MODULE tranxt !!====================================================================== !! *** MODULE tranxt *** !! Ocean active tracers: time stepping on temperature and salinity !!====================================================================== !! History : OPA ! 1991-11 (G. Madec) Original code !! 7.0 ! 1993-03 (M. Guyon) symetrical conditions !! 8.0 ! 1996-02 (G. Madec & M. Imbard) opa release 8.0 !! - ! 1996-04 (A. Weaver) Euler forward step !! 8.2 ! 1999-02 (G. Madec, N. Grima) semi-implicit pressure grad. !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and module !! - ! 2002-11 (C. Talandier, A-M Treguier) Open boundaries !! - ! 2005-04 (C. Deltel) Add Asselin trend in the ML budget !! 2.0 ! 2006-02 (L. Debreu, C. Mazauric) Agrif implementation !! 3.0 ! 2008-06 (G. Madec) time stepping always done in trazdf !! 3.1 ! 2009-02 (G. Madec, R. Benshila) re-introduce the vvl option !! 3.3 ! 2010-04 (M. Leclair, G. Madec) semi-implicit hpg with asselin filter + modified LF-RA !! - ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! tra_nxt : time stepping on tracers !! tra_nxt_fix : time stepping on tracers : fixed volume case !! tra_nxt_vvl : time stepping on tracers : variable volume case !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE sbc_oce ! surface boundary condition: ocean USE zdf_oce ! ??? USE domvvl ! variable volume USE dynspg_oce ! surface pressure gradient variables USE dynhpg ! hydrostatic pressure gradient USE trdmod_oce ! ocean space and time domain variables USE trdtra ! ocean active tracers trends USE phycst USE bdy_oce USE bdytra ! open boundary condition (bdy_tra routine) USE in_out_manager ! I/O manager USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE prtctl ! Print control USE traqsr ! penetrative solar radiation (needed for nksr) #if defined key_agrif USE agrif_opa_update USE agrif_opa_interp #endif USE wrk_nemo ! Memory allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC tra_nxt ! routine called by step.F90 PUBLIC tra_nxt_fix ! to be used in trcnxt PUBLIC tra_nxt_vvl ! to be used in trcnxt REAL(wp) :: rbcp ! Brown & Campana parameters for semi-implicit hpg !! * Substitutions # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO-Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_nxt( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE tranxt *** !! !! ** Purpose : Apply the boundary condition on the after temperature !! and salinity fields, achieved the time stepping by adding !! the Asselin filter on now fields and swapping the fields. !! !! ** Method : At this stage of the computation, ta and sa are the !! after temperature and salinity as the time stepping has !! been performed in trazdf_imp or trazdf_exp module. !! !! - Apply lateral boundary conditions on (ta,sa) !! at the local domain boundaries through lbc_lnk call, !! at the one-way open boundaries (lk_bdy=T), !! at the AGRIF zoom boundaries (lk_agrif=T) !! !! - Update lateral boundary conditions on AGRIF children !! domains (lk_agrif=T) !! !! ** Action : - (tb,sb) and (tn,sn) ready for the next time step !! - (ta,sa) time averaged (t,s) (ln_dynhpg_imp = T) !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step index !! INTEGER :: jk, jn ! dummy loop indices REAL(wp) :: zfact ! local scalars REAL(wp), POINTER, DIMENSION(:,:,:) :: ztrdt, ztrds !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start( 'tra_nxt') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_nxt : achieve the time stepping by Asselin filter and array swap' IF(lwp) WRITE(numout,*) '~~~~~~~' ! rbcp = 0.25_wp * (1._wp + atfp) * (1._wp + atfp) * ( 1._wp - atfp) ! Brown & Campana parameter for semi-implicit hpg ENDIF ! Update after tracer on domain lateral boundaries ! CALL lbc_lnk( tsa(:,:,:,jp_tem), 'T', 1._wp ) ! local domain boundaries (T-point, unchanged sign) CALL lbc_lnk( tsa(:,:,:,jp_sal), 'T', 1._wp ) ! #if defined key_bdy IF( lk_bdy ) CALL bdy_tra( kt ) ! BDY open boundaries #endif #if defined key_agrif CALL Agrif_tra ! AGRIF zoom boundaries #endif ! set time step size (Euler/Leapfrog) IF( neuler == 0 .AND. kt == nit000 ) THEN ; r2dtra(:) = rdttra(:) ! at nit000 (Euler) ELSEIF( kt <= nit000 + 1 ) THEN ; r2dtra(:) = 2._wp* rdttra(:) ! at nit000 or nit000+1 (Leapfrog) ENDIF ! trends computation initialisation IF( l_trdtra ) THEN ! store now fields before applying the Asselin filter CALL wrk_alloc( jpi, jpj, jpk, ztrdt, ztrds ) ztrdt(:,:,:) = tsn(:,:,:,jp_tem) ztrds(:,:,:) = tsn(:,:,:,jp_sal) ENDIF IF( neuler == 0 .AND. kt == nit000 ) THEN ! Euler time-stepping at first time-step (only swap) DO jn = 1, jpts DO jk = 1, jpkm1 tsn(:,:,jk,jn) = tsa(:,:,jk,jn) END DO END DO ELSE ! Leap-Frog + Asselin filter time stepping ! IF( lk_vvl ) THEN ; CALL tra_nxt_vvl( kt, nit000, 'TRA', tsb, tsn, tsa, jpts ) ! variable volume level (vvl) ELSE ; CALL tra_nxt_fix( kt, nit000, 'TRA', tsb, tsn, tsa, jpts ) ! fixed volume level ENDIF ENDIF ! #if defined key_agrif ! Update tracer at AGRIF zoom boundaries IF( .NOT.Agrif_Root() ) CALL Agrif_Update_Tra( kt ) ! children only #endif ! ! trends computation IF( l_trdtra ) THEN ! trend of the Asselin filter (tb filtered - tb)/dt DO jk = 1, jpkm1 zfact = 1.e0_wp / r2dtra(jk) ztrdt(:,:,jk) = ( tsb(:,:,jk,jp_tem) - ztrdt(:,:,jk) ) * zfact ztrds(:,:,jk) = ( tsb(:,:,jk,jp_sal) - ztrds(:,:,jk) ) * zfact END DO CALL trd_tra( kt, 'TRA', jp_tem, jptra_trd_atf, ztrdt ) CALL trd_tra( kt, 'TRA', jp_sal, jptra_trd_atf, ztrds ) CALL wrk_dealloc( jpi, jpj, jpk, ztrdt, ztrds ) END IF ! ! ! control print IF(ln_ctl) CALL prt_ctl( tab3d_1=tsn(:,:,:,jp_tem), clinfo1=' nxt - Tn: ', mask1=tmask, & & tab3d_2=tsn(:,:,:,jp_sal), clinfo2= ' Sn: ', mask2=tmask ) ! ! IF( nn_timing == 1 ) CALL timing_stop('tra_nxt') ! END SUBROUTINE tra_nxt SUBROUTINE tra_nxt_fix( kt, kit000, cdtype, ptb, ptn, pta, kjpt ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_nxt_fix *** !! !! ** Purpose : fixed volume: apply the Asselin time filter and !! swap the tracer fields. !! !! ** Method : - Apply a Asselin time filter on now fields. !! - save in (ta,sa) an average over the three time levels !! which will be used to compute rdn and thus the semi-implicit !! hydrostatic pressure gradient (ln_dynhpg_imp = T) !! - swap tracer fields to prepare the next time_step. !! This can be summurized for tempearture as: !! ztm = tn + rbcp * [ta -2 tn + tb ] ln_dynhpg_imp = T !! ztm = 0 otherwise !! with rbcp=1/4 * (1-atfp^4) / (1-atfp) !! tb = tn + atfp*[ tb - 2 tn + ta ] !! tn = ta !! ta = ztm (NB: reset to 0 after eos_bn2 call) !! !! ** Action : - (tb,sb) and (tn,sn) ready for the next time step !! - (ta,sa) time averaged (t,s) (ln_dynhpg_imp = T) !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: kit000 ! first time step index CHARACTER(len=3), INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) INTEGER , INTENT(in ) :: kjpt ! number of tracers REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: ptb ! before tracer fields REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: ptn ! now tracer fields REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: pta ! tracer trend ! INTEGER :: ji, jj, jk, jn ! dummy loop indices LOGICAL :: ll_tra_hpg ! local logical REAL(wp) :: ztn, ztd ! local scalars !!---------------------------------------------------------------------- IF( kt == kit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_nxt_fix : time stepping', cdtype IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' ENDIF ! IF( cdtype == 'TRA' ) THEN ; ll_tra_hpg = ln_dynhpg_imp ! active tracers case and semi-implicit hpg ELSE ; ll_tra_hpg = .FALSE. ! passive tracers case or NO semi-implicit hpg ENDIF ! DO jn = 1, kjpt ! DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi ztn = ptn(ji,jj,jk,jn) ztd = pta(ji,jj,jk,jn) - 2. * ztn + ptb(ji,jj,jk,jn) ! time laplacian on tracers ! ptb(ji,jj,jk,jn) = ztn + atfp * ztd ! ptb <-- filtered ptn ptn(ji,jj,jk,jn) = pta(ji,jj,jk,jn) ! ptn <-- pta ! IF( ll_tra_hpg ) pta(ji,jj,jk,jn) = ztn + rbcp * ztd ! pta <-- Brown & Campana average END DO END DO END DO ! END DO ! END SUBROUTINE tra_nxt_fix SUBROUTINE tra_nxt_vvl( kt, kit000, cdtype, ptb, ptn, pta, kjpt ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_nxt_vvl *** !! !! ** Purpose : Time varying volume: apply the Asselin time filter !! and swap the tracer fields. !! !! ** Method : - Apply a thickness weighted Asselin time filter on now fields. !! - save in (ta,sa) a thickness weighted average over the three !! time levels which will be used to compute rdn and thus the semi- !! implicit hydrostatic pressure gradient (ln_dynhpg_imp = T) !! - swap tracer fields to prepare the next time_step. !! This can be summurized for tempearture as: !! ztm = ( e3t_n*tn + rbcp*[ e3t_b*tb - 2 e3t_n*tn + e3t_a*ta ] ) ln_dynhpg_imp = T !! /( e3t_n + rbcp*[ e3t_b - 2 e3t_n + e3t_a ] ) !! ztm = 0 otherwise !! tb = ( e3t_n*tn + atfp*[ e3t_b*tb - 2 e3t_n*tn + e3t_a*ta ] ) !! /( e3t_n + atfp*[ e3t_b - 2 e3t_n + e3t_a ] ) !! tn = ta !! ta = zt (NB: reset to 0 after eos_bn2 call) !! !! ** Action : - (tb,sb) and (tn,sn) ready for the next time step !! - (ta,sa) time averaged (t,s) (ln_dynhpg_imp = T) !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: kit000 ! first time step index CHARACTER(len=3), INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) INTEGER , INTENT(in ) :: kjpt ! number of tracers REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: ptb ! before tracer fields REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: ptn ! now tracer fields REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: pta ! tracer trend !! LOGICAL :: ll_tra, ll_tra_hpg, ll_traqsr ! local logical INTEGER :: ji, jj, jk, jn ! dummy loop indices REAL(wp) :: zfact1, ztc_a , ztc_n , ztc_b , ztc_f , ztc_d ! local scalar REAL(wp) :: zfact2, ze3t_b, ze3t_n, ze3t_a, ze3t_f, ze3t_d ! - - !!---------------------------------------------------------------------- ! IF( kt == kit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_nxt_vvl : time stepping', cdtype IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' ENDIF ! IF( cdtype == 'TRA' ) THEN ll_tra = .TRUE. ! active tracers case ll_tra_hpg = ln_dynhpg_imp ! active tracers case and semi-implicit hpg ll_traqsr = ln_traqsr ! active tracers case and solar penetration ELSE ll_tra = .FALSE. ! passive tracers case ll_tra_hpg = .FALSE. ! passive tracers case or NO semi-implicit hpg ll_traqsr = .FALSE. ! active tracers case and NO solar penetration ENDIF ! DO jn = 1, kjpt DO jk = 1, jpkm1 zfact1 = atfp * rdttra(jk) zfact2 = zfact1 / rau0 DO jj = 1, jpj DO ji = 1, jpi ze3t_b = fse3t_b(ji,jj,jk) ze3t_n = fse3t_n(ji,jj,jk) ze3t_a = fse3t_a(ji,jj,jk) ! ! tracer content at Before, now and after ztc_b = ptb(ji,jj,jk,jn) * ze3t_b ztc_n = ptn(ji,jj,jk,jn) * ze3t_n ztc_a = pta(ji,jj,jk,jn) * ze3t_a ! ze3t_d = ze3t_a - 2. * ze3t_n + ze3t_b ztc_d = ztc_a - 2. * ztc_n + ztc_b ! ze3t_f = ze3t_n + atfp * ze3t_d ztc_f = ztc_n + atfp * ztc_d ! IF( ll_tra .AND. jk == 1 ) THEN ! first level only for T & S ze3t_f = ze3t_f - zfact2 * ( emp_b(ji,jj) - emp(ji,jj) ) ztc_f = ztc_f - zfact1 * ( sbc_tsc(ji,jj,jn) - sbc_tsc_b(ji,jj,jn) ) ENDIF IF( ll_traqsr .AND. jn == jp_tem .AND. jk <= nksr ) & ! solar penetration (temperature only) & ztc_f = ztc_f - zfact1 * ( qsr_hc(ji,jj,jk) - qsr_hc_b(ji,jj,jk) ) ze3t_f = 1.e0 / ze3t_f ptb(ji,jj,jk,jn) = ztc_f * ze3t_f ! ptb <-- ptn filtered ptn(ji,jj,jk,jn) = pta(ji,jj,jk,jn) ! ptn <-- pta ! IF( ll_tra_hpg ) THEN ! semi-implicit hpg (T & S only) ze3t_d = 1.e0 / ( ze3t_n + rbcp * ze3t_d ) pta(ji,jj,jk,jn) = ze3t_d * ( ztc_n + rbcp * ztc_d ) ! ta <-- Brown & Campana average ENDIF END DO END DO END DO ! END DO ! END SUBROUTINE tra_nxt_vvl !!====================================================================== END MODULE tranxt