MODULE agrif_opa_interp !!====================================================================== !! *** MODULE agrif_opa_interp *** !! AGRIF: interpolation package !!====================================================================== !! History : 2.0 ! 2002-06 (XXX) Original cade !! - ! 2005-11 (XXX) !! 3.2 ! 2009-04 (R. Benshila) !!---------------------------------------------------------------------- #if defined key_agrif && ! defined key_offline !!---------------------------------------------------------------------- !! 'key_agrif' AGRIF zoom !! NOT 'key_offline' NO off-line tracers !!---------------------------------------------------------------------- !! Agrif_tra : !! Agrif_dyn : !! interpu : !! interpv : !!---------------------------------------------------------------------- USE par_oce USE oce USE dom_oce USE sol_oce USE agrif_oce USE phycst USE in_out_manager USE agrif_opa_sponge USE lib_mpp USE wrk_nemo USE dynspg_oce IMPLICIT NONE PRIVATE ! Barotropic arrays used to store open boundary data during ! time-splitting loop: REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:) :: ubdy_w, vbdy_w, hbdy_w REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:) :: ubdy_e, vbdy_e, hbdy_e REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:) :: ubdy_n, vbdy_n, hbdy_n REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:) :: ubdy_s, vbdy_s, hbdy_s PUBLIC Agrif_tra, Agrif_dyn, Agrif_ssh, Agrif_dyn_ts, Agrif_ssh_ts, Agrif_dta_ts PUBLIC interpu, interpv, interpunb, interpvnb, interpsshn # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/NST 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE Agrif_tra !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_Tra *** !!---------------------------------------------------------------------- !! INTEGER :: ji, jj, jk, jn ! dummy loop indices REAL(wp) :: zrhox , alpha1, alpha2, alpha3 REAL(wp) :: alpha4, alpha5, alpha6, alpha7 REAL(wp), POINTER, DIMENSION(:,:,:,:) :: ztsa !!---------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN CALL wrk_alloc( jpi, jpj, jpk, jpts, ztsa ) Agrif_SpecialValue = 0.e0 Agrif_UseSpecialValue = .TRUE. ztsa(:,:,:,:) = 0.e0 CALL Agrif_Bc_variable( ztsa, tsn_id, procname=interptsn ) Agrif_UseSpecialValue = .FALSE. zrhox = Agrif_Rhox() alpha1 = ( zrhox - 1. ) * 0.5 alpha2 = 1. - alpha1 alpha3 = ( zrhox - 1. ) / ( zrhox + 1. ) alpha4 = 1. - alpha3 alpha6 = 2. * ( zrhox - 1. ) / ( zrhox + 1. ) alpha7 = - ( zrhox - 1. ) / ( zrhox + 3. ) alpha5 = 1. - alpha6 - alpha7 IF( nbondi == 1 .OR. nbondi == 2 ) THEN DO jn = 1, jpts tsa(nlci,:,:,jn) = alpha1 * ztsa(nlci,:,:,jn) + alpha2 * ztsa(nlci-1,:,:,jn) DO jk = 1, jpkm1 DO jj = 1, jpj IF( umask(nlci-2,jj,jk) == 0.e0 ) THEN tsa(nlci-1,jj,jk,jn) = tsa(nlci,jj,jk,jn) * tmask(nlci-1,jj,jk) ELSE tsa(nlci-1,jj,jk,jn)=(alpha4*tsa(nlci,jj,jk,jn)+alpha3*tsa(nlci-2,jj,jk,jn))*tmask(nlci-1,jj,jk) IF( un(nlci-2,jj,jk) > 0.e0 ) THEN tsa(nlci-1,jj,jk,jn)=( alpha6*tsa(nlci-2,jj,jk,jn)+alpha5*tsa(nlci,jj,jk,jn) & & + alpha7*tsa(nlci-3,jj,jk,jn) ) * tmask(nlci-1,jj,jk) ENDIF ENDIF END DO END DO ENDDO ENDIF IF( nbondj == 1 .OR. nbondj == 2 ) THEN DO jn = 1, jpts tsa(:,nlcj,:,jn) = alpha1 * ztsa(:,nlcj,:,jn) + alpha2 * ztsa(:,nlcj-1,:,jn) DO jk = 1, jpkm1 DO ji = 1, jpi IF( vmask(ji,nlcj-2,jk) == 0.e0 ) THEN tsa(ji,nlcj-1,jk,jn) = tsa(ji,nlcj,jk,jn) * tmask(ji,nlcj-1,jk) ELSE tsa(ji,nlcj-1,jk,jn)=(alpha4*tsa(ji,nlcj,jk,jn)+alpha3*tsa(ji,nlcj-2,jk,jn))*tmask(ji,nlcj-1,jk) IF (vn(ji,nlcj-2,jk) > 0.e0 ) THEN tsa(ji,nlcj-1,jk,jn)=( alpha6*tsa(ji,nlcj-2,jk,jn)+alpha5*tsa(ji,nlcj,jk,jn) & & + alpha7*tsa(ji,nlcj-3,jk,jn) ) * tmask(ji,nlcj-1,jk) ENDIF ENDIF END DO END DO ENDDO ENDIF IF( nbondi == -1 .OR. nbondi == 2 ) THEN DO jn = 1, jpts tsa(1,:,:,jn) = alpha1 * ztsa(1,:,:,jn) + alpha2 * ztsa(2,:,:,jn) DO jk = 1, jpkm1 DO jj = 1, jpj IF( umask(2,jj,jk) == 0.e0 ) THEN tsa(2,jj,jk,jn) = tsa(1,jj,jk,jn) * tmask(2,jj,jk) ELSE tsa(2,jj,jk,jn)=(alpha4*tsa(1,jj,jk,jn)+alpha3*tsa(3,jj,jk,jn))*tmask(2,jj,jk) IF( un(2,jj,jk) < 0.e0 ) THEN tsa(2,jj,jk,jn)=(alpha6*tsa(3,jj,jk,jn)+alpha5*tsa(1,jj,jk,jn)+alpha7*tsa(4,jj,jk,jn))*tmask(2,jj,jk) ENDIF ENDIF END DO END DO END DO ENDIF IF( nbondj == -1 .OR. nbondj == 2 ) THEN DO jn = 1, jpts tsa(:,1,:,jn) = alpha1 * ztsa(:,1,:,jn) + alpha2 * ztsa(:,2,:,jn) DO jk=1,jpk DO ji=1,jpi IF( vmask(ji,2,jk) == 0.e0 ) THEN tsa(ji,2,jk,jn)=tsa(ji,1,jk,jn) * tmask(ji,2,jk) ELSE tsa(ji,2,jk,jn)=(alpha4*tsa(ji,1,jk,jn)+alpha3*tsa(ji,3,jk,jn))*tmask(ji,2,jk) IF( vn(ji,2,jk) < 0.e0 ) THEN tsa(ji,2,jk,jn)=(alpha6*tsa(ji,3,jk,jn)+alpha5*tsa(ji,1,jk,jn)+alpha7*tsa(ji,4,jk,jn))*tmask(ji,2,jk) ENDIF ENDIF END DO END DO ENDDO ENDIF ! CALL wrk_dealloc( jpi, jpj, jpk, jpts, ztsa ) ! END SUBROUTINE Agrif_tra SUBROUTINE Agrif_dyn( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_DYN *** !!---------------------------------------------------------------------- !! INTEGER, INTENT(in) :: kt !! INTEGER :: ji,jj,jk REAL(wp) :: timeref REAL(wp) :: z2dt, znugdt REAL(wp) :: zrhox, zrhoy REAL(wp), POINTER, DIMENSION(:,:,:) :: zua, zva REAL(wp), POINTER, DIMENSION(:,:) :: spgv1, spgu1, zua2d, zva2d !!---------------------------------------------------------------------- IF( Agrif_Root() ) RETURN CALL wrk_alloc( jpi, jpj, spgv1, spgu1, zua2d, zva2d ) CALL wrk_alloc( jpi, jpj, jpk, zua, zva ) zrhox = Agrif_Rhox() zrhoy = Agrif_Rhoy() timeref = 1. ! time step: leap-frog z2dt = 2. * rdt ! time step: Euler if restart from rest IF( neuler == 0 .AND. kt == nit000 ) z2dt = rdt ! coefficients znugdt = grav * z2dt Agrif_SpecialValue=0. Agrif_UseSpecialValue = ln_spc_dyn zua = 0. zva = 0. CALL Agrif_Bc_variable(zua,un_id,procname=interpu) CALL Agrif_Bc_variable(zva,vn_id,procname=interpv) zua2d = 0. zva2d = 0. #if defined key_dynspg_flt Agrif_SpecialValue=0. Agrif_UseSpecialValue = ln_spc_dyn CALL Agrif_Bc_variable(zua2d,e1u_id,calledweight=1.,procname=interpu2d) CALL Agrif_Bc_variable(zva2d,e2v_id,calledweight=1.,procname=interpv2d) #endif Agrif_UseSpecialValue = .FALSE. IF((nbondi == -1).OR.(nbondi == 2)) THEN #if defined key_dynspg_flt DO jj=1,jpj laplacu(2,jj) = timeref * (zua2d(2,jj)/(zrhoy*e2u(2,jj)))*umask(2,jj,1) END DO #endif DO jk=1,jpkm1 DO jj=1,jpj ua(1:2,jj,jk) = (zua(1:2,jj,jk)/(zrhoy*e2u(1:2,jj))) ua(1:2,jj,jk) = ua(1:2,jj,jk) / fse3u_a(1:2,jj,jk) END DO END DO #if defined key_dynspg_flt DO jk=1,jpkm1 DO jj=1,jpj ua(2,jj,jk) = (ua(2,jj,jk) - z2dt * znugdt * laplacu(2,jj))*umask(2,jj,jk) END DO END DO spgu(2,:)=0. DO jk=1,jpkm1 DO jj=1,jpj spgu(2,jj)=spgu(2,jj)+fse3u_a(2,jj,jk)*ua(2,jj,jk) END DO END DO DO jj=1,jpj IF (umask(2,jj,1).NE.0.) THEN spgu(2,jj)=spgu(2,jj)*hur_a(2,jj) ENDIF END DO #else spgu(2,:) = ua_b(2,:) #endif DO jk=1,jpkm1 DO jj=1,jpj ua(2,jj,jk) = 0.25*(ua(1,jj,jk)+2.*ua(2,jj,jk)+ua(3,jj,jk)) ua(2,jj,jk) = ua(2,jj,jk) * umask(2,jj,jk) END DO END DO spgu1(2,:)=0. DO jk=1,jpkm1 DO jj=1,jpj spgu1(2,jj)=spgu1(2,jj)+fse3u_a(2,jj,jk)*ua(2,jj,jk) END DO END DO DO jj=1,jpj IF (umask(2,jj,1).NE.0.) THEN spgu1(2,jj)=spgu1(2,jj)*hur_a(2,jj) ENDIF END DO DO jk=1,jpkm1 DO jj=1,jpj ua(2,jj,jk) = (ua(2,jj,jk)+spgu(2,jj)-spgu1(2,jj))*umask(2,jj,jk) END DO END DO DO jk=1,jpkm1 DO jj=1,jpj va(2,jj,jk) = (zva(2,jj,jk)/(zrhox*e1v(2,jj)))*vmask(2,jj,jk) va(2,jj,jk) = va(2,jj,jk) / fse3v_a(2,jj,jk) END DO END DO #if defined key_dynspg_ts ! Set tangential velocities to time splitting estimate spgv1(2,:)=0. DO jk=1,jpkm1 DO jj=1,jpj spgv1(2,jj)=spgv1(2,jj)+fse3v_a(2,jj,jk)*va(2,jj,jk) END DO END DO DO jj=1,jpj spgv1(2,jj)=spgv1(2,jj)*hvr_a(2,jj) END DO DO jk=1,jpkm1 DO jj=1,jpj va(2,jj,jk) = (va(2,jj,jk)+va_b(2,jj)-spgv1(2,jj))*vmask(2,jj,jk) END DO END DO #endif ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN #if defined key_dynspg_flt DO jj=1,jpj laplacu(nlci-2,jj) = timeref * (zua2d(nlci-2,jj)/(zrhoy*e2u(nlci-2,jj))) END DO #endif DO jk=1,jpkm1 DO jj=1,jpj ua(nlci-2:nlci-1,jj,jk) = (zua(nlci-2:nlci-1,jj,jk)/(zrhoy*e2u(nlci-2:nlci-1,jj))) ua(nlci-2:nlci-1,jj,jk) = ua(nlci-2:nlci-1,jj,jk) / fse3u_a(nlci-2:nlci-1,jj,jk) END DO END DO #if defined key_dynspg_flt DO jk=1,jpkm1 DO jj=1,jpj ua(nlci-2,jj,jk) = (ua(nlci-2,jj,jk)- z2dt * znugdt * laplacu(nlci-2,jj))*umask(nlci-2,jj,jk) END DO END DO spgu(nlci-2,:)=0. do jk=1,jpkm1 do jj=1,jpj spgu(nlci-2,jj)=spgu(nlci-2,jj)+fse3u_a(nlci-2,jj,jk)*ua(nlci-2,jj,jk) enddo enddo DO jj=1,jpj IF (umask(nlci-2,jj,1).NE.0.) THEN spgu(nlci-2,jj)=spgu(nlci-2,jj)*hur_a(nlci-2,jj) ENDIF END DO #else spgu(nlci-2,:) = ua_b(nlci-2,:) #endif DO jk=1,jpkm1 DO jj=1,jpj ua(nlci-2,jj,jk) = 0.25*(ua(nlci-3,jj,jk)+2.*ua(nlci-2,jj,jk)+ua(nlci-1,jj,jk)) ua(nlci-2,jj,jk) = ua(nlci-2,jj,jk) * umask(nlci-2,jj,jk) END DO END DO spgu1(nlci-2,:)=0. DO jk=1,jpkm1 DO jj=1,jpj spgu1(nlci-2,jj)=spgu1(nlci-2,jj)+fse3u_a(nlci-2,jj,jk)*ua(nlci-2,jj,jk)*umask(nlci-2,jj,jk) END DO END DO DO jj=1,jpj IF (umask(nlci-2,jj,1).NE.0.) THEN spgu1(nlci-2,jj)=spgu1(nlci-2,jj)*hur_a(nlci-2,jj) ENDIF END DO DO jk=1,jpkm1 DO jj=1,jpj ua(nlci-2,jj,jk) = (ua(nlci-2,jj,jk)+spgu(nlci-2,jj)-spgu1(nlci-2,jj))*umask(nlci-2,jj,jk) END DO END DO DO jk=1,jpkm1 DO jj=1,jpj-1 va(nlci-1,jj,jk) = (zva(nlci-1,jj,jk)/(zrhox*e1v(nlci-1,jj)))*vmask(nlci-1,jj,jk) va(nlci-1,jj,jk) = va(nlci-1,jj,jk) / fse3v_a(nlci-1,jj,jk) END DO END DO #if defined key_dynspg_ts ! Set tangential velocities to time splitting estimate spgv1(nlci-1,:)=0._wp DO jk=1,jpkm1 DO jj=1,jpj spgv1(nlci-1,jj)=spgv1(nlci-1,jj)+fse3v_a(nlci-1,jj,jk)*va(nlci-1,jj,jk)*vmask(nlci-1,jj,jk) END DO END DO DO jj=1,jpj spgv1(nlci-1,jj)=spgv1(nlci-1,jj)*hvr_a(nlci-1,jj) END DO DO jk=1,jpkm1 DO jj=1,jpj va(nlci-1,jj,jk) = (va(nlci-1,jj,jk)+va_b(nlci-1,jj)-spgv1(nlci-1,jj))*vmask(nlci-1,jj,jk) END DO END DO #endif ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN #if defined key_dynspg_flt DO ji=1,jpi laplacv(ji,2) = timeref * (zva2d(ji,2)/(zrhox*e1v(ji,2))) END DO #endif DO jk=1,jpkm1 DO ji=1,jpi va(ji,1:2,jk) = (zva(ji,1:2,jk)/(zrhox*e1v(ji,1:2))) va(ji,1:2,jk) = va(ji,1:2,jk) / fse3v_a(ji,1:2,jk) END DO END DO #if defined key_dynspg_flt DO jk=1,jpkm1 DO ji=1,jpi va(ji,2,jk) = (va(ji,2,jk) - z2dt * znugdt * laplacv(ji,2))*vmask(ji,2,jk) END DO END DO spgv(:,2)=0. DO jk=1,jpkm1 DO ji=1,jpi spgv(ji,2)=spgv(ji,2)+fse3v_a(ji,2,jk)*va(ji,2,jk) END DO END DO DO ji=1,jpi IF (vmask(ji,2,1).NE.0.) THEN spgv(ji,2)=spgv(ji,2)*hvr_a(ji,2) ENDIF END DO #else spgv(:,2)=va_b(:,2) #endif DO jk=1,jpkm1 DO ji=1,jpi va(ji,2,jk)=0.25*(va(ji,1,jk)+2.*va(ji,2,jk)+va(ji,3,jk)) va(ji,2,jk)=va(ji,2,jk)*vmask(ji,2,jk) END DO END DO spgv1(:,2)=0. DO jk=1,jpkm1 DO ji=1,jpi spgv1(ji,2)=spgv1(ji,2)+fse3v_a(ji,2,jk)*va(ji,2,jk)*vmask(ji,2,jk) END DO END DO DO ji=1,jpi IF (vmask(ji,2,1).NE.0.) THEN spgv1(ji,2)=spgv1(ji,2)*hvr_a(ji,2) ENDIF END DO DO jk=1,jpkm1 DO ji=1,jpi va(ji,2,jk) = (va(ji,2,jk)+spgv(ji,2)-spgv1(ji,2))*vmask(ji,2,jk) END DO END DO DO jk=1,jpkm1 DO ji=1,jpi ua(ji,2,jk) = (zua(ji,2,jk)/(zrhoy*e2u(ji,2)))*umask(ji,2,jk) ua(ji,2,jk) = ua(ji,2,jk) / fse3u_a(ji,2,jk) END DO END DO #if defined key_dynspg_ts ! Set tangential velocities to time splitting estimate spgu1(:,2)=0._wp DO jk=1,jpkm1 DO ji=1,jpi spgu1(ji,2)=spgu1(ji,2)+fse3u_a(ji,2,jk)*ua(ji,2,jk)*umask(ji,2,jk) END DO END DO DO ji=1,jpi spgu1(ji,2)=spgu1(ji,2)*hur_a(ji,2) END DO DO jk=1,jpkm1 DO ji=1,jpi ua(ji,2,jk) = (ua(ji,2,jk)+ua_b(ji,2)-spgu1(ji,2))*umask(ji,2,jk) END DO END DO #endif ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN #if defined key_dynspg_flt DO ji=1,jpi laplacv(ji,nlcj-2) = timeref * (zva2d(ji,nlcj-2)/(zrhox*e1v(ji,nlcj-2))) END DO #endif DO jk=1,jpkm1 DO ji=1,jpi va(ji,nlcj-2:nlcj-1,jk) = (zva(ji,nlcj-2:nlcj-1,jk)/(zrhox*e1v(ji,nlcj-2:nlcj-1))) va(ji,nlcj-2:nlcj-1,jk) = va(ji,nlcj-2:nlcj-1,jk) / fse3v_a(ji,nlcj-2:nlcj-1,jk) END DO END DO #if defined key_dynspg_flt DO jk=1,jpkm1 DO ji=1,jpi va(ji,nlcj-2,jk) = (va(ji,nlcj-2,jk)-z2dt * znugdt * laplacv(ji,nlcj-2))*vmask(ji,nlcj-2,jk) END DO END DO spgv(:,nlcj-2)=0. DO jk=1,jpkm1 DO ji=1,jpi spgv(ji,nlcj-2)=spgv(ji,nlcj-2)+fse3v_a(ji,nlcj-2,jk)*va(ji,nlcj-2,jk) END DO END DO DO ji=1,jpi IF (vmask(ji,nlcj-2,1).NE.0.) THEN spgv(ji,nlcj-2)=spgv(ji,nlcj-2)*hvr_a(ji,nlcj-2) ENDIF END DO #else spgv(:,nlcj-2)=va_b(:,nlcj-2) #endif DO jk=1,jpkm1 DO ji=1,jpi va(ji,nlcj-2,jk)=0.25*(va(ji,nlcj-3,jk)+2.*va(ji,nlcj-2,jk)+va(ji,nlcj-1,jk)) va(ji,nlcj-2,jk) = va(ji,nlcj-2,jk) * vmask(ji,nlcj-2,jk) END DO END DO spgv1(:,nlcj-2)=0. DO jk=1,jpkm1 DO ji=1,jpi spgv1(ji,nlcj-2)=spgv1(ji,nlcj-2)+fse3v_a(ji,nlcj-2,jk)*va(ji,nlcj-2,jk) END DO END DO DO ji=1,jpi IF (vmask(ji,nlcj-2,1).NE.0.) THEN spgv1(ji,nlcj-2)=spgv1(ji,nlcj-2)*hvr_a(ji,nlcj-2) ENDIF END DO DO jk=1,jpkm1 DO ji=1,jpi va(ji,nlcj-2,jk) = (va(ji,nlcj-2,jk)+spgv(ji,nlcj-2)-spgv1(ji,nlcj-2))*vmask(ji,nlcj-2,jk) END DO END DO DO jk=1,jpkm1 DO ji=1,jpi ua(ji,nlcj-1,jk) = (zua(ji,nlcj-1,jk)/(zrhoy*e2u(ji,nlcj-1)))*umask(ji,nlcj-1,jk) ua(ji,nlcj-1,jk) = ua(ji,nlcj-1,jk) / fse3u_a(ji,nlcj-1,jk) END DO END DO #if defined key_dynspg_ts ! Set tangential velocities to time splitting estimate spgu1(:,nlcj-1)=0._wp DO jk=1,jpkm1 DO ji=1,jpi spgu1(ji,nlcj-1)=spgu1(ji,nlcj-1)+fse3u_a(ji,nlcj-1,jk)*ua(ji,nlcj-1,jk) END DO END DO DO ji=1,jpi spgu1(ji,nlcj-1)=spgu1(ji,nlcj-1)*hur_a(ji,nlcj-1) END DO DO jk=1,jpkm1 DO ji=1,jpi ua(ji,nlcj-1,jk) = (ua(ji,nlcj-1,jk)+ua_b(ji,nlcj-1)-spgu1(ji,nlcj-1))*umask(ji,nlcj-1,jk) END DO END DO #endif ENDIF ! CALL wrk_dealloc( jpi, jpj, spgv1, spgu1, zua2d, zva2d ) CALL wrk_dealloc( jpi, jpj, jpk, zua, zva ) ! END SUBROUTINE Agrif_dyn SUBROUTINE Agrif_dyn_ts( jn ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_dyn_ts *** !!---------------------------------------------------------------------- !! INTEGER, INTENT(in) :: jn !! INTEGER :: ji, jj !!---------------------------------------------------------------------- IF( Agrif_Root() ) RETURN IF((nbondi == -1).OR.(nbondi == 2)) THEN DO jj=1,jpj va_e(2,jj) = vbdy_w(jj) * hvr_e(2,jj) ! Specified fluxes: ua_e(2,jj) = ubdy_w(jj) * hur_e(2,jj) ! Characteristics method: !alt ua_e(2,jj) = 0.5_wp * ( ubdy_w(jj) * hur_e(2,jj) + ua_e(3,jj) & !alt & - sqrt(grav * hur_e(2,jj)) * (sshn_e(3,jj) - hbdy_w(jj)) ) END DO ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN DO jj=1,jpj va_e(nlci-1,jj) = vbdy_e(jj) * hvr_e(nlci-1,jj) ! Specified fluxes: ua_e(nlci-2,jj) = ubdy_e(jj) * hur_e(nlci-2,jj) ! Characteristics method: !alt ua_e(nlci-2,jj) = 0.5_wp * ( ubdy_e(jj) * hur_e(nlci-2,jj) + ua_e(nlci-3,jj) & !alt & + sqrt(grav * hur_e(nlci-2,jj)) * (sshn_e(nlci-2,jj) - hbdy_e(jj)) ) END DO ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN DO ji=1,jpi ua_e(ji,2) = ubdy_s(ji) * hur_e(ji,2) ! Specified fluxes: va_e(ji,2) = vbdy_s(ji) * hvr_e(ji,2) ! Characteristics method: !alt va_e(ji,2) = 0.5_wp * ( vbdy_s(ji) * hvr_e(ji,2) + va_e(ji,3) & !alt & - sqrt(grav * hvr_e(ji,2)) * (sshn_e(ji,3) - hbdy_s(ji)) ) END DO ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN DO ji=1,jpi ua_e(ji,nlcj-1) = ubdy_n(ji) * hur_e(ji,nlcj-1) ! Specified fluxes: va_e(ji,nlcj-2) = vbdy_n(ji) * hvr_e(ji,nlcj-2) ! Characteristics method: !alt va_e(ji,nlcj-2) = 0.5_wp * ( vbdy_n(ji) * hvr_e(ji,nlcj-2) + va_e(ji,nlcj-3) & !alt & + sqrt(grav * hvr_e(ji,nlcj-2)) * (sshn_e(ji,nlcj-2) - hbdy_n(ji)) ) END DO ENDIF ! END SUBROUTINE Agrif_dyn_ts SUBROUTINE Agrif_dta_ts( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_dta_ts *** !!---------------------------------------------------------------------- !! INTEGER, INTENT(in) :: kt !! INTEGER :: ji, jj LOGICAL :: ll_int_cons REAL(wp) :: zrhox, zrhoy, zrhot, zt REAL(wp) :: zaa, zab, zat REAL(wp) :: zt0, zt1 REAL(wp), POINTER, DIMENSION(:,:) :: zunb, zvnb, zsshn REAL(wp), POINTER, DIMENSION(:,:) :: zuab, zvab, zubb, zvbb, zutn, zvtn !!---------------------------------------------------------------------- IF( Agrif_Root() ) RETURN ll_int_cons = ln_bt_fw ! Assume conservative temporal integration in ! the forward case only zrhox = Agrif_Rhox() zrhoy = Agrif_Rhoy() zrhot = Agrif_rhot() IF ( kt==nit000 ) THEN ! Allocate boundary data arrays ALLOCATE( ubdy_w(jpj), vbdy_w(jpj), hbdy_w(jpj)) ALLOCATE( ubdy_e(jpj), vbdy_e(jpj), hbdy_e(jpj)) ALLOCATE( ubdy_n(jpi), vbdy_n(jpi), hbdy_n(jpi)) ALLOCATE( ubdy_s(jpi), vbdy_s(jpi), hbdy_s(jpi)) ENDIF CALL wrk_alloc( jpi, jpj, zunb, zvnb, zsshn ) ! "Central" time index for interpolation: IF (ln_bt_fw) THEN zt = REAL(Agrif_NbStepint()+0.5_wp,wp) / zrhot ELSE zt = REAL(Agrif_NbStepint(),wp) / zrhot ENDIF ! Linear interpolation of sea level Agrif_SpecialValue = 0.e0 Agrif_UseSpecialValue = .TRUE. CALL Agrif_Bc_variable(zsshn, sshn_id,calledweight=zt, procname=interpsshn ) Agrif_UseSpecialValue = .FALSE. ! Interpolate barotropic fluxes Agrif_SpecialValue=0. Agrif_UseSpecialValue = ln_spc_dyn IF (ll_int_cons) THEN ! Conservative interpolation CALL wrk_alloc( jpi, jpj, zuab, zvab, zubb, zvbb, zutn, zvtn ) zuab(:,:) = 0._wp ; zvab(:,:) = 0._wp zubb(:,:) = 0._wp ; zvbb(:,:) = 0._wp zutn(:,:) = 0._wp ; zvtn(:,:) = 0._wp CALL Agrif_Bc_variable(zubb,unb_id ,calledweight=0._wp, procname=interpunb) ! Before CALL Agrif_Bc_variable(zvbb,vnb_id ,calledweight=0._wp, procname=interpvnb) CALL Agrif_Bc_variable(zuab,unb_id ,calledweight=1._wp, procname=interpunb) ! After CALL Agrif_Bc_variable(zvab,vnb_id ,calledweight=1._wp, procname=interpvnb) CALL Agrif_Bc_variable(zutn,ub2b_id,calledweight=1._wp, procname=interpub2b)! Time integrated CALL Agrif_Bc_variable(zvtn,vb2b_id,calledweight=1._wp, procname=interpvb2b) ! Time indexes bounds for integration zt0 = REAL(Agrif_NbStepint() , wp) / zrhot zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot ! Polynomial interpolation coefficients: zaa = zrhot * ( zt1**2._wp * ( zt1 - 1._wp) & & - zt0**2._wp * ( zt0 - 1._wp) ) zab = zrhot * ( zt1 * ( zt1 - 1._wp)**2._wp & & - zt0 * ( zt0 - 1._wp)**2._wp ) zat = zrhot * ( zt1**2._wp * (-2._wp*zt1 + 3._wp) & & - zt0**2._wp * (-2._wp*zt0 + 3._wp) ) ! Do time interpolation IF((nbondi == -1).OR.(nbondi == 2)) THEN DO jj=1,jpj zunb(2,jj) = zaa * zuab(2,jj) + zab * zubb(2,jj) + zat * zutn(2,jj) zvnb(2,jj) = zaa * zvab(2,jj) + zab * zvbb(2,jj) + zat * zvtn(2,jj) END DO ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN DO jj=1,jpj zunb(nlci-2,jj) = zaa * zuab(nlci-2,jj) + zab * zubb(nlci-2,jj) + zat * zutn(nlci-2,jj) zvnb(nlci-1,jj) = zaa * zvab(nlci-1,jj) + zab * zvbb(nlci-1,jj) + zat * zvtn(nlci-1,jj) END DO ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN DO ji=1,jpi zunb(ji,2) = zaa * zuab(ji,2) + zab * zubb(ji,2) + zat * zutn(ji,2) zvnb(ji,2) = zaa * zvab(ji,2) + zab * zvbb(ji,2) + zat * zvtn(ji,2) END DO ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN DO ji=1,jpi zunb(ji,nlcj-1) = zaa * zuab(ji,nlcj-1) + zab * zubb(ji,nlcj-1) + zat * zutn(ji,nlcj-1) zvnb(ji,nlcj-2) = zaa * zvab(ji,nlcj-2) + zab * zvbb(ji,nlcj-2) + zat * zvtn(ji,nlcj-2) END DO ENDIF CALL wrk_dealloc( jpi, jpj, zuab, zvab, zubb, zvbb, zutn, zvtn ) ELSE ! Linear interpolation zunb(:,:) = 0._wp ; zvnb(:,:) = 0._wp CALL Agrif_Bc_variable(zunb,unb_id,calledweight=zt, procname=interpunb) CALL Agrif_Bc_variable(zvnb,vnb_id,calledweight=zt, procname=interpvnb) ENDIF Agrif_UseSpecialValue = .FALSE. ! Fill boundary data arrays: IF((nbondi == -1).OR.(nbondi == 2)) THEN DO jj=1,jpj ubdy_w(jj) = (zunb(2,jj)/(zrhoy*e2u(2,jj))) * umask(2,jj,1) vbdy_w(jj) = (zvnb(2,jj)/(zrhox*e1v(2,jj))) * vmask(2,jj,1) hbdy_w(jj) = zsshn(2,jj) * tmask(2,jj,1) END DO ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN DO jj=1,jpj ubdy_e(jj) = zunb(nlci-2,jj)/(zrhoy*e2u(nlci-2,jj)) * umask(nlci-2,jj,1) vbdy_e(jj) = zvnb(nlci-1,jj)/(zrhox*e1v(nlci-1,jj)) * vmask(nlci-1,jj,1) hbdy_e(jj) = zsshn(nlci-1,jj) * tmask(nlci-1,jj,1) END DO ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN DO ji=1,jpi ubdy_s(ji) = zunb(ji,2)/(zrhoy*e2u(ji,2)) * umask(ji,2,1) vbdy_s(ji) = zvnb(ji,2)/(zrhox*e1v(ji,2)) * vmask(ji,2,1) hbdy_s(ji) = zsshn(ji,2) * tmask(ji,2,1) END DO ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN DO ji=1,jpi ubdy_n(ji) = zunb(ji,nlcj-1)/(zrhoy*e2u(ji,nlcj-1)) * umask(ji,nlcj-1,1) vbdy_n(ji) = zvnb(ji,nlcj-2)/(zrhox*e1v(ji,nlcj-2)) * vmask(ji,nlcj-2,1) hbdy_n(ji) = zsshn(ji,nlcj-1) * tmask(ji,nlcj-1,1) END DO ENDIF CALL wrk_dealloc( jpi, jpj, zunb, zvnb, zsshn ) END SUBROUTINE Agrif_dta_ts SUBROUTINE Agrif_ssh( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_DYN *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt !! !!---------------------------------------------------------------------- IF( Agrif_Root() ) RETURN IF((nbondi == -1).OR.(nbondi == 2)) THEN ssha(2,:)=ssha(3,:) sshn(2,:)=sshn(3,:) ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN ssha(nlci-1,:)=ssha(nlci-2,:) sshn(nlci-1,:)=sshn(nlci-2,:) ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN ssha(:,2)=ssha(:,3) sshn(:,2)=sshn(:,3) ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN ssha(:,nlcj-1)=ssha(:,nlcj-2) sshn(:,nlcj-1)=sshn(:,nlcj-2) ENDIF END SUBROUTINE Agrif_ssh SUBROUTINE Agrif_ssh_ts( jn ) !!---------------------------------------------------------------------- !! *** ROUTINE Agrif_ssh_ts *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: jn !! INTEGER :: ji,jj !!---------------------------------------------------------------------- IF((nbondi == -1).OR.(nbondi == 2)) THEN DO jj=1,jpj ssha_e(2,jj) = hbdy_w(jj) END DO ENDIF IF((nbondi == 1).OR.(nbondi == 2)) THEN DO jj=1,jpj ssha_e(nlci-1,jj) = hbdy_e(jj) END DO ENDIF IF((nbondj == -1).OR.(nbondj == 2)) THEN DO ji=1,jpi ssha_e(ji,2) = hbdy_s(ji) END DO ENDIF IF((nbondj == 1).OR.(nbondj == 2)) THEN DO ji=1,jpi ssha_e(ji,nlcj-1) = hbdy_n(ji) END DO ENDIF END SUBROUTINE Agrif_ssh_ts SUBROUTINE interpsshn(tabres,i1,i2,j1,j2) !!---------------------------------------------------------------------- !! *** ROUTINE interpsshn *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres !! INTEGER :: ji,jj !!---------------------------------------------------------------------- tabres(i1:i2,j1:j2) = sshn(i1:i2,j1:j2) END SUBROUTINE interpsshn SUBROUTINE interpu(tabres,i1,i2,j1,j2,k1,k2) !!---------------------------------------------------------------------- !! *** ROUTINE interpu *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2 REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: tabres !! INTEGER :: ji,jj,jk !!---------------------------------------------------------------------- DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 tabres(ji,jj,jk) = e2u(ji,jj) * un(ji,jj,jk) tabres(ji,jj,jk) = tabres(ji,jj,jk) * fse3u_n(ji,jj,jk) END DO END DO END DO END SUBROUTINE interpu SUBROUTINE interpu2d(tabres,i1,i2,j1,j2) !!---------------------------------------------------------------------- !! *** ROUTINE interpu2d *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres !! INTEGER :: ji,jj !!---------------------------------------------------------------------- DO jj=j1,j2 DO ji=i1,i2 tabres(ji,jj) = e2u(ji,jj) * ((gcx(ji+1,jj) - gcx(ji,jj))/e1u(ji,jj)) & * umask(ji,jj,1) END DO END DO END SUBROUTINE interpu2d SUBROUTINE interpv(tabres,i1,i2,j1,j2,k1,k2) !!---------------------------------------------------------------------- !! *** ROUTINE interpv *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2 REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: tabres !! INTEGER :: ji, jj, jk !!---------------------------------------------------------------------- DO jk=k1,k2 DO jj=j1,j2 DO ji=i1,i2 tabres(ji,jj,jk) = e1v(ji,jj) * vn(ji,jj,jk) tabres(ji,jj,jk) = tabres(ji,jj,jk) * fse3v_n(ji,jj,jk) END DO END DO END DO END SUBROUTINE interpv SUBROUTINE interpv2d(tabres,i1,i2,j1,j2) !!---------------------------------------------------------------------- !! *** ROUTINE interpu2d *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres !! INTEGER :: ji,jj !!---------------------------------------------------------------------- DO jj=j1,j2 DO ji=i1,i2 tabres(ji,jj) = e1v(ji,jj) * ((gcx(ji,jj+1) - gcx(ji,jj))/e2v(ji,jj)) & * vmask(ji,jj,1) END DO END DO END SUBROUTINE interpv2d SUBROUTINE interpunb(tabres,i1,i2,j1,j2) !!---------------------------------------------------------------------- !! *** ROUTINE interpunb *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres !! INTEGER :: ji,jj !!---------------------------------------------------------------------- DO jj=j1,j2 DO ji=i1,i2 tabres(ji,jj) = un_b(ji,jj) * e2u(ji,jj) * hu(ji,jj) END DO END DO END SUBROUTINE interpunb SUBROUTINE interpvnb(tabres,i1,i2,j1,j2) !!---------------------------------------------------------------------- !! *** ROUTINE interpvnb *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres !! INTEGER :: ji,jj !!---------------------------------------------------------------------- DO jj=j1,j2 DO ji=i1,i2 tabres(ji,jj) = vn_b(ji,jj) * e1v(ji,jj) * hv(ji,jj) END DO END DO END SUBROUTINE interpvnb SUBROUTINE interpub2b(tabres,i1,i2,j1,j2) !!---------------------------------------------------------------------- !! *** ROUTINE interpub2b *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres !! INTEGER :: ji,jj !!---------------------------------------------------------------------- DO jj=j1,j2 DO ji=i1,i2 tabres(ji,jj) = ub2_b(ji,jj) * e2u(ji,jj) END DO END DO END SUBROUTINE interpub2b SUBROUTINE interpvb2b(tabres,i1,i2,j1,j2) !!---------------------------------------------------------------------- !! *** ROUTINE interpvb2b *** !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: i1,i2,j1,j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres !! INTEGER :: ji,jj !!---------------------------------------------------------------------- DO jj=j1,j2 DO ji=i1,i2 tabres(ji,jj) = vb2_b(ji,jj) * e1v(ji,jj) END DO END DO END SUBROUTINE interpvb2b #else !!---------------------------------------------------------------------- !! Empty module no AGRIF zoom !!---------------------------------------------------------------------- CONTAINS SUBROUTINE Agrif_OPA_Interp_empty WRITE(*,*) 'agrif_opa_interp : You should not have seen this print! error?' END SUBROUTINE Agrif_OPA_Interp_empty #endif !!====================================================================== END MODULE agrif_opa_interp