MODULE step !!====================================================================== !! *** MODULE step *** !! Time-stepping : manager of the ocean, tracer and ice time stepping !!====================================================================== !! History : OPA ! 1991-03 (G. Madec) Original code !! - ! 1991-11 (G. Madec) !! - ! 1992-06 (M. Imbard) add a first output record !! - ! 1996-04 (G. Madec) introduction of dynspg !! - ! 1996-04 (M.A. Foujols) introduction of passive tracer !! 8.0 ! 1997-06 (G. Madec) new architecture of call !! 8.2 ! 1997-06 (G. Madec, M. Imbard, G. Roullet) free surface !! - ! 1999-02 (G. Madec, N. Grima) hpg implicit !! - ! 2000-07 (J-M Molines, M. Imbard) Open Bondary Conditions !! NEMO 1.0 ! 2002-06 (G. Madec) free form, suppress macro-tasking !! - ! 2004-08 (C. Talandier) New trends organization !! - ! 2005-01 (C. Ethe) Add the KPP closure scheme !! - ! 2005-11 (G. Madec) Reorganisation of tra and dyn calls !! - ! 2006-01 (L. Debreu, C. Mazauric) Agrif implementation !! - ! 2006-07 (S. Masson) restart using iom !! 3.2 ! 2009-02 (G. Madec, R. Benshila) reintroduicing z*-coordinate !! - ! 2009-06 (S. Masson, G. Madec) TKE restart compatible with key_cpl !! 3.3 ! 2010-05 (K. Mogensen, A. Weaver, M. Martin, D. Lea) Assimilation interface !! - ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase + merge TRC-TRA !! 3.4 ! 2011-04 (G. Madec, C. Ethe) Merge of dtatem and dtasal !! ! 2012-07 (J. Simeon, G. Madec. C. Ethe) Online coarsening of outputs !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! stp : OPA system time-stepping !!---------------------------------------------------------------------- USE step_oce ! time stepping definition modules IMPLICIT NONE PRIVATE PUBLIC stp ! called by opa.F90 !! * Substitutions # include "domzgr_substitute.h90" # include "zdfddm_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS #if defined key_agrif SUBROUTINE stp( ) INTEGER :: kstp ! ocean time-step index #else SUBROUTINE stp( kstp ) INTEGER, INTENT(in) :: kstp ! ocean time-step index #endif !!---------------------------------------------------------------------- !! *** ROUTINE stp *** !! !! ** Purpose : - Time stepping of OPA (momentum and active tracer eqs.) !! - Time stepping of LIM (dynamic and thermodynamic eqs.) !! - Tme stepping of TRC (passive tracer eqs.) !! !! ** Method : -1- Update forcings and data !! -2- Update ocean physics !! -3- Compute the t and s trends !! -4- Update t and s !! -5- Compute the momentum trends !! -6- Update the horizontal velocity !! -7- Compute the diagnostics variables (rd,N2, div,cur,w) !! -8- Outputs and diagnostics !!---------------------------------------------------------------------- INTEGER :: jk ! dummy loop indice INTEGER :: indic ! error indicator if < 0 !! --------------------------------------------------------------------- #if defined key_agrif kstp = nit000 + Agrif_Nb_Step() ! IF ( Agrif_Root() .and. lwp) Write(*,*) '---' ! IF (lwp) Write(*,*) 'Grid Number',Agrif_Fixed(),' time step ',kstp # if defined key_iomput IF( Agrif_Nbstepint() == 0 ) CALL iom_swap( "nemo" ) # endif #endif indic = 0 ! reset to no error condition IF( kstp == nit000 ) THEN CALL iom_init( "nemo" ) ! iom_put initialization (must be done after nemo_init for AGRIF+XIOS+OASIS) IF( ln_crs ) CALL iom_init( "nemo_crs" ) ! initialize context for coarse grid ENDIF IF( kstp /= nit000 ) CALL day( kstp ) ! Calendar (day was already called at nit000 in day_init) CALL iom_setkt( kstp - nit000 + 1, "nemo" ) ! say to iom that we are at time step kstp IF( ln_crs ) CALL iom_setkt( kstp - nit000 + 1, "nemo_crs" ) ! say to iom that we are at time step kstp !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Update data, open boundaries, surface boundary condition (including sea-ice) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CALL sbc ( kstp ) ! Sea Boundary Condition (including sea-ice) IF( lk_tide.AND.(kstp /= nit000 )) CALL tide_init ( kstp ) IF( lk_tide ) CALL sbc_tide( kstp ) IF( lk_obc ) CALL obc_dta( kstp ) ! update dynamic and tracer data at open boundaries IF( lk_obc ) CALL obc_rad( kstp ) ! compute phase velocities at open boundaries IF( lk_bdy ) CALL bdy_dta( kstp, time_offset=+1 ) ! update dynamic and tracer data at open boundaries !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Ocean dynamics : ssh, wn, hdiv, rot ! !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CALL ssh_wzv( kstp ) ! after ssh & vertical velocity !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Ocean physics update (ua, va, tsa used as workspace) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CALL bn2( tsb, rn2b ) ! before Brunt-Vaisala frequency CALL bn2( tsn, rn2 ) ! now Brunt-Vaisala frequency ! ! VERTICAL PHYSICS CALL zdf_bfr( kstp ) ! bottom friction ! ! Vertical eddy viscosity and diffusivity coefficients IF( lk_zdfric ) CALL zdf_ric( kstp ) ! Richardson number dependent Kz IF( lk_zdftke ) CALL zdf_tke( kstp ) ! TKE closure scheme for Kz IF( lk_zdfgls ) CALL zdf_gls( kstp ) ! GLS closure scheme for Kz IF( lk_zdfkpp ) CALL zdf_kpp( kstp ) ! KPP closure scheme for Kz IF( lk_zdfcst ) THEN ! Constant Kz (reset avt, avm[uv] to the background value) avt (:,:,:) = rn_avt0 * tmask(:,:,:) avmu(:,:,:) = rn_avm0 * umask(:,:,:) avmv(:,:,:) = rn_avm0 * vmask(:,:,:) ENDIF IF( ln_rnf_mouth ) THEN ! increase diffusivity at rivers mouths DO jk = 2, nkrnf ; avt(:,:,jk) = avt(:,:,jk) + 2.e0 * rn_avt_rnf * rnfmsk(:,:) * tmask(:,:,jk) ; END DO ENDIF IF( ln_zdfevd ) CALL zdf_evd( kstp ) ! enhanced vertical eddy diffusivity IF( lk_zdftmx ) CALL zdf_tmx( kstp ) ! tidal vertical mixing IF( lk_zdfddm .AND. .NOT. lk_zdfkpp ) & & CALL zdf_ddm( kstp ) ! double diffusive mixing CALL zdf_mxl( kstp ) ! mixed layer depth ! write TKE or GLS information in the restart file IF( lrst_oce .AND. lk_zdftke ) CALL tke_rst( kstp, 'WRITE' ) IF( lrst_oce .AND. lk_zdfgls ) CALL gls_rst( kstp, 'WRITE' ) ! ! LATERAL PHYSICS ! IF( lk_ldfslp ) THEN ! slope of lateral mixing CALL eos( tsb, rhd ) ! before in situ density IF( ln_zps ) CALL zps_hde( kstp, jpts, tsb, gtsu, gtsv, & ! Partial steps: before horizontal gradient & rhd, gru , grv ) ! of t, s, rd at the last ocean level IF( ln_traldf_grif ) THEN ! before slope for Griffies operator CALL ldf_slp_grif( kstp ) ELSE CALL ldf_slp( kstp, rhd, rn2b ) ! before slope for Madec operator ENDIF ENDIF #if defined key_traldf_c2d IF( lk_traldf_eiv ) CALL ldf_eiv( kstp ) ! eddy induced velocity coefficient #endif #if defined key_traldf_c3d && key_traldf_smag CALL ldf_tra_smag( kstp ) ! eddy induced velocity coefficient # endif #if defined key_dynldf_c3d && key_dynldf_smag CALL ldf_dyn_smag( kstp ) ! eddy induced velocity coefficient # endif !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! diagnostics and outputs (ua, va, tsa used as workspace) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< IF( lk_floats ) CALL flo_stp( kstp ) ! drifting Floats IF( lk_diahth ) CALL dia_hth( kstp ) ! Thermocline depth (20 degres isotherm depth) IF( lk_diafwb ) CALL dia_fwb( kstp ) ! Fresh water budget diagnostics IF( ln_diaptr ) CALL dia_ptr( kstp ) ! Poleward TRansports diagnostics IF( lk_diadct ) CALL dia_dct( kstp ) ! Transports IF( lk_diaar5 ) CALL dia_ar5( kstp ) ! ar5 diag IF( lk_diaharm ) CALL dia_harm( kstp ) ! Tidal harmonic analysis CALL dia_wri( kstp ) ! ocean model: outputs ! IF( ln_crs ) CALL crs_fld( kstp ) ! ocean model: online field coarsening & output #if defined key_top !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Passive Tracer Model !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CALL trc_stp( kstp ) ! time-stepping #endif !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Active tracers (ua, va used as workspace) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< tsa(:,:,:,:) = 0.e0 ! set tracer trends to zero !write(numout,*) "MAV kt",kstp !write(numout,'(a5,3(1x,f21.18))') "INIn:",tsn(24,11,1,jp_tem),tsn(24,11,1,jp_sal),sshn(24,11) !write(numout,'(a5,3(1x,f21.18))') "INIa:",tsa(24,11,1,jp_tem),tsa(24,11,1,jp_sal),ssha(24,11) IF( ln_asmiau .AND. & & ln_trainc ) CALL tra_asm_inc( kstp ) ! apply tracer assimilation increment CALL tra_sbc ( kstp ) ! surface boundary condition IF( ln_traqsr ) CALL tra_qsr ( kstp ) ! penetrative solar radiation qsr IF( ln_trabbc ) CALL tra_bbc ( kstp ) ! bottom heat flux IF( lk_trabbl ) CALL tra_bbl ( kstp ) ! advective (and/or diffusive) bottom boundary layer scheme IF( ln_tradmp ) CALL tra_dmp ( kstp ) ! internal damping trends IF( lk_bdy ) CALL bdy_tra_dmp( kstp ) ! bdy damping trends CALL tra_adv ( kstp ) ! horizontal & vertical advection !write(numout,'(a5,3(1x,f21.18))') "ADVn:",tsn(24,11,1,jp_tem),tsn(24,11,1,jp_sal),sshn(24,11) !write(numout,'(a5,3(1x,f21.18))') "ADVa:",tsa(24,11,1,jp_tem),tsa(24,11,1,jp_sal),ssha(24,11) IF( lk_zdfkpp ) CALL tra_kpp ( kstp ) ! KPP non-local tracer fluxes CALL tra_ldf ( kstp ) ! lateral mixing !write(numout,'(a5,3(1x,f21.18))') "LDFn:",tsn(24,11,1,jp_tem),tsn(24,11,1,jp_sal),sshn(24,11) !write(numout,'(a5,3(1x,f21.18))') "LDFa:",tsa(24,11,1,jp_tem),tsa(24,11,1,jp_sal),ssha(24,11) #if defined key_agrif IF(.NOT. Agrif_Root()) CALL Agrif_Sponge_tra ! tracers sponge #endif CALL tra_zdf ( kstp ) ! vertical mixing and after tracer fields !do jk=1,jpk !write(numout,'(a5,3(1x,f21.18))') "ZDFn:",tsn(5,10,jk,jp_tem),tsn(5,10,jk,jp_sal),tmask(5,10,jk) !write(numout,'(a5,3(1x,f21.18))') "ZDFa:",tsa(5,10,jk,jp_tem),tsa(5,10,jk,jp_sal),ssha(5,10) !end do IF( ln_dynhpg_imp ) THEN ! semi-implicit hpg (time stepping then eos) IF( ln_zdfnpc ) CALL tra_npc( kstp ) ! update after fields by non-penetrative convection CALL tra_nxt( kstp ) ! tracer fields at next time step CALL eos ( tsa, rhd, rhop ) ! Time-filtered in situ density for hpg computation IF( ln_zps ) CALL zps_hde( kstp, jpts, tsa, gtsu, gtsv, & ! zps: time filtered hor. derivative & rhd, gru , grv ) ! of t, s, rd at the last ocean level ELSE ! centered hpg (eos then time stepping) CALL eos ( tsn, rhd, rhop ) ! now in situ density for hpg computation IF( ln_zps ) CALL zps_hde( kstp, jpts, tsn, gtsu, gtsv, & ! zps: now hor. derivative & rhd, gru , grv ) ! of t, s, rd at the last ocean level !write(numout,'(a5,3(1x,f21.18))') "ZPSn:",tsn(24,11,1,jp_tem),tsn(24,11,1,jp_sal),sshn(24,11) !write(numout,'(a5,3(1x,f21.18))') "ZPSa:",tsa(24,11,1,jp_tem),tsa(24,11,1,jp_sal),ssha(24,11) IF( ln_zdfnpc ) CALL tra_npc( kstp ) ! update after fields by non-penetrative convection CALL tra_nxt( kstp ) ! tracer fields at next time step !write(numout,'(a5,3(1x,f21.18))') "NXTn:",tsn(24,11,1,jp_tem),tsn(24,11,1,jp_sal),sshn(25,11) !write(numout,'(a5,3(1x,f21.18))') "NXTa:",tsa(24,11,1,jp_tem),tsa(24,11,1,jp_sal),ssha(24,11) ENDIF !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Dynamics (tsa used as workspace) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ua(:,:,:) = 0.e0 ! set dynamics trends to zero va(:,:,:) = 0.e0 IF( ln_asmiau .AND. & & ln_dyninc ) CALL dyn_asm_inc( kstp ) ! apply dynamics assimilation increment IF( ln_bkgwri ) CALL asm_bkg_wri( kstp ) ! output background fields IF( ln_neptsimp ) CALL dyn_nept_cor( kstp ) ! subtract Neptune velocities (simplified) IF( lk_bdy ) CALL bdy_dyn3d_dmp(kstp ) ! bdy damping trends CALL dyn_adv( kstp ) ! advection (vector or flux form) CALL dyn_vor( kstp ) ! vorticity term including Coriolis CALL dyn_ldf( kstp ) ! lateral mixing IF( ln_neptsimp ) CALL dyn_nept_cor( kstp ) ! add Neptune velocities (simplified) #if defined key_agrif IF(.NOT. Agrif_Root()) CALL Agrif_Sponge_dyn ! momemtum sponge #endif CALL dyn_hpg( kstp ) ! horizontal gradient of Hydrostatic pressure CALL dyn_bfr( kstp ) ! bottom friction CALL dyn_zdf( kstp ) ! vertical diffusion CALL dyn_spg( kstp, indic ) ! surface pressure gradient CALL dyn_nxt( kstp ) ! lateral velocity at next time step CALL ssh_nxt( kstp ) ! sea surface height at next time step IF( ln_diahsb ) CALL dia_hsb( kstp ) ! - ML - global conservation diagnostics IF( lk_diaobs ) CALL dia_obs( kstp ) ! obs-minus-model (assimilation) diagnostics (call after dynamics update) IF( lrst_oce .AND. ln_diahsb ) CALL dia_hsb_rst( kstp, 'WRITE' ) !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Control and restarts !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CALL stp_ctl( kstp, indic ) IF( indic < 0 ) THEN CALL ctl_stop( 'step: indic < 0' ) CALL dia_wri_state( 'output.abort', kstp ) ENDIF IF( kstp == nit000 ) THEN CALL iom_close( numror ) ! close input ocean restart file CALL FLUSH ( numond ) ! flush output namelist oce CALL FLUSH ( numoni ) ! flush output namelist ice ENDIF IF( lrst_oce ) CALL rst_write ( kstp ) ! write output ocean restart file IF( lk_obc ) CALL obc_rst_write( kstp ) ! write open boundary restart file !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Trends (ua, va, tsa used as workspace) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< IF( nstop == 0 ) THEN IF( lk_trddyn ) CALL trd_dwr( kstp ) ! trends: dynamics IF( lk_trdtra ) CALL trd_twr( kstp ) ! trends: active tracers IF( lk_trdmld ) CALL trd_mld( kstp ) ! trends: Mixed-layer IF( lk_trdvor ) CALL trd_vor( kstp ) ! trends: vorticity budget ENDIF !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Coupled mode !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< IF( lk_cpl ) CALL sbc_cpl_snd( kstp ) ! coupled mode : field exchanges ! #if defined key_iomput IF( kstp == nitend .OR. indic < 0 ) THEN CALL iom_context_finalize( "nemo" ) ! needed for XIOS+AGRIF IF( ln_crs ) CALL iom_context_finalize( "nemo_crs" ) ! ENDIF #endif ! IF( nn_timing == 1 .AND. kstp == nit000 ) CALL timing_reset ! END SUBROUTINE stp !!====================================================================== END MODULE step