method should give identical results to the default
ALLGATHER method and is recommended for large values of jpni. The new me-
thod is activated by setting ln nnogather to be true (nammpp). The reproducibility
of results using the two methods should be confirmed for each new, non-reference
configuration.

14.6 Model Optimisation, Control Print and Benchmark
!---
&namctl ! Control prints & Benchmark
!---

ln_ctl = .false. ! trends control print (expensive!)
nn_print = 0 ! level of print (0 no extra print)
nn_ictls = 0 ! start i indice of control sum (use to compare mono versus
nn_ictle = 0 ! end i indice of control sum multi processor runs
nn_jctls = 0 ! start j indice of control over a subdomain)
nn_jctle = 0 ! end j indice of control
nn_isplt = 1 ! number of processors in i-direction
nn_jsplt = 1 ! number of processors in j-direction
nn_bench = 0 ! Bench mode (1/0): CAUTION use zero except for bench

! (no physical validity of the results)
/

• Vector optimisation :
key vectopt loop enables the internal loops to collapse. This is very a very

efficient way to increase the length of vector calculations and thus to speed up the
model on vector computers.
• Control print
1- ln ctl : compute and print the trends averaged over the interior domain in all

TRA, DYN, LDF and ZDF modules. This option is very helpful when diagnosing
the origin of an undesired change in model results.

2- also ln ctl but using the nictl and njctl namelist parameters to check the
source of differences between mono and multi processor runs.

3- key esopa (to be rename key nemo) : which is another option for model
management. When defined, this key forces the activation of all options and CPP
keys. For example, all tracer and momentum advection schemes are called ! There-
fore the model results have no physical meaning. However, this option forces both
the compiler and the model to run through all the FORTRAN lines of the model.
This allows the user to check for obvious compilation or execution errors with all
CPP options, and errors in namelist options.

4- last digit comparison (nn bit cmp). In an MPP simulation, the computation
of a sum over the whole domain is performed as the summation over all processors
of each of their sums over their interior domains. This double sum never gives
exactly the same result as a single sum over the whole domain, due to truncation
differences. The ”bit comparison” option has been introduced in order to be able to
check that mono-processor and multi-processor runs give exactly the same results.
• Benchmark (nn bench). This option defines a benchmark run based on a

GYRE configuration (see §??) in which the resolution remains the same whate-
ver the domain size. This allows a very large model domain to be used, just by

14.7. Elliptic solvers (SOL) 253

changing the domain size (jpiglo, jpjglo) and without adjusting either the time-step
or the physical parameterisations.

14.7 Elliptic solvers (SOL)
!---
&namsol ! elliptic solver / island / free surface
!---

nn_solv = 1 ! elliptic solver: =1 preconditioned conjugate gradient (pcg)
! =2 successive-over-relaxation (sor)

nn_sol_arp = 0 ! absolute/relative (0/1) precision convergence test
rn_eps = 1.e-6 ! absolute precision of the solver
nn_nmin = 300 ! minimum of iterations for the SOR solver
nn_nmax = 800 ! maximum of iterations for the SOR solver
nn_nmod = 10 ! frequency of test for the SOR solver
rn_resmax = 1.e-10 ! absolute precision for the SOR solver
rn_sor = 1.92 ! optimal coefficient for SOR solver (to be adjusted with the domain)

/

When the filtered sea surface height option is used, the surface pressure gra-
dient is computed in dynspg flt.F90. The force added in the momentum equation
is solved implicitely. It is thus solution of an elliptic equation (??) for which two
solvers are available : a Successive-Over-Relaxation scheme (SOR) and a precon-
ditioned conjugate gradient scheme(PCG) [??]. The solver is selected trough the
the value of nn solv (namelist parameter).

The PCG is a very efficient method for solving elliptic equations on vector
computers. It is a fast and rather easy method to use ; which are attractive features
for a large number of ocean situations (variable bottom topography, complex coas-
tal geometry, variable grid spacing, open or cyclic boundaries, etc ...). It does not
require a search for an optimal parameter as in the SOR method. However, the SOR
has been retained because it is a linear solver, which is a very useful property when
using the adjoint model of NEMO.

At each time step, the time derivative of the sea surface height at time step
t+ 1 (or equivalently the divergence of the after barotropic transport) that appears
in the filtering forced is the solution of the elliptic equation obtained from the
horizontal divergence of the vertical summation of (??). Introducing the following
coefficients :

cNSi,j = 2∆t2
Hv(i, j) e1v(i, j)

e2v(i, j)

cEWi,j = 2∆t2
Hu(i, j) e2u(i, j)

e1u(i, j)

bi,j = δi [e2uMu]− δj [e1vMv] ,

(14.2)

the resulting five-point finite difference equation is given by :

cNSi+1,jDi+1,j + cEWi,j+1Di,j+1 + cNSi,j Di−1,j + cEWi,j Di,j−1

−
(
cNSi+1,j + cEWi,j+1 + cNSi,j + cEWi,j

)
Di,j = bi,j

(14.3)

(??) is a linear symmetric system of equations. All the elements of the correspon-
ding matrix A vanish except those of five diagonals. With the natural ordering of
the grid points (i.e. from west to east and from south to north), the structure of

254 Miscellaneous Topics

A is block-tridiagonal with tridiagonal or diagonal blocks. A is a positive-definite
symmetric matrix of size (jpi ·jpj)2, and B, the right hand side of (??), is a vector.

Note that in the linear free surface case, the depth that appears in (??) does not
vary with time, and thus the matrix can be computed once for all. In non-linear free
surface (key vvl defined) the matrix have to be updated at each time step.

14.7.1 Successive Over Relaxation (nn solv=2, solsor.F90)

Let us introduce the four cardinal coefficients :

aSi,j = cNSi,j /di,j aWi,j = cEWi,j /di,j

aEi,j = cEWi,j+1/di,j aNi,j = cNSi+1,j/di,j

where di,j = cNSi,j + cNSi+1,j + cEWi,j + cEWi,j+1 (i.e. the diagonal of the matrix). (??)
can be rewritten as :

aNi,jDi+1,j + aEi,jDi,j+1 + aSi,jDi−1,j + aWi,jDi,j−1 −Di,j = b̃i,j (14.4)

with b̃i,j = bi,j/di,j . (??) is the equation actually solved with the SOR method.
This method used is an iterative one. Its algorithm can be summarised as follows
(see ? for a further discussion) :

initialisation (evaluate a first guess from previous time step computations)

D0
i,j = 2Dt

i,j −Dt−1
i,j (14.5)

iteration n, from n = 0 until convergence, do :

Rni,j =aNi,jD
n
i+1,j + aEi,jD

n
i,j+1 + aSi,jD

n+1
i−1,j + aWi,jD

n+1
i,j−1 −D

n
i,j − b̃i,j

Dn+1
i,j =Dn

i,j + ω Rni,j
(14.6)

where ω satisfies 1 ≤ ω ≤ 2. An optimal value exists for ω which significantly
accelerates the convergence, but it has to be adjusted empirically for each model
domain (except for a uniform grid where an analytical expression for ω can be
found [?]). The value of ω is set using rn sor, a namelist parameter. The conver-
gence test is of the form :

δ =

∑
i,j
Rni,jR

n
i,j∑

i,j
b̃ni,j b̃

n
i,j

≤ ε (14.7)

where ε is the absolute precision that is required. It is recommended that a value
smaller or equal to 10−6 is used for ε since larger values may lead to numerically
induced basin scale barotropic oscillations. The precision is specified by setting
rn eps (namelist parameter). In addition, two other tests are used to halt the itera-
tive algorithm. They involve the number of iterations and the modulus of the right

14.7. Elliptic solvers (SOL) 255

hand side. If the former exceeds a specified value, nn max (namelist parameter), or
the latter is greater than 1015, the whole model computation is stopped and the last
computed time step fields are saved in a abort.nc NetCDF file. In both cases, this
usually indicates that there is something wrong in the model configuration (an error
in the mesh, the initial state, the input forcing, or the magnitude of the time step
or of the mixing coefficients). A typical value of nn max is a few hundred when
ε = 10−6, increasing to a few thousand when ε = 10−12. The vectorization of the
SOR algorithm is not straightforward. The scheme contains two linear recurrences
on i and j. This inhibits the vectorisation. (??) can be been rewritten as :

Rni,j =aNi,jD
n
i+1,j + aEi,jD

n
i,j+1 + aSi,jD

n
i−1,j + W

i,jD
n
i,j−1 −Dn

i,j − b̃i,j
Rni,j =Rni,j − ω aSi,j Rni,j−1

Rni,j =Rni,j − ω aWi,j Rni−1,j

(14.8)

This technique slightly increases the number of iteration required to reach the
convergence, but this is largely compensated by the gain obtained by the suppres-
sion of the recurrences.

Another technique have been chosen, the so-called red-black SOR. It consist
in solving successively (??) for odd and even grid points. It also slightly reduced
the convergence rate but allows the vectorisation. In addition, and this is the reason
why it has been chosen, it is able to handle the north fold boundary condition used
in ORCA configuration (i.e. tri-polar global ocean mesh).

The SOR method is very flexible and can be used under a wide range of
conditions, including irregular boundaries, interior boundary points, etc. Proofs of
convergence, etc. may be found in the standard numerical methods texts for partial
differential equations.

14.7.2 Preconditioned Conjugate Gradient (nn solv=1, solpcg.F90)

A is a definite positive symmetric matrix, thus solving the linear system (??) is
equivalent to the minimisation of a quadratic functional :

Ax = b↔ x = infy φ(y) , φ(y) = 1/2〈Ay, y〉 − 〈b, y〉

where 〈, 〉 is the canonical dot product. The idea of the conjugate gradient method
is to search for the solution in the following iterative way : assuming that xn has
been obtained, xn+1 is found from xn+1 = xn + αndn which satisfies :

xn+1 = inf y= xn+αn dn φ(y) ⇔ dφ

dα
= 0

and expressing φ(y) as a function of α, we obtain the value that minimises the
functional :

αn = 〈rn, rn〉/〈 A dn,dn〉

where rn = b − A xn = A(x − xn) is the error at rank n. The descent vector
dn s chosen to be dependent on the error : dn = rn + βn dn−1. βn is searched

256 Miscellaneous Topics

such that the descent vectors form an orthogonal basis for the dot product linked
to A. Expressing the condition 〈A dn,dn−1〉 = 0 the value of βn is found : βn =
〈rn, rn〉/〈rn−1, rn−1〉. As a result, the errors rn form an orthogonal base for the
canonic dot product while the descent vectors dn form an orthogonal base for the
dot product linked to A. The resulting algorithm is thus the following one :

initialisation :
x0 = D0

i,j = 2Dt
i,j −Dt−1

i,j , the initial guess

r0 = d0 = b− A x0

γ0 = 〈r0, r0〉
iteration n, from n = 0 until convergence, do :

zn = A dn

αn = γn/〈zn,dn〉
xn+1 = xn + αn dn

rn+1 = rn − αn zn

γn+1 = 〈rn+1, rn+1〉
βn+1 = γn+1/γn

dn+1 = rn+1 + βn+1 dn

(14.9)

The convergence test is :

δ = γn /〈b,b〉 ≤ ε (14.10)

where ε is the absolute precision that is required. As for the SOR algorithm, the
whole model computation is stopped when the number of iterations, nn max, or
the modulus of the right hand side of the convergence equation exceeds a specified
value (see §?? for a further discussion). The required precision and the maximum
number of iterations allowed are specified by setting rn eps and nn max (namelist
parameters).

It can be demonstrated that the above algorithm is optimal, provides the exact
solution in a number of iterations equal to the size of the matrix, and that the conver-
gence rate is faster as the matrix is closer to the identity matrix, i.e. its eigenvalues
are closer to 1. Therefore, it is more efficient to solve a better conditioned system
which has the same solution. For that purpose, we introduce a preconditioning ma-
trix Q which is an approximation of A but much easier to invert than A, and solve
the system :

Q−1A x = Q−1b (14.11)

The same algorithm can be used to solve (??) if instead of the canonical dot
product the following one is used : 〈a,b〉Q = 〈a,Q b〉, and if b̃ = Q−1 b and
Ã = Q−1 A are substituted to b and A [?]. In NEMO, Q is chosen as the diagonal
of A, i.e. the simplest form for Q so that it can be easily inverted. In this case, the
discrete formulation of (??) is in fact given by (??) and thus the matrix and right
hand side are computed independently from the solver used.

15 Configurations

258 Configurations

15.1 Introduction

The purpose of this part of the manual is to introduce the NEMO predefined
configuration. These configurations are offered as means to explore various nume-
rical and physical options, thus allowing the user to verify that the code is perfor-
ming in a manner consistent with that we are running. This form of verification is
critical as one adopts the code for his or her particular research purposes. The test
cases also provide a sense for some of the options available in the code, though by
no means are all options exercised in the predefined configurations.

15.2 Water column model : 1D model (C1D) (key c1d)

The 1D model option simulates a stand alone water column within the 3D
NEMO system. It can be applied to the ocean alone or to the ocean-ice system and
can include passive tracers or a biogeochemical model. It is set up by defining the
key c1d CPP key. The 1D model is a very useful tool (a) to learn about the physics
and numerical treatment of vertical mixing processes ; (b) to investigate suitable
parameterisations of unresolved turbulence (surface wave breaking, Langmuir cir-
culation, ...) ; (c) to compare the behaviour of different vertical mixing schemes ;
(d) to perform sensitivity studies on the vertical diffusion at a particular point of an
ocean domain ; (d) to produce extra diagnostics, without the large memory requi-
rement of the full 3D model.

The methodology is based on the use of the zoom functionality over the smal-
lest possible domain : a 3x3 domain centred on the grid point of interest (see §??),
with some extra routines. There is no need to define a new mesh, bathymetry, initial
state or forcing, since the 1D model will use those of the configuration it is a zoom
of. The chosen grid point is set in par oce.F90 module by setting the jpizoom and
jpjzoom parameters to the indices of the location of the chosen grid point.

The 1D model has some specifies. First, all the horizontal derivatives are as-
sumed to be zero, and second, the two components of the velocity are moved on
a T -point. Therefore, defining key c1d changes five main things in the code beha-
viour :

(1) the lateral boundary condition routine (lbc lnk) set the value of the central
column of the 3x3 domain is imposed over the whole domain ;

(3) a call to lbc lnk is systematically done when reading input data (i.e. in iom.F90) ;

(3) a simplified stp routine is used (stp c1d, see step c1d.F90 module) in which
both lateral tendancy terms and lateral physics are not called ;

(4) the vertical velocity is zero (so far, no attempt at introducing a Ekman pumping
velocity has been made) ;

15.3. ORCA family : global ocean with tripolar grid (key orca rX) 259

embedded ellipses

computed normals

geographic mesh

20oN

FIGURE 15.1: ORCA mesh conception. The departure from an isotropic Mercator
grid start poleward of 20˚N. The two ”north pole” are the foci of a series of embedded
ellipses (blue curves) which are determined analytically and form the i-lines of the
ORCA mesh (pseudo latitudes). Then, following ?, the normal to the series of ellipses
(red curves) is computed which provide the j-lines of the mesh (pseudo longitudes).

(5) a simplified treatment of the Coriolis term is performed as U - and V -points are
the same (see dyncor c1d.F90).

All the relevant c1d modules can be found in the NEMOGCM/NEMO/OPA SRC/C1D
directory of the NEMO distribution.

15.3 ORCA family : global ocean with tripolar grid (key orca rX)

The ORCA family is a series of global ocean configurations that are run toge-
ther with the LIM sea-ice model (ORCA-LIM) and possibly with PISCES biogeo-
chemical model (ORCA-LIM-PISCES), using various resolutions.

260 Configurations

TABLE 15.1: Set of predefined parameters for ORCA family configurations. In all
cases, the name of the configuration is set to ”orca” (i.e. cp cfg = orca).

CPP key jp cfg jpiglo jpiglo
key orca r4 4 92 76
key orca r2 2 182 149
key orca r1 1 362 292
key orca r05 05 722 511
key orca r025 025 1442 1021

15.3.1 ORCA tripolar grid

The ORCA grid is a tripolar is based on the semi-analytical method of ?. It
allows to construct a global orthogonal curvilinear ocean mesh which has no sin-
gularity point inside the computational domain since two north mesh poles are
introduced and placed on lands. The method involves defining an analytical set
of mesh parallels in the stereographic polar plan, computing the associated set of
mesh meridians, and projecting the resulting mesh onto the sphere. The set of mesh
parallels used is a series of embedded ellipses which foci are the two mesh north
poles (Fig. ??). The resulting mesh presents no loss of continuity in either the mesh
lines or the scale factors, or even the scale factor derivatives over the whole ocean
domain, as the mesh is not a composite mesh.

The method is applied to Mercator grid (i.e. same zonal and meridional grid
spacing) poleward of 20˚N, so that the Equator is a mesh line, which provides a
better numerical solution for equatorial dynamics. The choice of the series of em-
bedded ellipses (position of the foci and variation of the ellipses) is a compromise
between maintaining the ratio of mesh anisotropy (e1/e2) close to one in the ocean
(especially in area of strong eddy activities such as the Gulf Stream) and keeping
the smallest scale factor in the northern hemisphere larger than the smallest one in
the southern hemisphere. The resulting mesh is shown in Fig. ?? and ?? for a half
a degree grid (ORCA R05). The smallest ocean scale factor is found in along An-
tarctica, while the ratio of anisotropy remains close to one except near the Victoria
Island in the Canadian Archipelago.

15.3.2 ORCA pre-defined resolution

The NEMO system is provided with five built-in ORCA configurations which
differ in the horizontal resolution. The value of the resolution is given by the reso-
lution at the Equator expressed in degrees. Each of configuration is set through a
CPP key, key orca rX (with X being an indicator of the resolution), which set the
grid size and configuration name parameters (Tab. ??). .

The ORCA R2 configuration has the following specificity : starting from a
2˚ ORCA mesh, local mesh refinements were applied to the Mediterranean, Red,

15.3. ORCA family : global ocean with tripolar grid (key orca rX) 261

e1

C.I.= 2.5 km

50

40

30

50
40

30

20

20

e2

1.01.0

1.2

1.2

C.I. = 0.05

e1 / e2

20 oN

FIGURE 15.2: Top : Horizontal scale factors (e1, e2) and Bottom : ratio of anisotropy
(e1/e2) for ORCA 0.5˚ mesh. South of 20˚N a Mercator grid is used (e1 = e2) so
that the anisotropy ratio is 1. Poleward of 20˚N, the two ”north pole” introduce a
weak anisotropy over the ocean areas (< 1.2) except in vicinity of Victoria Island
(Canadian Arctic Archipelago).

262 Configurations

Black and Caspian Seas, so that the resolution is 1˚˚ there. A local transformation
were also applied with in the Tropics in order to refine the meridional resolution
up to 0.5˚at the Equator.

The ORCA R1 configuration has only a local tropical transformation to refine
the meridional resolution up to 1/3˚ at the Equator. Note that the tropical mesh
refinements in ORCA R2 and R1 strongly increases the mesh anisotropy there.

The ORCA R05 and higher global configurations do not incorporate any re-
gional refinements.

For ORCA R1 and R025, setting the configuration key to 75 allows to use 75
vertical levels, otherwise 46 are used. In the other ORCA configurations, 31 levels
are used (see Tab. ?? and Fig. ??).

Only the ORCA R2 is provided with all its input files in the NEMO distribu-
tion. It is very similar to that used as part of the climate model developed at IPSL
for the 4th IPCC assessment of climate change (Marti et al., 2009). It is also the ba-
sis for the NEMO contribution to the Coordinate Ocean-ice Reference Experiments
(COREs) documented in ?.

This version of ORCA R2 has 31 levels in the vertical, with the highest reso-
lution (10m) in the upper 150m (see Tab. ?? and Fig. ??). The bottom topography
and the coastlines are derived from the global atlas of Smith and Sandwell (1997).
The default forcing employ the boundary forcing from ? (see §??), which was de-
veloped for the purpose of running global coupled ocean-ice simulations without
an interactive atmosphere. This ? dataset is available through the GFDL web site.
The ”normal year” of ? has been chosen of the NEMO distribution since release
v3.3.

ORCA R2 pre-defined configuration can also be run with an AGRIF zoom over
the Agulhas current area (key agrif defined) and, by setting the key key arctic or
key antarctic, a regional Arctic or peri-Antarctic configuration is extracted from
an ORCA R2 or R05 configurations using sponge layers at open boundaries.

15.4 GYRE family : double gyre basin (key gyre)

The GYRE configuration [?] have been built to simulated the seasonal cycle of
a double-gyre box model. It consist in an idealized domain similar to that used in
the studies of ? and ????, over which an analytical seasonal forcing is applied. This
allows to investigate the spontaneous generation of a large number of interacting,
transient mesoscale eddies and their contribution to the large scale circulation.

The domain geometry is a closed rectangular basin on the β-plane centred at
∼ 30˚N and rotated by 45˚, 3180 km long, 2120 km wide and 4 km deep (Fig. ??).
The domain is bounded by vertical walls and by a flat bottom. The configuration
is meant to represent an idealized North Atlantic or North Pacific basin. The cir-
culation is forced by analytical profiles of wind and buoyancy fluxes. The applied
forcings vary seasonally in a sinusoidal manner between winter and summer ex-
trema [?]. The wind stress is zonal and its curl changes sign at 22˚N and 36˚N. It

http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html

15.5. EEL family : periodic channel 263

FIGURE 15.3: Snapshot of relative vorticity at the surface of the model domain in
GYRE R9, R27 and R54. From ?.

forces a subpolar gyre in the north, a subtropical gyre in the wider part of the do-
main and a small recirculation gyre in the southern corner. The net heat flux takes
the form of a restoring toward a zonal apparent air temperature profile. A portion
of the net heat flux which comes from the solar radiation is allowed to penetrate
within the water column. The fresh water flux is also prescribed and varies zonally.
It is determined such as, at each time step, the basin-integrated flux is zero. The ba-
sin is initialised at rest with vertical profiles of temperature and salinity uniformly
applied to the whole domain.

The GYRE configuration is set through the key gyre CPP key. Its horizon-
tal resolution (and thus the size of the domain) is determined by setting jp cfg in
par GYRE.h90 file :
jpiglo = 30× jp cfg + 2
jpjglo = 20× jp cfg + 2
Obviously, the namelist parameters have to be adjusted to the chosen resolution. In
the vertical, GYRE uses the default 30 ocean levels (jpk=31) (Fig. ??).

The GYRE configuration is also used in benchmark test as it is very simple
to increase its resolution and as it does not requires any input file. For example,
keeping a same model size on each processor while increasing the number of pro-
cessor used is very easy, even though the physical integrity of the solution can be
compromised.

15.5 EEL family : periodic channel

key eel r2 to be described....

key eel r5

key eel r6

264 Configurations

15.6 AMM : atlantic margin configuration (key amm 12km)

The AMM, Atlantic Margins Model, is a regional model covering the North-
west European Shelf domain on a regular lat-lon grid at approximately 12km hori-
zontal resolution. The key key amm 12km is used to create the correct dimensions
of the AMM domain.

This configuration tests several features of NEMO functionality specific to
the shelf seas. In particular, the AMM uses S-coordinates in the vertical rather
than z-coordinates and is forced with tidal lateral boundary conditions using a
flather boundary condition from the BDY module (key bdy). The AMM confi-
guration uses the GLS (key zdfgls) turbulence scheme, the VVL non-linear free
surface(key vvl) and time-splitting (key dynspg ts).

In addition to the tidal boundary condition the model may also take open boun-
dary conditions from a North Atlantic model. Boundaries may be completely om-
mited by removing the BDY key (key bdy). Sample surface fluxes, river forcing
and a sample initial restart file are included to test a realistic model run. The Baltic
boundary is included within the river input file and is specified as a river source.
Unlike ordinary river points the Baltic inputs also include salinity and temperature
data.

A Curvilinear s−Coordinate Equations

266 Curvilinear s−Coordinate Equations

A.1 The chain rule for s−coordinates

In order to establish the set of Primitive Equation in curvilinear s-coordinates
(i.e. an orthogonal curvilinear coordinate in the horizontal and an Arbitrary La-
grangian Eulerian (ALE) coordinate in the vertical), we start from the set of equa-
tions established in §?? for the special case k = z and thus e3 = 1, and we intro-
duce an arbitrary vertical coordinate a = a(i, j, z, t). Let us define a new vertical
scale factor by e3 = ∂z/∂s (which now depends on (i, j, z, t)) and the horizontal
slope of s−surfaces by :

σ1 =
1

e1

∂z

∂i

∣∣∣∣
s

and σ2 =
1

e2

∂z

∂j

∣∣∣∣
s

(A.1)

The chain rule to establish the model equations in the curvilinear s−coordinate
system is :

∂•
∂t

∣∣∣∣
z

=
∂•
∂t

∣∣∣∣
s

− ∂•
∂s

∂s

∂t

∂•
∂i

∣∣∣∣
z

=
∂•
∂i

∣∣∣∣
s

− ∂•
∂s

∂s

∂i
=
∂•
∂i

∣∣∣∣
s

− e1

e3
σ1
∂•
∂s

∂•
∂j

∣∣∣∣
z

=
∂•
∂j

∣∣∣∣
s

− ∂•
∂s

∂s

∂j
=
∂•
∂j

∣∣∣∣
s

− e2

e3
σ2
∂•
∂s

∂•
∂z

=
1

e3

∂•
∂s

(A.2)

In particular applying the time derivative chain rule to z provides the expression
for ws, the vertical velocity of the s−surfaces referenced to a fix z-coordinate :

ws =
∂z

∂t

∣∣∣∣
s

=
∂z

∂s

∂s

∂t
= e3

∂s

∂t
(A.3)

A.2 Continuity Equation in s−coordinates

Using (??) and the fact that the horizontal scale factors e1 and e2 do not de-
pend on the vertical coordinate, the divergence of the velocity relative to the (i,j,z)
coordinate system is transformed as follows in order to obtain its expression in the

A.2. Continuity Equation in s−coordinates 267

curvilinear s−coordinate system :

∇ ·U = 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
z

+ ∂(e1 v)
∂j

∣∣∣
z

]
+ ∂w

∂z

= 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
s
− e1

e3
σ1

∂(e2 u)
∂s + ∂(e1 v)

∂j

∣∣∣
s
− e2

e3
σ2

∂(e1 v)
∂s

]
+ ∂w

∂s
∂s
∂z

= 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
s

+ ∂(e1 v)
∂j

∣∣∣
s

]
+ 1

e3

[
∂w
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]
= 1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s
− e2 u

∂e3
∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s
− e1v

∂e3
∂j

∣∣∣
s

]
+ 1
e3

[
∂w
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]
Noting that 1

e1
∂e3
∂i

∣∣∣
s

= 1
e1

∂2z
∂i ∂s

∣∣∣
s

= ∂
∂s

(
1
e1

∂z
∂i

∣∣
s

)
= ∂σ1

∂s and 1
e2

∂e3
∂j

∣∣∣
s

= ∂σ2
∂s , it

becomes :

∇ ·U = 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1
e3

[
∂w
∂s − u

∂σ1
∂s − v

∂σ2
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]
= 1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂
∂s [w − u σ1 − v σ2]

Here, w is the vertical velocity relative to the z−coordinate system. Introdu-
cing the dia-surface velocity component, ω, defined as the volume flux across the
moving s-surfaces per unit horizontal area :

ω = w − ws − σ1 u− σ2 v (A.5)

with ws given by (??), we obtain the expression for the divergence of the velocity
in the curvilinear s−coordinate system :

∇ ·U = 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + 1

e3
∂ws
∂s

= 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + 1

e3
∂
∂s

(
e3

∂s
∂t

)
= 1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + ∂

∂s
∂s
∂t + 1

e3
∂s
∂t
∂e3
∂s

= 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + 1

e3
∂e3
∂t

As a result, the continuity equation (??) in the s−coordinates is :

1

e3

∂e3

∂t
+

1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣∣
s

+
∂(e1 e3 v)

∂j

∣∣∣∣
s

]
+

1

e3

∂ω

∂s
= 0 (A.7)

A additional term has appeared that take into account the contribution of the time
variation of the vertical coordinate to the volume budget.

268 Curvilinear s−Coordinate Equations

A.3 Momentum Equation in s−coordinate

Here we only consider the first component of the momentum equation, the
generalization to the second one being straightforward.

• Total derivative in vector invariant form
Let us consider (??), the first component of the momentum equation in the vec-

tor invariant form. Its total z−coordinate time derivative, DuDt
∣∣
z

can be transformed
as follows in order to obtain its expression in the curvilinear s−coordinate system :

Du
Dt

∣∣
z

= ∂u
∂t

∣∣
z
− ζ|z v + 1

2e1

∂(u2+v2)
∂i

∣∣∣
z

+ w ∂u
∂z

= ∂u
∂t

∣∣
z
− ζ|z v + 1

e1 e2

[
∂(e2 v)
∂i

∣∣∣
z
− ∂(e1 u)

∂j

∣∣∣
z

]
v + 1

2e1

∂(u2+v2)
∂i

∣∣∣
z

+ w ∂u
∂z

introducing the chain rule (??)

= ∂u
∂t

∣∣
z
− 1

e1 e2

[
∂(e2 v)
∂i

∣∣∣
s
− ∂(e1 u)

∂j

∣∣∣
s
− e1
e3
σ1

∂(e2 v)
∂s + e2

e3
σ2

∂(e1 u)
∂s

]
v

+ 1
2e1

(
∂(u2+v2)

∂i

∣∣∣
s
− e1

e3
σ1

∂(u2+v2)
∂s

)
+ w

e3
∂u
∂s

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ w
e3

∂u
∂s −

[
σ1
e3
∂v
∂s −

σ2
e3
∂u
∂s

]
v − σ1

2e3

∂(u2+v2)
∂s

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

[
w ∂u
∂s + σ1v

∂v
∂s − σ2v

∂u
∂s − σ1u

∂u
∂s − σ1v

∂v
∂s

]
= ∂u

∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

[w − σ2v − σ1u] ∂u
∂s

Introducing ω, the dia-a-surface velocity given by (??)

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

(ω − ws) ∂u∂s

Applying the time derivative chain rule (first equation of (??)) to u and using (??)
provides the expression of the last term of the right hand side,

ws
∂u
∂s = ∂s

∂t
∂u
∂s = ∂u

∂t

∣∣
s
− ∂u

∂t

∣∣
z

,

leads to the s−coordinate formulation of the total z−coordinate time derivative,
i.e. the total s−coordinate time derivative :

Du

Dt

∣∣∣∣
s

=
∂u

∂t

∣∣∣∣
s

+ ζ|s v +
1

2 e1

∂(u2 + v2)

∂i

∣∣∣∣
s

+
1

e3
ω
∂u

∂s
(A.9)

A.3. Momentum Equation in s−coordinate 269

Therefore, the vector invariant form of the total time derivative has exactly the
same mathematical form in z− and s−coordinates. This is not the case for the flux
form as shown in next paragraph.

• Total derivative in flux form
Let us start from the total time derivative in the curvilinear s−coordinate sys-

tem we have just establish. Following the procedure used to establish (??), it can
be transformed into :

Du
Dt

∣∣
s

= ∂u
∂t

∣∣
s
−ζ v + 1

2 e1

∂(u2+v2)
∂i + 1

e3
ω ∂u

∂s

= ∂u
∂t

∣∣
s

+ 1
e1 e2

(
∂(e2 uu)

∂i + ∂(e1 u v)
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2

(
∂(e2u)
∂i + ∂(e1v)

∂j

)
+ 1

e3
∂ω
∂s

]
− v
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
Introducing the vertical scale factor inside the horizontal derivative of the first two
terms (i.e. the horizontal divergence), it becomes :

Du
Dt

∣∣
s

= ∂u
∂t

∣∣
s

+ 1
e1 e2 e3

(
∂(e2e3 u2)

∂i + ∂(e1e3 uv)
∂j − e2uu

∂e3
∂i − e1uv

∂e3
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2e3

(
∂(e2e3 u)

∂i + ∂(e1e3 v)
∂j − e2u

∂e3
∂i − e1v

∂e3
∂j

)
− 1

e3
∂ω
∂s

]
− v
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
= ∂u

∂t

∣∣
s

+ 1
e1 e2 e3

(
∂(e2e3 uu)

∂i + ∂(e1e3 u v)
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2e3

(
∂(e2e3 u)

∂i + ∂(e1e3 v)
∂j

)
− 1

e3
∂ω
∂s

]
− v

e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
Introducing a more compact form for the divergence of the momentum fluxes, and
using (??), the s−coordinate continuity equation, it becomes :

= ∂u
∂t

∣∣
s

+ ∇ · (Uu)|s + u 1
e3
∂e3
∂t −

v
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
which leads to the s−coordinate flux formulation of the total s−coordinate time
derivative, i.e. the total s−coordinate time derivative in flux form :

Du

Dt

∣∣∣∣
s

=
1

e3

∂(e3 u)

∂t

∣∣∣∣
s

+ ∇ · (Uu)|s −
v

e1e2

(
v
∂e2

∂i
− u ∂e1

∂j

)
(A.11)

270 Curvilinear s−Coordinate Equations

which is the total time derivative expressed in the curvilinear s−coordinate system.
It has the same form as in the z−coordinate but for the vertical scale factor that has
appeared inside the time derivative which comes from the modification of (??), the
continuity equation.

• horizontal pressure gradient
The horizontal pressure gradient term can be transformed as follows :

− 1

ρo e1

∂p

∂i

∣∣∣∣
z

= − 1

ρoe1

[
∂p

∂i

∣∣∣∣
s

− e1

e3
σ1
∂p

∂s

]
= − 1

ρo e1

∂p

∂i

∣∣∣∣
s

+
σ1

ρo e3
(−g ρ e3)

= − 1

ρo e1

∂p

∂i

∣∣∣∣
s

− g ρ

ρo
σ1

Applying similar manipulation to the second component and replacing σ1 and σ2

by their expression (??), it comes :

− 1

ρo e1

∂p

∂i

∣∣∣∣
z

= − 1

ρo e1

(
∂p

∂i

∣∣∣∣
s

+ g ρ
∂z

∂i

∣∣∣∣
s

)
− 1

ρo e2

∂p

∂j

∣∣∣∣
z

= − 1

ρo e2

(
∂p

∂j

∣∣∣∣
s

+ g ρ
∂z

∂j

∣∣∣∣
s

) (A.12)

An additional term appears in (??) which accounts for the tilt of s−surfaces
with respect to geopotential z−surfaces.

As in z-coordinate, the horizontal pressure gradient can be split in two parts
following ?. Let defined a density anomaly, d, by d = (ρ−ρo)/ρo, and a hydrostatic
pressure anomaly, p′h, by p′h = g

∫ η
z d e3 dk. The pressure is then given by :

p = g

∫ η

z
ρ e3 dk = g

∫ η

z
(ρo d+ 1) e3 dk

= g ρo

∫ η

z
d e3 dk + g

∫ η

z
e3 dk

Therefore, p and p′h are linked through :

p = ρo p
′
h + g (z + η) (A.13)

and the hydrostatic pressure balance expressed in terms of p′h and d is :

∂p′h
∂k

= −d g e3

A.3. Momentum Equation in s−coordinate 271

Substituing (??) in (??) and using the definition of the density anomaly it comes
the expression in two parts :

− 1

ρo e1

∂p

∂i

∣∣∣∣
z

= − 1

e1

(
∂p′h
∂i

∣∣∣∣
s

+ g d
∂z

∂i

∣∣∣∣
s

)
− g

e1

∂η

∂i

− 1

ρo e2

∂p

∂j

∣∣∣∣
z

= − 1

e2

(
∂p′h
∂j

∣∣∣∣
s

+ g d
∂z

∂j

∣∣∣∣
s

)
− g

e2

∂η

∂j

(A.14)

This formulation of the pressure gradient is characterised by the appearance of a
term depending on the the sea surface height only (last term on the right hand side
of expression (??)). This term will be loosely termed surface pressure gradient
whereas the first term will be termed the hydrostatic pressure gradient by analogy
to the z-coordinate formulation. In fact, the the true surface pressure gradient is
1/ρo∇(ρη), and η is implicitly included in the computation of p′h through the upper
bound of the vertical integration.

• The other terms of the momentum equation
The coriolis and forcing terms as well as the the vertical physics remain un-

changed as they involve neither time nor space derivatives. The form of the lateral
physics is discussed in appendix ??.

• Full momentum equation
To sum up, in a curvilinear s-coordinate system, the vector invariant momen-

tum equation solved by the model has the same mathematical expression as the one
in a curvilinear z−coordinate, except for the pressure gradient term :

∂u

∂t
= + (ζ + f) v − 1

2 e1

∂

∂i

(
u2 + v2

)
− 1

e3
ω
∂u

∂k

− 1

e1

(
∂p′h
∂i

+ g d
∂z

∂i

)
− g

e1

∂η

∂i
+DU

u + FU
u (A.15a)

∂v

∂t
= − (ζ + f) u− 1

2 e2

∂

∂j

(
u2 + v2

)
− 1

e3
ω
∂v

∂k

− 1

e2

(
∂p′h
∂j

+ g d
∂z

∂j

)
− g

e2

∂η

∂j
+DU

v + FU
v (A.15b)

whereas the flux form momentum equation differ from it by the formulation of
both the time derivative and the pressure gradient term :

1

e3

∂ (e3 u)

∂t
= ∇ · (Uu) +

{
f +

1

e1e2

(
v
∂e2

∂i
− u ∂e1

∂j

)}
v

− 1

e1

(
∂p′h
∂i

+ g d
∂z

∂i

)
− g

e1

∂η

∂i
+DU

u + FU
u (A.16a)

272 Curvilinear s−Coordinate Equations

1

e3

∂ (e3 v)

∂t
= −∇ · (U v) +

{
f +

1

e1e2

(
v
∂e2

∂i
− u ∂e1

∂j

)}
u

− 1

e2

(
∂p′h
∂j

+ g d
∂z

∂j

)
− g

e2

∂η

∂j
+DU

v + FU
v (A.16b)

Both formulation share the same hydrostatic pressure balance expressed in terms
of hydrostatic pressure and density anomalies, p′h and d = (ρρo − 1) :

∂p′h
∂k

= −d g e3 (A.17)

It is important to realize that the change in coordinate system has only concer-
ned the position on the vertical. It has not affected (i,j,k), the orthogonal curvilinear
set of unit vectors. (u,v) are always horizontal velocities so that their evolution is
driven by horizontal forces, in particular the pressure gradient. By contrast, ω is
not w, the third component of the velocity, but the dia-surface velocity component,
i.e. the volume flux across the moving s-surfaces per unit horizontal area.

A.4 Tracer Equation

The tracer equation is obtained using the same calculation as for the continuity
equation and then regrouping the time derivative terms in the left hand side :

1

e3

∂ (e3T)

∂t
= − 1

e1 e2 e3

[
∂

∂i
(e2 e3 Tu) +

∂

∂j
(e1 e3 Tv)

]
+

1

e3

∂

∂k
(Tw) +DT + F T (A.18)

The expression for the advection term is a straight consequence of (A.4), the
expression of the 3D divergence in the s−coordinates established above.

B Appendix B : Diffusive Operators

274 Appendix B : Diffusive Operators

B.1 Horizontal/Vertical 2nd Order Tracer Diffusive Operators

In z-coordinates

In z-coordinates, the horizontal/vertical second order tracer diffusion operator
is given by :

DT = 1
e1 e2

[
∂
∂i

(
e2
e1
AlT ∂T

∂i

∣∣
z

)∣∣∣
z

+ ∂
∂j

(
e1
e2
AlT ∂T

∂j

∣∣∣
z

)∣∣∣
z

]
+ ∂

∂z

(
AvT ∂T

∂z

)
(B.1)

In generalized vertical coordinates

In s-coordinates, we defined the slopes of s-surfaces, σ1 and σ2 by (??) and
the vertical/horizontal ratio of diffusion coefficient by ε = AvT /AlT . The diffusion
operator is given by :

DT = ∇|s ·
[
AlT < · ∇|s T

]
where < =

 1 0 −σ1

0 1 −σ2

−σ1 −σ2 ε+ σ2
1 + σ2

2


(B.2)

or in expanded form :

DT = 1
e1 e2 e3

[
e2 e3A

lT ∂
∂i

(
1
e1

∂T
∂i

∣∣
s
− σ1

e3
∂T
∂s

)∣∣∣
s

+e1 e3A
lT ∂

∂j

(
1
e2

∂T
∂j

∣∣∣
s
− σ2

e3
∂T
∂s

)∣∣∣
s

+e1 e2A
lT ∂

∂s

(
−σ1
e1

∂T
∂i

∣∣
s
− σ2

e2
∂T
∂j

∣∣∣
s

+
(
ε+ σ2

1 + σ2
2

)
1
e3

∂T
∂s

)]

Equation (??) is obtained from (??) without any additional assumption. Indeed,
for the special case k = z and thus e3 = 1, we introduce an arbitrary vertical co-
ordinate s = s(i, j, z) as in Appendix ?? and use (??) and (??). Since no cross ho-
rizontal derivative ∂i∂j appears in (??), the (i,z) and (j,z) planes are independent.
The derivation can then be demonstrated for the (i,z) → (j,s) transformation wi-

B.1. Horizontal/Vertical 2nd Order Tracer Diffusive Operators 275

thout any loss of generality :

DT = 1
e1 e2

∂
∂i

(
e2
e1
AlT ∂T

∂i

∣∣
z

)∣∣∣
z

+ ∂
∂z

(
AvT ∂T

∂z

)
= 1

e1 e2

[
∂
∂i

(
e2
e1
AlT

(
∂T
∂i

∣∣
s
− e1 σ1

e3
∂T
∂s

))∣∣∣
s

− e1 σ1
e3

∂
∂s

(
e2
e1
AlT

(
∂T
∂i

∣∣
s
− e1 σ1

e3
∂T
∂s

)∣∣∣
s

)]
+ 1

e3
∂
∂s

[
AvT

e3
∂T
∂s

]
= 1

e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s

)∣∣∣
s
− e2

e1
AlT ∂e3

∂i

∣∣∣
s

∂T
∂i

∣∣
s

−e3
∂
∂i

(
e2 σ1
e3

AlT ∂T
∂s

)∣∣∣
s
− e1 σ1

∂
∂s

(
e2
e1
AlT ∂T

∂i

∣∣
s

)
−e1 σ1

∂
∂s

(
− e2 σ1

e3
AlT ∂T

∂s

)
+ ∂
∂s

(
e1 e2
e3
AvT ∂T

∂s

)]
Noting that 1

e1
∂e3
∂i

∣∣∣
s

= ∂σ1
∂s , it becomes :

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1

AlT ∂T
∂i

∣∣
s

)∣∣∣
s
− e3

∂
∂i

(
e2 σ1
e3

AlT ∂T
∂s

)∣∣∣
s

−e2A
lT ∂σ1

∂s
∂T
∂i

∣∣
s
− e1 σ1

∂
∂s

(
e2
e1
AlT ∂T

∂i

∣∣
s

)
+e1 σ1

∂
∂s

(
e2 σ1
e3

AlT ∂T
∂s

)
+ ∂

∂s

(
e1 e2
e3
AvT ∂T

∂z

)]
= 1

e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s

)∣∣∣
s
− ∂
∂i

(
e2 σ1A

lT ∂T
∂s

)∣∣
s

+ e2 σ1
e3

AlT ∂T
∂s

∂e3
∂i

∣∣∣
s
− e2A

lT ∂σ1
∂s

∂T
∂i

∣∣
s

−e2 σ1
∂
∂s

(
AlT ∂T

∂i

∣∣
s

)
+ ∂

∂s

(
e1 e2 σ2

1
e3

AlT ∂T
∂s

)
−∂(e1 e2 σ1)

∂s

(
σ1
e3
AlT ∂T

∂s

)
+ ∂

∂s

(
e1 e2
e3
AvT ∂T

∂s

)]
using the same remark as just above, it becomes :

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s
− e2 σ1A

lT ∂T
∂s

)∣∣∣
s

+ e1 e2 σ1
e3

AlT ∂T
∂s

∂σ1
∂s −

σ1
e3
AlT ∂(e1 e2 σ1)

∂s
∂T
∂s

−e2

(
AlT ∂σ1

∂s
∂T
∂i

∣∣
s

+ ∂
∂s

(
σ1A

lT ∂T
∂i

∣∣
s

)
− ∂σ1

∂s AlT ∂T
∂i

∣∣
s

)
+ ∂
∂s

(
e1 e2 σ2

1
e3

AlT ∂T
∂s + e1 e2

e3
AvT ∂T

∂s

)]

276 Appendix B : Diffusive Operators

Since the horizontal scale factors do not depend on the vertical coordinate, the last
term of the first line and the first term of the last line cancel, while the second line
reduces to a single vertical derivative, so it becomes :

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s
− e2 σ1A

lT ∂T
∂s

)∣∣∣
s

+ ∂
∂s

(
−e2 σ1A

lT ∂T
∂i

∣∣
s

+AlT e1 e2e3

(
ε+ σ2

1

)
∂T
∂s

)]
in other words, the horizontal/vertical Laplacian operator in the (i,s) plane takes
the following form :

1

e1 e2 e3

(
∂(e2e3•)

∂i

∣∣∣
s

∂(e1e2•)
∂s

)
·

[
AlT

(
1 −σ1

−σ1 ε+ σ2
1

)
·

(
1
e1

∂•
∂i

∣∣
s

1
e3

∂•
∂s

)
(T)

]

B.2 Iso/diapycnal 2nd Order Tracer Diffusive Operators

In z-coordinates

The iso/diapycnal diffusive tensor AI expressed in the (i,j,k) curvilinear coor-
dinate system in which the equations of the ocean circulation model are formulated,
takes the following form [?] :

AI =
AlT(

1 + a2
1 + a2

2

)
 1 + a2

1 −a1a2 −a1

−a1a2 1 + a2
2 −a2

−a1 −a2 ε+ a2
1 + a2

2

 (B.3)

where (a1, a2) are the isopycnal slopes in (i, j) directions, relative to geopotentials :

a1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

, a2 =
e3

e2

(
∂ρ

∂j

)(
∂ρ

∂k

)−1

In practice, isopycnal slopes are generally less than 10−2 in the ocean, so AI
can be simplified appreciably [?] :

AI ≈ AlT < where < =

 1 0 −a1

0 1 −a2

−a1 −a2 ε+ a2
1 + a2

2

 , (B.4a)

and the iso/dianeutral diffusive operator in z-coordinates is then

DT = ∇|z ·
[
AlT < · ∇|z T

]
. (B.4b)

Physically, the full tensor (??) represents strong isoneutral diffusion on a plane
parallel to the isoneutral surface and weak dianeutral diffusion perpendicular to

B.2. Iso/diapycnal 2nd Order Tracer Diffusive Operators 277

this plane. However, the approximate ‘weak-slope’ tensor (??) represents strong
diffusion along the isoneutral surface, with weak vertical diffusion – the principal
axes of the tensor are no longer orthogonal. This simplification also decouples the
(i,z) and (j,z) planes of the tensor. The weak-slope operator therefore takes the
same form, (??), as (??), the diffusion operator for geopotential diffusion written
in non-orthogonal i, j, s-coordinates. Written out explicitly,

DT =
1

e1e2

{
∂

∂i

[
Ah

(
e2

e1

∂T

∂i
− a1

e2

e3

∂T

∂k

)]
+
∂

∂j

[
Ah

(
e1

e2

∂T

∂j
− a2

e1

e3

∂T

∂k

)] }
+

1

e3

∂

∂k

[
Ah

(
−a1

e1

∂T

∂i
− a2

e2

∂T

∂j
+

(
a2

1 + a2
2 + ε

)
e3

∂T

∂k

)]
.

(B.5)

The isopycnal diffusion operator (??), (??) conserves tracer quantity and dis-
sipates its square. The demonstration of the first property is trivial as (??) is the
divergence of fluxes. Let us demonstrate the second one :∫∫∫

D

T ∇. (AI∇T) dv = −
∫∫∫
D

∇T . (AI∇T) dv,

and since

∇T . (AI∇T) = AlT
[(

∂T
∂i

)2 − 2a1
∂T
∂i

∂T
∂k +

(
∂T
∂j

)2

− 2a2
∂T
∂j

∂T
∂k +

(
a2

1 + a2
2 + ε

) (
∂T
∂k

)2]
= Ah

[(
∂T
∂i − a1

∂T
∂k

)2
+
(
∂T
∂j − a2

∂T
∂k

)2
+ ε

(
∂T
∂k

)2]
≥ 0

the property becomes obvious.

In generalized vertical coordinates

Because the weak-slope operator (??), (??) is decoupled in the (i,z) and (j,z)
planes, it may be transformed into generalized s-coordinates in the same way as
(??) was transformed into (??). The resulting operator then takes the simple form

DT = ∇|s ·
[
AlT < · ∇|s T

]
where < =

 1 0 −r1

0 1 −r2

−r1 −r2 ε+ r2
1 + r2

2

 ,

(B.6)

278 Appendix B : Diffusive Operators

where (r1, r2) are the isopycnal slopes in (i, j) directions, relative to s-coordinate
surfaces :

r1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂s

)−1

, r2 =
e3

e2

(
∂ρ

∂j

)(
∂ρ

∂s

)−1

.

To prove (??) by direct re-expression of (??) is straightforward, but laborious.
An easier way is first to note (by reversing the derivation of (??) from (??))
that the weak-slope operator may be exactly reexpressed in non-orthogonal i, j, ρ-
coordinates as

DT = ∇|ρ ·
[
AlT < · ∇|ρ T

]
where < =

 1 0 0
0 1 0
0 0 ε

 . (B.7)

Then direct transformation from i, j, ρ-coordinates to i, j, s-coordinates gives (??)
immediately.

Note that the weak-slope approximation is only made in transforming from the
(rotated,orthogonal) isoneutral axes to the non-orthogonal i, j, ρ-coordinates. The
further transformation into i, j, s-coordinates is exact, whatever the steepness of the
s-surfaces, in the same way as the transformation of horizontal/vertical Laplacian
diffusion in z-coordinates, (??) onto s-coordinates is exact, however steep the s-
surfaces.

B.3 Lateral/Vertical Momentum Diffusive Operators

The second order momentum diffusion operator (Laplacian) in the z-coordinate
is found by applying (??), the expression for the Laplacian of a vector, to the hori-
zontal velocity vector :

∆Uh = ∇ (∇ · Uh)−∇× (∇× Uh)

=


1
e1
∂χ
∂i

1
e2
∂χ
∂j

1
e3
∂χ
∂k

−


1
e2
∂ζ
∂j −

1
e3

∂
∂k

(
1
e3
∂u
∂k

)
1
e3

∂
∂k

(
− 1
e3
∂v
∂k

)
− 1

e1
∂ζ
∂i

1
e1e2

[
∂
∂i

(
e2
e3
∂u
∂k

)
− ∂

∂j

(
− e1
e3
∂v
∂k

)]


=

 1
e1
∂χ
∂i −

1
e2
∂ζ
∂j

1
e2
∂χ
∂j + 1

e1
∂ζ
∂i

0

+
1

e3


∂
∂k

(
1
e3
∂u
∂k

)
∂
∂k

(
1
e3
∂v
∂k

)
∂χ
∂k −

1
e1e2

(
∂2(e2 u)
∂i∂k + ∂2(e1 v)

∂j∂k

)


B.3. Lateral/Vertical Momentum Diffusive Operators 279

Using (??), the definition of the horizontal divergence, the third componant of the
second vector is obviously zero and thus :

∆Uh = ∇h (χ)−∇h × (ζ) +
1

e3

∂

∂k

(
1

e3

∂ Uh

∂k

)
Note that this operator ensures a full separation between the vorticity and hori-

zontal divergence fields (see Appendix ??). It is only equal to a Laplacian applied
to each component in Cartesian coordinates, not on the sphere.

The horizontal/vertical second order (Laplacian type) operator used to diffuse
horizontal momentum in the z-coordinate therefore takes the following form :

DU = ∇h
(
Alm χ

)
−∇h ×

(
Alm ζ k

)
+

1

e3

∂

∂k

(
Avm

e3

∂Uh

∂k

)
(B.8)

that is, in expanded form :

DU
u =

1

e1

∂
(
Almχ

)
∂i

− 1

e2

∂
(
Almζ

)
∂j

+
1

e3

∂u

∂k

DU
v =

1

e2

∂
(
Almχ

)
∂j

+
1

e1

∂
(
Almζ

)
∂i

+
1

e3

∂v

∂k

Note Bene : introducing a rotation in (??) does not lead to a useful expres-
sion for the iso/diapycnal Laplacian operator in the z-coordinate. Similarly, we did
not found an expression of practical use for the geopotential horizontal/vertical
Laplacian operator in the s-coordinate. Generally, (??) is used in both z- and s-
coordinate systems, that is a Laplacian diffusion is applied on momentum along
the coordinate directions.

C Discrete Invariants of the Equations

282 Discrete Invariants of the Equations

C.1 Introduction / Notations

Notation used in this appendix in the demonstations :
fluxes at the faces of a T -box :

U = e2u e3u u V = e1v e3v v W = e1w e2w ω

volume of cells at u-, v-, and T -points :

bu = e1u e2u e3u bv = e1v e2v e3v bt = e1t e2t e3t

partial derivative notation : ∂• = ∂
∂•

dv = e1 e2 e3 di dj dk is the volume element, with only e3 that depends on
time. D and S are the ocean domain volume and surface, respectively. No wet-
ting/drying is allow (i.e. ∂S∂t = 0) Let ks and kb be the ocean surface and bottom,
resp. (i.e. s(ks) = η and s(kb) = −H , where H is the bottom depth).

z(k) = η −
k̃=ks∫
k̃=k

e3(k̃) dk̃ = η −
ks∫
k

e3 dk̃

Continuity equation with the above notation :

1

e3t
∂t(e3t) +

1

bt

{
δi[U] + δj [V] + δk[W]

}
= 0

A quantity, Q is conserved when its domain averaged time change is zero, that
is when :

∂t

(∫
D
Q dv

)
= 0

Noting that the coordinate system used blah blah

∂t

(∫
D
Q dv

)
=

∫
D
∂t (e3Q) e1e2 di dj dk =

∫
D

1

e3
∂t (e3Q) dv = 0

equation of evolution ofQwritten as the time evolution of the vertical content ofQ
like for tracers, or momentum in flux form, the quadratic quantity 1

2Q
2 is conserved

when :

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

1

2
∂t

(
1

e3
(e3Q)2

)
e1e2 di dj dk

=

∫
D
Q ∂t (e3Q) e1e2 di dj dk −

∫
D

1

2
Q2 ∂t(e3) e1e2 di dj dk

C.2. Continuous conservation 283

that is in a more compact form :

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

Q

e3
∂t (e3Q) dv − 1

2

∫
D

Q2

e3
∂t(e3) dv (C.1)

equation of evolution of Q written as the time evolution of Q like for momentum
in vector invariant form, the quadratic quantity 1

2Q
2 is conserved when :

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

1

2
∂t
(
e3Q

2
)
e1e2 di dj dk

=

∫
D
Q∂tQ e1e2e3 di dj dk +

∫
D

1

2
Q2 ∂te3 e1e2 di dj dk

that is in a more compact form :

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D
Q∂tQ dv +

1

2

∫
D

1

e3
Q2∂te3 dv (C.2)

C.2 Continuous conservation

The discretization of pimitive equation in s-coordinate (i.e. time and space
varying vertical coordinate) must be chosen so that the discrete equation of the
model satisfy integral constrains on energy and enstrophy.

Let us first establish those constraint in the continuous world. The total energy
(i.e. kinetic plus potential energies) is conserved :

∂t

(∫
D

(
1

2
Uh

2 + ρ g z

)
dv

)
=0 (C.3)

under the following assumptions : no dissipation, no forcing (wind, buoyancy flux,
atmospheric pressure variations), mass conservation, and closed domain.

This equation can be transformed to obtain several sub-equalities. The transfor-
mation for the advection term depends on whether the vector invariant form or the
flux form is used for the momentum equation. Using (??) and introducing (??) in
(??) for the former form and Using (??) and introducing (??) in (??) for the latter
form leads to :

advection term (vector invariant form) :∫
D

ζ (k× Uh) · Uh dv = 0 (C.4a)

∫
D

Uh · ∇h
(

Uh
2

2

)
dv +

∫
D

Uh · ∇zUh dv −
∫
D

Uh
2

2

1

e3
∂te3 dv = 0 (C.4b)

284 Discrete Invariants of the Equations

advection term (flux form) :∫
D

1

e1e2
(v ∂ie2 − u ∂je1) (k× Uh) · Uh dv = 0 (C.4c)

∫
D

Uh ·
(
∇ · (Uu)
∇ · (U v)

)
dv +

1

2

∫
D

Uh
2 1

e3
∂te3 dv = 0 (C.4d)

coriolis term ∫
D

f (k× Uh) · Uh dv = 0 (C.4e)

pressure gradient :

−
∫
D

∇p|z · Uh dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv (C.4f)

where∇h = ∇|k is the gradient along the s-surfaces.
blah blah....

The prognostic ocean dynamics equation can be summarized as follows :

NXT =

(
VOR + KEG + ZAD

COR + ADV

)
+ HPG + SPG + LDF + ZDF

Vector invariant form : ∫
D

Uh · VOR dv = 0 (C.5a)

∫
D

Uh · KEG dv +

∫
D

Uh · ZAD dv −
∫
D

Uh
2

2

1

e3
∂te3 dv = 0 (C.5b)

−
∫
D

Uh · (HPG + SPG) dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv (C.5c)

Flux form : ∫
D

Uh · COR dv = 0 (C.6a)

∫
D

Uh · ADV dv +
1

2

∫
D

Uh
2 1

e3
∂te3 dv = 0 (C.6b)

C.2. Continuous conservation 285

−
∫
D

Uh · (HPG + SPG) dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv (C.6c)

(??) is the balance between the conversion KE to PE and PE to KE. Indeed the
left hand side of (??) can be transformed as follows :

∂t

∫
D

ρ g z dv

 = +

∫
D

1

e3
∂t(e3 ρ) g z dv +

∫
D

g ρ ∂tz dv

= −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv

= +

∫
D

ρ g

(
Uh · ∇hz + ω

1

e3
∂kz

)
dv +

∫
D

g ρ ∂tz dv

= +

∫
D

ρ g (ω + ∂tz + Uh · ∇hz) dv

= +

∫
D

g ρ w dv

where the last equality is obtained by noting that the brackets is exactly the ex-
pression of w, the vertical velocity referenced to the fixe z-coordinate system (see
(??)).

The left hand side of (??) can be transformed as follows :

−
∫
D

∇p|z · Uh dv = −
∫
D

(∇hp+ ρ g∇hz) · Uh dv

= −
∫
D

∇hp · Uh dv −
∫
D

ρ g∇hz · Uh dv

= +

∫
D

p∇h · Uh dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

(
1

e3
∂te3 +

1

e3
∂kω

)
dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

e3
∂te3 dv +

∫
D

1

e3
∂kp ω dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g ω dv +

∫
D

ρ g (ω − w + ∂tz) dv

286 Discrete Invariants of the Equations

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g w dv +

∫
D

ρ g ∂tz dv

introducing the hydrostatic balance ∂kp = −ρ g e3 in the last term, it becomes :

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g w dv −
∫
D

1

e3
∂kp ∂tz dv

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g w dv +

∫
D

p

e3
∂t(∂kz)dv

= −
∫
D

ρ g w dv

C.3 Discrete total energy conservation : vector invariant form

C.3.1 Total energy conservation

The discrete form of the total energy conservation, (??), is given by :

∂t

∑
i,j,k

{
u2

2
bu +

v2

2
bv + ρ g zt bt

} = 0

which in vector invariant forms, it leads to :

∑
i,j,k

{
u ∂tu bu + v ∂tv bv

}
+

1

2

∑
i,j,k

{
u2

e3u
∂te3u bu +

v2

e3v
∂te3v bv

}

= −
∑
i,j,k

{
1

e3t
∂t(e3tρ) g zt bt

}
−
∑
i,j,k

{
ρ g ∂t(zt) bt

} (C.7)

Substituting the discrete expression of the time derivative of the velocity either
in vector invariant, leads to the discrete equivalent of the four equations (??).

C.3.2 Vorticity term (coriolis + vorticity part of the advection)

Let q, located at f -points, be either the relative (q = ζ/e3f), or the planetary
(q = f/e3f), or the total potential vorticity (q = (ζ + f)/e3f). Two discretisation
of the vorticity term (ENE and EEN) allows the conservation of the kinetic energy.

C.3. Discrete total energy conservation : vector invariant form 287

Vorticity Term with ENE scheme (ln dynvor ene=.true.)

For the ENE scheme, the two components of the vorticity term are given by :

−e3 q k× Uh ≡

 + 1
e1u

q (e1v e3v v)
i+1/2

j

− 1
e2v

q (e2u e3u u)
j+1/2

i


This formulation does not conserve the enstrophy but it does conserve the total

kinetic energy. Indeed, the kinetic energy tendency associated to the vorticity term
and averaged over the ocean domain can be transformed as follows :

∫
D

− (e3 q k× Uh) · Uh dv

≡
∑
i,j,k

{
1
e1u

q V
i+1/2

j

u bu − 1
e2v

q U
j+1/2

i

v bv

}
≡
∑
i,j,k

{
q V

i+1/2
j

U − q U
j+1/2

i

V

}
≡
∑
i,j,k

q

{
V
i+1/2

U
j+1/2 − U j+1/2

V
i+1/2

}
≡ 0

In other words, the domain averaged kinetic energy does not change due to the
vorticity term.

Vorticity Term with EEN scheme (ln dynvor een=.true.)

With the EEN scheme, the vorticity terms are represented as :


+q e3 v ≡ +

1

e1u

∑
ip, kp

i+1/2−ip
j Qip

jp
(e1ve3v v)

i+ip−1/2
j+jp

−q e3 u ≡ −
1

e2v

∑
ip, kp

i
j+1/2−jpQ

ip
jp

(e2ue3u u)
i+ip
j+jp−1/2

(C.8)

where the indices ip and kp take the following value : ip = −1/2 or 1/2 and
jp = −1/2 or 1/2, and the vorticity triads, ijQ

ip
jp

, defined at T -point, are given by :

j
iQ

ip
jp

=
1

12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(C.9)

288 Discrete Invariants of the Equations

This formulation does conserve the total kinetic energy. Indeed,∫
D

−Uh · (ζ k× Uh) dv

≡
∑
i,j,k

{∑
ip, kp

i+1/2−ip
j Qip

jp
V
i+1/2−ip
j+jp

U i+1/2
j −

∑
ip, kp

i
j+1/2−jpQ

ip
jp
U
i+ip
j+1/2−jp

V i
j+1/2

}

≡
∑
i,j,k

∑
ip, kp

{
i+1/2−ip
j Qip

jp
V
i+1/2−ip
j+jp

U
i+1/2
j − i

j+1/2−jpQ
ip
jp
U
i+ip
j+1/2−jp V

i
j+1/2

}

Expending the summation on ip and kp, it becomes :

≡
∑
i,j,k

{
i+1
j Q−1/2

+1/2 V
i+1
j+1/2 U

i+1/2
j − i

j Q−1/2
+1/2 U

i−1/2
j V i

j+1/2

+ i+1
j Q−1/2

−1/2 V
i+1
j−1/2 U

i+1/2
j − i

j+1Q
−1/2
−1/2 U

i−1/2
j+1 V i

j+1/2

+ i
j Q+1/2

+1/2 V
i
j+1/2 U

i+1/2
j − i

j Q+1/2
+1/2 U

i+1/2
j V i

j+1/2

+ i
j Q+1/2

−1/2 V
i
j−1/2 U

i+1/2
j − i

j+1Q
+1/2
−1/2 U

i+1/2
j+1 V i

j+1/2

}

The summation is done over all i and j indices, it is therefore possible to introduce
a shift of −1 either in i or j direction in some of the term of the summation (first
term of the first and second lines, second term of the second and fourth lines). By
doning so, we can regroup all the terms of the summation by triad at a (i,j) point.
In other words, we regroup all the terms in the neighbourhood that contain a triad
at the same (i,j) indices. It becomes :

≡
∑
i,j,k

{
i
jQ
−1/2
+1/2

[
V i
j+1/2 U

i−1/2
j − U i−1/2

j V i
j+1/2

]
+ i
jQ
−1/2
−1/2

[
V i
j−1/2 U

i−1/2
j − U i−1/2

j V i
j−1/2

]
+ i
jQ

+1/2
+1/2

[
V i
j+1/2 U

i+1/2
j − U i+1/2

j V i
j+1/2

]
+ i
jQ

+1/2
−1/2

[
V i
j−1/2 U

i+1/2
j − U i+1/2

j−1 V i
j−1/2

] }
≡ 0

C.3. Discrete total energy conservation : vector invariant form 289

Gradient of Kinetic Energy / Vertical Advection

The change of Kinetic Energy (KE) due to the vertical advection is exactly
balanced by the change of KE due to the horizontal gradient of KE :

∫
D

Uh ·
1

e3
ω∂kUh dv = −

∫
D

Uh · ∇h
(

1

2
Uh

2

)
dv +

1

2

∫
D

Uh
2

e3
∂t(e3) dv

Indeed, using successively (??) (i.e. the skew symmetry property of the δ operator)
and the continuity equation, then (??) again, then the commutativity of operators
· and δ, and finally (??) (i.e. the symmetry property of the · operator) applied in
the horizontal and vertical directions, it becomes :

−
∫
D

Uh · KEG dv = −
∫
D

Uh · ∇h
(

1

2
Uh

2

)
dv

≡−
∑
i,j,k

1

2

{
1

e1u
δi+1/2

[
u2

i
+ v2

j
]
u bu +

1

e2v
δj+1/2

[
u2

i
+ v2

j
]
v bv

}

≡+
∑
i,j,k

1

2

(
u2

i
+ v2

j
) {

δi [U] + δj [V]

}

≡−
∑
i,j,k

1

2

(
u2

i
+ v2

j
) { bt

e3t
∂t(e3t) + δk [W]

}
≡+

∑
i,j,k

1

2
δk+1/2

[
u2

i
+ v2

j
]
W −

∑
i,j,k

1

2

(
u2

i
+ v2

j
)
∂tbt

≡+
∑
i,j,k

1

2

(
δk+1/2 [u2]

i
+ δk+1/2 [v2]

j
)
W −

∑
i,j,k

(
u2

2
∂tbt

i+1/2
+
v2

2
∂tbt

j+1/2
)

Assuming that bu = bt
i+1/2

and bv = bt
j+1/2

, or at least that the time derivative
of these two equations is satisfied, it becomes :

≡
∑
i,j,k

1

2

{
W

i+1/2
δk+1/2

[
u2
]

+W
j+1/2

δk+1/2

[
v2
] }
−
∑
i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

≡
∑
i,j,k

{
W

i+1/2
u k+1/2 δk+1/2[u] +W

j+1/2
v k+1/2 δk+1/2[v]

}
−
∑
i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

≡
∑
i,j,k

{
1

bu
W

i+1/2
δk+1/2 [u]

k

u bu +
1

bv
W

j+1/2
δk+1/2 [v]

k

v bv

}
−
∑
i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

290 Discrete Invariants of the Equations

The first term provides the discrete expression for the vertical advection of mo-
mentum (ZAD), while the second term corresponds exactly to (??), therefore :

≡
∫
D

Uh · ZAD dv +
1

2

∫
D

Uh
2 1

e3
∂t(e3) dv

≡
∫
D

Uh · w∂kUh dv +
1

2

∫
D

Uh
2 1

e3
∂t(e3) dv

There is two main points here. First, the satisfaction of this property links the
choice of the discrete formulation of the vertical advection and of the horizontal
gradient of KE. Choosing one imposes the other. For example KE can also be dis-
cretized as 1/2 (u i

2
+ v j

2
). This leads to the following expression for the vertical

advection :

1

e3
ω ∂kUh ≡

 1
e1u e2u e3u

e1t e2t ω δk+1/2

[
u i+1/2

] i+1/2,k

1
e1v e2v e3v

e1t e2t ω δk+1/2

[
v j+1/2

] j+1/2,k


a formulation that requires an additional horizontal mean in contrast with the one
used in NEMO. Nine velocity points have to be used instead of 3. This is the reason
why it has not been chosen.

Second, as soon as the chosen s-coordinate depends on time, an extra constraint
arises on the time derivative of the volume at u- and v-points :

e1u e2u ∂t(e3u) = e1t e2t ∂t(e3t)
i+1/2

e1v e2v ∂t(e3v) = e1t e2t ∂t(e3t)
j+1/2

which is (over-)satified by defining the vertical scale factor as follows :

e3u =
1

e1u e2u
e1t e2t e3t

i+1/2 (C.10)

e3v =
1

e1v e2v
e1t e2t e3t

j+1/2 (C.11)

Blah blah required on the the step representation of bottom topography.....

C.3.3 Pressure Gradient Term

When the equation of state is linear (i.e. when an advection-diffusion equation
for density can be derived from those of temperature and salinity) the change of KE
due to the work of pressure forces is balanced by the change of potential energy
due to buoyancy forces :

−
∫
D
∇p|z · Uh dv = −

∫
D
∇ · (ρU) g z dv +

∫
D
g ρ ∂t(z) dv

C.3. Discrete total energy conservation : vector invariant form 291

This property can be satisfied in a discrete sense for both z- and s-coordinates.
Indeed, defining the depth of a T -point, zt, as the sum of the vertical scale factors
at w-points starting from the surface, the work of pressure forces can be written
as :

−
∫
D
∇p|z · Uh dv ≡

∑
i,j,k

{
− 1

e1u

(
δi+1/2[pt]− g ρ i+1/2 δi+1/2[zt]

)
u bu

− 1

e2v

(
δj+1/2[pt]− g ρ j+1/2δj+1/2[zt]

)
v bv

}

Using successively (??), i.e. the skew symmetry property of the δ operator, (??),
the continuity equation, (??), the hydrostatic equation in the s-coordinate, and
δk+1/2 [zt] ≡ e3w, which comes from the definition of zt, it becomes :

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +

(
δi[U] + δj [V]

) pt
g

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt]−

(
bt
e3t
∂t(e3t) + δk [W]

)
pt
g

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +

W

g
δk+1/2[pt]−

pt
g
∂tbt

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt]−W e3wρ

k+1/2 − pt
g
∂tbt

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +W ρ k+1/2 δk+1/2[zt]−

pt
g
∂tbt

}

≡−
∑
i,j,k

g zt

{
δi

[
U ρ i+1/2

]
+ δj

[
V ρ j+1/2

]
+ δk

[
W ρ k+1/2

]}
−
∑
i,j,k

{
pt ∂tbt

}

≡+
∑
i,j,k

g zt

{
∂t(e3t ρ)

}
bt −

∑
i,j,k

{
pt ∂tbt

}

The first term is exactly the first term of the right-hand-side of (??). It remains to
demonstrate that the last term, which is obviously a discrete analogue of

∫
D

p
e3
∂t(e3) dv

is equal to the last term of (??). In other words, the following property must be sa-
tisfied : ∑

i,j,k

{
pt ∂tbt

}
≡
∑
i,j,k

{
ρ g ∂t(zt) bt

}
Let introduce pw the pressure at w-point such that δk[pw] = −ρ g e3t. The

right-hand-side of the above equation can be transformed as follows :

292 Discrete Invariants of the Equations

∑
i,j,k

{
ρ g ∂t(zt) bt

}
≡ −

∑
i,j,k

{
δk[pw] ∂t(zt) e1t e2t

}

≡ +
∑
i,j,k

{
pw δk+1/2[∂t(zt)] e1t e2t

}
≡ +

∑
i,j,k

{
pw ∂t(e3w) e1t e2t

}

≡ +
∑
i,j,k

{
pw ∂t(bw)

}
therefore, the balance to be satisfied is :∑

i,j,k

{
pt ∂t(bt)

}
≡
∑
i,j,k

{
pw ∂t(bw)

}
which is a purely vertical balance :∑

k

{
pt ∂t(e3t)

}
≡
∑
k

{
pw ∂t(e3w)

}
Defining pw = pt

k+1/2

Note that this property strongly constrains the discrete expression of both the
depth of T−points and of the term added to the pressure gradient in the s-coordinate.
Nevertheless, it is almost never satisfied since a linear equation of state is rarely
used.

C.4 Discrete total energy conservation : flux form

C.4.1 Total energy conservation

The discrete form of the total energy conservation, (??), is given by :

∂t

∑
i,j,k

{
u2

2
bu +

v2

2
bv + ρ g zt bt

} = 0

which in flux form, it leads to :∑
i,j,k

{
u

e3u

∂(e3uu)

∂t
bu +

v

e3v

∂(e3vv)

∂t
bv

}
− 1

2

∑
i,j,k

{
u2

e3u

∂e3u

∂t
bu +

v2

e3v

∂e3v

∂t
bv

}

= −
∑
i,j,k

{
1

e3t

∂e3tρ

∂t
g zt bt

}
−
∑
i,j,k

{
ρ g

∂zt
∂t

bt

}

Substituting the discrete expression of the time derivative of the velocity either
in vector invariant or in flux form, leads to the discrete equivalent of the

C.4. Discrete total energy conservation : flux form 293

C.4.2 Coriolis and advection terms : flux form

Coriolis plus “metric” Term

In flux from the vorticity term reduces to a Coriolis term in which the Coriolis
parameter has been modified to account for the “metric” term. This altered Coriolis
parameter is discretised at an f-point. It is given by :

f+
1

e1e2

(
v
∂e2

∂i
− u∂e1

∂j

)
≡ f+

1

e1f e2f

(
v i+1/2δi+1/2 [e2u]− u j+1/2δj+1/2 [e1u]

)
Either the ENE or EEN scheme is then applied to obtain the vorticity term in

flux form. It therefore conserves the total KE. The derivation is the same as for the
vorticity term in the vector invariant form (§??).

Flux form advection

The flux form operator of the momentum advection is evaluated using a cen-
tered second order finite difference scheme. Because of the flux form, the discrete
operator does not contribute to the global budget of linear momentum. Because of
the centered second order scheme, it conserves the horizontal kinetic energy, that
is :

−
∫
D

Uh ·
(
∇ · (Uu)
∇ · (U v)

)
dv − 1

2

∫
D

Uh
2 1

e3

∂e3

∂t
dv = 0 (C.12)

Let us first consider the first term of the scalar product (i.e. just the the terms
associated with the i-component of the advection) :

−
∫
D
u · ∇ · (Uu) dv

≡−
∑
i,j,k

{
1

bu

(
δi+1/2

[
U
i
u i
]

+ δj

[
V
i+1/2

u j+1/2
]

+ δk

[
W

i+1/2
u k+1/2

]) }
bu u

≡−
∑
i,j,k

{
δi+1/2

[
U
i
u i
]

+ δj

[
V
i+1/2

u j+1/2
]

+ δk

[
W

i+12
u k+1/2

] }
u

≡+
∑
i,j,k

{
U
i
u iδi [u] + V

i+1/2
u j+1/2δj+1/2 [u] +W

i+1/2
u k+1/2δk+1/2 [u]

}

≡+
1

2

∑
i,j,k

{
U
i
δi
[
u2
]

+ V
i+1/2

δj+/2
[
u2
]

+W
i+1/2

δk+1/2

[
u2
]}

≡−
∑
i,j,k

1

2

{
U δi+1/2

[
u2

i
]

+ V δj+1/2

[
u2

i
]

+W δk+1/2

[
u2

i
]}

≡−
∑
i,j,k

1

2
u2

i
{
δi+1/2 [U] + δj+1/2 [V] + δk+1/2 [W]

}

294 Discrete Invariants of the Equations

≡+
∑
i,j,k

1

2
u2

i
{(

1

e3t

∂e3t

∂t

)
bt

}

Applying similar manipulation applied to the second term of the scalar product
leads to :

−
∫
D

Uh ·
(
∇ · (Uu)
∇ · (U v)

)
dv ≡ +

∑
i,j,k

1

2

(
u2

i
+ v2

j
){(1

e3t

∂e3t

∂t

)
bt

}
which is the discrete form of 1

2

∫
D u · ∇ · (Uu) dv. (??) is thus satisfied.

When the UBS scheme is used to evaluate the flux form momentum advection,
the discrete operator does not contribute to the global budget of linear momentum
(flux form). The horizontal kinetic energy is not conserved, but forced to decay
(i.e. the scheme is diffusive).

C.5 Discrete enstrophy conservation

Vorticity Term with ENS scheme (ln dynvor ens=.true.)

In the ENS scheme, the vorticity term is descretized as follows :
+

1

e1u
q i (e1v e3v v)

i,j+1/2

− 1

e2v
q j (e2u e3u u)

i+1/2,j
(C.13)

The scheme does not allow but the conservation of the total kinetic energy but
the conservation of q2, the potential enstrophy for a horizontally non-divergent flow
(i.e. when χ=0). Indeed, using the symmetry or skew symmetry properties of the
operators (Eqs (??) and (??)), it can be shown that :∫

D
q k · 1

e3
∇× (e3 q k× Uh) dv ≡ 0 (C.14)

where dv = e1 e2 e3 di dj dk is the volume element. Indeed, using (??), the discrete
form of the right hand side of (??) can be transformed as follow :∫

D
q k · 1

e3
∇× (e3 q k× Uh) dv

≡
∑
i,j,k

q

{
δi+1/2

[
− q i U

i,j+1/2
]
− δj+1/2

[
q j V

i+1/2,j
]}

≡
∑
i,j,k

{
δi[q] q

i U
i,j+1/2

+ δj [q] q
j V

i+1/2,j
}

≡ 1
2

∑
i,j,k

{
δi
[
q2
]
U
i,j+1/2

+ δj
[
q2
]
V
i+1/2,j

}
≡ −1

2

∑
i,j,k

q2

{
δi+1/2

[
U
i,j+1/2

]
+ δj+1/2

[
V
i+1/2,j

]}

C.5. Discrete enstrophy conservation 295

Since · and δ operators commute : δi+1/2

[
a i
]

= δi [a]
i+1/2

, and introducing the
horizontal divergence χ, it becomes :

≡
∑
i,j,k

−1
2q

2 e1t e2t e3t χ
i+1/2,j+1/2 ≡ 0

The later equality is obtain only when the flow is horizontally non-divergent, i.e.
χ=0.

Vorticity Term with EEN scheme (ln dynvor een=.true.)

With the EEN scheme, the vorticity terms are represented as :
+q e3 v ≡ +

1

e1u

∑
ip, kp

i+1/2−ip
j Qip

jp
(e1ve3v v)

i+ip−1/2
j+jp

−q e3 u ≡ −
1

e2v

∑
ip, kp

i
j+1/2−jpQ

ip
jp

(e2ue3u u)
i+ip
j+jp−1/2

(C.15)

where the indices ip and kp take the following value : ip = −1/2 or 1/2 and
jp = −1/2 or 1/2, and the vorticity triads, ijQ

ip
jp

, defined at T -point, are given by :

j
iQ

ip
jp

=
1

12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(C.16)

This formulation does conserve the potential enstrophy for a horizontally non-
divergent flow (i.e. χ = 0).

Let consider one of the vorticity triad, for example i
jQ

+1/2
+1/2, similar manipula-

tion can be done for the 3 others. The discrete form of the right hand side of (??)
applied to this triad only can be transformed as follow :

∫
D
q k · 1

e3
∇× (e3 q k× Uh) dv

≡
∑
i,j,k

q

{
δi+1/2

[
− i
jQ

+1/2
+1/2 U

i+1/2
j

]
− δj+1/2

[
i
jQ

+1/2
+1/2 V

i
j+1/2

] }

≡
∑
i,j,k

{
δi[q]

i
jQ

+1/2
+1/2 U

i+1/2
j + δj [q]

i
jQ

+1/2
+1/2 V

i
j+1/2

}
...

Demonstation to be done...

...

≡1

2

∑
i,j,k

{
δi

[(
i
jQ

+1/2
+1/2

)2]
U
i,j+1/2

+ δj

[(
i
jQ

+1/2
+1/2

)2]
V
i+1/2,j

}

296 Discrete Invariants of the Equations

≡− 1

2

∑
i,j,k

(
i
jQ

+1/2
+1/2

)2
{
δi+1/2

[
U
i,j+1/2

]
+ δj+1/2

[
V
i+1/2,j

]}
≡
∑
i,j,k

−1

2

(
i
jQ

+1/2
+1/2

)2
bt χ

i+1/2, j+1/2

≡ 0

C.6 Conservation Properties on Tracers

All the numerical schemes used in NEMO are written such that the tracer
content is conserved by the internal dynamics and physics (equations in flux form).
For advection, only the CEN2 scheme (i.e. 2nd order finite different scheme) conserves
the global variance of tracer. Nevertheless the other schemes ensure that the glo-
bal variance decreases (i.e. they are at least slightly diffusive). For diffusion, all
the schemes ensure the decrease of the total tracer variance, except the iso-neutral
operator. There is generally no strict conservation of mass, as the equation of state
is non linear with respect to T and S. In practice, the mass is conserved to a very
high accuracy.

C.6.1 Advection Term

conservation of a tracer, T :

∂

∂t

(∫
D
T dv

)
=

∫
D

1

e3

∂ (e3 T)

∂t
dv = 0

conservation of its variance :

∂

∂t

(∫
D

1

2
T 2 dv

)
=

∫
D

1

e3
Q
∂ (e3 T)

∂t
dv − 1

2

∫
D
T 2 1

e3

∂e3

∂t
dv

Whatever the advection scheme considered it conserves of the tracer content
as all the scheme are written in flux form. Indeed, let T be the tracer and τu, τv,
and τw its interpolated values at velocity point (whatever the interpolation is), the
conservation of the tracer content due to the advection tendency is obtained as
follows :∫
D

1

e3

∂ (e3 T)

∂t
dv = −

∫
D
∇ · (TU) dv

≡ −
∑
i,j,k

{
1

bt
(δi [U τu] + δj [V τv]) +

1

e3t
δk [w τw]

}
bt

≡ −
∑
i,j,k

{δi [U τu] + δj [V τv] + δk [W τw]}

≡ 0

C.7. Conservation Properties on Lateral Momentum Physics 297

The conservation of the variance of tracer due to the advection tendency can be
achieved only with the CEN2 scheme, i.e. when τu = T

i+1/2, τv = T
j+1/2, and

τw = T
k+1/2. It can be demonstarted as follows :∫

D

1

e3
Q
∂ (e3 T)

∂t
dv = −

∫
D

τ ∇ · (T U) dv

≡−
∑
i,j,k

T
{
δi

[
UT

i+1/2
]

+ δj

[
V T

j+1/2
]

+ δk

[
WT

k+1/2
]}

≡+
∑
i,j,k

{
UT

i+1/2
δi+1/2 [T] + V T

j+1/2
δj+1/2 [T] +WT

k+1/2
δk+1/2 [T]

}
≡+

1

2

∑
i,j,k

{
U δi+1/2

[
T 2
]

+ V δj+1/2

[
T 2
]

+W δk+1/2

[
T 2
]}

≡− 1

2

∑
i,j,k

T 2
{
δi [U] + δj [V] + δk [W]

}
≡+

1

2

∑
i,j,k

T 2
{ 1

e3t

∂e3t T

∂t

}

which is the discrete form of 1
2

∫
D T

2 1
e3
∂e3
∂t dv.

C.7 Conservation Properties on Lateral Momentum Physics

The discrete formulation of the horizontal diffusion of momentum ensures the
conservation of potential vorticity and the horizontal divergence, and the dissipa-
tion of the square of these quantities (i.e. enstrophy and the variance of the horizon-
tal divergence) as well as the dissipation of the horizontal kinetic energy. In par-
ticular, when the eddy coefficients are horizontally uniform, it ensures a complete
separation of vorticity and horizontal divergence fields, so that diffusion (dissipa-
tion) of vorticity (enstrophy) does not generate horizontal divergence (variance of
the horizontal divergence) and vice versa.

These properties of the horizontal diffusion operator are a direct consequence
of properties (??) and (??). When the vertical curl of the horizontal diffusion of
momentum (discrete sense) is taken, the term associated with the horizontal gra-
dient of the divergence is locally zero.

C.7.1 Conservation of Potential Vorticity

The lateral momentum diffusion term conserves the potential vorticity :∫
D

1

e3
k · ∇ ×

[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv = 0

298 Discrete Invariants of the Equations

=

∫
D

− 1

e3
k · ∇ ×

[
∇h ×

(
A lm ζ k

)]
dv

≡
∑
i,j

{
δi+1/2

[
e2v

e1v e3v
δi

[
A lm
f e3fζ

]]
+ δj+1/2

[
e1u

e2u e3u
δj

[
A lm
f e3fζ

]]}

Using (??), it follows :

≡
∑
i,j,k

−
{

e2v

e1v e3v
δi

[
A lm
f e3fζ

]
δi [1] +

e1u

e2u e3u
δj

[
A lm
f e3fζ

]
δj [1]

}
≡ 0

C.7.2 Dissipation of Horizontal Kinetic Energy

The lateral momentum diffusion term dissipates the horizontal kinetic energy :∫
D

Uh · [∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

≡
∑
i,j,k

{
1

e1u
δi+1/2

[
A lm
T χ

]
− 1

e2u e3u
δj

[
A lm
f e3fζ

]}
e1u e2u e3u u

+

{
1

e2u
δj+1/2

[
A lm
T χ

]
+

1

e1v e3v
δi

[
A lm
f e3fζ

]}
e1v e2u e3v v

≡
∑
i,j,k

{
e2u e3u u δi+1/2

[
A lm
T χ

]
− e1u u δj

[
A lm
f e3fζ

]}
+
{
e1v e3v v δj+1/2

[
A lm
T χ

]
+ e2v v δi

[
A lm
f e3fζ

]}

≡
∑
i,j,k

−
(
δi [e2u e3u u] + δj [e1v e3v v]

)
A lm
T χ

−
(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
A lm
f e3fζ

≡
∑
i,j,k

−A lm
T χ2 e1t e2t e3t −A lm

f ζ2 e1f e2f e3f ≤ 0

C.7. Conservation Properties on Lateral Momentum Physics 299

C.7.3 Dissipation of Enstrophy

The lateral momentum diffusion term dissipates the enstrophy when the eddy
coefficients are horizontally uniform :

∫
D

ζ k · ∇ ×
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

= A lm

∫
D

ζk · ∇ × [∇h × (ζ k)] dv

≡ A lm
∑
i,j,k

ζ e3f

{
δi+1/2

[
e2v

e1v e3v
δi [e3fζ]

]
+ δj+1/2

[
e1u

e2u e3u
δj [e3fζ]

]}

Using (??), it follows :

≡ −A lm
∑
i,j,k

{(
1

e1v e3v
δi [e3fζ]

)2

bv +

(
1

e2u e3u
δj [e3fζ]

)2

bu

}
≤ 0

C.7.4 Conservation of Horizontal Divergence

When the horizontal divergence of the horizontal diffusion of momentum (dis-
crete sense) is taken, the term associated with the vertical curl of the vorticity is
zero locally, due to (! ! ! II.1.8 ! ! ! ! !). The resulting term conserves the χ and dis-
sipates χ2 when the eddy coefficients are horizontally uniform.

∫
D

∇h ·
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv =

∫
D

∇h · ∇h
(
A lm χ

)
dv

≡
∑
i,j,k

{
δi

[
A lm
u

e2u e3u

e1u
δi+1/2 [χ]

]
+ δj

[
A lm
v

e1v e3v

e2v
δj+1/2 [χ]

]}

Using (??), it follows :

≡
∑
i,j,k

−
{
e2u e3u

e1u
A lm
u δi+1/2 [χ] δi+1/2 [1] +

e1v e3v

e2v
A lm
v δj+1/2 [χ] δj+1/2 [1]

}
≡ 0

300 Discrete Invariants of the Equations

C.7.5 Dissipation of Horizontal Divergence Variance

∫
D

χ ∇h ·
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv = A lm

∫
D

χ ∇h · ∇h (χ) dv

≡ A lm
∑
i,j,k

1

e1t e2t e3t
χ

{
δi

[
e2u e3u

e1u
δi+1/2 [χ]

]
+ δj

[
e1v e3v

e2v
δj+1/2 [χ]

]}
e1t e2t e3t

Using (??), it turns out to be :

≡ −A lm
∑
i,j,k

{(
1

e1u
δi+1/2 [χ]

)2

bu +

(
1

e2v
δj+1/2 [χ]

)2

bv

}
≤ 0

C.8 Conservation Properties on Vertical Momentum Physics

As for the lateral momentum physics, the continuous form of the vertical diffu-
sion of momentum satisfies several integral constraints. The first two are associa-
ted with the conservation of momentum and the dissipation of horizontal kinetic
energy : ∫

D

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv = ~0

and ∫
D

Uh ·
1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv ≤ 0

The first property is obvious. The second results from :

∫
D

Uh ·
1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv

≡
∑
i,j,k

(
u δk

[
A vm
u

e3uw
δk+1/2 [u]

]
e1u e2u + v δk

[
A vm
v

e3vw
δk+1/2 [v]

]
e1v e2v

)

C.8. Conservation Properties on Vertical Momentum Physics 301

since the horizontal scale factor does not depend on k, it follows :

≡ −
∑
i,j,k

(
A vm
u

e3uw

(
δk+1/2 [u]

)2
e1u e2u +

A vm
v

e3vw

(
δk+1/2 [v]

)2
e1v e2v

)
≤ 0

The vorticity is also conserved. Indeed :∫
D

1

e3
k · ∇ ×

(
1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

≡
∑
i,j,k

1

e3f

1

e1f e2f

{
δi+1/2

(
e2v

e3v
δk

[
1

e3vw
δk+1/2 [v]

])

−δj+1/2

(
e1u

e3u
δk

[
1

e3uw
δk+1/2 [u]

])}
e1f e2f e3f ≡ 0

If the vertical diffusion coefficient is uniform over the whole domain, the enstrophy
is dissipated, i.e.∫
D

ζ k · ∇ ×
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

This property is only satisfied in z-coordinates :

∫
D

ζ k · ∇ ×
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

≡
∑
i,j,k

ζ e3f

{
δi+1/2

(
e2v

e3v
δk

[
A vm
v

e3vw
δk+1/2[v]

])

−δj+1/2

(
e1u

e3u
δk

[
A vm
u

e3uw
δk+1/2[u]

])}

302 Discrete Invariants of the Equations

≡
∑
i,j,k

ζ e3f

{
1

e3v
δk

[
A vm
v

e3vw
δk+1/2

[
δi+1/2 [e2v v]

]]

− 1

e3u
δk

[
A vm
u

e3uw
δk+1/2

[
δj+1/2 [e1u u]

]]}

Using the fact that the vertical diffusion coefficients are uniform, and that in z-
coordinate, the vertical scale factors do not depend on i and j so that : e3f = e3u =
e3v = e3t and e3w = e3uw = e3vw, it follows :

≡ A vm
∑
i,j,k

ζ δk

[
1

e3w
δk+1/2

[
δi+1/2 [e2v v]− δj+1/2 [e1u u]

]]

≡ −A vm
∑
i,j,k

1

e3w

(
δk+1/2 [ζ]

)2
e1f e2f ≤ 0

Similarly, the horizontal divergence is obviously conserved :

∫
D

∇ ·
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

and the square of the horizontal divergence decreases (i.e. the horizontal diver-
gence is dissipated) if the vertical diffusion coefficient is uniform over the whole
domain :

∫
D

χ ∇ ·
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

This property is only satisfied in the z-coordinate :∫
D

χ ∇ ·
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

C.9. Conservation Properties on Tracer Physics 303

≡
∑
i,j,k

χ

e1t e2t

{
δi+1/2

(
e2u

e3u
δk

[
A vm
u

e3uw
δk+1/2[u]

])

+δj+1/2

(
e1v

e3v
δk

[
A vm
v

e3vw
δk+1/2[v]

])}
e1t e2t e3t

≡ A vm
∑
i,j,k

χ

{
δi+1/2

(
δk

[
1

e3uw
δk+1/2 [e2u u]

])

+δj+1/2

(
δk

[
1

e3vw
δk+1/2 [e1v v]

])}

≡ −A vm
∑
i,j,k

δk+1/2 [χ]

e3w

{
δk+1/2

[
δi+1/2 [e2u u] + δj+1/2 [e1v v]

]}

≡ −A vm
∑
i,j,k

1

e3w
δk+1/2 [χ] δk+1/2 [e1t e2t χ]

≡ −A vm
∑
i,j,k

e1t e2t

e3w

(
δk+1/2 [χ]

)2 ≡ 0

C.9 Conservation Properties on Tracer Physics

The numerical schemes used for tracer subgridscale physics are written such
that the heat and salt contents are conserved (equations in flux form, second order
centered finite differences). Since a flux form is used to compute the temperature
and salinity, the quadratic form of these quantities (i.e. their variance) globally
tends to diminish. As for the advection term, there is generally no strict conserva-
tion of mass, even if in practice the mass is conserved to a very high accuracy.

304 Discrete Invariants of the Equations

C.9.1 Conservation of Tracers

constraint of conservation of tracers :∫
D

∇ · (A ∇T) dv

≡
∑
i,j,k

{
δi

[
A lT
u

e2u e3u

e1u
δi+1/2 [T]

]
+ δj

[
A lT
v

e1v e3v

e2v
δj+1/2 [T]

]

+ δk

[
A vT
w

e1t e2t

e3t
δk+1/2 [T]

]}
≡ 0

In fact, this property simply results from the flux form of the operator.

C.9.2 Dissipation of Tracer Variance

constraint on the dissipation of tracer variance :∫
D

T ∇ · (A ∇T) dv

≡
∑
i,j,k

T

{
δi

[
A lT
u

e2u e3u

e1u
δi+1/2 [T]

]
+δj

[
A lT
v

e1v e3v

e2v
δj+1/2 [T]

]

+δk

[
A vT
w

e1t e2t

e3t
δk+1/2 [T]

]}

≡ −
∑
i,j,k

{
A lT
u

(
1

e1u
δi+1/2 [T]

)2

e1u e2u e3u

+A lT
v

(
1

e2v
δj+1/2 [T]

)2

e1v e2v e3v

+A vT
w

(
1

e3w
δk+1/2 [T]

)2

e1w e2w e3w

}
≤ 0

D Coding Rules

306 Coding Rules

A ”model life” is more than ten years. Its software, composed of a few hundred
modules, is used by many people who are scientists or students and do not neces-
sarily know every aspect of computing very well. Moreover, a well thought-out
program is easier to read and understand, less difficult to modify, produces fewer
bugs and is easier to maintain. Therefore, it is essential that the model development
follows some rules :

- well planned and designed
- well written
- well documented (both on- and off-line)
- maintainable
- easily portable
- flexible.
To satisfy part of these aims, NEMO is written with a coding standard which

is close to the ECMWF rules, named DOCTOR [?]. These rules present some
advantages like :

- to provide a well presented program
- to use rules for variable names which allow recognition of their type (integer,

real, parameter, local or shared variables, etc.).
This facilitates both the understanding and the debugging of an algorithm.

D.1 The program structure

Each program begins with a set of headline comments containing :
- the program title
- the purpose of the routine
- the method and algorithms used
- the detail of input and output interfaces
- the external routines and functions used (if they exist)
- references (if they exist)
- the author name(s), the date of creation and any updates.
- Each program is split into several well separated sections and sub-sections

with an underlined title and specific labelled statements.
- A program has not more than 200 to 300 lines.
A template of a module style can be found on the NEMO depository in the

following file : NEMO/OPA SRC/module example.

D.2 Coding conventions

- Use of the universal language FORTRAN 90, and try to avoid obsolescent fea-
tures like statement functions, do not use GO TO and EQUIVALENCE statements.

D.2. Coding conventions 307

- A continuation line begins with the character & indented by three spaces
compared to the previous line, while the previous line ended with the character &.

- All the variables must be declared. The code is usually compiled with implicit
none.

- Never use continuation lines in the declaration of a variable. When searching
a variable in the code through a grep command, the declaration line will be found.

- In the declaration of a PUBLIC variable, the comment part at the end of the
line should start with the two characters ”!:”. the following UNIX command,
grep var_name *90 \ grep \!:
will display the module name and the line where the var name declaration is.

- Always use a three spaces indentation in DO loop, CASE, or IF-ELSEIF-
ELSE-ENDIF statements.

- use a space after a comma, except when it appears to separate the indices of
an array.

- use call to ctl stop routine instead of just a STOP.

308 Coding Rules

D.3 Naming Conventions

The purpose of the naming conventions is to use prefix letters to classify model
variables. These conventions allow the variable type to be easily known and rapidly
identified. The naming conventions are summarised in the Table below :

Type
/ Status

integer real logical character structure double
precision

complex

public
or
module
variable

m n
but not
nn

a b e f g h
o q r
t to x
but not
fs rn

l
but not
lp ld
ll ln

c
but not
cp cd
cl cn

s
but not
sd sd
sl sn

d
but not
dp dd
dl dn

y
but not
yp yd
yl yn

dummy
argument

k
but not
kf

p
but not
pp pf

ld cd sd dd yd

local
variable

i z ll cl sl dl yl

loop
control

j
but not
jp

parameter jp pp lp cp sp dp yp
namelist nn rn ln cn sn dn yn
CPP
macro

kf fs

D.4. The program structure 309

D.4 The program structure

To be done....

E Iso-neutral diffusion and eddy advection using triads

312 Iso-neutral diffusion and eddy advection using triads

E.1 Choice of namelist parameters
!--
&namtra_ldf ! lateral diffusion scheme for tracers
!--

! ! Operator type:
ln_traldf_lap = .true. ! laplacian operator
ln_traldf_bilap = .false. ! bilaplacian operator
! ! Direction of action:
ln_traldf_level = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential) (needs "key_ldfslp" when ln_sco=T)
ln_traldf_iso = .true. ! iso-neutral (needs "key_ldfslp")
! ! Griffies parameters (all need "key_ldfslp")
ln_traldf_grif = .false. ! use griffies triads
ln_traldf_gdia = .false. ! output griffies eddy velocities
ln_triad_iso = .false. ! pure lateral mixing in ML
ln_botmix_grif = .false. ! lateral mixing on bottom
! ! Coefficients
! Eddy-induced (GM) advection always used with Griffies; otherwise needs "key_traldf_eiv"
! Value rn_aeiv_0 is ignored unless = 0 with Held-Larichev spatially varying aeiv
! (key_traldf_c2d & key_traldf_eiv & key_orca_r2, _r1 or _r05)
rn_aeiv_0 = 2000. ! eddy induced velocity coefficient [m2/s]
rn_aht_0 = 2000. ! horizontal eddy diffusivity for tracers [m2/s]
rn_ahtb_0 = 0. ! background eddy diffusivity for ldf_iso [m2/s]
! (normally=0; not used with Griffies)

/

If the namelist variable ln traldf grif is set true (and key ldfslp is set), NEMO
updates both active and passive tracers using the Griffies triad representation of
iso-neutral diffusion and the eddy-induced advective skew (GM) fluxes. Otherwise
(by default) the filtered version of Cox’s original scheme is employed (§??). In
the present implementation of the Griffies scheme, the advective skew fluxes are
implemented even if key traldf eiv is not set.

Values of iso-neutral diffusivity and GM coefficient are set as described in §??.
If none of the keys key traldf cNd, N=1,2,3 is set (the default), spatially constant
iso-neutral Al and GM diffusivity Ae are directly set by rn aeih 0 and rn aeiv 0.
If 2D-varying coefficients are set with key traldf c2d then Al is reduced in pro-
portion with horizontal scale factor according to (??) 1. In idealised setups with
key traldf c2d, Ae is reduced similarly, but if key traldf eiv is set in the global
configurations key orca r2, key orca r1 or key orca r05 with key traldf c2d, a
horizontally varying Ae is instead set from the Held-Larichev parameterisation 2

(ldfeiv.F90) and rn aeiv 0 is ignored unless it is zero.
The options specific to the Griffies scheme include :

ln traldf gdia Default value is false. See §??. If this is set true, time-mean eddy-
advective (GM) velocities are output for diagnostic purposes, even though
the eddy advection is accomplished by means of the skew fluxes.

ln traldf iso See §??. If this is set false (the default), then ‘iso-neutral’ mixing is
accomplished within the surface mixed-layer along slopes linearly decrea-
sing with depth from the value immediately below the mixed-layer to zero
(flat) at the surface (§??). This is the same treatment as used in the default im-
plementation §?? ; Fig. ??. Where ln traldf iso is set true, the vertical skew
flux is further reduced to ensure no vertical buoyancy flux, giving an almost

1. Except in global 0.5◦ runs (key orca r05) with key traldf eiv, where Al is set like Ae but
with a minimum vale of 100 m2 s−1

2. In this case, Ae at low latitudes |θ| < 20◦ is further reduced by a factor |f/f20|, where f20 is
the value of f at 20◦ N

E.2. Triad formulation of iso-neutral diffusion 313

pure horizontal diffusive tracer flux within the mixed layer. This is similar to
the tapering suggested by ?. See §??

ln traldf botmix See §??. If this is set false (the default) then the lateral diffusive
fluxes associated with triads partly masked by topography are neglected. If
it is set true, however, then these lateral diffusive fluxes are applied, giving
smoother bottom tracer fields at the cost of introducing diapycnal mixing.

E.2 Triad formulation of iso-neutral diffusion

We have implemented into NEMO a scheme inspired by ?, but formulated wi-
thin the NEMO framework, using scale factors rather than grid-sizes.

E.2.1 The iso-neutral diffusion operator

The iso-neutral second order tracer diffusive operator for small angles between
iso-neutral surfaces and geopotentials is given by (??) :

DlT = −∇·f lT ≡ − 1

e1e2e3

[
∂

∂i

(
f lT1 e2e3

)
+

∂

∂j

(
f lT2 e2e3

)
+

∂

∂k

(
f lT3 e1e2

)]
,

(E.1a)
where the diffusive flux per unit area of physical space

f lT = −AlT< · ∇T, (E.1b)

with < =


1 0 −r1

0 1 −r2

−r1 −r2 r2
1 + r2

2

 and ∇T =


1
e1
∂T
∂i

1
e2
∂T
∂j

1
e3
∂T
∂k

 . (E.1c)

Here (??)

r1 = −e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

= −e3

e1

(
−α∂T

∂i
+ β

∂S

∂i

)(
−α∂T

∂k
+ β

∂S

∂k

)−1

is the i-component of the slope of the iso-neutral surface relative to the computa-
tional surface, and r2 is the j-component.

We will find it useful to consider the fluxes per unit area in i, j, k space ; we
write

Fiso =
(
f lT1 e2e3, f

lT
2 e1e3, f

lT
3 e1e2

)
. (E.2)

Additionally, we will sometimes write the contributions towards the fluxes f and
Fiso from the component Rij of < as fij , Fiso ij , with fij = Rije

−1
i ∂T/∂xi (no

summation) etc.

314 Iso-neutral diffusion and eddy advection using triads

The off-diagonal terms of the small angle diffusion tensor (??), (??) produce
skew-fluxes along the i- and j-directions resulting from the vertical tracer gradient :

f13 = +AlT r1
1

e3

∂T

∂k
, f23 = +AlT r2

1

e3

∂T

∂k
(E.3)

and in the k-direction resulting from the lateral tracer gradients

f31 + f32 =AlT r1
1

e1

∂T

∂i
+AlT r2

1

e1

∂T

∂i
(E.4)

The vertical diffusive flux associated with the 33 component of the small angle
diffusion tensor is

f33 = −AlT (r2
1 + r2

2)
1

e3

∂T

∂k
. (E.5)

Since there are no cross terms involving r1 and r2 in the above, we can consider
the iso-neutral diffusive fluxes separately in the i-k and j-k planes, just adding
together the vertical components from each plane. The following description will
describe the fluxes on the i-k plane.

There is no natural discretization for the i-component of the skew-flux, (??),
as although it must be evaluated at u-points, it involves vertical gradients (both for
the tracer and the slope r1), defined at w-points. Similarly, the vertical skew flux,
(??), is evaluated at w-points but involves horizontal gradients defined at u-points.

E.2.2 The standard discretization

The straightforward approach to discretize the lateral skew flux (??) from tracer
cell i, k to i + 1, k, introduced in 1995 into OPA, (??), is to calculate a mean
vertical gradient at the u-point from the average of the four surrounding vertical
tracer gradients, and multiply this by a mean slope at the u-point, calculated from
the averaged surrounding vertical density gradients. The total area-integrated skew-
flux (flux per unit area in ijk space) from tracer cell i, k to i+ 1, k, noting that the
e3k
i+1/2

in the area e3
k
i+1/2e2i+1/2i

k at the u-point cancels out with the 1/e3
k
i+1/2

associated with the vertical tracer gradient, is then (??)(
F 13
u

)k
i+ 1

2
= Ak

i+ 1
2

e2
k
i+1/2r1

i,k
δkT

i,k
,

where

r1
i,k

= −
e3u

k
i+1/2

e1u
k
i+1/2

δi+1/2[ρ]

δkρ
i,k

,

and here and in the following we drop the lT superscript from AlT for simplicity.

Unfortunately the resulting combination δk•
i,k

of a k average and a k difference
reduces to •k+1−•k−1, so two-grid-point oscillations are invisible to this discreti-
zation of the iso-neutral operator. These computational modes will not be damped

E.2. Triad formulation of iso-neutral diffusion 315

by this operator, and may even possibly be amplified by it. Consequently, applying
this operator to a tracer does not guarantee the decrease of its global-average va-
riance. To correct this, we introduced a smoothing of the slopes of the iso-neutral
surfaces (see §??). This technique works for T and S in so far as they are active tra-
cers (i.e. they enter the computation of density), but it does not work for a passive
tracer.

E.2.3 Expression of the skew-flux in terms of triad slopes

[?] introduce a different discretization of the off-diagonal terms that nicely
solves the problem. They get the skew flux from the products of the vertical gra-

i,k i+1/2,k

i,k+1

i,k–1

i+1,k

i+1,k+1i–1,k+1

i–1,k

i–1,k–1

S1

S3

S2

S4

a

i+1,k–1

i,k

i,k+1
i,k+1/2

i,k–1

i+1,k

i+1,k+1
i–1,k+1

i–1,k

i–1,k–1

S′4

b

i+1,k–1

S′1

S′3

S′2T

w

u

FIGURE E.1: (a) Arrangement of triads Si and tracer gradients to give lateral tracer
flux from box i, k to i + 1, k (b) Triads S′i and tracer gradients to give vertical tracer
flux from box i, k to i, k + 1.

dients at each w-point surrounding the u-point with the corresponding ‘triad’ slope
calculated from the lateral density gradient across the u-point divided by the verti-
cal density gradient at the same w-point as the tracer gradient. See Fig. ??a, where
the thick lines denote the tracer gradients, and the thin lines the corresponding
triads, with slopes s1, . . . s4. The total area-integrated skew-flux from tracer cell
i, k to i+ 1, k

(
F 13
u

)k
i+ 1

2
= Aki+1a1s1δk+ 1

2

[
T i+1

]
/e
k+ 1

2
3wi+1

+Aki a2s2δk+ 1
2

[
T i
]
/e
k+ 1

2
3wi+1

+Aki+1a3s3δk− 1
2

[
T i+1

]
/e
k+ 1

2
3wi+1

+Aki a4s4δk− 1
2

[
T i
]
/e
k+ 1

2
3wi+1

, (E.6)

where the contributions of the triad fluxes are weighted by areas a1, . . . a4, and A
is now defined at the tracer points rather than the u-points. This discretization gives
a much closer stencil, and disallows the two-point computational modes.

The vertical skew flux (??) from tracer cell i, k to i, k+1 at the w-point i, k+ 1
2

is constructed similarly (Fig. ??b) by multiplying lateral tracer gradients from each

316 Iso-neutral diffusion and eddy advection using triads

of the four surrounding u-points by the appropriate triad slope :(
F 31
w

)k+ 1
2

i
= Ak+1

i a′1s
′
1δi− 1

2

[
T k+1

]
/e3u

k+1
i− 1

2

+Ak+1
i a′2s

′
2δi+ 1

2

[
T k+1

]
/e3u

k+1
i+ 1

2

+Aki a
′
3s
′
3δi− 1

2

[
T k
]
/e3u

k
i− 1

2

+Aki a
′
4s
′
4δi+ 1

2

[
T k
]
/e3u

k
i+ 1

2

. (E.7)

We notate the triad slopes si and s′i in terms of the ‘anchor point’ i, k (appearing
in both the vertical and lateral gradient), and the u- and w-points (i+ ip, k), (i, k+
kp) at the centres of the ‘arms’ of the triad as follows (see also Fig. ??) :

k
iR

kp
ip

= −
e3w

k+kp
i

e1u
k
i+ip

(α/β)ki δi+ip [T
k]− δi+ip [Sk]

(α/β)ki δk+kp [T
i]− δk+kp [S

i]
. (E.8)

In calculating the slopes of the local neutral surfaces, the expansion coefficients
α and β are evaluated at the anchor points of the triad 3, while the metrics are
calculated at the u- and w-points on the arms.

i,k+1

i+1,k

i+1,k+1

i+1/2,k

i,k+1/2

i,k

k +1 !1 2
i !1 2

"
#
$

%$

&
'
$

($

k +1 !1 2
i +1 2

"
#
$

%$

&
'
$

($

k +1 2
i +1 2

!
"
#

$#

%
&
#

'#

k !1 2
i +1 !1 2

"
#
$

%$

&
'
$

($

k !1 2
i +1 2

"
#
$

%$

&
'
$

($

k +1 2
i +1 !1 2

"
#
$

%$

&
'
$

($

T

w

u
k +1 2
i !1 2

"
#
$

%$

&
'
$

($

FIGURE E.2: Triad notation for quarter cells. T -cells are inside boxes, while the
i+ 1

2 , k u-cell is shaded in green and the i, k + 1
2 w-cell is shaded in pink.

Each triad {ki
kp
ip
} is associated (Fig. ??) with the quarter cell that is the inter-

section of the i, k T -cell, the i+ ip, k u-cell and the i, k+kp w-cell. Expressing the
slopes si and s′i in (??) and (??) in this notation, we have e.g. s1 = s′1 = k

iR
1/2
1/2.

Each triad slope k
iR

kp
ip

is used once (as an s) to calculate the lateral flux along its
u-arm, at (i + ip, k), and then again as an s′ to calculate the vertical flux along its
w-arm at (i, k+ kp). Each vertical area ai used to calculate the lateral flux and ho-
rizontal area a′i used to calculate the vertical flux can also be identified as the area
across the u- and w-arms of a unique triad, and we notate these areas, similarly to
the triad slopes, as k

iAu
kp
ip

, kiAw
kp
ip

, where e.g. in (??) a1 = k
iAu

1/2
1/2, and in (??)

a′1 = k
iAw

1/2
1/2.

3. Note that in (??) we use the ratio α/β instead of multiplying the temperature derivative by α
and the salinity derivative by β. This is more efficient as the ratio α/β can to be evaluated directly

E.2. Triad formulation of iso-neutral diffusion 317

E.2.4 The full triad fluxes

A key property of iso-neutral diffusion is that it should not affect the (locally
referenced) density. In particular there should be no lateral or vertical density flux.
The lateral density flux disappears so long as the area-integrated lateral diffusive
flux from tracer cell i, k to i+ 1, k coming from the 11 term of the diffusion tensor
takes the form

(
F 11
u

)k
i+ 1

2
= −

(
Ak+1
i a1 +Ak+1

i a2 +Aki a3 +Aki a4

) δi+1/2

[
T k
]

e1u
k
i+1/2

, (E.9)

where the areas ai are as in (??). In this case, separating the total lateral flux, the
sum of (??) and (??), into triad components, a lateral tracer flux

k
i Fu

kp
ip

(T) = −Aki kiAu
kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
(E.10)

can be identified with each triad. Then, because the same metric factors e3w
k+kp
i

and e1u
k
i+ip

are employed for both the density gradients in k
iR

kp
ip

and the tracer
gradients, the lateral density flux associated with each triad separately disappears.

Fu
kp
ip

(ρ) = −αki ki Fu
kp
ip

(T) + βki
k
i Fu

kp
ip

(S) = 0 (E.11)

Thus the total flux
(
F 31
u

)i
i,k+ 1

2
+
(
F 11
u

)i
i,k+ 1

2
from tracer cell i, k to i + 1, k must

also vanish since it is a sum of four such triad fluxes.
The squared slope r2

1 in the expression (??) for the 33 component is also expres-
sed in terms of area-weighted squared triad slopes, so the area-integrated vertical
flux from tracer cell i, k to i, k + 1 resulting from the r2

1 term is(
F 33
w

)k+ 1
2

i
= −

(
Ak+1
i a′1s

′2
1 +Ak+1

i a′2s
′2
2 +Aki a

′
3s
′2
3 +Aki a

′
4s
′2
4

)
δk+ 1

2

[
T i+1

]
,

(E.12)
where the areas a′ and slopes s′ are the same as in (??). Then, separating the total
vertical flux, the sum of (??) and (??), into triad components, a vertical flux

k
i Fw

kp
ip

(T) = Aki
k
iAw

kp
ip

(
k
iR

kp
ip

δi+ip [T
k]

e1u
k
i+ip

−
(
k
iR

kp
ip

)2 δk+kp [T
i]

e3w
k+kp
i

)
(E.13)

= −
(
k
iAw

kp
ip

/
k
iAu

kp
ip

)
k
iR

kp
ip

k
i Fu

kp
ip

(T) (E.14)

may be associated with each triad. Each vertical density flux k
i Fw

kp
ip

(ρ) associated

with a triad then separately disappears (because the lateral flux k
i Fu

kp
ip

(ρ) disap-

pears). Consequently the total vertical density flux
(
F 31
w

)k+ 1
2

i
+
(
F 33
w

)k+ 1
2

i
from

tracer cell i, k to i, k+1 must also vanish since it is a sum of four such triad fluxes.

318 Iso-neutral diffusion and eddy advection using triads

We can explicitly identify (Fig. ??) the triads associated with the si, ai, and s′i,
a′i used in the definition of the u-fluxes and w-fluxes in (??), (??), (??) (??) and
Fig. ?? to write out the iso-neutral fluxes at u- and w-points as sums of the triad
fluxes that cross the u- and w-faces :

Fiso(T) ≡
∑
ip, kp

 k
i+1/2−ipFu

kp
ip

(T)

k+1/2−kp
i Fw

kp
ip

(T)

 . (E.15)

E.2.5 Ensuring the scheme does not increase tracer variance

We now require that this operator should not increase the globally-integrated
tracer variance. Each triad slope k

iR
kp
ip

drives a lateral flux k
i Fu

kp
ip

(T) across the

u-point i + ip, k and a vertical flux k
i Fw

kp
ip

(T) across the w-point i, k + kp. The
lateral flux drives a net rate of change of variance, summed over the two T -points
i+ ip − 1

2 , k and i+ ip + 1
2 , k, of

bT
k
i+ip−1/2

(
∂T

∂t
T

)k
i+ip−1/2

+ bT
k
i+ip+1/2

(
∂T

∂t
T

)k
i+ip+1/2

= −T ki+ip−1/2
k
i Fu

kp
ip

(T) + T ki+ip+1/2
k
i Fu

kp
ip

(T)

= k
i Fu

kp
ip

(T) δi+ip [T
k],

(E.16)

while the vertical flux similarly drives a net rate of change of variance summed
over the T -points i, k + kp − 1

2 (above) and i, k + kp + 1
2 (below) of

k
i Fw

kp
ip

(T) δk+kp [T
i]. (E.17)

The total variance tendency driven by the triad is the sum of these two. Expanding
k
i Fu

kp
ip

(T) and k
i Fw

kp
ip

(T) with (??) and (??), it is

−Aki

{
k
iAu

kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
δi+ip [T

k]

− k
iAw

kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
k
iR

kp
ip
δk+kp [T

i]

}
.

The key point is then that if we require k
iAu

kp
ip

and k
iAw

kp
ip

to be related to a triad

volume kiV
kp
ip

by

k
iV

kp
ip

= k
iAu

kp
ip
e1u

k
i+ip = k

iAw
kp
ip
e3w

k+kp
i , (E.18)

the variance tendency reduces to the perfect square

−Aki kiV
kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)2

≤ 0. (E.19)

E.2. Triad formulation of iso-neutral diffusion 319

Thus, the constraint (??) ensures that the fluxes (??, ??) associated with a given
slope triad k

iR
kp
ip

do not increase the net variance. Since the total fluxes are sums of
such fluxes from the various triads, this constraint, applied to all triads, is sufficient
to ensure that the globally integrated variance does not increase.

The expression (??) can be interpreted as a discretization of the global integral

∂

∂t

∫
1
2T

2 dV =
∫

F · ∇T dV, (E.20)

where, within each triad volume kiV
kp
ip

, the lateral and vertical fluxes/unit area

F =
(
k
i Fu

kp
ip

(T)
/
k
iAu

kp
ip
, ki Fw

kp
ip

(T)
/
k
iAw

kp
ip

)
and the gradient

∇T =
(
δi+ip [T

k]
/
e1u

k
i+ip , δk+kp [T

i]
/
e3w

k+kp
i

)
E.2.6 Triad volumes in Griffes’s scheme and in NEMO

To complete the discretization we now need only specify the triad volumes
k
iV

kp
ip

. ? identify these k
iV

kp
ip

as the volumes of the quarter cells, defined in terms
of the distances between T , u,f and w-points. This is the natural discretization of
(??). The NEMO model, however, operates with scale factors instead of grid sizes,
and scale factors for the quarter cells are not defined. Instead, therefore we simply
choose

k
iV

kp
ip

= 1
4bu

k
i+ip , (E.21)

as a quarter of the volume of the u-cell inside which the triad quarter-cell lies. This
has the nice property that when the slopes R vanish, the lateral flux from tracer cell
i, k to i+ 1, k reduces to the classical form

−Aki+1/2

bu
k
i+1/2

e1u
k
i+ip

δi+1/2[T k]

e1u
k
i+ip

= −Aki+1/2

e1w
k
i+1/2 e1v

k
i+1/2 δi+1/2[T k]

e1u
k
i+1/2

.

(E.22)
In fact if the diffusive coefficient is defined at u-points, so that we employ Aki+ip
instead of Aki in the definitions of the triad fluxes (??) and (??), we can replace
A
k
i+1/2 by Aki+1/2 in the above.

E.2.7 Summary of the scheme

The iso-neutral fluxes at u- and w-points are the sums of the triad fluxes that
cross the u- and w-faces (??) :

Fiso(T) ≡
∑
ip, kp

 k
i+1/2−ipFu

kp
ip

(T)

k+1/2−kp
i Fw

kp
ip

(T)

 , (E.23a)

320 Iso-neutral diffusion and eddy advection using triads

where (??) :

k
i Fu

kp
ip

(T) = −Aki
k
iV

kp
ip

e1u
k
i+ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
, (E.23b)

and

k
i Fw

kp
ip

(T) = Aki

k
iV

kp
ip

e3w
k+kp
i

(
k
iR

kp
ip

δi+ip [T
k]

e1u
k
i+ip

−
(
k
iR

kp
ip

)2 δk+kp [T
i]

e3w
k+kp
i

)
, (E.23c)

with (??)
k
iV

kp
ip

= 1
4bu

k
i+ip . (E.23d)

The divergence of the expression (??) for the fluxes gives the iso-neutral diffu-
sion tendency at each tracer point :

DT
l =

1

bT

∑
ip, kp

{
δi

[
k
i+1/2−ipFu

kp
ip

]
+ δk

[
k+1/2−kp
i Fw

kp
ip

]}
(E.24)

where bT = e1T e2T e3T is the volume of T -cells. The diffusion scheme satisfies
the following six properties :

• horizontal diffusion The discretization of the diffusion operator recovers (??)
the traditional five-point Laplacian in the limit of flat iso-neutral direction :

DT
l =

1

bT
δi

[
e2u e3u

e1u
A
i
δi+1/2[T]

]
when k

iR
kp
ip

= 0 (E.25)

• implicit treatment in the vertical Only tracer values associated with a single
water column appear in the expression (??) for the 33 fluxes, vertical fluxes
driven by vertical gradients. This is of paramount importance since it means
that a time-implicit algorithm can be used to solve the vertical diffusion
equation. This is necessary since the vertical eddy diffusivity associated with
this term,

1

bw

∑
ip, kp

{
k
iV

kp
ip
Aki

(
k
iR

kp
ip

)2
}

=
1

4bw

∑
ip, kp

{
bu
k
i+ip A

k
i

(
k
iR

kp
ip

)2
}
,

(E.26)
(where bw = e1w e2w e3w is the volume of w-cells) can be quite large.

• pure iso-neutral operator The iso-neutral flux of locally referenced potential
density is zero. See (??) and (??).

• conservation of tracer The iso-neutral diffusion conserves tracer content, i.e.∑
i,j,k

{
DT
l bT

}
= 0 (E.27)

This property is trivially satisfied since the iso-neutral diffusive operator is
written in flux form.

E.2. Triad formulation of iso-neutral diffusion 321

• no increase of tracer variance The iso-neutral diffusion does not increase the
tracer variance, i.e. ∑

i,j,k

{
T DT

l bT
}
≤ 0 (E.28)

The property is demonstrated in §?? above. It is a key property for a diffusion
term. It means that it is also a dissipation term, i.e. it dissipates the square
of the quantity on which it is applied. It therefore ensures that, when the dif-
fusivity coefficient is large enough, the field on which it is applied becomes
free of grid-point noise.

• self-adjoint operator The iso-neutral diffusion operator is self-adjoint, i.e.∑
i,j,k

{
S DT

l bT
}

=
∑
i,j,k

{
DS
l T bT

}
(E.29)

In other word, there is no need to develop a specific routine from the adjoint
of this operator. We just have to apply the same routine. This property can
be demonstrated similarly to the proof of the ‘no increase of tracer variance’
property. The contribution by a single triad towards the left hand side of (??),
can be found by replacing δ[T] by δ[S] in (??) and (??). This results in a term
similar to (??),

−Aki kiV
kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)(
δi+ip [S

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [S
i]

e3w
k+kp
i

)
.

(E.30)
This is symmetrical in T and S, so exactly the same term arises from the
discretization of this triad’s contribution towards the RHS of (??).

E.2.8 Treatment of the triads at the boundaries

The triad slope can only be defined where both the grid boxes centred at the
end of the arms exist. Triads that would poke up through the upper ocean surface
into the atmosphere, or down into the ocean floor, must be masked out. See Fig. ??.
Surface layer triads 1

iR
−1/2
1/2 (magenta) and 1

i+1R
−1/2
−1/2 (blue) that require density to

be specified above the ocean surface are masked (Fig. ??a) : this ensures that late-
ral tracer gradients produce no flux through the ocean surface. However, to prevent
surface noise, it is customary to retain the 11 contributions towards the lateral triad
fluxes 1

iFu
−1/2
1/2 and 1

i+1Fu
−1/2
−1/2 ; this drives diapycnal tracer fluxes. Similar com-

ments apply to triads that would intersect the ocean floor (Fig. ??b). Note that both
near bottom triad slopes kiR

1/2
1/2 and k

i+1R
1/2
−1/2 are masked when either of the i, k+1

or i+ 1, k + 1 tracer points is masked, i.e. the i, k + 1 u-point is masked. The as-
sociated lateral fluxes (grey-black dashed line) are masked if ln botmix grif =false,
but left unmasked, giving bottom mixing, if ln botmix grif =true.

The default option ln botmix grif =false is suitable when the bbl mixing option
is enabled (key trabbl, with nn bbl ldf =1), or for simple idealized problems. For

322 Iso-neutral diffusion and eddy advection using triads

setups with topography without bbl mixing, ln botmix grif =true may be necessary.

i+1,1

i,k

i,k–1

i,1

i+1,k

a

b

i,k–1

FIGURE E.3: (a) Uppermost model layer k = 1 with i, 1 and i + 1, 1 tracer points
(black dots), and i + 1/2, 1 u-point (blue square). Triad slopes 1

iR
−1/2
1/2 (magenta)

and 1
i+1R

−1/2
−1/2 (blue) poking through the ocean surface are masked (faded in figure).

However, the lateral 11 contributions towards 1
iFu

−1/2
1/2 and 1

i+1Fu
−1/2
−1/2 (yellow line)

are still applied, giving diapycnal diffusive fluxes.
(b) Both near bottom triad slopes k

iR
1/2
1/2 and k

i+1R
1/2
−1/2 are masked when either of the

i, k+ 1 or i+ 1, k+ 1 tracer points is masked, i.e. the i, k+ 1 u-point is masked. The
associated lateral fluxes (grey-black dashed line) are masked if botmix grif =.false.,
but left unmasked, giving bottom mixing, if botmix grif =.true.

E.2.9 Limiting of the slopes within the interior

As discussed in §??, iso-neutral slopes relative to geopotentials must be boun-
ded everywhere, both for consistency with the small-slope approximation and for
numerical stability [??]. The bound chosen in NEMO is applied to each component
of the slope separately and has a value of 1/100 in the ocean interior. It is of course
relevant to the iso-neutral slopes r̃i = ri + σi relative to geopotentials (here the σi
are the slopes of the coordinate surfaces relative to geopotentials) (??) rather than
the slope ri relative to coordinate surfaces, so we require

|r̃i| ≤ r̃max = 0.01.

E.2. Triad formulation of iso-neutral diffusion 323

and then recalculate the slopes ri relative to coordinates. Each individual triad slope

k
i R̃

kp
ip

= k
iR

kp
ip

+
δi+ip [z

k
T]

e1u
k
i+ip

(E.31)

is limited like this and then the corresponding k
iR

kp
ip

are recalculated and combined
to form the fluxes. Note that where the slopes have been limited, there is now a
non-zero iso-neutral density flux that drives dianeutral mixing. In particular this
iso-neutral density flux is always downwards, and so acts to reduce gravitational
potential energy.

E.2.10 Tapering within the surface mixed layer

Additional tapering of the iso-neutral fluxes is necessary within the surface
mixed layer. When the Griffies triads are used, we offer two options for this.

Linear slope tapering within the surface mixed layer

This is the option activated by the default choice ln triad iso=false. Slopes r̃i
relative to geopotentials are tapered linearly from their value immediately below
the mixed layer to zero at the surface, as described in option (c) of Fig. ??, to values

r̃ML i = − z
h
r̃i|z=−h for z > −h, (E.32a)

and then the ri relative to vertical coordinate surfaces are appropriately adjusted to

rML i = r̃ML i − σi for z > −h. (E.32b)

Thus the diffusion operator within the mixed layer is given by :

DlT = ∇.
(
AlT < ∇T

)
with < =

 1 0 −rML 1

0 1 −rML 2

−rML 1 −rML 2 r2
ML 1 + r2

ML 2


(E.33)

This slope tapering gives a natural connection between tracer in the mixed-
layer and in isopycnal layers immediately below, in the thermocline. It is consistent
with the way the r̃i are tapered within the mixed layer (see §?? below) so as to
ensure a uniform GM eddy-induced velocity throughout the mixed layer. However,
it gives a downwards density flux and so acts so as to reduce potential energy in
the same way as does the slope limiting discussed above in §??.

As in §?? above, the tapering (??) is applied separately to each triad k
i R̃

kp
ip

,

and the k
iR

kp
ip

adjusted. For clarity, we assume z-coordinates in the following ; the

conversion from R to R̃ and back to R follows exactly as described above by (??).

324 Iso-neutral diffusion and eddy advection using triads

1. Mixed-layer depth is defined so as to avoid including regions of weak vertical
stratification in the slope definition. At each i, j (simplified to i in Fig. ??),
we define the mixed-layer by setting the vertical index of the tracer point
immediately below the mixed layer, kML, as the maximum k (shallowest
tracer point) such that the potential density ρ0i,k > ρ0i,k10

+ ∆ρc, where
i, k10 is the tracer gridbox within which the depth reaches 10 m. See the
left side of Fig. ??. We use the k10-gridbox instead of the surface gridbox
to avoid problems e.g. with thin daytime mixed-layers. Currently we use the
same ∆ρc = 0.01 kg m−3 for ML triad tapering as is used to output the
diagnosed mixed-layer depth hML = |zW |kML+1/2, the depth of the w-point
above the i, kML tracer point.

2. We define ‘basal’ triad slopes iRbase
kp
ip

as the slopes of those triads whose
vertical ‘arms’ go down from the i, kML tracer point to the i, kML − 1 tracer
point below. This is to ensure that the vertical density gradients associated
with these basal triad slopes iRbase

kp
ip

are representative of the thermocline.
The four basal triads defined in the bottom part of Fig. ?? are then

iRbase
kp
ip

=
kML−kp−1/2
i Rbase

kp
ip
, (E.34)

with e.g. the green triad

iRbase
−1/2
1/2 = kML

i Rbase
−1/2
1/2 .

The vertical flux associated with each of these triads passes through the w-
point i, kML − 1/2 lying below the i, kML tracer point, so it is this depth

zbase i = zwkML−1/2 (E.35)

(one gridbox deeper than the diagnosed ML depth zML) that sets the h used
to taper the slopes in (??).

3. Finally, we calculate the adjusted triads k
iRML

kp
ip

within the mixed layer, by

multiplying the appropriate iRbase
kp
ip

by the ratio of the depth of the w-point
zwk+kp to zbase i. For instance the green triad centred on i, k

k
iRML

−1/2
1/2 =

zwk−1/2

zbase i
iRbase

−1/2
1/2

and more generally

k
iRML

kp
ip

=
zwk+kp

zbase i
iRbase

kp
ip
. (E.36)

E.2. Triad formulation of iso-neutral diffusion 325

FIGURE E.4: Definition of mixed-
layer depth and calculation of linearly
tapered triads. The figure shows a wa-
ter column at a given i, j (simplified to
i), with the ocean surface at the top.
Tracer points are denoted by bullets,
and black lines the edges of the tracer
cells ; k increases upwards.
We define the mixed-layer by set-
ting the vertical index of the tracer
point immediately below the mixed
layer, kML, as the maximum k (shal-
lowest tracer point) such that ρ0i,k >
ρ0i,k10

+ ∆ρc, where i, k10 is the tra-
cer gridbox within which the depth
reaches 10 m. We calculate the triad
slopes within the mixed layer by li-
nearly tapering them from zero (at
the surface) to the ‘basal’ slopes,
the slopes of the four triads pas-
sing through the w-point i, kML − 1/2

(blue square), iRbase
kp

ip
. Triads with

different ip, kp, denoted by different
colours, (e.g. the green triad ip =
1/2, kp = −1/2) are tapered to the ap-
propriate basal triad.

i,k–1

i,k

i,kML

i,kML –1

i,k10m

10m

Δρ0 > Δρc

zbase = zw kML – 1/2

z = zw k–1/2

z = zw k+1/2

i
kRML1/2!1/2

iRbase 1/2
!1/2

Additional truncation of skew iso-neutral flux components

The alternative option is activated by setting ln triad iso = true. This retains
the same tapered slope rML i described above for the calculation of the 33 term
of the iso-neutral diffusion tensor (the vertical tracer flux driven by vertical tracer
gradients), but replaces the rML i in the skew term by

r∗ML i = r̃2
ML i

/
r̃i − σi, (E.37)

giving a ML diffusive operator

DlT = ∇.
(
AlT < ∇T

)
with < =

 1 0 −r∗ML 1

0 1 −r∗ML 2

−r∗ML 1 −r∗ML 2 r2
ML 1 + r2

ML 2

 .

(E.38)

326 Iso-neutral diffusion and eddy advection using triads

This operator 4 then has the property it gives no vertical density flux, and so does
not change the potential energy. This approach is similar to multiplying the iso-
neutral diffusion coefficient by r̃−2

maxr̃
−2
i for steep slopes, as suggested by ? (see

also ?). Again it is applied separately to each triad k
iR

kp
ip

In practice, this approach gives weak vertical tracer fluxes through the mixed-
layer, as well as vanishing density fluxes. While it is theoretically advantageous
that it does not change the potential energy, it may give a discontinuity between the
fluxes within the mixed-layer (purely horizontal) and just below (along iso-neutral
surfaces).

E.3 Eddy induced advection formulated as a skew flux

E.3.1 The continuous skew flux formulation

When Gent and McWilliams’s [1990] diffusion is used, an additional advection
term is added. The associated velocity is the so called eddy induced velocity, the
formulation of which depends on the slopes of iso- neutral surfaces. Contrary to the
case of iso-neutral mixing, the slopes used here are referenced to the geopotential
surfaces, i.e. (??) is used in z-coordinate, and the sum (??) + (??) in z∗ or s-
coordinates.

The eddy induced velocity is given by :

u∗ = − 1

e3
∂iψ1,

v∗ = − 1

e3
∂jψ2,

w∗ =
1

e1e2
{∂i (e2 ψ1) + ∂j (e1 ψ2)} ,

(E.39a)

where the streamfunctions ψi are given by

ψ1 = Ae r̃1,

ψ2 = Ae r̃2,
(E.39b)

with Ae the eddy induced velocity coefficient, and r̃1 and r̃2 the slopes between
the iso-neutral and the geopotential surfaces.

The traditional way to implement this additional advection is to add it to the
Eulerian velocity prior to computing the tracer advection. This is implemented
if key traldf eiv is set in the default implementation, where ln traldf grif is set
false. This allows us to take advantage of all the advection schemes offered for the
tracers (see §??) and not just a 2nd order advection scheme. This is particularly
useful for passive tracers where positivity of the advection scheme is of paramount
importance.

4. To ensure good behaviour where horizontal density gradients are weak, we in fact follow ?
and set r∗ML i = sgn(r̃i)min(|r̃2

ML i/r̃i|, |r̃i|)− σi.

E.3. Eddy induced advection formulated as a skew flux 327

However, when ln traldf grif is set true, NEMO instead implements eddy in-
duced advection according to the so-called skew form [?]. It is based on a transfor-
mation of the advective fluxes using the non-divergent nature of the eddy induced
velocity. For example in the (i,k) plane, the tracer advective fluxes per unit area in
ijk space can be transformed as follows :

FTeiv =

(
e2 e3 u

∗

e1 e2 w
∗

)
T =

(
−∂k (e2 ψ1) T
+∂i (e2 ψ1) T

)
=

(
−∂k (e2 ψ1 T)
+∂i (e2 ψ1 T)

)
+

(
+e2 ψ1 ∂kT
−e2 ψ1 ∂iT

)
and since the eddy induced velocity field is non-divergent, we end up with the skew
form of the eddy induced advective fluxes per unit area in ijk space :

FTeiv =

(
+e2 ψ1 ∂kT
−e2 ψ1 ∂iT

)
(E.40)

The total fluxes per unit physical area are then

f∗1 =
1

e3
ψ1∂kT

f∗2 =
1

e3
ψ2∂kT

f∗3 = − 1

e1e2
{e2ψ1∂iT + e1ψ2∂jT} .

(E.41)

Note that Eq. (??) takes the same form whatever the vertical coordinate, though of
course the slopes r̃i which define the ψi in (??) are relative to geopotentials. The
tendency associated with eddy induced velocity is then simply the convergence of
the fluxes (??, ??), so

∂T

∂t
= − 1

e1 e2 e3

[
∂

∂i
(e2ψ1∂kT) +

∂

∂j
(e1 ψ2∂kT)− ∂

∂k
(e2ψ1∂iT + e1ψ2∂jT)

]
(E.42)

It naturally conserves the tracer content, as it is expressed in flux form. Since it has
the same divergence as the advective form it also preserves the tracer variance.

E.3.2 The discrete skew flux formulation

The skew fluxes in (??, ??), like the off-diagonal terms (??, ??) of the small
angle diffusion tensor, are best expressed in terms of the triad slopes, as in Fig. ??
and Eqs (??, ??) ; but now in terms of the triad slopes R̃ relative to geopotentials
instead of the R relative to coordinate surfaces. The discrete form of (??) using the
slopes (??) and defining Ae at T -points is then given by :

Feiv(T) ≡
∑
ip, kp

 k
i+1/2−ipSu

kp
ip

(T)

k+1/2−kp
i Sw

kp
ip

(T)

 , (E.43a)

328 Iso-neutral diffusion and eddy advection using triads

where the skew flux in the i-direction associated with a given triad is (??, ??) :

k
i Su

kp
ip

(T) = +1
4Ae

k
i

bu
k
i+ip

e1u ki+ip

k
i R̃

kp
ip

δk+kp [T i]

e3w
k+kp
i

, (E.43b)

and (??) in the k-direction, changing the sign to be consistent with (??) :

k
i Sw

kp
ip

(T) = −1
4Ae

k
i

bu
k
i+ip

e3w
k+kp
i

k
i R̃

kp
ip

δi+ip [Tk]

e1u ki+ip
. (E.43c)

Such a discretisation is consistent with the iso-neutral operator as it uses the
same definition for the slopes. It also ensures the following two key properties.

No change in tracer variance

The discretization conserves tracer variance, i.e. it does not include a diffusive
component but is a ‘pure’ advection term. This can be seen by considering the
fluxes associated with a given triad slope kiR

kp
ip

(T). For, following §?? and (??), the

associated horizontal skew-flux k
i Su

kp
ip

(T) drives a net rate of change of variance,
summed over the two T -points i+ ip − 1

2 , k and i+ ip + 1
2 , k, of

k
i Su

kp
ip

(T) δi+ip [T
k], (E.44)

while the associated vertical skew-flux gives a variance change summed over the
T -points i, k + kp − 1

2 (above) and i, k + kp + 1
2 (below) of

k
i Sw

kp
ip

(T) δk+kp [T
i]. (E.45)

Inspection of the definitions (??, ??) shows that these two variance changes (??,
??) sum to zero. Hence the two fluxes associated with each triad make no net
contribution to the variance budget.

Reduction in gravitational PE

The vertical density flux associated with the vertical skew-flux always has the
same sign as the vertical density gradient ; thus, so long as the fluid is stable (the
vertical density gradient is negative) the vertical density flux is negative (down-
ward) and hence reduces the gravitational PE.

For the change in gravitational PE driven by the k-flux is

ge3w
k+kp
i Sw

kp
ip

(ρ) = ge3w
k+kp
i

[
−αki ki Sw

kp
ip

(T) + βki
k
i Sw

kp
ip

(S)
]
.

Substituting k
i Sw

kp
ip

from (??), gives

= −1
4gAe

k
i bu

k
i+ip

k
i R̃

kp
ip

−αki δi+ip [Tk]+βki δi+ip [Sk]

e1u ki+ip

= +1
4gAe

k
i bu

k
i+ip

(
k
iR

kp
ip

+
δi+ip [zkT]

e1u ki+ip

)
k
iR

kp
ip

−αki δk+kp [T i]+βki δk+kp [Si]

e3w
k+kp
i

,

(E.46)

E.3. Eddy induced advection formulated as a skew flux 329

using the definition of the triad slope kiR
kp
ip

, (??) to express−αki δi+ip [T k]+βki δi+ip [Sk]
in terms of −αki δk+kp [T

i] + βki δk+kp [S
i].

Where the coordinates slope, the i-flux gives a PE change

gδi+ip [z
k
T]
[
−αki ki Su

kp
ip

(T) + βki
k
i Su

kp
ip

(S)
]

= +1
4gAe

k
i bu

k
i+ip

δi+ip [zkT]

e1u ki+ip

(
k
iR

kp
ip

+
δi+ip [zkT]

e1u ki+ip

)
−αki δk+kp [T i]+βki δk+kp [Si]

e3w
k+kp
i

, (E.47)

(using (??)) and so the total PE change (??) + (??) associated with the triad fluxes
is

ge3w
k+kp
i Sw

kp
ip

(ρ) + gδi+ip [z
k
T] ki Su

kp
ip

(ρ)

= +1
4gAe

k
i bu

k
i+ip

(
k
iR

kp
ip

+
δi+ip [zkT]

e1u ki+ip

)2
−αki δk+kp [T i]+βki δk+kp [Si]

e3w
k+kp
i

. (E.48)

Where the fluid is stable, with −αki δk+kp [T
i] + βki δk+kp [S

i] < 0, this PE change
is negative.

E.3.3 Treatment of the triads at the boundaries

Triad slopes ki R̃
kp
ip

used for the calculation of the eddy-induced skew-fluxes are

masked at the boundaries in exactly the same way as are the triad slopes k
iR

kp
ip

used for the iso-neutral diffusive fluxes, as described in §?? and Fig. ??. Thus
surface layer triads 1

i R̃
−1/2
1/2 and 1

i+1R̃
−1/2
−1/2 are masked, and both near bottom triad

slopes ki R̃
1/2
1/2 and k

i+1R̃
1/2
−1/2 are masked when either of the i, k + 1 or i+ 1, k + 1

tracer points is masked, i.e. the i, k+ 1 u-point is masked. The namelist parameter
ln botmix grif has no effect on the eddy-induced skew-fluxes.

E.3.4 Limiting of the slopes within the interior

Presently, the iso-neutral slopes r̃i relative to geopotentials are limited to be less
than 1/100, exactly as in calculating the iso-neutral diffusion, §??. Each individual
triad k

i R̃
kp
ip

is so limited.

E.3.5 Tapering within the surface mixed layer

The slopes r̃i relative to geopotentials (and thus the individual triads ki R̃
kp
ip

) are
always tapered linearly from their value immediately below the mixed layer to zero
at the surface (??), as described in §??. This is option (c) of Fig. ??. This linear
tapering for the slopes used to calculate the eddy-induced fluxes is unaffected by
the value of ln triad iso.

The justification for this linear slope tapering is that, for Ae that is constant or
varies only in the horizontal (the most commonly used options in NEMO : see §??),

330 Iso-neutral diffusion and eddy advection using triads

it is equivalent to a horizontal eiv (eddy-induced velocity) that is uniform within
the mixed layer (??). This ensures that the eiv velocities do not restratify the mixed
layer [??]. Equivantly, in terms of the skew-flux formulation we use here, the linear
slope tapering within the mixed-layer gives a linearly varying vertical flux, and so
a tracer convergence uniform in depth (the horizontal flux convergence is relatively
insignificant within the mixed-layer).

E.3.6 Streamfunction diagnostics

Where the namelist parameter ln traldf gdia=true, diagnosed mean eddy-induced
velocities are output. Each time step, streamfunctions are calculated in the i-k and
j-k planes at uw (integer +1/2 i, integer j, integer +1/2 k) and vw (integer i, in-
teger +1/2 j, integer +1/2 k) points (see Table ??) respectively. We follow [?] and
calculate the streamfunction at a given uw-point from the surrounding four triads
according to :

ψ1
k+1/2
i+1/2 = 1

4

∑
ip, kp

Ae
k+1/2−kp
i+1/2−ip

k+1/2−kp
i+1/2−ip R kp

ip
. (E.49)

The streamfunction ψ1 is calculated similarly at vw points. The eddy-induced ve-
locities are then calculated from the straightforward discretisation of (??) :

u∗ki+1/2 = − 1

e3u
k
i

(
ψ1

k+1/2
i+1/2 − ψ1

k+1/2
i+1/2

)
,

v∗kj+1/2 = − 1

e3v
k
j

(
ψ2

k+1/2
j+1/2 − ψ2

k+1/2
j+1/2

)
,

w∗
k+1/2
i,j =

1

e1te2t

{
e2u

k+1/2
i+1/2 ψ1

k+1/2
i+1/2 − e2u

k+1/2
i−1/2 ψ1

k+1/2
i−1/2 +

e2v
k+1/2
j+1/2 ψ2

k+1/2
j+1/2 − e2v

k+1/2
j−1/2 ψ2

k+1/2
j−1/2

}
,

(E.50)

E.3. Eddy induced advection formulated as a skew flux 331

