!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> !! NEMO/OPA : GYRE_PISCES Configuration namelist to overwrite reference dynamical namelist !!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> !----------------------------------------------------------------------- &namrun ! parameters of the run !----------------------------------------------------------------------- cn_exp = "GYRE" ! experience name nn_it000 = 1 ! first time step nn_itend = 4320 ! last time step nn_leapy = 30 ! Leap year calendar (1) or not (0) nn_stock = 4320 ! frequency of creation of a restart file (modulo referenced to 1) nn_write = 60 ! frequency of write in the output file (modulo referenced to nn_it000) / !----------------------------------------------------------------------- &namcfg ! parameters of the configuration !----------------------------------------------------------------------- cp_cfg = "gyre" ! name of the configuration jp_cfg = 1 ! resolution of the configuration jpidta = 32 ! 1st lateral dimension ( >= jpi ) = 30*jp_cfg+2 jpjdta = 22 ! 2nd " " ( >= jpj ) = 20*jp_cfg+2 jpkdta = 31 ! number of levels ( >= jpk ) jpiglo = 32 ! 1st dimension of global domain --> i = jpidta jpjglo = 22 ! 2nd - - --> j = jpjdta jpizoom = 1 ! left bottom (i,j) indices of the zoom jpjzoom = 1 ! in data domain indices jperio = 0 ! lateral cond. type (between 0 and 6) / !----------------------------------------------------------------------- &namzgr ! vertical coordinate !----------------------------------------------------------------------- ln_zco = .true. ! z-coordinate - full steps (T/F) ("key_zco" may also be defined) ln_zps = .false. ! z-coordinate - partial steps (T/F) / !----------------------------------------------------------------------- &namdom ! space and time domain (bathymetry, mesh, timestep) !----------------------------------------------------------------------- nn_bathy = 0 ! compute (=0) or read (=1) the bathymetry file rn_rdt = 7200. ! time step for the dynamics (and tracer if nn_acc=0) rn_rdtmin = 7200. ! minimum time step on tracers (used if nn_acc=1) rn_rdtmax = 7200. ! maximum time step on tracers (used if nn_acc=1) jphgr_msh = 5 ! type of horizontal mesh ppglam0 = 0.0 ! longitude of first raw and column T-point (jphgr_msh = 1) ppgphi0 = 29.0 ! latitude of first raw and column T-point (jphgr_msh = 1) ppe1_deg = 999999.0 ! zonal grid-spacing (degrees) ppe2_deg = 999999.0 ! meridional grid-spacing (degrees) ppe1_m = 999999.0 ! zonal grid-spacing (degrees) ppe2_m = 999999.0 ! meridional grid-spacing (degrees) ppsur = -2033.194295283385 ! ORCA r4, r2 and r05 coefficients ppa0 = 155.8325369664153 ! (default coefficients) ppa1 = 146.3615918601890 ! ppkth = 17.28520372419791 ! ppacr = 5.0 ! ppdzmin = 999999.0 ! Minimum vertical spacing pphmax = 999999.0 ! Maximum depth ldbletanh = .FALSE. ! Use/do not use double tanf function for vertical coordinates ppa2 = 999999.0 ! Double tanh function parameters ppkth2 = 999999.0 ! ppacr2 = 999999.0 ! / !----------------------------------------------------------------------- &namcrs ! Grid coarsening for dynamics output and/or ! passive tracer coarsened online simulations !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namtsd ! data : Temperature & Salinity !----------------------------------------------------------------------- cn_dir = './' ! root directory for the location of the runoff files ln_tsd_init = .false. ! Initialisation of ocean T & S with T &S input data (T) or not (F) ln_tsd_tradmp = .false. ! damping of ocean T & S toward T &S input data (T) or not (F) / !----------------------------------------------------------------------- &namsbc ! Surface Boundary Condition (surface module) !----------------------------------------------------------------------- nn_fsbc = 1 ! frequency of surface boundary condition computation ! (also = the frequency of sea-ice model call) ln_ana = .true. ! analytical formulation (T => fill namsbc_ana ) ln_blk_core = .false. ! CORE bulk formulation (T => fill namsbc_core) nn_ice = 0 ! =0 no ice boundary condition , ln_rnf = .false. ! runoffs (T => fill namsbc_rnf) ln_ssr = .false. ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr) nn_fwb = 0 ! FreshWater Budget: =0 unchecked / !----------------------------------------------------------------------- &namtra_qsr ! penetrative solar radiation !----------------------------------------------------------------------- ln_qsr_rgb = .false. ! RGB (Red-Green-Blue) light penetration ln_qsr_2bd = .true. ! 2 bands light penetration nn_chldta = 0 ! RGB : Chl data (=1) or cst value (=0) / !----------------------------------------------------------------------- &namberg ! iceberg parameters !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namlbc ! lateral momentum boundary condition !----------------------------------------------------------------------- rn_shlat = 0. ! shlat = 0 ! 0 < shlat < 2 ! shlat = 2 ! 2 < shlat / !----------------------------------------------------------------------- &nambfr ! bottom friction !----------------------------------------------------------------------- nn_bfr = 2 ! type of bottom friction : = 0 : free slip, = 1 : linear friction / !----------------------------------------------------------------------- &nambbc ! bottom temperature boundary condition !----------------------------------------------------------------------- ln_trabbc = .false. ! Apply a geothermal heating at the ocean bottom nn_geoflx = 0 ! geothermal heat flux: = 0 no flux / !----------------------------------------------------------------------- &nameos ! ocean physical parameters !----------------------------------------------------------------------- nn_eos = 0 ! type of equation of state and Brunt-Vaisala frequency ! =-1, TEOS-10 ! = 0, EOS-80 ! = 1, S-EOS (simplified eos) ln_useCT = .false. ! use of Conservative Temp. ==> surface CT converted in Pot. Temp. in sbcssm ! ! ! ! S-EOS coefficients : ! ! rd(T,S,Z)*rau0 = -a0*(1+.5*lambda*dT+mu*Z+nu*dS)*dT+b0*dS rn_a0 = 1.6550e-1 ! thermal expension coefficient (nn_eos= 1) rn_b0 = 7.6554e-1 ! saline expension coefficient (nn_eos= 1) rn_lambda1 = 5.9520e-2 ! cabbeling coeff in T^2 (=0 for linear eos) rn_lambda2 = 7.4914e-4 ! cabbeling coeff in S^2 (=0 for linear eos) rn_mu1 = 1.4970e-4 ! thermobaric coeff. in T (=0 for linear eos) rn_mu2 = 1.1090e-5 ! thermobaric coeff. in S (=0 for linear eos) rn_nu = 2.4341e-3 ! cabbeling coeff in T*S (=0 for linear eos) !!org GYRE rn_alpha = 2.0e-4 ! thermal expension coefficient (nn_eos= 1 or 2) !!org GYRE rn_beta = 7.7e-4 ! saline expension coefficient (nn_eos= 2) !!org caution now a0 = alpha / rau0 with rau0 = 1026 / !----------------------------------------------------------------------- &namtra_adv ! advection scheme for tracer !----------------------------------------------------------------------- ln_traadv_fct = .true. ! FCT scheme nn_fct_h = 2 ! =2/4, horizontal 2nd / 4th order nn_fct_v = 2 ! =2/4, vertical 2nd / COMPACT 4th order nn_fct_zts = 0 ! >=1, 2nd order FCT scheme with vertical sub-timestepping ! ! (number of sub-timestep = nn_fct_zts) / !---------------------------------------------------------------------------------- &namtra_ldf ! lateral diffusion scheme for tracers !---------------------------------------------------------------------------------- ! ! Operator type: ln_traldf_lap = .true. ! laplacian operator ln_traldf_blp = .false. ! bilaplacian operator ! ! Direction of action: ln_traldf_lev = .false. ! iso-level ln_traldf_hor = .false. ! horizontal (geopotential) ln_traldf_iso = .true. ! iso-neutral (standard operator) ln_traldf_triad = .false. ! iso-neutral (triad operator) ! ! ! iso-neutral options: ln_traldf_msc = .true. ! Method of Stabilizing Correction (both operators) rn_slpmax = 0.01 ! slope limit (both operators) ln_triad_iso = .false. ! pure horizontal mixing in ML (triad only) rn_sw_triad = 1 ! =1 switching triad ; =0 all 4 triads used (triad only) ln_botmix_triad = .false. ! lateral mixing on bottom (triad only) ! ! ! Coefficients: nn_aht_ijk_t = 0 ! space/time variation of eddy coef ! ! =-20 (=-30) read in eddy_diffusivity_2D.nc (..._3D.nc) file ! ! = 0 constant ! ! = 10 F(k) =ldf_c1d ! ! = 20 F(i,j) =ldf_c2d ! ! = 21 F(i,j,t) =Treguier et al. JPO 1997 formulation ! ! = 30 F(i,j,k) =ldf_c2d + ldf_c1d ! ! = 31 F(i,j,k,t)=F(local velocity) rn_aht_0 = 1000. ! lateral eddy diffusivity (lap. operator) [m2/s] rn_bht_0 = 1.e+12 ! lateral eddy diffusivity (bilap. operator) [m4/s] / !---------------------------------------------------------------------------------- &namtra_ldfeiv ! eddy induced velocity param. !---------------------------------------------------------------------------------- ln_ldfeiv =.false. ! use eddy induced velocity parameterization / !----------------------------------------------------------------------- &namtra_dmp ! tracer: T & S newtonian damping !----------------------------------------------------------------------- ln_tradmp = .false. ! add a damping termn (T) or not (F) / !----------------------------------------------------------------------- &namdyn_adv ! formulation of the momentum advection !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namdyn_vor ! option of physics/algorithm (not control by CPP keys) !----------------------------------------------------------------------- ln_dynvor_ene = .true. ! enstrophy conserving scheme ln_dynvor_ens = .false. ! energy conserving scheme ln_dynvor_mix = .false. ! mixed scheme ln_dynvor_een = .false. ! energy & enstrophy scheme nn_een_e3f = 1 ! e3f = masked averaging of e3t divided by 4 (=0) or by the sum of mask (=1) / !----------------------------------------------------------------------- &namdyn_hpg ! Hydrostatic pressure gradient option !----------------------------------------------------------------------- ln_hpg_zco = .true. ! z-coordinate - full steps ln_hpg_zps = .false. ! z-coordinate - partial steps (interpolation) / !----------------------------------------------------------------------- &namdyn_spg ! surface pressure gradient !----------------------------------------------------------------------- ln_dynspg_ts = .true. ! split-explicit free surface / !----------------------------------------------------------------------- &namdyn_ldf ! lateral diffusion on momentum !----------------------------------------------------------------------- ! ! Type of the operator : ! ! no diffusion: set ln_dynldf_lap=..._blp=F ln_dynldf_lap = .true. ! laplacian operator ln_dynldf_blp = .false. ! bilaplacian operator ! ! Direction of action : ln_dynldf_lev = .true. ! iso-level ln_dynldf_hor = .false. ! horizontal (geopotential) ln_dynldf_iso = .false. ! iso-neutral ! ! Coefficient nn_ahm_ijk_t = 0 ! space/time variation of eddy coef ! ! =-30 read in eddy_viscosity_3D.nc file ! ! =-20 read in eddy_viscosity_2D.nc file ! ! = 0 constant ! ! = 10 F(k)=c1d ! ! = 20 F(i,j)=F(grid spacing)=c2d ! ! = 30 F(i,j,k)=c2d*c1d ! ! = 31 F(i,j,k)=F(grid spacing and local velocity) rn_ahm_0 = 100000. ! horizontal laplacian eddy viscosity [m2/s] rn_ahm_b = 0. ! background eddy viscosity for ldf_iso [m2/s] rn_bhm_0 = 0. ! horizontal bilaplacian eddy viscosity [m4/s] ! ! Caution in 20 and 30 cases the coefficient have to be given for a 1 degree grid (~111km) / rn_ahm_0_lap = 100000. ! horizontal laplacian eddy viscosity [m2/s] / !----------------------------------------------------------------------- &namzdf ! vertical physics !----------------------------------------------------------------------- nn_evdm = 1 ! evd apply on tracer (=0) or on tracer and momentum (=1) / !----------------------------------------------------------------------- &namzdf_tke ! turbulent eddy kinetic dependent vertical diffusion ("key_zdftke") !----------------------------------------------------------------------- nn_etau = 0 ! penetration of tke below the mixed layer (ML) due to internal & intertial waves / !----------------------------------------------------------------------- &nammpp ! Massively Parallel Processing ("key_mpp_mpi) !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namctl ! Control prints & Benchmark !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namptr ! Poleward Transport Diagnostic !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namhsb ! Heat and salt budgets !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namdyn_nept ! Neptune effect (simplified: lateral and vertical diffusions removed) !----------------------------------------------------------------------- ln_neptramp = .false. ! ramp down Neptune velocity in shallow water /