MODULE dynldf_lap_blp !!====================================================================== !! *** MODULE dynldf_lap_blp *** !! Ocean dynamics: lateral viscosity trend (laplacian and bilaplacian) !!====================================================================== !! History : OPA ! 1990-09 (G. Madec) Original code !! 4.0 ! 1991-11 (G. Madec) !! 6.0 ! 1996-01 (G. Madec) statement function for e3 and ahm !! NEMO 1.0 ! 2002-06 (G. Madec) F90: Free form and module !! - ! 2004-08 (C. Talandier) New trends organization !! 3.7 ! 2014-01 (F. Lemarie, G. Madec) restructuration/simplification of ahm specification, !! ! add velocity dependent coefficient and optional read in file !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dyn_ldf_lap : update the momentum trend with the lateral viscosity using an iso-level laplacian operator !! dyn_ldf_blp : update the momentum trend with the lateral viscosity using an iso-level bilaplacian operator !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE ldfdyn ! lateral diffusion: eddy viscosity coef. USE ldfslp ! iso-neutral slopes USE zdf_oce ! ocean vertical physics ! USE in_out_manager ! I/O manager USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE wrk_nemo ! Memory Allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC dyn_ldf_lap ! called by dynldf.F90 PUBLIC dyn_ldf_blp ! called by dynldf.F90 !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.7 , NEMO Consortium (2014) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dyn_ldf_lap( kt, pub, pvb, pua, pva, kpass ) !!---------------------------------------------------------------------- !! *** ROUTINE dyn_ldf_lap *** !! !! ** Purpose : Compute the before horizontal momentum diffusive !! trend and add it to the general trend of momentum equation. !! !! ** Method : The Laplacian operator apply on horizontal velocity is !! writen as : grad_h( ahmt div_h(U )) - curl_h( ahmf curl_z(U) ) !! !! ** Action : - pua, pva increased by the harmonic operator applied on pub, pvb. !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: kpass ! =1/2 first or second passage REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in ) :: pub, pvb ! before velocity [m/s] REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pua, pva ! velocity trend [m/s2] ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zsign ! local scalars REAL(wp) :: zua, zva ! local scalars REAL(wp), POINTER, DIMENSION(:,:) :: zcur, zdiv !!---------------------------------------------------------------------- ! IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*) 'dyn_ldf : iso-level harmonic (laplacian) operator, pass=', kpass WRITE(numout,*) '~~~~~~~ ' ENDIF ! IF( nn_timing == 1 ) CALL timing_start('dyn_ldf_lap') ! CALL wrk_alloc( jpi, jpj, zcur, zdiv ) ! IF( kpass == 1 ) THEN ; zsign = 1._wp ! bilaplacian operator require a minus sign ELSE ; zsign = -1._wp ! (eddy viscosity coef. >0) ENDIF ! ! ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== DO jj = 2, jpj DO ji = fs_2, jpi ! vector opt. ! ! ahm * e3 * curl (computed from 1 to jpim1/jpjm1) !!gm open question here : fse3f at before or now ? probably now... !!gm note that ahmf has already been multiplied by fmask zcur(ji-1,jj-1) = ahmf(ji-1,jj-1,jk) * fse3f(ji-1,jj-1,jk) * r1_e1e2f(ji-1,jj-1) & & * ( e2v(ji ,jj-1) * pvb(ji ,jj-1,jk) - e2v(ji-1,jj-1) * pvb(ji-1,jj-1,jk) & & - e1u(ji-1,jj ) * pub(ji-1,jj ,jk) + e1u(ji-1,jj-1) * pub(ji-1,jj-1,jk) ) ! ! ahm * div (computed from 2 to jpi/jpj) zdiv(ji,jj) = ahmt(ji,jj,jk) * r1_e1e2t(ji,jj) / fse3t_b(ji,jj,jk) * tmask(ji,jj,jk) & & * ( e2u(ji,jj)*fse3u_b(ji,jj,jk) * pub(ji,jj,jk) - e2u(ji-1,jj)*fse3u_b(ji-1,jj,jk) * pub(ji-1,jj,jk) & & + e1v(ji,jj)*fse3v_b(ji,jj,jk) * pvb(ji,jj,jk) - e1v(ji,jj-1)*fse3v_b(ji,jj-1,jk) * pvb(ji,jj-1,jk) ) END DO END DO ! DO jj = 2, jpjm1 ! - curl( curl) + grad( div ) DO ji = fs_2, fs_jpim1 ! vector opt. pua(ji,jj,jk) = pua(ji,jj,jk) + zsign * ( & & - ( zcur(ji ,jj) - zcur(ji,jj-1) ) / ( e2u(ji,jj) * fse3u(ji,jj,jk) ) & & + ( zdiv(ji+1,jj) - zdiv(ji,jj ) ) * r1_e1u(ji,jj) ) ! pva(ji,jj,jk) = pva(ji,jj,jk) + zsign * ( & & ( zcur(ji,jj ) - zcur(ji-1,jj) ) / ( e1v(ji,jj) * fse3v(ji,jj,jk) ) & & + ( zdiv(ji,jj+1) - zdiv(ji ,jj) ) * r1_e2v(ji,jj) ) END DO END DO ! ! =============== END DO ! End of slab ! ! =============== CALL wrk_dealloc( jpi, jpj, zcur, zdiv ) ! IF( nn_timing == 1 ) CALL timing_stop('dyn_ldf_lap') ! END SUBROUTINE dyn_ldf_lap SUBROUTINE dyn_ldf_blp( kt, pub, pvb, pua, pva ) !!---------------------------------------------------------------------- !! *** ROUTINE dyn_ldf_blp *** !! !! ** Purpose : Compute the before lateral momentum viscous trend !! and add it to the general trend of momentum equation. !! !! ** Method : The lateral viscous trends is provided by a bilaplacian !! operator applied to before field (forward in time). !! It is computed by two successive calls to dyn_ldf_lap routine !! !! ** Action : pta updated with the before rotated bilaplacian diffusion !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in ) :: pub, pvb ! before velocity fields REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pua, pva ! momentum trend ! REAL(wp), POINTER, DIMENSION(:,:,:) :: zulap, zvlap ! laplacian at u- and v-point !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dyn_ldf_blp') ! CALL wrk_alloc( jpi, jpj, jpk, zulap, zvlap ) ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dyn_ldf_blp : bilaplacian operator momentum ' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' ENDIF ! zulap(:,:,:) = 0._wp zvlap(:,:,:) = 0._wp ! CALL dyn_ldf_lap( kt, pub, pvb, zulap, zvlap, 1 ) ! rotated laplacian applied to ptb (output in zlap) ! CALL lbc_lnk( zulap(:,:,:) , 'U', -1. ) ! Lateral boundary conditions CALL lbc_lnk( zvlap(:,:,:) , 'V', -1. ) ! CALL dyn_ldf_lap( kt, zulap, zvlap, pua, pva, 2 ) ! rotated laplacian applied to zlap (output in pta) ! CALL wrk_dealloc( jpi, jpj, jpk, zulap, zvlap ) ! IF( nn_timing == 1 ) CALL timing_stop('dyn_ldf_blp') ! END SUBROUTINE dyn_ldf_blp !!====================================================================== END MODULE dynldf_lap_blp