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Abstract / Résumé

The ocean engine of NEMO (Nucleus for European Modelling of the Ocean) is a pri-
mitive equation model adapted to regional and global ocean circulation problems. It is
intended to be a flexible tool for studying the ocean and its interactions with the others
components of the earth climate system over a wide range of space and time scales. Pro-
gnostic variables are the three-dimensional velocity field, a linear or non-linear sea surface
height, the temperature and the salinity. In the horizontal direction, the model uses a cur-
vilinear orthogonal grid and in the vertical direction, a full or partial step z-coordinate, or
s-coordinate, or a mixture of the two. The distribution of variables is a three-dimensional
Arakawa C-type grid. Various physical choices are available to describe ocean physics,
including TKE, GLS and KPP vertical physics. Within NEMO, the ocean is interfaced
with a sea-ice model (LIM v2 and v3), passive tracer and biogeochemical models (TOP)
and, via the OASIS coupler, with several atmospheric general circulation models. It also
support two-way grid embedding via the AGRIF software.

Le moteur océanique de NEMO (Nucleus for European Modelling of the Ocean) est
un modele aux équations primitives de la circulation océanique régionale et globale. Il
se veut un outil flexible pour étudier sur un vaste spectre spatiotemporel I’océan et ses
interactions avec les autres composantes du systeme climatique terrestre. Les variables
pronostiques sont le champ tridimensionnel de vitesse, une hauteur de la mer linéaire
ou non, la temperature et la salinité. La distribution des variables se fait sur une grille
C d’ Arakawa tridimensionnelle utilisant une coordonnée verticale z a niveaux entiers ou
partiels, ou une coordonnée s, ou encore une combinaison des deux. Différents choix sont
proposés pour décrire la physique océanique, incluant notamment des physiques verti-
cales TKE, GLS et KPP. A travers I'infrastructure NEMO, I’océan est interfacé avec des
modeles de glace de mer, de biogéochimie et de traceurs passifs, et, via le coupleur OA-
SIS, a plusieurs modeles de circulation générale atmosphérique. Il supporte également
I’emboitement interactif de maillages via le logiciel AGRIF.






Disclaimer

Like all components of NEMO, the ocean component is developed under the CECILL
license, which is a French adaptation of the GNU GPL (General Public License). Anyone
may use it freely for research purposes, and is encouraged to communicate back to the
NEMO team its own developments and improvements. The model and the present do-
cument have been made available as a service to the community. We cannot certify that
the code and its manual are free of errors. Bugs are inevitable and some have undoub-
tedly survived the testing phase. Users are encouraged to bring them to our attention. The
author assumes no responsibility for problems, errors, or incorrect usage of NEMO.

NEMO reference in papers and other publications is as follows :
Madec, G., and the NEMO team, 2008 : NEMO ocean engine. Note du Pdle de

modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619.

Additional information can be found on nemo-ocean.eu website.


http://www.nemo-ocean.eu/




Introduction

The Nucleus for European Modelling of the Ocean (VEMO ) is a framework of ocean
related engines, namely OPA! for the ocean dynamics and thermodynamics, LIM? for
the sea-ice dynamics and thermodynamics, TOP? for the biogeochemistry (both trans-
port (TRP) and sources minus sinks (LOBSTER, PISCES)*. It is intended to be a flexible
tool for studying the ocean and its interactions with the other components of the earth
climate system (atmosphere, sea-ice, biogeochemical tracers, ...) over a wide range of
space and time scales. This documentation provides information about the physics repre-
sented by the ocean component of NEMO and the rationale for the choice of numerical
schemes and the model design. More specific information about running the model on
different computers, or how to set up a configuration, are found on the NEMO web site
(www.locean-ipsl.upmc.fr/NEMO).

The ocean component of NEMO has been developed from the OPA model, release 8.2,
described in ?. This model has been used for a wide range of applications, both regional or
global, as a forced ocean model and as a model coupled with the atmosphere. A complete
list of references is found on the NEMO web site.

This manual is organised in as follows. Chapter 2 presents the model basics, 7.e.
the equations and their assumptions, the vertical coordinates used, and the subgrid scale
physics. This part deals with the continuous equations of the model (primitive equations,
with potential temperature, salinity and an equation of state). The equations are written
in a curvilinear coordinate system, with a choice of vertical coordinates (z or s, with the
rescaled height coordinate formulation z*, or s*). Momentum equations are formulated in
the vector invariant form or in the flux form. Dimensional units in the meter, kilogram,

'OPA = Océan PArallélisé

2LIM= Louvain)la-neuve Ice Model

3TOP = Tracer in the Ocean Paradigm

“Both LOBSTER and PISCES are not acronyms just name



6 Introduction

second (MKS) international system are used throughout.

The following chapters deal with the discrete equations. Chapter 3 presents the time
domain. The model time stepping environment is a three level scheme in which the ten-
dency terms of the equations are evaluated either centered in time, or forward, or ba-
ckward depending of the nature of the term. Chapter 4 presents the space domain. The
model is discretised on a staggered grid (Arakawa C grid) with masking of land areas.
Vertical discretisation used depends on both how the bottom topography is represented
and whether the free surface is linear or not. Full step or partial step z-coordinate or s-
(terrain-following) coordinate is used with linear free surface (level position are then fixed
in time). In non-linear free surface, the corresponding rescaled height coordinate formula-
tion (z* or s*) is used (the level position then vary in time as a function of the sea surface
heigh). The following two chapters (5 and 6) describe the discretisation of the prognostic
equations for the active tracers and the momentum. Explicit, split-explicit and filtered free
surface formulations are implemented. A number of numerical schemes are available for
momentum advection, for the computation of the pressure gradients, as well as for the
advection of tracers (second or higher order advection schemes, including positive ones).

Surface boundary conditions (chapter 7) can be implemented as prescribed fluxes,
or bulk formulations for the surface fluxes (wind stress, heat, freshwater). The model
allows penetration of solar radiation There is an optional geothermal heating at the ocean
bottom. Within the NEMO system the ocean model is interactively coupled with a sea
ice model (LIM) and with biogeochemistry models (PISCES, LOBSTER). Interactive
coupling to Atmospheric models is possible via the OASIS coupler [?]. Two-way nesting
is also available through an interface to the AGRIF package (Adaptative Grid Refinement
in FORTRAN) [?].

Other model characteristics are the lateral boundary conditions (chapter 8). Global
configurations of the model make use of the ORCA tripolar grid, with special north fold
boundary condition. Free-slip or no-slip boundary conditions are allowed at land bounda-
ries. Closed basin geometries as well as periodic domains and open boundary conditions
are possible.

Physical parameterisations are described in chapters 9 and 10. The model includes an
implicit treatment of vertical viscosity and diffusivity. The lateral Laplacian and biharmo-
nic viscosity and diffusion can be rotated following a geopotential or neutral direction.
There is an optional eddy induced velocity [?] with a space and time variable coefficient
?. The model has vertical harmonic viscosity and diffusion with a space and time variable
coefficient, with options to compute the coefficients with ?, 2, 2, or ? mixing schemes.

Model outputs management and specific online diagnostics are described in chap-
ters 11. The diagnostics includes the output of all the tendencies of the momentum and
tracers equations, the output of tracers tendencies averaged over the time evolving mixed
layer, the output of the tendencies of the barotropic vorticity equation, the computation of
on-line floats trajectories... Chapter 12 describes a tool which reads in observation files
(profile temperature and salinity, sea surface temperature, sea level anomaly and sea ice
concentration) and calculates an interpolated model equivalent value at the observation
location and nearest model timestep. Originally developed of data assimilation, it is a fan-



TAB. 1.1 — Organization of Chapters mimicking the one of the model directories.

Chapter 3 | - model time STePping environment

Chapter4 | DOM | model DOMain

Chapter 5 | TRA | TRAcer equations (potential temperature and salinity)
Chapter 6 | DYN | DYNamic equations (momentum)

Chapter 7 | SBC | Surface Boundary Conditions

Chapter 8 | LBC | Lateral Boundary Conditions (also OBC and BDY)
Chapter 9 | LDF | Lateral DiFfusion (parameterisations)

Chapter 10 | ZDF | vertical (Z) DiFfusion (parameterisations)

Chapter 11 | DIA | I/O and DIAgnostics (also IOM, FLO and TRD)
Chapter 12 | OBS | OBServation and model comparison

Chapter 13 | ASM | ASsiMilation increment

Chapter 14 | SOL | Miscellaneous topics (including solvers)

Chapter 15 | - predefined configurations (including C1D)

tastic tool for model and data comparison. Chapter 13 describes how increments produced
by data assimilation may be applied to the model equations. Finally, Chapter 15 provides
a brief introduction to the pre-defined model configurations (water column model, ORCA
and GYRE families of configurations).

The model is implemented in FORTRAN 90, with preprocessing (C-pre-processor).
It runs under UNIX. It is optimized for vector computers and parallelised by domain
decomposition with MPI. All input and output is done in NetCDF (Network Common
Data Format) with a optional direct access format for output. To ensure the clarity and
readability of the code it is necessary to follow coding rules. The coding rules for OPA
include conventions for naming variables, with different starting letters for different types
of variables (real, integer, parameter. .. ). Those rules are briefly presented in Appendix D
and a more complete document is available on the NEMO web site.

The model is organized with a high internal modularity based on physics. For example,
each trend (i.e., a term in the RHS of the prognostic equation) for momentum and tracers
is computed in a dedicated module. To make it easier for the user to find his way around
the code, the module names follow a three-letter rule. For example, traldf.F90 is a mo-
dule related to the TRAcers equation, computing the Lateral DiFfussion. Furthermore,
modules are organized in a few directories that correspond to their category, as indicated
by the first three letters of their name (Tab. 1.1).

The manual mirrors the organization of the model. After the presentation of the conti-
nuous equations (Chapter 2), the following chapters refer to specific terms of the equations
each associated with a group of modules (Tab. 1.1).



Introduction

Changes between releases

NEMO/OPA, like all research tools, is in perpetual evolution. The present document
describes the OPA version include in the release 3.3 of NEMO. This release differs signi-
ficantly from version 8, documented in ?.

e The main modifications from OPA v8 and NEMO/OPA v3.2 are :

e B AN

10.
11.

12.

13.
14.

15.

16.

. transition to full native FORTRAN 90, deep code restructuring and drastic reduction

of CPP keys ;

introduction of partial step representation of bottom topography [??7?];

. partial reactivation of a terrain-following vertical coordinate (s- and hybrid s-z)

with the addition of several options for pressure gradient computation > ;

more choices for the treatment of the free surface : full explicit, split-explicit or
filtered schemes, and suppression of the rigid-lid option ;

non linear free surface associated with the rescaled height coordinate z* or s ;
additional schemes for vector and flux forms of the momentum advection ;
additional advection schemes for tracers ;

implementation of the AGRIF package (Adaptative Grid Refinement in FORTRAN)
(713

online diagnostics : tracers trend in the mixed layer and vorticity balance ;
rewriting of the I/O management with the use of an I/O server ;

generalized ocean-ice-atmosphere-CO2 coupling interface, interfaced with OASIS
3 coupler;

surface module (SBC) that simplify the way the ocean is forced and include two
bulk formulea (CLIO and CORE) and which includes an on-the-fly interpolation
of input forcing fields ;

RGB light penetration and optional use of ocean color

major changes in the TKE schemes : it now includes a Langmuir cell parameteriza-
tion [?], the ? surface wave breaking parameterization, and has a time discretization
which is energetically consistent with the ocean model equations [??];

tidal mixing parametrisation (bottom intensification) + Indonesian specific tidal
mixing [?];

introduction of LIM-3, the new Louvain-la-Neuve sea-ice model (C-grid rheology
and new thermodynamics including bulk ice salinity) [??]

SPartial support of s-coordinate : there is presently no support for neutral physics in s- co-
ordinate and for the new options for horizontal pressure gradient computation with a non-linear
equation of state.



e The main modifications from NEMO/OPA v3.2 and v3.3 are :

p—

. introduction of a modified leapfrog-Asselin filter time stepping scheme [?] ;

additional scheme for iso-neutral mixing [?], although it is still a "work in pro-
gress”;

3. arewriting of the bottom boundary layer scheme, following ? ;

4. addition of a Generic Length Scale vertical mixing scheme, following ? ;

addition of the atmospheric pressure as an external forcing on both ocean and sea-
ice dynamics ;

6. addition of a diurnal cycle on solar radiation [?] ;

7. river runoffs added through a non-zero depth, and having its own temperature and

10.

11.
12.
13.
14.
15.
16.
17.

18.

salinity ;

. CORE II normal year forcing set as the default forcing of ORCA2-LIM configura-

tion ;

generalisation of the use of fldread. F90 for all input fields (ocean climatology, sea-
ice damping...) ;

addition of an on-line observation and model comparison (thanks to NEMOVAR
project) ;

optional application of an assimilation increment (thanks to NEMOVAR project) ;
coupling interface adjusted for WRF atmospheric model ;

C-grid ice rheology now available fro both LIM-2 and LIM-3 [?];

LIM-3 ice-ocean momentum coupling applied to LIM-2 ;

a deep re-writting and simplification of the off-line tracer component (OFF_SRC) ;
the merge of passive and active advection and diffusion modules ;

Use of the Flexible Configuration Manager (FCM) to build configurations, generate
the Makefile and produce the executable ;

Linear-tangent and Adjoint component (TAM) added, phased with v3.0

In addition, several minor modifications in the coding have been introduced with the
constant concern of improving the model performance.
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Primitive Equations

Vector Invariant Formulation

The ocean is a fluid that can be described to a good approximation by the primitive
equations, ¢.e. the Navier-Stokes equations along with a nonlinear equation of state which
couples the two active tracers (temperature and salinity) to the fluid velocity, plus the
following additional assumptions made from scale considerations :

(1) spherical earth approximation : the geopotential surfaces are assumed to be spheres
so that gravity (local vertical) is parallel to the earth’s radius

(2) thin-shell approximation : the ocean depth is neglected compared to the earth’s
radius

(3) turbulent closure hypothesis : the turbulent fluxes (which represent the effect of
small scale processes on the large-scale) are expressed in terms of large-scale features

(4) Boussinesq hypothesis : density variations are neglected except in their contribu-
tion to the buoyancy force

(5) Hydrostatic hypothesis : the vertical momentum equation is reduced to a balance
between the vertical pressure gradient and the buoyancy force (this removes convective
processes from the initial Navier-Stokes equations and so convective processes must be
parameterized instead)

(6) Incompressibility hypothesis : the three dimensional divergence of the velocity
vector is assumed to be zero.

Because the gravitational force is so dominant in the equations of large-scale mo-
tions, it is useful to choose an orthogonal set of unit vectors (i,j,Kk) linked to the earth such
that k is the local upward vector and (i,j) are two vectors orthogonal to k, ¢.e. tangent
to the geopotential surfaces. Let us define the following variables : U the vector velocity,
U = U, +w Kk (the subscript h denotes the local horizontal vector, i.e. over the (i,j) plane),
T the potential temperature, S the salinity, p the in situ density. The vector invariant form
of the primitive equations in the (i,j,k) vector system provides the following six equa-
tions (namely the momentum balance, the hydrostatic equilibrium, the incompressibility
equation, the heat and salt conservation equations and an equation of state) :

U 1 1
86th = [(VxU)x U+ V(U)| ~/kxU,-—Vip+DY+FY (21a)
h Po
dp
o _ _ 2.1b
0z Py (-10)

V-U=0 (2.1¢)
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or

= —V - (TU)+ DT + FT (2.1d)

dS

E:—V'(SU)—FDS-FFS (2.1e)
p=p(T,S,p) (2.19)

where V is the generalised derivative vector operator in (i, j, k) directions, ¢ is the time, z
is the vertical coordinate, p is the in situ density given by the equation of state (2.1f), p, is
a reference density, p the pressure, f = 2€2 - k is the Coriolis acceleration (where €2 is the
Earth’s angular velocity vector), and g is the gravitational acceleration. DY, DT and D*
are the parameterisations of small-scale physics for momentum, temperature and salinity,
and FU, FT and F° surface forcing terms. Their nature and formulation are discussed in
§2.5 and page §2.1.2.

Boundary Conditions

An ocean is bounded by complex coastlines, bottom topography at its base and an
air-sea or ice-sea interface at its top. These boundaries can be defined by two surfaces,
z = —H(i,j) and z = n(i, j, k,t), where H is the depth of the ocean bottom and 7 is
the height of the sea surface. Both H and n are usually referenced to a given surface,
z = 0, chosen as a mean sea surface (Fig. 2.1). Through these two boundaries, the ocean
can exchange fluxes of heat, fresh water, salt, and momentum with the solid earth, the
continental margins, the sea ice and the atmosphere. However, some of these fluxes are so
weak that even on climatic time scales of thousands of years they can be neglected. In the
following, we briefly review the fluxes exchanged at the interfaces between the ocean and
the other components of the earth system.

Land - ocean interface : the major flux between continental margins and the ocean is
a mass exchange of fresh water through river runoff. Such an exchange modifies
the sea surface salinity especially in the vicinity of major river mouths. It can be
neglected for short range integrations but has to be taken into account for long term
integrations as it influences the characteristics of water masses formed (especially
at high latitudes). It is required in order to close the water cycle of the climate
system. It is usually specified as a fresh water flux at the air-sea interface in the
vicinity of river mouths.

Solid earth - ocean interface : heat and salt fluxes through the sea floor are small, ex-
cept in special areas of little extent. They are usually neglected in the model !. The

'Tn fact, it has been shown that the heat flux associated with the solid Earth cooling (i.e.the
geothermal heating) is not negligible for the thermohaline circulation of the world ocean (see
5.4.3).
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FIG. 2.1 — The ocean is bounded by two surfaces, z = —H (i, j) and z = n(1, j, t),
where H is the depth of the sea floor and 7 the height of the sea surface. Both H
and 7 are referenced to z = 0.

boundary condition is thus set to no flux of heat and salt across solid boundaries.
For momentum, the situation is different. There is no flow across solid boundaries,
i.e. the velocity normal to the ocean bottom and coastlines is zero (in other words,
the bottom velocity is parallel to solid boundaries). This kinematic boundary condi-
tion can be expressed as :

w = —Uh : Vh (H) (2.2)

In addition, the ocean exchanges momentum with the earth through frictional pro-
cesses. Such momentum transfer occurs at small scales in a boundary layer. It must
be parameterized in terms of turbulent fluxes using bottom and/or lateral boundary
conditions. Its specification depends on the nature of the physical parameterisation
used for DY in (2.1a). It is discussed in §2.5.1, page 31.

Atmosphere - ocean interface : the kinematic surface condition plus the mass flux of
fresh water PE (the precipitation minus evaporation budget) leads to :

w=—"+Upl_, Vi(n)+P—-F (2.3)

The dynamic boundary condition, neglecting the surface tension (which removes
capillary waves from the system) leads to the continuity of pressure across the
interface z = 7. The atmosphere and ocean also exchange horizontal momentum
(wind stress), and heat.

Sea ice - ocean interface : the ocean and sea ice exchange heat, salt, fresh water and
momentum. The sea surface temperature is constrained to be at the freezing point



2.2
2.2.1

2.2.2

2.2. The Horizontal Pressure Gradient 15

at the interface. Sea ice salinity is very low (~ 4 — 6 psu) compared to those of the
ocean (~ 34 psu). The cycle of freezing/melting is associated with fresh water and
salt fluxes that cannot be neglected.

The Horizontal Pressure Gradient

Pressure Formulation

The total pressure at a given depth z is composed of a surface pressure p; at a refe-
rence geopotential surface (z = 0) and a hydrostatic pressure pj, such that : p(i, 7, k,t) =
ps(i,7,t) + pr(i, 4, k, t). The latter is computed by integrating (2.1b), assuming that pres-
sure in decibars can be approximated by depth in meters in (2.1f). The hydrostatic pressure

is then given by :
s=0

Dh (i,j,Z,t) = / g p(T7 Sa §) dg (24)
S

=z
Two strategies can be considered for the surface pressure term : (a) introduce of a new
variable 7, the free-surface elevation, for which a prognostic equation can be established
and solved ; (b) assume that the ocean surface is a rigid lid, on which the pressure (or its
horizontal gradient) can be diagnosed. When the former strategy is used, one solution of
the free-surface elevation consists of the excitation of external gravity waves. The flow
is barotropic and the surface moves up and down with gravity as the restoring force.
The phase speed of such waves is high (some hundreds of metres per second) so that
the time step would have to be very short if they were present in the model. The latter
strategy filters out these waves since the rigid lid approximation implies = 0, .e. the
sea surface is the surface z = 0. This well known approximation increases the surface
wave speed to infinity and modifies certain other longwave dynamics (e.g. barotropic
Rossby or planetary waves). The rigid-lid hypothesis is an obsolescent feature in modern
OGCMs. It has been available until the release 3.1 of NEMO , and it has been removed in
release 3.2 and followings. Only the free surface formulation is now described in the this
document (see the next sub-section).

Free Surface Formulation

In the free surface formulation, a variable 7, the sea-surface height, is introduced
which describes the shape of the air-sea interface. This variable is solution of a prognostic
equation which is established by forming the vertical average of the kinematic surface
condition (2.2) :

on

5= DP+P-E where D =V - [(H +1) U] (2.5)

and using (2.1b) the surface pressure is given by : ps = p g 7.
Allowing the air-sea interface to move introduces the external gravity waves (EGWs)
as a class of solution of the primitive equations. These waves are barotropic because of
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hydrostatic assumption, and their phase speed is quite high. Their time scale is short with
respect to the other processes described by the primitive equations.

Two choices can be made regarding the implementation of the free surface in the
model, depending on the physical processes of interest.

o If one is interested in EGWs, in particular the tides and their interaction with the
baroclinic structure of the ocean (internal waves) possibly in shallow seas, then a non
linear free surface is the most appropriate. This means that no approximation is made in
(2.5) and that the variation of the ocean volume is fully taken into account. Note that in
order to study the fast time scales associated with EGWs it is necessary to minimize time
filtering effects (use an explicit time scheme with very small time step, or a split-explicit
scheme with reasonably small time step, see §6.5.1 or §6.5.2.

e If one is not interested in EGW but rather sees them as high frequency noise, it
is possible to apply an explicit filter to slow down the fastest waves while not altering
the slow barotropic Rossby waves. If further, an approximative conservation of heat and
salt contents is sufficient for the problem solved, then it is sufficient to solve a linearized
version of (2.5), which still allows to take into account freshwater fluxes applied at the
ocean surface [?].

The filtering of EGWs in models with a free surface is usually a matter of discre-
tisation of the temporal derivatives, using the time splitting method [??] or the implicit
scheme [?]. In NEMO , we use a slightly different approach developed by ? : the damping
of EGWs is ensured by introducing an additional force in the momentum equation. (2.1a)
becomes :

ouy, - ~

5 M- gV(pn) —g TV (pom) (2.6)
where T, is a parameter with dimensions of time which characterizes the force, p = p/p,
is the dimensionless density, and M represents the collected contributions of the Coriolis,
hydrostatic pressure gradient, non-linear and viscous terms in (2.1a).

The new force can be interpreted as a diffusion of vertically integrated volume flux
divergence. The time evolution of D is thus governed by a balance of two terms, —g A 1
and g T. A D, associated with a propagative regime and a diffusive regime in the temporal
spectrum, respectively. In the diffusive regime, the EGWs no longer propagate, i.e. they
are stationary and damped. The diffusion regime applies to the modes shorter than 7. For
longer ones, the diffusion term vanishes. Hence, the temporally unresolved EGWs can
be damped by choosing T, > At. ? demonstrate that (2.6) can be integrated with a leap
frog scheme except the additional term which has to be computed implicitly. This is not
surprising since the use of a large time step has a necessarily numerical cost. Two gains
arise in comparison with the previous formulations. Firstly, the damping of EGWs can be
quantified through the magnitude of the additional term. Secondly, the numerical scheme
does not need any tuning. Numerical stability is ensured as soon as 7. > At.

When the variations of free surface elevation are small compared to the thickness of
the first model layer, the free surface equation (2.5) can be linearized. As emphasized by ?
the linearization of (2.5) has consequences on the conservation of salt in the model. With
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the nonlinear free surface equation, the time evolution of the total salt content is

0 _ on
Dn S

where S is the salinity, and the total salt is integrated over the whole ocean volume D,
bounded by the time-dependent free surface. The right hand side (which is an integral
over the free surface) vanishes when the nonlinear equation (2.5) is satisfied, so that the
salt is perfectly conserved. When the free surface equation is linearized, ? show that the
total salt content integrated in the fixed volume D (bounded by the surface z = 0) is no

longer conserved :
0 B on
D S

The right hand side of (2.8) is small in equilibrium solutions [?]. It can be significant
when the freshwater forcing is not balanced and the globally averaged free surface is
drifting. An increase in sea surface height n results in a decrease of the salinity in the
fixed volume D. Even in that case though, the total salt integrated in the variable volume
D, varies much less, since (2.8) can be rewritten as

0 0 oS
&/dezﬁt /de+/5nds = nads 2.9)
Dn D S S

Although the total salt content is not exactly conserved with the linearized free sur-
face, its variations are driven by correlations of the time variation of surface salinity with
the sea surface height, which is a negligible term. This situation contrasts with the case
of the rigid lid approximation in which case freshwater forcing is represented by a virtual
salt flux, leading to a spurious source of salt at the ocean surface [??].
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Curvilinear z-coordinate System

Tensorial Formalism

In many ocean circulation problems, the flow field has regions of enhanced dyna-
mics (i.e. surface layers, western boundary currents, equatorial currents, or ocean fronts).
The representation of such dynamical processes can be improved by specifically increa-
sing the model resolution in these regions. As well, it may be convenient to use a lateral
boundary-following coordinate system to better represent coastal dynamics. Moreover,
the common geographical coordinate system has a singular point at the North Pole that
cannot be easily treated in a global model without filtering. A solution consists of introdu-
cing an appropriate coordinate transformation that shifts the singular point onto land [??].
As a consequence, it is important to solve the primitive equations in various curvilinear
coordinate systems. An efficient way of introducing an appropriate coordinate transform
can be found when using a tensorial formalism. This formalism is suited to any multidi-
mensional curvilinear coordinate system. Ocean modellers mainly use three-dimensional
orthogonal grids on the sphere (spherical earth approximation), with preservation of the
local vertical. Here we give the simplified equations for this particular case. The general
case is detailed by ? in their survey of the conservation laws of fluid dynamics.

Let (i,j,k) be a set of orthogonal curvilinear coordinates on the sphere associated with
the positively oriented orthogonal set of unit vectors (i,j,Kk) linked to the earth such that k
is the local upward vector and (i,j) are two vectors orthogonal to k, ¢.e. along geopotential
surfaces (Fig.2.2). Let (A, ¢, 2) be the geographical coordinate system in which a position
is defined by the latitude (4, 7), the longitude A(4, j) and the distance from the centre of
the earth a + z(k) where a is the earth’s radius and z the altitude above a reference sea
level (Fig.2.2). The local deformation of the curvilinear coordinate system is given by e,
es and eg, the three scale factors :

- 11/2

Q 2 N aﬁ 2
9i % di

- 11/2

NN (00
8jcoscp 3j

e1 = (a+2)

e2 = (a+ 2) (2.10)

_ (9=
<=\ ok

Since the ocean depth is far smaller than the earth’s radius, a + 2, can be replaced
by a in (2.10) (thin-shell approximation). The resulting horizontal scale factors e;, e are
independent of k£ while the vertical scale factor is a single function of k as k is parallel
to z. The scalar and vector operators that appear in the primitive equations (Egs. (2.1a) to
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A

FIG. 2.2 — the geographical coordinate system (\, ¢, z) and the curvilinear coor-
dinate system (i,j,k).

(2.1f)) can be written in the tensorial form, invariant in any orthogonal horizontal curvili-
near coordinate system transformation :

Log, 104, 10

_ L 1 LS 2.11

Vq €1 01 +62(9j']+€38k ( a)
1 8 (62 al) 8 (61 ag) 1 6a3

A= — | = 2.11

v €1 €9 [ 01 + 8] + €3 ok ( b)
Ux Ao |10 L0, [10a 10as]
€2 a] €3 ok €3 ok €1 01
(2.11c)
1 8 (62(12) _ 8 (61(11) K
e1e9 01 dj

Ag=V-(Vq) (2.11d)
AA =V (V- -A)—Vx(VxA) (2.11e)
where ¢ is a scalar quantity and A = (aj,a2,as3) a vector in the (7, j, k) coordinate

system.
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Continuous Model Equations

In order to express the Primitive Equations in tensorial formalism, it is necessary to
compute the horizontal component of the non-linear and viscous terms of the equation
using (2.11a)) to (2.11e). Letus set U = (u, v, w) = Uy, +w Kk, the velocity in the (4, j, k)
coordinate system and define the relative vorticity ¢ and the divergence of the horizontal
velocity field y, by :

_ 1 [d(e2v) 9(e1u)
ele [ i 9j } 212
1 [0(equ)  O(erv)
e1ey [ 01 * dj ] (2.13)

Using the fact that the horizontal scale factors e; and ey are independent of k£ and that
e3 is a function of the single variable k, the nonlinear term of (2.1a) can be transformed
as follows :

[(V x U) x U+ %V (UZ)}

h
10u _ 1owl|, _ 1 O(u’+v*+w?
_ [egak elai}w v 41 a%
o\ cu—[row_1a] ., 2 | 1 o(wtv4w?)
ez 0j e3 Ok ea 07

1 8<u2+v2)

9 wdw _ 1 dw?
_<—CU>+1 e o +1<w3};)_ er i  Zer O
Cu ) éa(uﬂ) es \ w9t wow 1 dw

a; e2 07 2ex 0j

The last term of the right hand side is obviously zero, and thus the nonlinear term of
(2.1a) is written in the (3, j, k) coordinate system :

1 0Uy

1
=Ck xU; + -V U? + —w—— .
Ck x Uy 5 h( h) egw A (2.14)

1
[(V x U) x U+ §V (UQ)]
h
This is the so-called vector invariant form of the momentum advection term. For some
purposes, it can be advantageous to write this term in the so-called flux form, i.e. to write
it as the divergence of fluxes. For example, the first component of (2.14) (the ¢-component)
is transformed as follows :

[(V x U) x U+ 3V (U?)] :{HLB(@%“’MQ%

7 2e1

=1 (—va(f;i”) + va<§;j")) + ol (e ut ey v @) + L (w Q)

€1 €2 €1€2

1 . 2 deg. v deruv) v
= { (v o +62vai>+(7aj €1 Uy;

€1 €2

(o) — 2e) 4 epufet 4+ L (20— uB)
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1 O(e2uu) O(e1uw) 1 O(wu)
_6162( 282 + c}?j >+a ok

Ay, (0er) e} _, Ole2w) ) 1 dw L (_,20e
+eleg( “( 9, Va5 U=z okt oe | TV

ejes

as V- U = 0 (incompressibility) it comes :

=V (Uu) + - (v%—u%—?) (—v)

ejes

The flux form of the momentum advection term is therefore given by :

(VxU)x U+ 1V (UQ)}
2 h

Uu 1 862 861
_v. (22 %)k 2.1
\Y <UU>+€162 <Ué7i u@j) x Uy, (2.15)

The flux form has two terms, the first one is expressed as the divergence of momentum
fluxes (hence the flux form name given to this formulation) and the second one is due to
the curvilinear nature of the coordinate system used. The latter is called the metric term
and can be viewed as a modification of the Coriolis parameter :

fofa <a€2— ael) (2.16)

€1 €9 v 01 uaij

Note that in the case of geographical coordinate, i.e. when (i,7) — (A, ) and
(e1,e2) — (a cosp,a), we recover the commonly used modification of the Coriolis pa-
rameter f — f + (u/a) tan¢.

To sum up, the curvilinear z-coordinate equations solved by the ocean model can be
written in the following tensorial formalism :

e Vector invariant form of the momentum equations :

ou 2 o 1 Ou
5 = T+ v g (" +07) T
_ig <ps+ph>—|—Dg—|—FE
e1 01 Po
(2.17a)
ov _ 190 21, v
E (C+f) 2628 ( + ) €3 ok
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o flux form of the momentum equations :

ot N €1 €2 0i 8_]

1 (a(eggw N 8(611)11,)) 10(wu)

e1 e 01 aj es Ok
_ig <ps+ph> + DY+ FY (2.18a)
e1 01 Do
ov _ L (22 da
ot e1 e v 01 Y 0j b
1 0(eauv) d(ejvwv) 190(wo)
e1 €2 0i dj es Ok
_ 19 <p5 “’h) + DY+ FY (2.18b)
ez 0j Po

where (, the relative vorticity, is given by (2.12) and ps, the surface pressure, is given by :

pPgn standard free surface

Ds = (2.19)

0
pPgn+ popt (,717 filtered free surface
with 7 is solution of (2.5)
The vertical velocity and the hydrostatic pressure are diagnosed from the following
equations :

ow
opn
ok~ Pyes (2.21)

where the divergence of the horizontal velocity, x is given by (2.13).

e tracer equations :

or 1 [d(eTu) d(eaTv)] 19(Tw) T T
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p=p(T,5,2(k)) (2.24)

The expression of DY, D% and DT depends on the subgrid scale parameterisation
used. It will be defined in §2.5.1. The nature and formulation of FU, FT and F%, the
surface forcing terms, are discussed in Chapter 7.
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Curvilinear generalised vertical coordinate System

The ocean domain presents a huge diversity of situation in the vertical. First the ocean
surface is a time dependent surface (moving surface). Second the ocean floor depends
on the geographical position, varying from more than 6,000 meters in abyssal trenches
to zero at the coast. Last but not least, the ocean stratification exerts a strong barrier to
vertical motions and mixing. Therefore, in order to represent the ocean with respect to the
first point a space and time dependent vertical coordinate that follows the variation of the
sea surface height e.g. an z*-coordinate ; for the second point, a space variation to fit the
change of bottom topography e.g. a terrain-following or o-coordinate ; and for the third
point, one will be tempted to use a space and time dependent coordinate that follows the
isopycnal surfaces, e.g. an isopycnic coordinate.

In order to satisfy two or more constrains one can even be tempted to mixed these
coordinate systems, as in HYCOM (mixture of z-coordinate at the surface, isopycnic
coordinate in the ocean interior and o at the ocean bottom) [?] or OPA (mixture of z-
coordinate in vicinity the surface and steep topography areas and o-coordinate elsewhere)
[?] among others.

In fact one is totally free to choose any space and time vertical coordinate by introdu-
cing an arbitrary vertical coordinate :

s =s(i,j,k,t) (2.25)

with the restriction that the above equation gives a single-valued monotonic relationship
between s and k, when ¢, j and ¢ are held fixed. (2.25) is a transformation from the
(1,4, k,t) coordinate system with independent variables into the (i, 7, s,t) generalised
coordinate system with s depending on the other three variables through (2.25). This
so-called generalised vertical coordinate [?] is in fact an Arbitrary Lagrangian—Eulerian
(ALE) coordinate. Indeed, choosing an expression for s is an arbitrary choice that deter-
mines which part of the vertical velocity (defined from a fixed referential) will cross the
levels (Eulerian part) and which part will be used to move them (Lagrangian part). The
coordinate is also sometime referenced as an adaptive coordinate [?], since the coordi-
nate system is adapted in the course of the simulation. Its most often used implementation
is via an ALE algorithm, in which a pure lagrangian step is followed by regridding and
remapping steps, the later step implicitly embedding the vertical advection [???]. Here
we follow the [?] strategy : a regridding step (an update of the vertical coordinate) follo-
wed by an eulerian step with an explicit computation of vertical advection relative to the
moving s-surfaces.

the generalized vertical coordinates used in ocean modelling are not orthogonal, which
contrasts with many other applications in mathematical physics. Hence, it is useful to keep
in mind the following properties that may seem odd on initial encounter.
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The horizontal velocity in ocean models measures motions in the horizontal plane,
perpendicular to the local gravitational field. That is, horizontal velocity is mathemati-
cally the same regardless the vertical coordinate, be it geopotential, isopycnal, pressure, or
terrain following. The key motivation for maintaining the same horizontal velocity com-
ponent is that the hydrostatic and geostrophic balances are dominant in the large-scale
ocean. Use of an alternative quasi-horizontal velocity, for example one oriented parallel
to the generalized surface, would lead to unacceptable numerical errors. Correspondingly,
the vertical direction is anti-parallel to the gravitational force in all of the coordinate sys-
tems. We do not choose the alternative of a quasi-vertical direction oriented normal to the
surface of a constant generalized vertical coordinate.

It is the method used to measure transport across the generalized vertical coordinate
surfaces which differs between the vertical coordinate choices. That is, computation of
the dia-surface velocity component represents the fundamental distinction between the
various coordinates. In some models, such as geopotential, pressure, and terrain following,
this transport is typically diagnosed from volume or mass conservation. In other models,
such as isopycnal layered models, this transport is prescribed based on assumptions about
the physical processes producing a flux across the layer interfaces.

In this section we first establish the PE in the generalised vertical s-coordinate, then
we discuss the particular cases available in NEMO , namely z, z*, s, and Z.

The s-coordinate Formulation

Starting from the set of equations established in §2.3 for the special case k = z
and thus e3 = 1, we introduce an arbitrary vertical coordinate s = s(i, j, k,t), which
includes z-, z*- and o—coordinates as special cases (s = z, s = z*, and s = 0 = z/H
or = z/(H +n), resp.). A formal derivation of the transformed equations is given in
Appendix A. Let us define the vertical scale factor by e = 05z (es is now a function of
(i,4,k,t) ), and the slopes in the (i,j) directions between s— and z—surfaces by :

10 10
or=— L and gy=— & (2.26)
er 0i|, ea 0j |,

We also introduce w, a dia-surface velocity component, defined as the velocity relative to
the moving s-surfaces and normal to them :

W= W — €3 — U — OV (2.27)

ot

The equations solved by the ocean model (2.1) in s—coordinate can be written as
follows :
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* momentum equation :

1 0(esu) 10,4 o 1 Ou
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where the relative vorticity, (, the surface pressure gradient, and the hydrostatic pressure
have the same expressions as in z-coordinates although they do not represent exactly the
same quantities. w is provided by the continuity equation (see Appendix A) :

Oes ow ) 1 0 (egezu)  0(e1ezv)
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* tracer equations :
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The equation of state has the same expression as in z-coordinate, and similar expres-
sions are used for mixing and forcing terms.

2.4.2 Curvilinear z*—coordinate System

In that case, the free surface equation is nonlinear, and the variations of volume are
fully taken into account. These coordinates systems is presented in a report [?] available
on the NEMO web site.

The z* coordinate approach is an unapproximated, non-linear free surface implemen-
tation which allows one to deal with large amplitude free-surface variations relative to the
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vertical resolution [?]. In the z* formulation, the variation of the column thickness due
to sea-surface undulations is not concentrated in the surface level, as in the z-coordinate
formulation, but is equally distributed over the full water column. Thus vertical levels na-
turally follow sea-surface variations, with a linear attenuation with depth, as illustrated
by figure fig.1c . Note that with a flat bottom, such as in fig.1c, the bottom-following z
coordinate and z* are equivalent. The definition and modified oceanic equations for the
rescaled vertical coordinate z*, including the treatment of fresh-water flux at the surface,
are detailed in Adcroft and Campin (2004). The major points are summarized here. The
position ( z*) and vertical discretization (z*) are expressed as :

H
H+z¥*=(H+2z2)/r anddéz*=4dz/r withr = % (2.33)

Since the vertical displacement of the free surface is incorporated in the vertical coordi-
nate z*, the upper and lower boundaries are at fixed z* position, z* = 0 and z* = —H
respectively. Also the divergence of the flow field is no longer zero as shown by the conti-

2 X
@) ) ©

FIG. 2.3 — (a) z-coordinate in linear free-surface case ; (b) z—coordinate in non-
linear free surface case; (c) re-scaled height coordinate (become popular as the
z*-coordinate [?] ).
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nuity equation :

Z:VZ*-(TU}I)(T@U*):O
To overcome problems with vanishing surface and/or bottom cells, we consider the
zstar coordinate
z*:H<z_77> (2.34)
H+n

This coordinate is closely related to the “eta” coordinate used in many atmospheric
models (see Black (1994) for a review of eta coordinate atmospheric models). It was ori-
ginally used in ocean models by Stacey et al. (1995) for studies of tides next to shelves,
and it has been recently promoted by Adcroft and Campin (2004) for global climate mo-
delling.

The surfaces of constant z* are quasi-horizontal. Indeed, the z* coordinate reduces to
z when 7 is zero. In general, when noting the large differences between undulations of
the bottom topography versus undulations in the surface height, it is clear that surfaces
constant z* are very similar to the depth surfaces. These properties greatly reduce diffi-
culties of computing the horizontal pressure gradient relative to terrain following sigma
models discussed in §2.4.3. Additionally, since z* when 1 = 0, no flow is spontaneously
generated in an unforced ocean starting from rest, regardless the bottom topography. This
behaviour is in contrast to the case with ’s”-models, where pressure gradient errors in the
presence of nontrivial topographic variations can generate nontrivial spontaneous flow
from a resting state, depending on the sophistication of the pressure gradient solver. The
quasi-horizontal nature of the coordinate surfaces also facilitates the implementation of
neutral physics parameterizations in z* models using the same techniques as in z-models
(see Chapters 13-16 of ?) for a discussion of neutral physics in z-models, as well as Sec-
tion §9.2 in this document for treatment in NEMO ).

The range over which z* varies is time independent —H < z* < 0. Hence, all cells
remain nonvanishing, so long as the surface height maintains 1 >?H. This is a minor
constraint relative to that encountered on the surface height when using s = zor s = z—n.

Because z* has a time independent range, all grid cells have static increments ds, and
the sum of the ver tical increments yields the time independent ocean depth The z* coordi-
nate is therefore invisible to undulations of the free surface, since it moves along with the
free surface. This proper ty means that no spurious ver tical transpor t is induced across
surfaces of constant z* by the motion of external gravity waves. Such spurious transpor
t can be a problem in z-models, especially those with tidal forcing. Quite generally, the
time independent range for the z* coordinate is a very convenient proper ty that allows for
a nearly arbitrary ver tical resolution even in the presence of large amplitude fluctuations
of the surface height, again so long as n > —H.
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Curvilinear Terrain-following s—coordinate
Introduction

Several important aspects of the ocean circulation are influenced by bottom topo-
graphy. Of course, the most important is that bottom topography determines deep ocean
sub-basins, barriers, sills and channels that strongly constrain the path of water masses,
but more subtle effects exist. For example, the topographic (-effect is usually larger than
the planetary one along continental slopes. Topographic Rossby waves can be excited and
can interact with the mean current. In the z—coordinate system presented in the previous
section (§2.3), z—surfaces are geopotential surfaces. The bottom topography is discreti-
sed by steps. This often leads to a misrepresentation of a gradually sloping bottom and
to large localized depth gradients associated with large localized vertical velocities. The
response to such a velocity field often leads to numerical dispersion effects. One solution
to strongly reduce this error is to use a partial step representation of bottom topography
instead of a full step one ?. Another solution is to introduce a terrain-following coordinate
system (hereafter s—coordinate)

The s-coordinate avoids the discretisation error in the depth field since the layers of
computation are gradually adjusted with depth to the ocean bottom. Relatively small to-
pographic features as well as gentle, large-scale slopes of the sea floor in the deep ocean,
which would be ignored in typical z-model applications with the largest grid spacing
at greatest depths, can easily be represented (with relatively low vertical resolution). A
terrain-following model (hereafter s—model) also facilitates the modelling of the boun-
dary layer flows over a large depth range, which in the framework of the z-model would
require high vertical resolution over the whole depth range. Moreover, with a s-coordinate
it is possible, at least in principle, to have the bottom and the sea surface as the only
boundaries of the domain (nomore lateral boundary condition to specify). Nevertheless,
a s-coordinate also has its drawbacks. Perfectly adapted to a homogeneous ocean, it has
strong limitations as soon as stratification is introduced. The main two problems come
from the truncation error in the horizontal pressure gradient and a possibly increased dia-
pycnal diffusion. The horizontal pressure force in s-coordinate consists of two terms (see
Appendix A),

_ 9
5 Os

The second term in (2.35) depends on the tilt of the coordinate surface and introduces
a truncation error that is not present in a z-model. In the special case of a o —coordinate
(i.e. a depth-normalised coordinate system o = z/H), ? and ? have given estimates of the
magnitude of this truncation error. It depends on topographic slope, stratification, hori-
zontal and vertical resolution, the equation of state, and the finite difference scheme. This
error limits the possible topographic slopes that a model can handle at a given horizontal
and vertical resolution. This is a severe restriction for large-scale applications using realis-
tic bottom topography. The large-scale slopes require high horizontal resolution, and the
computational cost becomes prohibitive. This problem can be at least partially overcome

Vpl|, = Vp| Vz| (2.35)

z S
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by mixing s-coordinate and step-like representation of bottom topography [???]. Howe-
ver, the definition of the model domain vertical coordinate becomes then a non-trivial
thing for a realistic bottom topography : a envelope topography is defined in s-coordinate
on which a full or partial step bottom topography is then applied in order to adjust the
model depth to the observed one (see §4.3.

For numerical reasons a minimum of diffusion is required along the coordinate sur-
faces of any finite difference model. It causes spurious diapycnal mixing when coordinate
surfaces do not coincide with isoneutral surfaces. This is the case for a z-model as well
as for a s-model. However, density varies more strongly on s—surfaces than on horizontal
surfaces in regions of large topographic slopes, implying larger diapycnal diffusion in a
s-model than in a z-model. Whereas such a diapycnal diffusion in a z-model tends to wea-
ken horizontal density (pressure) gradients and thus the horizontal circulation, it usually
reinforces these gradients in a s-model, creating spurious circulation. For example, ima-
gine an isolated bump of topography in an ocean at rest with a horizontally uniform stra-
tification. Spurious diffusion along s-surfaces will induce a bump of isoneutral surfaces
over the topography, and thus will generate there a baroclinic eddy. In contrast, the ocean
will stay at rest in a z-model. As for the truncation error, the problem can be reduced by
introducing the terrain-following coordinate below the strongly stratified portion of the
water column (¢.e. the main thermocline) [?]. An alternate solution consists of rotating
the lateral diffusive tensor to geopotential or to isoneutral surfaces (see §2.5.2. Unfortu-
nately, the slope of isoneutral surfaces relative to the s-surfaces can very large, strongly
exceeding the stability limit of such a operator when it is discretized (see Chapter 9).

The s—coordinates introduced here [??] differ mainly in two aspects from similar
models : it allows a representation of bottom topography with mixed full or partial step-
like/terrain following topography ; It also offers a completely general transformation, s =
s(4, j, z) for the vertical coordinate.
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2.4.4 Curvilinear zZ—coordinate

The Z-coordinate has been developed by ?. It is not available in the current version of
NEMO .
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Subgrid Scale Physics

The primitive equations describe the behaviour of a geophysical fluid at space and
time scales larger than a few kilometres in the horizontal, a few meters in the vertical and
a few minutes. They are usually solved at larger scales : the specified grid spacing and
time step of the numerical model. The effects of smaller scale motions (coming from the
advective terms in the Navier-Stokes equations) must be represented entirely in terms of
large-scale patterns to close the equations. These effects appear in the equations as the
divergence of turbulent fluxes (¢.e. fluxes associated with the mean correlation of small
scale perturbations). Assuming a turbulent closure hypothesis is equivalent to choose a
formulation for these fluxes. It is usually called the subgrid scale physics. It must be
emphasized that this is the weakest part of the primitive equations, but also one of the
most important for long-term simulations as small scale processes in fine balance the
surface input of kinetic energy and heat.

The control exerted by gravity on the flow induces a strong anisotropy between the
lateral and vertical motions. Therefore subgrid-scale physics DV, D and D7 in (2.1a),
(2.1d) and (2.1e) are divided into a lateral part D'V, DS and D'T" and a vertical part DY,
DV and D'T. The formulation of these terms and their underlying physics are briefly
discussed in the next two subsections.

Vertical Subgrid Scale Physics

The model resolution is always larger than the scale at which the major sources of
vertical turbulence occur (shear instability, internal wave breaking...). Turbulent motions
are thus never explicitly solved, even partially, but always parameterized. The vertical
turbulent fluxes are assumed to depend linearly on the gradients of large-scale quantities
(for example, the turbulent heat flux is given by T'w/ = —A"T9.T, where A*T is an
eddy coefficient). This formulation is analogous to that of molecular diffusion and dis-
sipation. This is quite clearly a necessary compromise : considering only the molecular
viscosity acting on large scale severely underestimates the role of turbulent diffusion and
dissipation, while an accurate consideration of the details of turbulent motions is simply
impractical. The resulting vertical momentum and tracer diffusive operators are of second

order :
DvU d < Avm aUh)

" 0z 0z
(2.36)
D’UT — 2 /UJTai,IY DUS _ 2 AvTaj
0z 0z )’ 0z 0z

where A" and A*T are the vertical eddy viscosity and diffusivity coefficients, respecti-
vely. At the sea surface and at the bottom, turbulent fluxes of momentum, heat and salt
must be specified (see Chap. 7 and 10 and §5.5). All the vertical physics is embedded in
the specification of the eddy coefficients. They can be assumed to be either constant, or
function of the local fluid properties (e.g. Richardson number, Brunt-Vaisild frequency...),
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or computed from a turbulent closure model. The choices available in NEMO are discus-
sed in §10).

Lateral Diffusive and Viscous Operators Formulation

Lateral turbulence can be roughly divided into a mesoscale turbulence associated with
eddies (which can be solved explicitly if the resolution is sufficient since their underlying
physics are included in the primitive equations), and a sub mesoscale turbulence which
is never explicitly solved even partially, but always parameterized. The formulation of
lateral eddy fluxes depends on whether the mesoscale is below or above the grid-spacing
(7.e. the model is eddy-resolving or not).

In non-eddy-resolving configurations, the closure is similar to that used for the ver-
tical physics. The lateral turbulent fluxes are assumed to depend linearly on the lateral
gradients of large-scale quantities. The resulting lateral diffusive and dissipative operators
are of second order. Observations show that lateral mixing induced by mesoscale turbu-
lence tends to be along isopycnal surfaces (or more precisely neutral surfaces ?) rather
than across them. As the slope of neutral surfaces is small in the ocean, a common ap-
proximation is to assume that the ‘lateral’ direction is the horizontal, .e. the lateral mixing
is performed along geopotential surfaces. This leads to a geopotential second order ope-
rator for lateral subgrid scale physics. This assumption can be relaxed : the eddy-induced
turbulent fluxes can be better approached by assuming that they depend linearly on the
gradients of large-scale quantities computed along neutral surfaces. In such a case, the
diffusive operator is an isoneutral second order operator and it has components in the
three space directions. However, both horizontal and isoneutral operators have no effect
on mean (¢.e. large scale) potential energy whereas potential energy is a main source of
turbulence (through baroclinic instabilities). ? have proposed a parameterisation of mesos-
cale eddy-induced turbulence which associates an eddy-induced velocity to the isoneutral
diffusion. Its mean effect is to reduce the mean potential energy of the ocean. This leads to
a formulation of lateral subgrid-scale physics made up of an isoneutral second order ope-
rator and an eddy induced advective part. In all these lateral diffusive formulations, the
specification of the lateral eddy coefficients remains the problematic point as there is no
really satisfactory formulation of these coefficients as a function of large-scale features.

In eddy-resolving configurations, a second order operator can be used, but usually a
more scale selective one (biharmonic operator) is preferred as the grid-spacing is usually
not small enough compared to the scale of the eddies. The role devoted to the subgrid-
scale physics is to dissipate the energy that cascades toward the grid scale and thus ensures
the stability of the model while not interfering with the solved mesoscale activity. Another
approach is becoming more and more popular : instead of specifying explicitly a sub-grid
scale term in the momentum and tracer time evolution equations, one uses a advective
scheme which is diffusive enough to maintain the model stability. It must be emphasised
that then, all the sub-grid scale physics is in this case include in the formulation of the
advection scheme.

All these parameterisations of subgrid scale physics present advantages and draw-
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backs. There are not all available in NEMO . In the z-coordinate formulation, five op-
tions are offered for active tracers (temperature and salinity) : second order geopotential
operator, second order isoneutral operator, ? parameterisation, fourth order geopotential
operator, and various slightly diffusive advection schemes. The same options are available
for momentum, except ? parameterisation which only involves tracers. In the s-coordinate
formulation, additional options are offered for tracers : second order operator acting along
s—surfaces, and for momentum : fourth order operator acting along s—surfaces (see §9).

lateral second order tracer diffusive operator

The lateral second order tracer diffusive operator is defined by (see Appendix B) :

1 0 -7
DT —v. (A’T R VT> with R=10 1 —nr (2.37)
—ry -T2 7“% + 7“%

where 71 and 75 are the slopes between the surface along which the diffusive operator acts
and the model level (e.g. z- or s-surfaces). Note that the formulation (2.37) is exact for the
rotation between geopotential and s-surfaces, while it is only an approximation for the ro-
tation between isoneutral and z- or s-surfaces. Indeed, in the latter case, two assumptions
are made to simplify (2.37) [?]. First, the horizontal contribution of the dianeutral mixing
is neglected since the ratio between iso and dia-neutral diffusive coefficients is known to
be several orders of magnitude smaller than unity. Second, the two isoneutral directions
of diffusion are assumed to be independent since the slopes are generally less than 102
in the ocean (see Appendix B).

For geopotential diffusion, 71 and r, are the slopes between the geopotential and com-
putational surfaces : in z-coordinates they are zero (r; = ro = 0) while in s-coordinate
(including z* case) they are equal to o1 and o, respectively (see (2.26) ).

For isoneutral diffusion r; and ry are the slopes between the isoneutral and computa-
tional surfaces. Therefore, they have a same expression in z- and s-coordinates :

_ea (90 (00NN _es (00 (007
“_el<ai>(ak> ’“_el<a¢ ok (2.38)

When the Eddy Induced Velocity parametrisation (eiv) [?] is used, an additional tracer
advection is introduced in combination with the isoneutral diffusion of tracers :

DT =vV. (AlT R VT) + V- (UT) (2.39)

where U* = (u*,v*, w*) is a non-divergent, eddy-induced transport velocity. This velo-
city field is defined by :
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where A°" is the eddy induced velocity coefficient (or equivalently the isoneutral thick-
ness diffusivity coefficient), and 71 and 72 are the slopes between isoneutral and geopo-
tential surfaces and thus depends on the coordinate considered :

wheren = 1,2 (2.41)

5 Tn in z-coordinate
T'n = . .
rn + o 1n z* and s-coordinates

The normal component of the eddy induced velocity is zero at all the boundaries. This
can be achieved in a model by tapering either the eddy coefficient or the slopes to zero in
the vicinity of the boundaries. The latter strategy is used in NEMO (cf. Chap. 9).

lateral fourth order tracer diffusive operator

The lateral fourth order tracer diffusive operator is defined by :
DT = A (A’T AT) where D'T = A (AlT AT) (2.42)

It is the second order operator given by (2.37) applied twice with the eddy diffusion
coefficient correctly placed.
lateral second order momentum diffusive operator

The second order momentum diffusive operator along z- or s-surfaces is found by
applying (2.11e) to the horizontal velocity vector (see Appendix B) :

DV- v, (Almx) — V% (Almg k)
1O(AmY) 1 9(Am ex)

. e ot eses 8] (2.43)
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Such a formulation ensures a complete separation between the vorticity and horizontal
divergence fields (see Appendix E). Unfortunately, it is not available for geopotential
diffusion in s—coordinates and for isoneutral diffusion in both z- and s-coordinates (i.e.
when a rotation is required). In these two cases, the u and v—fields are considered as
independent scalar fields, so that the diffusive operator is given by :

DIV = V. (R Vu)

2.44
DIV = V. (R Vv) (249

where #t is given by (2.37). It is the same expression as those used for diffusive operator
on tracers. It must be emphasised that such a formulation is only exact in a Cartesian
coordinate system, ¢.e. on a f— or S—plane, not on the sphere. It is also a very good
approximation in vicinity of the Equator in a geographical coordinate system [?].
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lateral fourth order momentum diffusive operator

As for tracers, the fourth order momentum diffusive operator along z or s-surfaces
is a re-entering second order operator (2.43) or (2.43) with the eddy viscosity coefficient
correctly placed :

geopotential diffusion in z-coordinate :

DV — vh{ V. [Alm Y (x)} }

(2.45)
+ Vj, x { k-V x [Almvh X (Ck)} }
geopotential diffusion in s-coordinate :
DIV = A (Alm Au)
where A (o) =V - (RV(e)) (2.46)

DV =A (Alm Av)
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Having defined the continuous equations in Chap. 2, we need now to choose a time
discretization. In the present chapter, we provide a general description of the NEMO time
stepping strategy and the consequences for the order in which the equations are solved.

Time stepping environment

The time stepping used in NEMO is a three level scheme that can be represented as
follows :
l_t+At — l_tht 4 2 At RHszfAt,t, t+At (31)

where x stands for u, v, T or S'; RHS is the Right-Hand-Side of the corresponding time
evolution equation ; At is the time step ; and the superscripts indicate the time at which a
quantity is evaluated. Each term of the RHS is evaluated at a specific time step depending
on the physics with which it is associated.

The choice of the time step used for this evaluation is discussed below as well as the
implications for starting or restarting a model simulation. Note that the time stepping cal-
culation is generally performed in a single operation. With such a complex and nonlinear
system of equations it would be dangerous to let a prognostic variable evolve in time for
each term separately.

The three level scheme requires three arrays for each prognostic variable. For each
variable x there is x; (before), z,, (now) and z,. The third array, although referred to as
x4 (after) in the code, is usually not the variable at the after time step ; but rather it is used
to store the time derivative (RHS in (3.1)) prior to time-stepping the equation. Generally,
the time stepping is performed once at each time step in the tranxt. F90 and dynnxt. F90
modules, except when using implicit vertical diffusion or calculating sea surface height in
which case time-splitting options are used.

Non-Diffusive Part — Leapfrog Scheme

The time stepping used for processes other than diffusion is the well-known leapfrog
scheme [?]. This scheme is widely used for advection processes in low-viscosity fluids. It
is a time centred scheme, i.e. the RHS in (3.1) is evaluated at time step ¢, the now time
step. It may be used for momentum and tracer advection, pressure gradient, and Corio-
lis terms, but not for diffusion terms. It is an efficient method that achieves second-order
accuracy with just one right hand side evaluation per time step. Moreover, it does not ar-
tificially damp linear oscillatory motion nor does it produce instability by amplifying the
oscillations. These advantages are somewhat diminished by the large phase-speed error of
the leapfrog scheme, and the unsuitability of leapfrog differencing for the representation
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of diffusion and Rayleigh damping processes. However, the scheme allows the coexis-
tence of a numerical and a physical mode due to its leading third order dispersive error. In
other words a divergence of odd and even time steps may occur. To prevent it, the leapfrog
scheme is often used in association with a Robert-Asselin time filter (hereafter the LF-RA
scheme). This filter, first designed by ? and more comprehensively studied by ?, is a kind
of laplacian diffusion in time that mixes odd and even time steps :

zh =zt 4+ v x%‘m — 22" + xt+At] (3.2)

where the subscript F' denotes filtered values and -y is the Asselin coefficient. + is initiali-
zed as rn_atfp (namelist parameter). Its default value is rn_atfp=10"3 (see § 3.5), causing
only a weak dissipation of high frequency motions ([?]). The addition of a time filter de-
grades the accuracy of the calculation from second to first order. However, the second
order truncation error is proportional to -y, which is small compared to 1. Therefore, the
LF-RA is a quasi second order accurate scheme. The LF-RA scheme is preferred to other
time differencing schemes such as predictor corrector or trapezoidal schemes, because
the user has an explicit and simple control of the magnitude of the time diffusion of the
scheme. When used with the 2nd order space centred discretisation of the advection terms
in the momentum and tracer equations, LF-RA avoids implicit numerical diffusion : dif-
fusion is set explicitly by the user through the Robert-Asselin filter parameter and the
viscosity and diffusion coefficients.

Diffusive Part — Forward or Backward Scheme

The leapfrog differencing scheme is unsuitable for the representation of diffusion and
damping processes. For a tendancy D, representing a diffusion term or a restoring term
to a tracer climatology (when present, see § 5.6), a forward time differencing scheme is
used :

a AL = gt mAL L 9 AL D, A (3.3)

This is diffusive in time and conditionally stable. The conditions for stability of second
and fourth order horizontal diffusion schemes are [?] :

2
¢ A laplacian diffusion
Al < { BA (3.4)
ﬁ bilaplacian diffusion

where e is the smallest grid size in the two horizontal directions and A” is the mixing
coefficient. The linear constraint (3.4) is a necessary condition, but not sufficient. If it is
not satisfied, even mildly, then the model soon becomes wildly unstable. The instability
can be removed by either reducing the length of the time steps or reducing the mixing
coefficient.

For the vertical diffusion terms, a forward time differencing scheme can be used, but
usually the numerical stability condition imposes a strong constraint on the time step. Two
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solutions are available in NEMO to overcome the stability constraint : (a) a forward time
differencing scheme using a time splitting technique (/n_zdfexp = true) or (b) a backward
(or implicit) time differencing scheme (In_zdfexp = false). In (a), the master time step At
is cut into IV fractional time steps so that the stability criterion is reduced by a factor of
N. The computation is performed as follows :

pl=At — gt-At

t— At L2t t—At+(L—1)24t  2At _ _1)24a¢
T, g )N+—N DRt AL

xt-l—At _ $i+At

for L=1to N (3.5)

with DF a vertical diffusion term. The number of fractional time steps, N, is given by
setting nn_zdfexp, (namelist parameter). The scheme (b) is unconditionally stable but dif-
fusive. It can be written as follows :

gt TAL = pt=AL 9 At RHSLTA! (3.6)

This scheme is rather time consuming since it requires a matrix inversion, but it be-
comes attractive since a value of 3 or more is needed for N in the forward time differencing
scheme. For example, the finite difference approximation of the temperature equation is :

T(k)t+1 _ T(k,)tfl 1 AvT

_ w t+1
5 A7 = RHS + e—gték - Oi1y2 [T 3.7

where RHS is the right hand side of the equation except for the vertical diffusion term.
We rewrite (3.6) as :

—c(k+1) T (k+1) + d(k) T"Y(E) — e(k) T (k= 1) = b(k) (3.8)
where
c(k) = A”T(k )/ esw(k)
d(k) = e3t(k) / (2At) + ¢ + i
b(k) = es(k) (T""'(k)/(2At) + RHS)

(3.8) is a linear system of equations with an associated matrix which is tridiagonal.
Moreover, ¢(k) and d(k) are positive and the diagonal term is greater than the sum of the
two extra-diagonal terms, therefore a special adaptation of the Gauss elimination proce-
dure is used to find the solution (see for example ?).

Hydrostatic Pressure Gradient — semi-implicit scheme

The range of stability of the Leap-Frog scheme can be extended by a factor of two
by introducing a semi-implicit computation of the hydrostatic pressure gradient term [?].
Instead of evaluating the pressure at ¢, a linear combination of values at ¢ — At, ¢ and
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F1G. 3.1 — Sketch of the leapfrog time stepping sequence in NEMO from ?. The
use of a semi-implicit computation of the hydrostatic pressure gradient requires
the tracer equation to be stepped forward prior to the momentum equation. The
need for knowledge of the vertical scale factor (here denoted as h) requires the
sea surface height and the continuity equation to be stepped forward prior to the
computation of the tracer equation. Note that the method for the evaluation of the
surface pressure gradient Vp; is not presented here (see § 6.5).

t + At is used (see § 6.4.4). This technique, controlled by the nn_dynhpg_rst namelist
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parameter, does not introduce a significant additional computational cost when tracers
and thus density is time stepped before the dynamics. This time step ordering is used in
NEMO (Fig.3.1).

This technique, used in several GCMs (NEMO , POP or MOM for instance), makes
the Leap-Frog scheme as efficient ! as the Forward-Backward scheme used in MOM [?]
and more efficient than the LF-AM3 scheme (leapfrog time stepping combined with a
third order Adams-Moulthon interpolation for the predictor phase) used in ROMS [?].

In fact, this technique is efficient when the physical phenomenon that limits the time-
step is internal gravity waves (IGWs). Indeed, it is equivalent to applying a time filter to
the pressure gradient to eliminate high frequency IGWs. Obviously, the doubling of the
time-step is achievable only if no other factors control the time-step, such as the stability
limits associated with advection, diffusion or Coriolis terms. For example, it is inefficient
in low resolution global ocean configurations, since inertial oscillations in the vicinity
of the North Pole are the limiting factor for the time step. It is also often inefficient in
very high resolution configurations where strong currents and small grid cells exert the
strongest constraint on the time step.

The Modified Leapfrog — Asselin Filter scheme

Significant changes have been introduced by ? in the LF-RA scheme in order to ensure
tracer conservation and to allow the use of a much smaller value of the Asselin filter
parameter. The modifications affect both the forcing and filtering treatments in the LF-
RA scheme.

In a classical LF-RA environment, the forcing term is centred in time, ¢.e. it is time-
stepped over a 2At period : z' = 2t + 2AtQ! where Q is the forcing applied to z, and
the time filter is given by (3.2) so that @ is redistributed over several time step. In the
modified LF-RA environment, these two formulations have been replaced by :

ptHAL — g t=A Ay (Qt—At/2 + Qt+At/2) 3.9

b= ot 4 [m%—m oty xt+At} YAt {QtJrAt/Q _ Qtht/2:| (3.10)

The change in the forcing formulation given by (3.9) (see Fig.3.2) has a significant effect :
the forcing term no longer excites the divergence of odd and even time steps [?]. This pro-
perty improves the LF-RA scheme in two respects. First, the LF-RA can now ensure the
local and global conservation of tracers. Indeed, time filtering is no longer required on the
forcing part. The influence of the Asselin filter on the forcing is be removed by adding
a new term in the filter (last term in (3.10) compared to (3.2)). Since the filtering of the
forcing was the source of non-conservation in the classical LF-RA scheme, the modified
formulation becomes conservative [?]. Second, the LF-RA becomes a truly quasi-second

'The efficiency is defined as the maximum allowed Courant number of the time stepping
scheme divided by the number of computations of the right-hand side per time step.
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F1G. 3.2 — Illustration of forcing integration methods. (top) “Traditional” formu-
lation : the forcing is defined at the same time as the variable to which it is applied
(integer value of the time step index) and it is applied over a 2At period. (bottom)
modified formulation : the forcing is defined in the middle of the time (integer and
a half value of the time step index) and the mean of two successive forcing values
(n —1/2,n+ 1/2). is applied over a 2At¢ period.

order scheme. Indeed, (3.9) used in combination with a careful treatment of static insta-
bility (§10.2.2) and of the TKE physics (§10.1.4), the two other main sources of time step
divergence, allows a reduction by two orders of magnitude of the Asselin filter parameter.

Note that the forcing is now provided at the middle of a time step : Q'T2%/2 s the
forcing applied over the [t,¢ + At] time interval. This and the change in the time filter,
(3.10), allows an exact evaluation of the contribution due to the forcing term between any
two time steps, even if separated by only At since the time filter is no longer applied to
the forcing term.

Start/Restart strategy

&namrun ! parameters of the run
|
nn_no = 0 ! job number
cn_exp = "ORCA2" ! -experience name
nn_it000 = 1 I first time step
nn_itend = 5475 ' last time step (std 5475)
nn_date0 = 010101 !' initial calendar date yymmdd (used if nn_rstctl=l)
nn_leapy = 0 ! Leap year calendar (1) or not (0)
1n_rstart = .false. ! start from rest (F) or from a restart file (T)

nn_rstctl 0 ! restart control = 0 nn_it000 is not compared to the restart file value

! 1 use nn_date0 in namelist (not the value in the restart file)
2 calendar parameters read in the restart file

"restart" ! suffix of ocean restart name (input)

"restart" ! suffix of ocean restart name (output)

0 output the initial state (1) or not (0)

!
cn_ocerst_in
cn_ocerst_out
nn_istate

= 1
nn_stock = 5475 ! frequency of creation of a restart file (modulo referenced to 1)
nn_write = 5475 ! frequency of write in the output file (modulo referenced to nn_it000
In_dimgnnn = .false. ! DIMG file format: 1 file for all processors (F) or by processor (T)
In_mskland = .false. ! mask land points in NetCDF outputs (costly: + 715%
1In_clobber = .false ! clobber (overwrite) an existing file

= !

nn_chunksz chunksize (bytes) for NetCDF file (works only with iom_nf90 routines)
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The first time step of this three level scheme when starting from initial conditions is a
forward step (Euler time integration) :

z! = 2% + At RHS® (3.11)

This is done simply by keeping the leapfrog environment (i.e. the (3.1) three level time
stepping) but setting all 2° (before) and ' (now) fields equal at the first time step and
using half the value of At.

It is also possible to restart from a previous computation, by using a restart file. The
restart strategy is designed to ensure perfect restartability of the code : the user should
obtain the same results to machine precision either by running the model for 2N time
steps in one go, or by performing two consecutive experiments of NV steps with a restart.
This requires saving two time levels and many auxiliary data in the restart files in machine
precision.

Note that when a semi-implicit scheme is used to evaluate the hydrostatic pressure
gradient (see §6.4.4), an extra three-dimensional field has to be added to the restart file
to ensure an exact restartability. This is done optionally via the nn_dynhpg_rst namelist
parameter, so that the size of the restart file can be reduced when restartability is not a key
issue (operational oceanography or in ensemble simulations for seasonal forecasting).

Note the size of the time step used, At, is also saved in the restart file. When restarting,
if the the time step has been changed, a restart using an Euler time stepping scheme is
imposed.
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Having defined the continuous equations in Chap. 2 and chosen a time discretization
Chap. 3, we need to choose a discretization on a grid, and numerical algorithms. In the
present chapter, we provide a general description of the staggered grid used in NEMO , and
other information relevant to the main directory routines as well as the DOM (DOMain)
directory.

Fundamentals of the Discretisation

Arrangement of Variables

The numerical techniques used to solve the Primitive Equations in this model are
based on the traditional, centred second-order finite difference approximation. Special
attention has been given to the homogeneity of the solution in the three space directions.
The arrangement of variables is the same in all directions. It consists of cells centred on
scalar points (¢, S, p, p) with vector points (u, v, w) defined in the centre of each face
of the cells (Fig. 4.1). This is the generalisation to three dimensions of the well-known
“C” grid in Arakawa’s classification [?]. The relative and planetary vorticity, ¢ and f, are
defined in the centre of each vertical edge and the barotropic stream function 1) is defined
at horizontal points overlying the ¢ and f-points.

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by the
transformation that gives (\ ,¢ ,z) as a function of (4, j, k). The grid-points are located at
integer or integer and a half value of (i, j, k) as indicated on Table 4.1. In all the following,
subscripts u, v, w, f, uw, vw or fw indicate the position of the grid-point where the scale
factors are defined. Each scale factor is defined as the local analytical value provided by
(2.10). As a result, the mesh on which partial derivatives %, %, and % are evaluated
is a uniform mesh with a grid size of unity. Discrete partial derivatives are formulated
by the traditional, centred second order finite difference approximation while the scale
factors are chosen equal to their local analytical value. An important point here is that
the partial derivative of the scale factors must be evaluated by centred finite difference
approximation, not from their analytical expression. This preserves the symmetry of the
discrete set of equations and therefore satisfies many of the continuous properties (see
Appendix E). A similar, related remark can be made about the domain size : when needed,
an area, volume, or the total ocean depth must be evaluated as the sum of the relevant scale
factors (see (4.8)) in the next section).
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FI1G. 4.1 — Arrangement of variables. ¢ indicates scalar points where temperature,
salinity, density, pressure and horizontal divergence are defined. (u,v,w) indicates
vector points, and f indicates vorticity points where both relative and planetary
vorticities are defined

Discrete Operators

Given the values of a variable ¢ at adjacent points, the differencing and averaging
operators at the midpoint between them are :

dilg) = q(i+1/2) —q(i—1/2)
7' ={q(i+1/2)+q(i —1/2)} /2

Similar operators are defined with respect to ¢ + 1/2, j, j + 1/2, k, and k + 1/2.
Following (2.11a) and (2.11d), the gradient of a variable ¢ defined at a ¢-point has its
three components defined at u-, v- and w-points while its Laplacien is defined at ¢-point.

(4.1a)
(4.1b)
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T 5 j 2
u i1 1/2 ; 2
v i ir 12 |k
w i j k+1/2
f it1/2 | j+1/2 |k
uw i+1/2 J k+1/2
VW i Jj+1/2 k+1/2
fw i+1/2  |j+1/2 | k+1/2

TAB. 4.1 — Location of grid-points as a function of integer or integer and a half
value of the column, line or level. This indexing is only used for the writing of the
semi-discrete equation. In the code, the indexing uses integer values only and has
a reverse direction in the vertical (see §4.1.3)

These operators have the following discrete forms in the curvilinear s-coordinate system :

1 o1 .1
Va = =Oinpld 1+ =0l i+ Okl K (4.2)
1 €2u €3u €1v €3y
Ag= 0; 0; +0; | —=6;
q €1t €2t €3¢ ( [ 1 +1/2[Q]] j [ €90 ]+1/2[Q]] )

1 1
—0 | — 4,
* e3t % [6310 6k+1/2[q]] 3

Following (2.11c) and (2.11b), a vector A = (a1, a2, as3) defined at vector points
(u,v,w) has its three curl components defined at vw-, uw, and f-points, and its diver-
gence defined at ¢-points :

V x A = €2y iBUU} (5]"’_1/2 [egw ag] - 6k+1/2 [62’0 Q/Q]) i (44)
+ g (Geraplerwar] = di1yofeawas)) (4.5)
+ €1f132f (5i+1/2 [e20 az] — j+1/2 e1u al]) k (4.6)
1 1
VA =———(d[eaeuar] + dj[e1y esv a]) + — 0 [as] 4.7)
€1t €2t €3¢ est

In the special case of a pure z-coordinate system, (4.3) and (4.7) can be simplified.
In this case, the vertical scale factor becomes a function of the single variable k£ and thus
does not depend on the horizontal location of a grid point. For example (4.7) reduces to :

1 1
P (01 [eau a1] + 0j [e1v ag]) + ;&51( [a3]

V-A=
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The vertical average over the whole water column denoted by an overbar becomes for
a quantity ¢ which is a masked field (i.e. equal to zero inside solid area) :

Y

1 [ 1
= — dk = — g 4.8
H /kb q €3q Hq - q €3q (4.8)

where H, is the ocean depth, which is the masked sum of the vertical scale factors at
q points, k® and k° are the bottom and surface k-indices, and the symbol k° refers to a
summation over all grid points of the same type in the direction indicated by the subscript
(here k).

In continuous form, the following properties are satisfied :

VxVg=0 (4.9)

V- (VxA)=0 (4.10)

It is straightforward to demonstrate that these properties are verified locally in discrete
form as soon as the scalar ¢ is taken at ¢-points and the vector A has its components defined
at vector points (u, v, w).

Let a and b be two fields defined on the mesh, with value zero inside continental area.
Using integration by parts it can be shown that the differencing operators (9;, 6; and )
are anti-symmetric linear operators, and further that the averaging operators = ¢, ~* and
=) are symmetric linear operators, i.e.

ZCLI' 5% [b] = —Zéi+1/2 [CL] bi+l/2 (411)

Sab'= S a2, (4.12)

In other words, the adjoint of the differencing and averaging operators are 67 = d;,1/2
and (*’)>k = Tit1/2) respectively. These two properties will be used extensively in the
Appendix E to demonstrate integral conservative properties of the discrete formulation
chosen.

Numerical Indexing

The array representation used in the FORTRAN code requires an integer indexing
while the analytical definition of the mesh (see §4.1.1) is associated with the use of integer
values for ¢-points and both integer and integer and a half values for all the other points.
Therefore a specific integer indexing must be defined for points other than ¢-points (z.e.
velocity and vorticity grid-points). Furthermore, the direction of the vertical indexing has
been changed so that the surface level is at k = 1.
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F1G. 4.2 — Horizontal integer indexing used in the FORTRAN code. The dashed
area indicates the cell in which variables contained in arrays have the same - and
J-indices

Horizontal Indexing

The indexing in the horizontal plane has been chosen as shown in Fig.4.2. For an
increasing ¢ index (j index), the ¢-point and the eastward wu-point (northward v-point)
have the same index (see the dashed area in Fig.4.2). A ¢-point and its nearest northeast
f-point have the same ¢-and j-indices.
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Vertical Indexing

In the vertical, the chosen indexing requires special attention since the k-axis is re-
orientated downward in the FORTRAN code compared to the indexing used in the semi-
discrete equations and given in §4.1.1. The sea surface corresponds to the w-level k =
1 which is the same index as t-level just below (Fig.4.3). The last w-level (k = jpk)
either corresponds to the ocean floor or is inside the bathymetry while the last ¢-level is
always inside the bathymetry (Fig.4.3). Note that for an increasing k index, a w-point
and the ¢-point just below have the same k index, in opposition to what is done in the
horizontal plane where it is the ¢-point and the nearest velocity points in the direction of
the horizontal axis that have the same 7 or j index (compare the dashed area in Fig.4.2 and
4.3). Since the scale factors are chosen to be strictly positive, a minus sign appears in the
FORTRAN code before all the vertical derivatives of the discrete equations given in this
documentation.

Domain Size

The total size of the computational domain is set by the parameters jpiglo, jpjglo
and jpk in the 4, j and k directions respectively. They are given as parameters in the
par_oce.F90 module'. The use of parameters rather than variables (together with dynamic
allocation of arrays) was chosen because it ensured that the compiler would optimize
the executable code efficiently, especially on vector machines (optimization may be less
efficient when the problem size is unknown at the time of compilation). Nevertheless, it is
possible to set up the code with full dynamical allocation by using the AGRIF packaged
[?]. Note that are other parameters in par_oce.F90 that refer to the domain size. The two
parameters jpidta and jpjdta may be larger than jpiglo, jpjglo when the user wants to
use only a sub-region of a given configuration. This is the ”zoom” capability described
in §14.3. In most applications of the model, jpidta = jpiglo, jpjdta = jpjglo, and
Jpizoom = jpjzoom = 1. Parameters jpi and jpj refer to the size of each processor
subdomain when the code is run in parallel using domain decomposition (key_mpp_mpi
defined, see §8.3).

Domain : Horizontal Grid (mesh) domhgr.F90 module)

Coordinates and scale factors

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by the
transformation that gives (A, ¢, z) as a function of (4, j, k). The grid-points are located
at integer or integer and a half values of as indicated in Table 4.1. The associated scale

"When a specific configuration is used (ORCA2 global ocean, etc...) the parameter are ac-
tually defined in additional files introduced by par_oce.F90 module via CPP include command.
For example, ORCA?2 parameters are set in par_ ORCA_R2.h90 file
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F1G. 4.3 — Vertical integer indexing used in the FORTRAN code. Note that the k-
axis is orientated downward. The dashed area indicates the cell in which variables
contained in arrays have the same k-index.
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factors are defined using the analytical first derivative of the transformation (2.10). These
definitions are done in two modules, domhgr.F90 and domzgr.F90, which provide the
horizontal and vertical meshes, respectively. This section deals with the horizontal mesh
parameters.

In a horizontal plane, the location of all the model grid points is defined from the ana-
lytical expressions of the longitude A and latitude ¢ as a function of (¢, 7). The horizontal
scale factors are calculated using (2.10). For example, when the longitude and latitude are
function of a single value (i and j, respectively) (geographical configuration of the mesh),
the horizontal mesh definition reduces to define the wanted A(%), (), and their deriva-
tives N () ¢’(j) in the domhgr. F90 module. The model computes the grid-point positions
and scale factors in the horizontal plane as follows :

A = glamt = A(4) ¢ = gphit = ¢(j)
Ay = glamu = A\(7 4+ 1/2) ©y = gphiu = ¢(j)
Ay = glamv = \(4) v, = gphiv = ¢(j + 1/2)
A = glamf = A\(1 4+ 1/2) ¢ = gphif = ¢(j +1/2)
err = elt = rq|N (i) cosp(j)] ear = €2t = 14| (7)]
e1y = elt = 1N (i +1/2) coso(5)] eau = €2t = 14|’ (5)|
e1y = elt =1y N (i) cosp(j+1/2)] eap = €2t = 14| (j + 1/2)]
erf =elt=r|N(i+1/2) cosp(j+1/2)] eaf = €2t =1yl (j + 1/2)|

where the last letter of each computational name indicates the grid point considered and
is the earth radius (defined in phycst. F90 along with all universal constants). Note that the
horizontal position of and scale factors at w-points are exactly equal to those of ¢-points,
thus no specific arrays are defined at w-points.

Note that the definition of the scale factors (i.e. as the analytical first derivative of the
transformation that gives (A, ¢, z) as a function of (i, 7, k)) is specific to the NEMO model
[?]. As an example, ey, is defined locally at a ¢-point, whereas many other models on a C
grid choose to define such a scale factor as the distance between the U-points on each side
of the ¢-point. Relying on an analytical transformation has two advantages : firstly, there
is no ambiguity in the scale factors appearing in the discrete equations, since they are first
introduced in the continuous equations ; secondly, analytical transformations encourage
good practice by the definition of smoothly varying grids (rather than allowing the user to
set arbitrary jumps in thickness between adjacent layers) [?]. An example of the effect of
such a choice is shown in Fig. 4.4.

Choice of horizontal grid

The user has three options available in defining a horizontal grid, which involve the
parameter jphgr_mesh of the par_oce.F90 module.
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FI1G. 4.4 — Comparison of (a) traditional definitions of grid-point position and
grid-size in the vertical, and (b) analytically derived grid-point position and scale
factors. For both grids here, the same w-point depth has been chosen but in (a) the
t-points are set half way between w-points while in (b) they are defined from an
analytical function : 2(k) = 5 (i — 1/2)% — 45 (i — 1/2)* + 140 (« — 1/2) — 150.
Note the resulting difference between the value of the grid-size Ay and those of
the scale factor ey,.

Jphgr_mesh=0 The most general curvilinear orthogonal grids. The coordinates and their
first derivatives with respect to ¢ and j are provided in a input file (coordinates.nc),
read in hgr_read subroutine of the domhgr module.

Jjphgr_mesh=1to5 A few simple analytical grids are provided (see below). For other
analytical grids, the domhgr.F90 module must be modified by the user.

There are two simple cases of geographical grids on the sphere. With jphgr_mesh=1,
the grid (expressed in degrees) is regular in space, with grid sizes specified by parameters
ppel _deg and ppe2 _deg, respectively. Such a geographical grid can be very anisotropic at
high latitudes because of the convergence of meridians (the zonal scale factors e; become
much smaller than the meridional scale factors ez). The Mercator grid (jphgr_-mesh=4)
avoids this anisotropy by refining the meridional scale factors in the same way as the
zonal ones. In this case, meridional scale factors and latitudes are calculated analytically
using the formulae appropriate for a Mercator projection, based on ppel_deg which is a
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reference grid spacing at the equator (this applies even when the geographical equator
is situated outside the model domain). In these two cases (jphgr_mesh=1 or 4), the grid
position is defined by the longitude and latitude of the south-westernmost point (ppglamt0
and ppgphi0). Note that for the Mercator grid the user need only provide an approximate
starting latitude : the real latitude will be recalculated analytically, in order to ensure that
the equator corresponds to line passing through ¢- and u-points.

Rectangular grids ignoring the spherical geometry are defined with jphgr_mesh = 2,
3, 5. The domain is either an f-plane (jphgr_mesh = 2, Coriolis factor is constant) or a
beta-plane (jphgr_mesh = 3, the Coriolis factor is linear in the j-direction). The grid size
is uniform in meter in each direction, and given by the parameters ppel_m and ppe2_m
respectively. The zonal grid coordinate (glam arrays) is in kilometers, starting at zero with
the first ¢-point. The meridional coordinate (gphi. arrays) is in kilometers, and the second
t-point corresponds to coordinate gphit = 0. The input parameter ppglam0 is ignored.
ppgphiO is used to set the reference latitude for computation of the Coriolis parameter.
In the case of the beta plane, ppgphiO corresponds to the center of the domain. Finally,
the special case jphgr_mesh=5 corresponds to a beta plane in a rotated domain for the
GYRE configuration, representing a classical mid-latitude double gyre system. The rota-
tion allows us to maximize the jet length relative to the gyre areas (and the number of grid
points).

The choice of the grid must be consistent with the boundary conditions specified by
the parameter jperio (see §8).

Output Grid files

All the arrays relating to a particular ocean model configuration (grid-point position,
scale factors, masks) can be saved in files if nn_msh # 0 (namelist parameter). This
can be particularly useful for plots and off-line diagnostics. In some cases, the user may
choose to make a local modification of a scale factor in the code. This is the case in global
configurations when restricting the width of a specific strait (usually a one-grid-point strait
that happens to be too wide due to insufficient model resolution). An example is Gibraltar
Strait in the ORCA2 configuration. When such modifications are done, the output grid
written when nn_msh # 0 is no more equal to the input grid.

Domain : Vertical Gl'id (domzgr.F90 module)

&namzgr ! vertical coordinate

|
1n_zco = .false. ! z-coordinate - full steps (T/F) ("key_zco" may also be defined)
1n_zps = .true. ! z-coordinate - partial steps (T/F)
1n_sco = .false. ! s— or hybrid z-s-coordinate (T/F)

&namdom ! space and time domain (bathymetry, mesh, timestep)
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FIG. 4.5 — The ocean bottom as seen by the model : (a) z-coordinate with full
step, (b) z-coordinate with partial step, (c) s-coordinate : terrain following repre-
sentation, (d) hybrid s — 2z coordinate, (e) hybrid s — z coordinate with partial step,
and (f) same as (e) but with variable volume associated with the non-linear free
surface. Note that the variable volume option (key_vvl) can be used with any of
the 5 coordinates (a) to (e).

nn_bathy = 1 compute (=0) or read (=1) the bathymetry file

nn_closea = 0 remove (=0) or keep (=1) closed seas and lakes (ORCA)

nn_msh = 0 create (=1) a mesh file or not (=0)

rn_hmin = -3. min depth of the ocean (>0) or min number of ocean level (<0)
rn_e3zps_min= 20. partial step thickness is set larger than the minimum of
rn_e3zps_rat= 0. rn_e3zps_min and rn_e3zps_ratxe3t, with 0<rn_e3zps_rat<l

-

rn_rdt = 5760. time step for the dynamics (and tracer if nn_acc=0)

nn_baro = 64 number of barotropic time step ("key_dynspg_ts")

rn_atfp = 0.1 asselin time filter parameter

nn_acc = 0 acceleration of convergence : =1 used, rdt < rdttra (k)
! =0, not used, rdt = rdttra

rn_rdtmin = 28800. minimum time step on tracers (used if nn_acc=1)

!
rn_rdtmax = 28800. ! maximum time step on tracers (used if nn_acc=1)
rn_rdth = ! depth variation of tracer time step (used if nn_acc=1)

In the vertical, the model mesh is determined by four things : (1) the bathymetry given
in meters ; (2) the number of levels of the model (jpk) ; (3) the analytical transformation
z(i, 7, k) and the vertical scale factors (derivatives of the transformation); and (4) the
masking system, i.e. the number of wet model levels at each (i, j) column of points.

The choice of a vertical coordinate, even if it is made through a namelist parame-
ter, must be done once of all at the beginning of an experiment. It is not intended as
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an option which can be enabled or disabled in the middle of an experiment. Three main
choices are offered (Fig. 4.5a to c) : z-coordinate with full step bathymetry (/n_zco = true),
z-coordinate with partial step bathymetry (In_zps = true), or generalized, s-coordinate
(In_sco = true). Hybridation of the three main coordinates are available : s — z or s — zps
coordinate (Fig. 4.5d and 4.5e). When using the variable volume option key_vvl) (z.e.
non-linear free surface), the coordinate follow the time-variation of the free surface so
that the transformation is time dependent : z(i, j, k, t) (Fig. 4.5f). This option can be used
with full step bathymetry or s-coordinate (hybride and partial step coordinates have not
yet been tested in NEMO v2.3).

Contrary to the horizontal grid, the vertical grid is computed in the code and no pro-
vision is made for reading it from a file. The only input file is the bathymetry (in meters)
(bathy_meter.nc) . After reading the bathymetry, the algorithm for vertical grid definition
differs between the different options :

zco set a reference coordinate transformation zg(k), and set z(i, 7, k, t) = zo(k).

zps set a reference coordinate transformation zo(k), and calculate the thickness of the
deepest level at each (7, j) point using the bathymetry, to obtain the final three-
dimensional depth and scale factor arrays.

sco smooth the bathymetry to fulfil the hydrostatic consistency criteria and set the three-
dimensional transformation.

s-z and s-zps smooth the bathymetry to fulfil the hydrostatic consistency criteria and set
the three-dimensional transformation z(i, 7, k), and possibly introduce masking of
extra land points to better fit the original bathymetry file

The arrays describing the grid point depths and vertical scale factors are three dimen-
sional arrays (4, j, k) even in the case of z-coordinate with full step bottom topography.
In non-linear free surface (key_vvl), their knowledge is required at before, now and after
time step, while they do not vary in time in linear free surface case. To improve the code
readability while providing this flexibility, the vertical coordinate and scale factors are
defined as functions of (i, j, k) with ”fs” as prefix (examples : fse3t_b, fse3t_n, fse3t_a,
for the before, now and after scale factors at ¢-point) that can be either three different
arrays when key_vvl is defined, or a single fixed arrays. These functions are defined in the
file domzgr_substitute.h90 of the DOM directory. They are used throughout the code, and
replaced by the corresponding arrays at the time of pre-processing (CPP capability).

Meter Bathymetry

Three options are possible for defining the bathymetry, according to the namelist va-
riable nn_bathy :

nn_bathy = 0 a flat-bottom domain is defined. The total depth z,,(jpk) is given by the

coordinate transformation. The domain can either be a closed basin or a periodic
channel depending on the parameter jperio.

2N.B. in full step z-coordinate, a bathy_level.nc file can replace the bathy_meter.nc file, so that
the computation of the number of wet ocean point in each water column is by-passed
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nn_bathy = -1 a domain with a bump of topography one third of the domain width at the
central latitude. This is meant for the "EEL-RS5” configuration, a periodic or open
boundary channel with a seamount.

nn_bathy =1 read a bathymetry. The bathy_meter.nc file (Netcdf format) provides the
ocean depth (positive, in meters) at each grid point of the model grid. The bathyme-
try is usually built by interpolating a standard bathymetry product (e.g. ETOPO2)
onto the horizontal ocean mesh. Defining the bathymetry also defines the coastline :
where the bathymetry is zero, no model levels are defined (all levels are masked).

When a global ocean is coupled to an atmospheric model it is better to represent all
large water bodies (e.g, great lakes, Caspian sea...) even if the model resolution does not
allow their communication with the rest of the ocean. This is unnecessary when the ocean
is forced by fixed atmospheric conditions, so these seas can be removed from the ocean
domain. The user has the option to set the bathymetry in closed seas to zero (see §14.2),
but the code has to be adapted to the user’s configuration.

4.3.2 z-coordinate (In_zco=true) and reference coordinate

The reference coordinate transformation z( (k) defines the arrays gdept, and gdepwy
for ¢- and w-points, respectively. As indicated on Fig.4.3 jpk is the number of w-levels.
gdepwy(1) is the ocean surface. There are at most jpk-1 t-points inside the ocean, the
additional ¢-point at jk = jpk is below the sea floor and is not used. The vertical loca-
tion of w- and ¢-levels is defined from the analytic expression of the depth z(k) whose
analytical derivative with respect to k£ provides the vertical scale factors. The user must
provide the analytical expression of both z( and its first derivative with respect to k. This
is done in routine domzgr. F90 through statement functions, using parameters provided in
the par_oce.h90 file.

It is possible to define a simple regular vertical grid by giving zero stretching (ppacr=0).
In that case, the parameters jpk (number of w-levels) and pphmax (total ocean depth in
meters) fully define the grid.

For climate-related studies it is often desirable to concentrate the vertical resolution
near the ocean surface. The following function is proposed as a standard for a z-coordinate
(with either full or partial steps) :

20(k) = hsur — ho k — hy log[cosh ((k — hen)/her) ]

0 (4.13)
(k) = [~ho — hytanh ((k — hun) /her)|
where k = 1 to jpk for w-levels and k = 1 to k = 1 for T'—levels. Such an expression
allows us to define a nearly uniform vertical location of levels at the ocean top and bottom
with a smooth hyperbolic tangent transition in between (Fig. 4.6).

The most used vertical grid for ORCA2 has 10 m (500 m) resolution in the surface
(bottom) layers and a depth which varies from O at the sea surface to a minimum of
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FIG. 4.6 — Default vertical mesh for ORCA?2 : 30 ocean levels (I.30). Vertical level
functions for (a) T-point depth and (b) the associated scale factor as computed
from (4.13) using (4.14) in z-coordinate.

—5000 m. This leads to the following conditions :
es(141/2) = 10.
es(jpk —1/2) = 500.
2(1) =
z(jpk) =

(4.14)

With the choice of the stretching h., = 3 and the number of levels jpk=31, the four
coefficients hgyr, ho, h1, and g, in (4.13) have been determined such that (4.14) is sa-
tisfied, through an optimisation procedure using a bisection method. For the first standard
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ORCAZ2 vertical grid this led to the following values : kg, = 4762.96, hg = 255.58, h; =
245.5813, and hy;, = 21.43336. The resulting depths and scale factors as a function of the
model levels are shown in Fig. 4.6 and given in Table 4.2. Those values correspond to the
parameters ppsur, ppa0, ppal, ppkth in the parameter file par_oce.F90.

Rather than entering parameters hg,,, hg, and h; directly, it is possible to recalculate
them. In that case the user sets ppsur=ppaO=ppal=pp_to_be_computed, in par_oce.F90,
and specifies instead the four following parameters :

— ppacr=h,, : stretching factor (nondimensional). The larger ppacr, the smaller the

stretching. Values from 3 to 10 are usual.

— ppkth=nhyy, : is approximately the model level at which maximum stretching occurs

(nondimensional, usually of order 1/2 or 2/3 of jpk)

— ppdzmin : minimum thickness for the top layer (in meters)

— pphmax : total depth of the ocean (meters).

As an example, for the 45 layers used in the DRAKKAR configuration those parameters
are : jpk=46, ppacr=9, ppkth=23.563, ppdzmin=6m, pphmax=5750m.

z-coordinate with partial step (In_zps=.true.)

&namdom ! space and time domain (bathymetry, mesh, timestep)

1
nn_bathy = 1 compute (=0) or read (=1) the bathymetry file
nn_closea = 0 remove (=0) or keep (=1) closed seas and lakes (ORCA)
nn_msh = 0 create (=1) a mesh file or not (=0)
rn_hmin = -3. min depth of the ocean (>0) or min number of ocean level (<0)
rn_e3zps_min= 20. partial step thickness is set larger than the minimum of
rn_e3zps_rat= 0

!
!
!
!
!
.1 ! rn_e3zps_min and rn_e3zps_rat+e3t, with 0<rn_e3zps_rat<l
!
!
|
!
!

rn_rdt = 5760 time step for the dynamics (and tracer if nn_acc=0)
nn_baro = 64 number of barotropic time step ("key_dynspg_ts")
rn_atfp = 0.1 asselin time filter parameter

nn_acc = 0 acceleration of convergence : =1 used, rdt < rdttra (k)

! =0, not used, rdt = rdttra
rn_rdtmin = ! minimum time step on tracers (used if nn_acc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nn_acc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nn_acc=1l)

/

In z-coordinate partial step, the depths of the model levels are defined by the reference
analytical function 2o (k) as described in the previous section, except in the bottom layer.
The thickness of the bottom layer is allowed to vary as a function of geographical location
(A, ) to allow a better representation of the bathymetry, especially in the case of small
slopes (where the bathymetry varies by less than one level thickness from one grid point
to the next). The reference layer thicknesses €9, have been defined in the absence of bathy-
metry. With partial steps, layers from 1 to jpk-2 can have a thickness smaller than ez (jk).
The model deepest layer (jpk-1) is allowed to have either a smaller or larger thickness
than eg;(jpk) : the maximum thickness allowed is 2 x es;(jpk — 1). This has to be kept
in mind when specifying the maximum depth pphmax in partial steps : for example, with
pphmax= 5750 m for the DRAKKAR 45 layer grid, the maximum ocean depth allowed
is actually 6000 m (the default thickness es;(jpk — 1) being 250 m). Two variables in the
namdom namelist are used to define the partial step vertical grid. The mimimum water
thickness (in meters) allowed for a cell partially filled with bathymetry at level jk is the
minimum of rn_e3zps_min (thickness in meters, usually 20 m) or es;(jk) * rn_e3zps_rat
(a fraction, usually 10%, of the default thickness es;(jk)).
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LEVEL gdept | gdepw e3t e3w
1 5.00 0.00 | 10.00 | 10.00
2 15.00 10.00 | 10.00 | 10.00
3 25.00 20.00 | 10.00 | 10.00
4 35.01 30.00 | 10.01 | 10.00
5 45.01 40.01 | 10.01 | 10.01
6 55.03 50.02 | 10.02 | 10.02
7 65.06 60.04 | 10.04 | 10.03
8 75.13 70.09 | 10.09 | 10.06
9 85.25 80.18 | 10.17 | 10.12
10 95.49 90.35 | 10.33 | 10.24
11 10597 | 100.69 | 10.65 | 10.47
12 11690 | 111.36 | 11.27 | 10091
13 128.70 | 122.65 | 1247 | 11.77
14 142.20 | 135.16 | 14.78 | 13.43
15 158.96 | 150.03 | 19.23 | 16.65
16 181.96 | 16942 | 27.66 | 22.78
17 216.65 | 197.37 | 43.26 | 34.30
18 27248 | 241.13 | 70.88 | 55.21
19 364.30 | 312.74 | 116.11 | 90.99

20 511.53 | 429.72 | 181.55 | 146.43
21 732.20 | 611.89 | 261.03 | 220.35
22 1033.22 | 872.87 | 339.39 | 301.42
23 1405.70 | 1211.59 | 402.26 | 373.31
24 1830.89 | 1612.98 | 444.87 | 426.00
25 2289.77 | 2057.13 | 470.55 | 459.47
26 2768.24 | 2527.22 | 484.95 | 478.83
27 3257.48 | 3011.90 | 492.70 | 489.44
28 3752.44 | 3504.46 | 496.78 | 495.07
29 4250.40 | 4001.16 | 498.90 | 498.02
30 4749.91 | 4500.02 | 500.00 | 499.54
31 5250.23 | 5000.00 | 500.56 | 500.33

TAB. 4.2 — Default vertical mesh in z-coordinate for 30 layers ORCA?2 configu-
ration as computed from (4.13) using the coefficients given in (4.14)
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Add a figure here of pstep especially at last ocean level

s-coordinate (In_sco=true

&namzgr_sco ! s—-coordinate or hybrid z-s-coordinate

|

300.

5250.
6.0 surface control parameter (0<=rn_theta<=20)
0.75 ! bottom control parameter (0<=rn_thetb<= 1)

rn_sbot_min
!
!
!
0.15 ! maximum cut-off r-value allowed (0<rn_max<l
!
!
!

rn_sbot_max
rn_theta
rn_thetb
rn_rmax
1n_s_sigma

! minimum depth of s-bottom surface (>0) (m)
! maximum depth of s-bottom surface (= ocean depth) (>0) (m)

.false. ! hybrid s-sigma coordinates
rn_bb
rn_hc

/

0.8
150.0

stretching with s-sigma
critical depth with s-sigma

In s-coordinate (In_sco = true), the depth and thickness of the model levels are defined
from the product of a depth field and either a stretching function or its derivative, respec-
tively :

2(k) = h(i,
eg(k)

where h is the depth of the last w-level (zo(k)) defined at the ¢-point location in the
horizontal and zo(k) is a function which varies from 0 at the sea surface to 1 at the
ocean bottom. The depth field h is not necessary the ocean depth, since a mixed step-like
and bottom-following representation of the topography can be used (Fig. 4.5d-e). In the
example provided (zgr_sco routine, see domzgr.F90) h is a smooth envelope bathymetry
and steps are used to represent sharp bathymetric gradients.

A new flexible stretching function, modified from ? is provided as an example :

‘7: ) (4.15)
j

h(i, J)

Z|
Z

z=he+ (h— he) cs)
_[tanh (0 (s + b)) — tanh (6 b)] (4.16)
o(s) = 2 sinh (0)

where h. is the thermocline depth and 6 and b are the surface and bottom control parame-
ters such that 0 < 6 < 20, and 0 < b < 1. b has been designed to allow surface and/or
bottom increase of the vertical resolution (Fig. 4.7).

2*- or s*-coordinate (add key vvl)

This option is described in the Report by Levier et al. (2007), available on the NEMO
web site.

level bathymetry and mask

Whatever the vertical coordinate used, the model offers the possibility of representing
the bottom topography with steps that follow the face of the model cells (step like topo-
graphy) [?]. The distribution of the steps in the horizontal is defined in a 2D integer array,
mbathy, which gives the number of ocean levels (i.e. those that are not masked) at each
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FI1G. 4.7 — Examples of the stretching function applied to a sea mont ; from left
to right : surface, surface and bottom, and bottom intensified resolutions

t-point. mbathy is computed from the meter bathymetry using the definiton of gdept as
the number of ¢-points which gdept < bathy.
Modifications of the model bathymetry are performed in the bat_ctl routine (see domzgr. F90
module) after mbathy is computed. Isolated grid points that do not communicate with ano-
ther ocean point at the same level are eliminated.
From the mbathy array, the mask fields are defined as follows :

1 if & < mbathy(i,j)

tmaSk‘ i) i’k =
(4,5, k) {o if & < mbathy(i, j)

umask(i, j, k) = tmask(i,j, k) * tmask(i+ 1,7, k)
vmask(i, j, k) = tmask(i, j, k) * tmask(i,j+ 1,k)
fmask(i, j, k) = tmask(i,j, k) * tmask(i+ 1,7, k)

x tmask(i, j, k) * tmask(i+ 1,7, k)

Note that wmask is not defined as it is exactly equal to #mask with the numerical
indexing used (§ 4.1.3). Moreover, the specification of closed lateral boundaries requires
that at least the first and last rows and columns of the mbathy array are set to zero. In the
particular case of an east-west cyclical boundary condition, mbathy has its last column
equal to the second one and its first column equal to the last but one (and so too the mask
arrays) (see § 8.2).
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Using the representation described in Chap. 4, several semi-discrete space forms of
the tracer equations are available depending on the vertical coordinate used and on the
physics used. In all the equations presented here, the masking has been omitted for sim-
plicity. One must be aware that all the quantities are masked fields and that each time a
mean or difference operator is used, the resulting field is multiplied by a mask.

The two active tracers are potential temperature and salinity. Their prognostic equa-
tions can be summarized as follows :

NXT = ADV + LDF + ZDF + SBC (+QSR) (+BBC) (+BBL) (+DMP)

NXT stands for next, referring to the time-stepping. From left to right, the terms on the
rhs of the tracer equations are the advection (ADV), the lateral diffusion (LDF), the verti-
cal diffusion (ZDF), the contributions from the external forcings (SBC : Surface Boundary
Condition, QSR : penetrative Solar Radiation, and BBC : Bottom Boundary Condition),
the contribution from the bottom boundary Layer (BBL) parametrisation, and an inter-
nal damping (DMP) term. The terms QSR, BBC, BBL and DMP are optional. The ex-
ternal forcings and parameterisations require complex inputs and complex calculations
(e.g. bulk formulae, estimation of mixing coefficients) that are carried out in the SBC,
LDF and ZDF modules and described in chapters §7, §9 and §10, respectively. Note that
tranpc.F90, the non-penetrative convection module, although (temporarily) located in the
NEMO/OPA/TRA directory, is described with the model vertical physics (ZDF).

In the present chapter we also describe the diagnostic equations used to compute the
sea-water properties (density, Brunt-Vaisild frequency, specific heat and freezing point
with associated modules eosbn2.F90 and phycst.F90).

The different options available to the user are managed by namelist logicals or CPP
keys. For each equation term r#f, the namelist logicals are In_trattt_xxx, where xxx is a 3
or 4 letter acronym corresponding