MODULE traldf_iso_grif !!====================================================================== !! *** MODULE traldf_iso_grif *** !! Ocean tracers: horizontal component of the lateral tracer mixing trend !!====================================================================== !! History : 3.3 ! 2010-10 (G. Nurser, C. Harris, G. Madec) !! ! Griffies operator version adapted from traldf_iso.F90 !!---------------------------------------------------------------------- #if defined key_ldfslp || defined key_esopa !!---------------------------------------------------------------------- !! 'key_ldfslp' slope of the lateral diffusive direction !!---------------------------------------------------------------------- !! tra_ldf_iso_grif : update the tracer trend with the horizontal component !! of the Griffies iso-neutral laplacian operator !!---------------------------------------------------------------------- USE oce ! ocean dynamics and active tracers USE dom_oce ! ocean space and time domain USE phycst ! physical constants USE trc_oce ! share passive tracers/Ocean variables USE zdf_oce ! ocean vertical physics USE ldftra_oce ! ocean active tracers: lateral physics USE ldfslp ! iso-neutral slopes USE diaptr ! poleward transport diagnostics USE in_out_manager ! I/O manager USE iom ! I/O library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_mpp ! MPP library USE wrk_nemo ! Memory Allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC tra_ldf_iso_grif ! routine called by traldf.F90 REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: psix_eiv, psiy_eiv !: eiv stream function (diag only) REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: ah_wslp2 !: aeiv*w-slope^2 REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, SAVE :: zdkt3d !: vertical tracer gradient at 2 levels !! * Substitutions # include "domzgr_substitute.h90" # include "ldftra_substitute.h90" # include "vectopt_loop_substitute.h90" # include "ldfeiv_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_iso_grif( kt, kit000, cdtype, pgu, pgv, & & ptb, pta, kjpt, pahtb0 ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_ldf_iso_grif *** !! !! ** Purpose : Compute the before horizontal tracer (t & s) diffusive !! trend for a laplacian tensor (ezxcept the dz[ dz[.] ] term) and !! add it to the general trend of tracer equation. !! !! ** Method : The horizontal component of the lateral diffusive trends !! is provided by a 2nd order operator rotated along neural or geopo- !! tential surfaces to which an eddy induced advection can be added !! It is computed using before fields (forward in time) and isopyc- !! nal or geopotential slopes computed in routine ldfslp. !! !! 1st part : masked horizontal derivative of T ( di[ t ] ) !! ======== with partial cell update if ln_zps=T. !! !! 2nd part : horizontal fluxes of the lateral mixing operator !! ======== !! zftu = (aht+ahtb0) e2u*e3u/e1u di[ tb ] !! - aht e2u*uslp dk[ mi(mk(tb)) ] !! zftv = (aht+ahtb0) e1v*e3v/e2v dj[ tb ] !! - aht e2u*vslp dk[ mj(mk(tb)) ] !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) { di-1[ zftu ] + dj-1[ zftv ] } !! Add this trend to the general trend (ta,sa): !! ta = ta + difft !! !! 3rd part: vertical trends of the lateral mixing operator !! ======== (excluding the vertical flux proportional to dk[t] ) !! vertical fluxes associated with the rotated lateral mixing: !! zftw =-aht { e2t*wslpi di[ mi(mk(tb)) ] !! + e1t*wslpj dj[ mj(mk(tb)) ] } !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) dk[ zftw ] !! Add this trend to the general trend (ta,sa): !! pta = pta + difft !! !! ** Action : Update pta arrays with the before rotated diffusion !!---------------------------------------------------------------------- USE oce , ONLY: zftu => ua , zftv => va ! (ua,va) used as 3D workspace ! INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: kit000 ! first time step index CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) INTEGER , INTENT(in ) :: kjpt ! number of tracers REAL(wp), DIMENSION(jpi,jpj ,kjpt), INTENT(in ) :: pgu, pgv ! tracer gradient at pstep levels REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in ) :: ptb ! before and now tracer fields REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) :: pta ! tracer trend REAL(wp) , INTENT(in ) :: pahtb0 ! background diffusion coef ! INTEGER :: ji, jj, jk,jn ! dummy loop indices INTEGER :: ip,jp,kp ! dummy loop indices INTEGER :: ierr ! temporary integer REAL(wp) :: zmsku, zabe1, zcof1, zcoef3 ! local scalars REAL(wp) :: zmskv, zabe2, zcof2, zcoef4 ! - - REAL(wp) :: zcoef0, zbtr ! - - ! REAL(wp) :: zslope_skew, zslope_iso, zslope2, zbu, zbv REAL(wp) :: ze1ur, zdxt, ze2vr, ze3wr, zdyt, zdzt REAL(wp) :: zah, zah_slp, zaei_slp #if defined key_diaar5 REAL(wp) :: zztmp ! local scalar #endif REAL(wp), POINTER, DIMENSION(:,: ) :: z2d REAL(wp), POINTER, DIMENSION(:,:,:) :: zdit, zdjt, ztfw REAL(wp), POINTER, DIMENSION(:,:,:) :: zw3d ! 3D workspace !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('tra_ldf_iso_grif') ! CALL wrk_alloc( jpi, jpj, z2d ) CALL wrk_alloc( jpi, jpj, jpk, zdit, zdjt, ztfw ) ! IF( kt == kit000 .AND. .NOT.ALLOCATED(ah_wslp2) ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_ldf_iso_grif : rotated laplacian diffusion operator on ', cdtype IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' ALLOCATE( ah_wslp2(jpi,jpj,jpk) , zdkt3d(jpi,jpj,0:1), STAT=ierr ) IF( lk_mpp ) CALL mpp_sum ( ierr ) IF( ierr > 0 ) CALL ctl_stop('STOP', 'tra_ldf_iso_grif: unable to allocate arrays') IF( ln_traldf_gdia ) THEN IF (.NOT. ALLOCATED(psix_eiv))THEN ALLOCATE( psix_eiv(jpi,jpj,jpk) , psiy_eiv(jpi,jpj,jpk) , STAT=ierr ) IF( lk_mpp ) CALL mpp_sum ( ierr ) IF( ierr > 0 ) CALL ctl_stop('STOP', 'tra_ldf_iso_grif: unable to allocate diagnostics') ENDIF ENDIF ENDIF !!---------------------------------------------------------------------- !! 0 - calculate ah_wslp2, psix_eiv, psiy_eiv !!---------------------------------------------------------------------- !!gm Future development: consider using Ah defined at T-points and attached to the 4 t-point triads ah_wslp2(:,:,:) = 0._wp IF( ln_traldf_gdia ) THEN psix_eiv(:,:,:) = 0._wp psiy_eiv(:,:,:) = 0._wp ENDIF DO ip = 0, 1 DO kp = 0, 1 DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ze1ur = 1._wp / e1u(ji,jj) ze3wr = 1._wp / fse3w(ji+ip,jj,jk+kp) zbu = 0.25_wp * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) zah = fsahtu(ji,jj,jk) ! fsaht(ji+ip,jj,jk) zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp) ! Subtract s-coordinate slope at t-points to give slope rel to s surfaces ! (do this by *adding* gradient of depth) zslope2 = zslope_skew + ( fsdept(ji+1,jj,jk) - fsdept(ji ,jj ,jk) ) * ze1ur * umask(ji,jj,jk+kp) zslope2 = zslope2 *zslope2 ah_wslp2(ji+ip,jj,jk+kp) = ah_wslp2(ji+ip,jj,jk+kp) & & + zah * ( zbu * ze3wr / ( e1t(ji+ip,jj) * e2t(ji+ip,jj) ) ) * zslope2 IF( ln_traldf_gdia ) THEN zaei_slp = fsaeiw(ji+ip,jj,jk) * zslope_skew ! fsaeit(ji+ip,jj,jk)*zslope_skew psix_eiv(ji,jj,jk+kp) = psix_eiv(ji,jj,jk+kp) + 0.25_wp * zaei_slp ENDIF END DO END DO END DO END DO END DO ! DO jp = 0, 1 DO kp = 0, 1 DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji=1,fs_jpim1 ze2vr = 1._wp / e2v(ji,jj) ze3wr = 1.0_wp / fse3w(ji,jj+jp,jk+kp) zbv = 0.25_wp * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) zah = fsahtv(ji,jj,jk) ! fsaht(ji,jj+jp,jk) zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp) ! Subtract s-coordinate slope at t-points to give slope rel to s surfaces ! (do this by *adding* gradient of depth) zslope2 = zslope_skew + ( fsdept(ji,jj+1,jk) - fsdept(ji,jj,jk) ) * ze2vr * vmask(ji,jj,jk+kp) zslope2 = zslope2 * zslope2 ah_wslp2(ji,jj+jp,jk+kp) = ah_wslp2(ji,jj+jp,jk+kp) & & + zah * ( zbv * ze3wr / ( e1t(ji,jj+jp) * e2t(ji,jj+jp) ) ) * zslope2 IF( ln_traldf_gdia ) THEN zaei_slp = fsaeiw(ji,jj+jp,jk) * zslope_skew ! fsaeit(ji,jj+jp,jk)*zslope_skew psiy_eiv(ji,jj,jk+kp) = psiy_eiv(ji,jj,jk+kp) + 0.25_wp * zaei_slp ENDIF END DO END DO END DO END DO END DO ! #if defined key_iomput IF( ln_traldf_gdia .AND. cdtype == 'TRA' ) THEN CALL wrk_alloc( jpi , jpj , jpk , zw3d ) DO jk=1,jpkm1 zw3d(:,:,jk) = (psix_eiv(:,:,jk+1) - psix_eiv(:,:,jk))/fse3u(:,:,jk) ! u_eiv = -dpsix/dz END DO zw3d(:,:,jpk) = 0._wp CALL iom_put( "uoce_eiv", zw3d ) ! i-eiv current DO jk=1,jpk-1 zw3d(:,:,jk) = (psiy_eiv(:,:,jk+1) - psiy_eiv(:,:,jk))/fse3v(:,:,jk) ! v_eiv = -dpsiy/dz END DO zw3d(:,:,jpk) = 0._wp CALL iom_put( "voce_eiv", zw3d ) ! j-eiv current DO jk=1,jpk-1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zw3d(ji,jj,jk) = (psiy_eiv(ji,jj,jk) - psiy_eiv(ji,jj-1,jk))/e2t(ji,jj) + & & (psix_eiv(ji,jj,jk) - psix_eiv(ji-1,jj,jk))/e1t(ji,jj) ! w_eiv = dpsiy/dy + dpsiy/dx END DO END DO END DO zw3d(:,:,jpk) = 0._wp CALL iom_put( "woce_eiv", zw3d ) ! vert. eiv current CALL wrk_dealloc( jpi , jpj , jpk , zw3d ) ENDIF #endif ! ! =========== DO jn = 1, kjpt ! tracer loop ! ! =========== ! Zero fluxes for each tracer ztfw(:,:,:) = 0._wp zftu(:,:,:) = 0._wp zftv(:,:,:) = 0._wp ! DO jk = 1, jpkm1 !== before lateral T & S gradients at T-level jk ==! DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zdit(ji,jj,jk) = ( ptb(ji+1,jj ,jk,jn) - ptb(ji,jj,jk,jn) ) * umask(ji,jj,jk) zdjt(ji,jj,jk) = ( ptb(ji ,jj+1,jk,jn) - ptb(ji,jj,jk,jn) ) * vmask(ji,jj,jk) END DO END DO END DO IF( ln_zps.and.l_grad_zps ) THEN ! partial steps: correction at the last level DO jj = 1, jpjm1 DO ji = 1, jpim1 zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn) zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn) END DO END DO ENDIF !!---------------------------------------------------------------------- !! II - horizontal trend (full) !!---------------------------------------------------------------------- ! DO jk = 1, jpkm1 ! ! !== Vertical tracer gradient at level jk and jk+1 zdkt3d(:,:,1) = ( ptb(:,:,jk,jn) - ptb(:,:,jk+1,jn) ) * tmask(:,:,jk+1) ! ! ! surface boundary condition: zdkt3d(jk=0)=zdkt3d(jk=1) IF( jk == 1 ) THEN ; zdkt3d(:,:,0) = zdkt3d(:,:,1) ELSE ; zdkt3d(:,:,0) = ( ptb(:,:,jk-1,jn) - ptb(:,:,jk,jn) ) * tmask(:,:,jk) ENDIF IF (ln_botmix_grif) THEN DO ip = 0, 1 !== Horizontal & vertical fluxes DO kp = 0, 1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ze1ur = 1._wp / e1u(ji,jj) zdxt = zdit(ji,jj,jk) * ze1ur ze3wr = 1._wp / fse3w(ji+ip,jj,jk+kp) zdzt = zdkt3d(ji+ip,jj,kp) * ze3wr zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp) zslope_iso = triadi(ji+ip,jj,jk,1-ip,kp) zbu = 0.25_wp * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) ! ln_botmix_grif is .T. don't mask zah for bottom half cells zah = fsahtu(ji,jj,jk) !*umask(ji,jj,jk+kp) !fsaht(ji+ip,jj,jk) ===>> ???? zah_slp = zah * zslope_iso zaei_slp = fsaeiw(ji+ip,jj,jk) * zslope_skew !fsaeit(ji+ip,jj,jk)*zslope_skew zftu(ji,jj,jk) = zftu(ji,jj,jk) - ( zah * zdxt + (zah_slp - zaei_slp) * zdzt ) * zbu * ze1ur ztfw(ji+ip,jj,jk+kp) = ztfw(ji+ip,jj,jk+kp) - (zah_slp + zaei_slp) * zdxt * zbu * ze3wr END DO END DO END DO END DO DO jp = 0, 1 DO kp = 0, 1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ze2vr = 1._wp / e2v(ji,jj) zdyt = zdjt(ji,jj,jk) * ze2vr ze3wr = 1._wp / fse3w(ji,jj+jp,jk+kp) zdzt = zdkt3d(ji,jj+jp,kp) * ze3wr zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp) zslope_iso = triadj(ji,jj+jp,jk,1-jp,kp) zbv = 0.25_wp * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) ! ln_botmix_grif is .T. don't mask zah for bottom half cells zah = fsahtv(ji,jj,jk) !*vmask(ji,jj,jk+kp) ! fsaht(ji,jj+jp,jk) zah_slp = zah * zslope_iso zaei_slp = fsaeiw(ji,jj+jp,jk) * zslope_skew ! fsaeit(ji,jj+jp,jk)*zslope_skew zftv(ji,jj,jk) = zftv(ji,jj,jk) - ( zah * zdyt + (zah_slp - zaei_slp) * zdzt ) * zbv * ze2vr ztfw(ji,jj+jp,jk+kp) = ztfw(ji,jj+jp,jk+kp) - (zah_slp + zaei_slp) * zdyt * zbv * ze3wr END DO END DO END DO END DO ELSE DO ip = 0, 1 !== Horizontal & vertical fluxes DO kp = 0, 1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ze1ur = 1._wp / e1u(ji,jj) zdxt = zdit(ji,jj,jk) * ze1ur ze3wr = 1._wp / fse3w(ji+ip,jj,jk+kp) zdzt = zdkt3d(ji+ip,jj,kp) * ze3wr zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp) zslope_iso = triadi(ji+ip,jj,jk,1-ip,kp) zbu = 0.25_wp * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) ! ln_botmix_grif is .F. mask zah for bottom half cells zah = fsahtu(ji,jj,jk) * umask(ji,jj,jk+kp) ! fsaht(ji+ip,jj,jk) ===>> ???? zah_slp = zah * zslope_iso zaei_slp = fsaeiw(ji+ip,jj,jk) * zslope_skew ! fsaeit(ji+ip,jj,jk)*zslope_skew zftu(ji,jj,jk) = zftu(ji,jj,jk) - ( zah * zdxt + (zah_slp - zaei_slp) * zdzt ) * zbu * ze1ur ztfw(ji+ip,jj,jk+kp) = ztfw(ji+ip,jj,jk+kp) - (zah_slp + zaei_slp) * zdxt * zbu * ze3wr END DO END DO END DO END DO DO jp = 0, 1 DO kp = 0, 1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ze2vr = 1._wp / e2v(ji,jj) zdyt = zdjt(ji,jj,jk) * ze2vr ze3wr = 1._wp / fse3w(ji,jj+jp,jk+kp) zdzt = zdkt3d(ji,jj+jp,kp) * ze3wr zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp) zslope_iso = triadj(ji,jj+jp,jk,1-jp,kp) zbv = 0.25_wp * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) ! ln_botmix_grif is .F. mask zah for bottom half cells zah = fsahtv(ji,jj,jk) * vmask(ji,jj,jk+kp) ! fsaht(ji,jj+jp,jk) zah_slp = zah * zslope_iso zaei_slp = fsaeiw(ji,jj+jp,jk) * zslope_skew ! fsaeit(ji,jj+jp,jk)*zslope_skew zftv(ji,jj,jk) = zftv(ji,jj,jk) - ( zah * zdyt + (zah_slp - zaei_slp) * zdzt ) * zbv * ze2vr ztfw(ji,jj+jp,jk+kp) = ztfw(ji,jj+jp,jk+kp) - (zah_slp + zaei_slp) * zdyt * zbv * ze3wr END DO END DO END DO END DO END IF ! !== divergence and add to the general trend ==! DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr = 1._wp / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + zbtr * ( zftu(ji-1,jj,jk) - zftu(ji,jj,jk) & & + zftv(ji,jj-1,jk) - zftv(ji,jj,jk) ) END DO END DO ! END DO ! DO jk = 1, jpkm1 !== Divergence of vertical fluxes added to the general tracer trend DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + ( ztfw(ji,jj,jk+1) - ztfw(ji,jj,jk) ) & & / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) END DO END DO END DO ! ! ! "Poleward" diffusive heat or salt transports (T-S case only) IF( cdtype == 'TRA' .AND. ln_diaptr .AND. ( MOD( kt, nn_fptr ) == 0 ) ) THEN IF( jn == jp_tem) htr_ldf(:) = ptr_vj( zftv(:,:,:) ) ! 3.3 names IF( jn == jp_sal) str_ldf(:) = ptr_vj( zftv(:,:,:) ) ENDIF #if defined key_diaar5 IF( cdtype == 'TRA' .AND. jn == jp_tem ) THEN z2d(:,:) = 0._wp zztmp = rau0 * rcp DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + zftu(ji,jj,jk) END DO END DO END DO z2d(:,:) = zztmp * z2d(:,:) CALL lbc_lnk( z2d, 'U', -1. ) CALL iom_put( "udiff_heattr", z2d ) ! heat transport in i-direction z2d(:,:) = 0._wp DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + zftv(ji,jj,jk) END DO END DO END DO z2d(:,:) = zztmp * z2d(:,:) CALL lbc_lnk( z2d, 'V', -1. ) CALL iom_put( "vdiff_heattr", z2d ) ! heat transport in j-direction END IF #endif ! END DO ! CALL wrk_dealloc( jpi, jpj, z2d ) CALL wrk_dealloc( jpi, jpj, jpk, zdit, zdjt, ztfw ) ! IF( nn_timing == 1 ) CALL timing_stop('tra_ldf_iso_grif') ! END SUBROUTINE tra_ldf_iso_grif #else !!---------------------------------------------------------------------- !! default option : Dummy code NO rotation of the diffusive tensor !!---------------------------------------------------------------------- REAL, PUBLIC, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: psix_eiv, psiy_eiv !: eiv stream function (diag only) CONTAINS SUBROUTINE tra_ldf_iso_grif( kt, kit000, cdtype, pgu, pgv, & & ptb, pta, kjpt, pahtb0 ) CHARACTER(len=3) :: cdtype INTEGER :: kit000 ! first time step index REAL, DIMENSION(:,:,:) :: pgu, pgv ! tracer gradient at pstep levels REAL, DIMENSION(:,:,:,:) :: ptb, pta WRITE(*,*) 'tra_ldf_iso_grif: You should not have seen this print! error?', kt, cdtype, & & pgu(1,1,1), pgv(1,1,1), ptb(1,1,1,1), pta(1,1,1,1), kjpt, pahtb0 END SUBROUTINE tra_ldf_iso_grif #endif !!============================================================================== END MODULE traldf_iso_grif