

1.1 Wetting and drying

This is preliminary documentation for the wetting and drying code (WAD). The emphasis is on explaining the rationale for the code. The approach used by the WAD is similar to that developed for POM by ? and that developed for ROMS by ? but the WAD uses schemes that have not been published.

The following terminology is used. The depth of the topography (positive downwards) at each (i, j) point is the quantity stored in array ht_wd in the NEMO code. The height of the free surface (positive upwards) will be denoted by ssh. Both quantities are measured relative to a reference sea level at z=0m. Given the sign conventions used, the water depth is the height of the free surface plus the depth of the topography (i.e. $ssh + ht_wd$).

WAD is activated by setting ln_wd = .true.. Currently, this option works with six test cases provided in the WAD_TEST_CASES configuration. These are all pure sigma coordinate configurations which define their domain, surface forcing and initial conditions via a set of 'usrdef' routines in MY_SRC. Extending this option to more realistic domains will require the derivation and provision of a suitable ht_wd field in addition to the normal information provided in the domcfg.nc file. The six test cases are described in section §1.1.3.

The WAD takes all points in the domain below a land elevation of rn_wdld to be covered by water. Points where the water depth is less than rn_wdmin1 are to be interpreted as "dry". The WAD requires the topography specified with a model configuration to have negative depths at points where the land is higher than the topography's reference sea-level. The vertical grid in NEMO is computed relative to an initial state with zero sea surface height elevation. These reference metrics and depths (i.e. the e3t_0, ht_0 etc. arrays) are unaltered by WAD. rn_wdmin1 is usually chosen to be of order 0.075m but complex topographies with steep slopes may require larger values. The scheme also makes use of a second parameter, rn_wdmin2, which is intended to be much smaller than rn_wdmin1, of order 10⁻⁶m or smaller (*Q: What is the purpose of* rn_wdmin2? Seems a non-zero value is required for the flux limiter iterations to converge).

The WAD modifies the fluxes across the faces of cells that are either already "dry" or may become dry within the next time-step using an iterative method. The first sub-section below describes this scheme. It also briefly describes the simpler ROMS method that has not been implemented.

The following sub-section describes how the surface pressure gradients are modified by the WAD. The next sub-section should describe how the WAD maintains consistency between the points that are "wet" on the barotropic sub-steps and those that are wet on the longer baroclinic time-step. This sub-section has not yet been written. The final sub-section should describe the test cases that have been used to assess the performance of the WAD.

1.1.1 Flux limiters (wet_dry.F90)

The flux limiter for the barotropic flow devised by Hedong Liu can be understood as follows:

The continuity equation for the total water depth in a column

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\mathbf{u}) = 0. \tag{1.1}$$

can be written in discrete form as

$$\frac{e_1 e_2}{\Delta t} (h_{i,j}(t_{n+1}) - h_{i,j}(t_e)) = -(\text{flxu}_{i+1,j} - \text{flxu}_{i,j} + \text{flxv}_{i,j+1} - \text{flxv}_{i,j}) \quad (1.2)$$

$$= \text{zzflx}_{i,j}.$$
(1.3)

In the above h is the depth of the water in the column at point (i,j), $\mathrm{flxu}_{i+1,j}$ is the flux out of the "eastern" face of the cell and $\mathrm{flxv}_{i,j+1}$ the flux out of the "northern" face of the cell; t_{n+1} is the new timestep, t_e is the old timestep (either t_b or t_n) and $\Delta t = t_{n+1} - t_e$; $e_1 e_2$ is the area of the tracer cells centred at (i,j) and zzflx is the sum of the fluxes through all the faces.

The flux limiter splits the flux zzflx into fluxes that are out of the cell (zzflxp) and fluxes that are into the cell (zzflxn). Clearly

$$zzflx_{i,j} = zzflxp_{i,j} + zzflxn_{i,j}.$$
 (1.4)

The flux limiter iteratively adjusts the fluxes flxu and flxv until none of the cells will "dry out". To be precise the fluxes are limited until none of the cells has water depth less than $\operatorname{rn_wdmin1}$ on step n+1.

Let the fluxes on the mth iteration step be denoted by $flxu^{(m)}$ and $flxv^{(m)}$. The iteration is initialised by setting

$$\operatorname{zzflxp^{(0)}}_{i,j} = \operatorname{zzflxp}_{i,j}, \quad \operatorname{zzflxn^{(0)}}_{i,j} = \operatorname{zzflxn}_{i,j}. \tag{1.5}$$

The fluxes out of cell (i,j) are updated at the m+1th iteration if the depth of the cell on timestep t_e , namely $h_{i,j}(t_e)$, is less than the total flux out of the cell times the timestep divided by the cell area. Using (1.2) this condition is

$$h_{i,j}(t_e) - \text{rn_wdmin1} < \frac{\Delta t}{e_1 e_2} (\text{zzflxp}_{i,j}^{(m)} + \text{zzflxn}_{i,j}^{(m)}).$$
 (1.6)

Where this is the case each of the fluxes out of this (i, j) cell are multiplied by the factor $zcoef_{i,j}$:

$$\operatorname{zcoef}_{i,j} = \left[(h_{i,j}(t_e) - \operatorname{rn_wdmin1} - \operatorname{rn_wdmin2}) \frac{e_1 e_2}{\Delta t} - \operatorname{zzflxn}_{i,j}^{(m)} \right] \frac{1}{\operatorname{zzflxp}_{i,j}^{(m)}}$$

$$(1.7)$$

Note that the flux across the "eastern" face of the (i,j)th cell is only updated at the m+1th iteration if that flux at the mth iteration is out of the (i,j)th cell. If that is the case then the flux across that face is into the (i+1,j) cell and that flux will not be updated by the calculation for the (i+1,j)th cell. In this sense the updates to the fluxes across the faces of the cells do not "compete" (they do not over-write each other) and one would expect the scheme to converge relatively quickly. The scheme is also flux based so conserves mass.

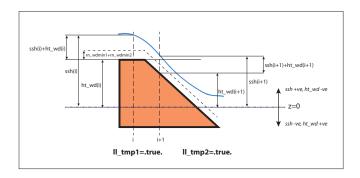
The ROMS scheme to prevent drying out of a cell is somewhat simpler. It specifies that if a tracer cell is dry (the water depth is less than rn_wdmin1) on the backward timestep, t_e , then any outward flux through its cell faces should be set to zero. This scheme has a clear physical rationale. It has not yet been implemented within NEMO but it could be. One objection to the ROMS scheme is that it introduces a spurious step function in the flux out of a cell as the water depth in the cell passes through the "critical" value rn_wdmin1 . One might replace this step function with a smoother function of the water depth in the cell from which the flux originates.

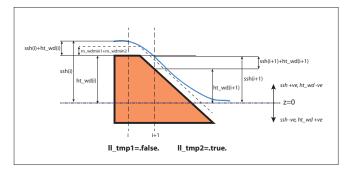
1.1.2 Modification of surface pressure gradients (dynhpg.F90)

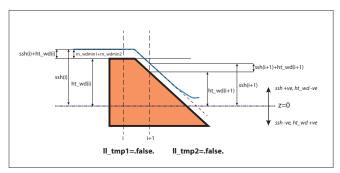
At "dry" points the water depth is usually close to rn_wdmin1. If the topography is sloping at these points the sea-surface will have a similar slope and there will hence be very large horizontal pressure gradients at these points. The WAD modifies the magnitude but not the sign of the surface pressure gradients (zhpi and zhpj) at such points by mulitplying them by positive factors (zcpx and zcpy respectively) that lie between 0 and 1.

We describe how the scheme works for the "eastward" pressure gradient, zhpi, calculated at the (i,j)th u-point. The scheme uses the ht_wd depths and surface heights at the neighbouring (i+1,j) and (i,j) tracer points. zcpx is calculated using two logicals variables, ll_tmp1 and ll_tmp2 which are evaluated for each grid column. The three possible combinations are illustrated in figure 1.1.

The first logical, ll_tmp1 , is set to true if and only if the water depth at both neighbouring points is greater than $rn_wdmin1 + rn_wdmin2$ and the minimum height of the sea surface at the two points is greater than the maximum height of the topography at the two points:


$$\begin{split} \text{ll_tmp1} = & \text{MIN}(\text{sshn}(ji, jj), \text{sshn}(ji+1, jj)) > \\ & \text{MAX}(-\text{ht_wd}(ji, jj), -\text{ht_wd}(ji+1, jj)) \text{ .and.} \\ & \text{MAX}(\text{sshn}(ji, jj) + \text{ht_wd}(ji, jj), \\ & \text{sshn}(ji+1, jj) + \text{ht_wd}(ji+1, jj)) > \\ & \text{rn_wdmin1} + \text{rn_wdmin2} \end{split}$$


The second logical, ll_tmp2, is set to true if and only if the maximum height of the sea surface at the two points is greater than the maximum height of the topography at the two points plus rn_wdmin1 + rn_wdmin2

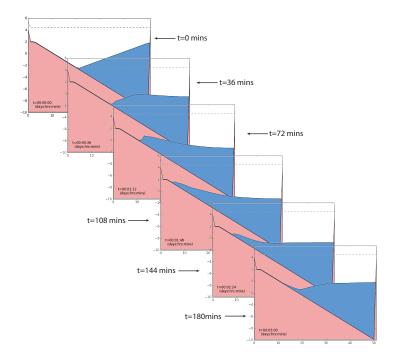

```
\begin{split} \text{ll\_tmp2} = & (ABS(sshn(ji,jj) - sshn(ji+1,jj)) > 1.E-12) \text{ .AND.} \\ & (MAX(sshn(ji,jj), sshn(ji+1,jj)) > \\ & MAX(-ht\_wd(ji,jj), -ht\_wd(ji+1,jj)) + rn\_wdmin1 + rn\_wdmin2). \end{split}
```

If ll_tmp1 is true then the surface pressure gradient, zhpi at the (i, j) point is unmodified. If both logicals are false zhpi is set to zero.

If ll_tmp1 is true and ll_tmp2 is false then the surface pressure gradient is multiplied through by zcpx which is the absolute value of the difference in the water depths at the two points divided by the difference in the surface heights at the two points. Thus the sign of the sea surface height gradient is retained but the magnitude of the pressure force is determined by the difference in water depths rather than the difference in surface height between the two points. Note that dividing by the difference between the sea surface heights can be problematic if the heights approach parity. An additional condition is applied to ll_tmp2 to ensure it is .false. in such conditions.

Figure 1.1: Illustrations of the three possible combinations of the logical variables controlling the limiting of the horizontal pressure gradient in wetting and drying regimes

1.1.3 The WAD test cases (usrdef_zgr.F90)


This section contains details of the six test cases that can be run as part of the WAD_TEST_CASES configuration. All the test cases are shallow (less than 10m deep), closed basins with 4m high walls and some of topography that can wet and dry up to 2m above sea-level. The horizontal grid is uniform with a 1km resolution and measures 52km by 34km. These dimensions are determined by a combination of code in the *usrdef_nam.F90* module located in the WAD_TEST_CASES/MY_SRC

directory and setting read in from the namusr_def namelist. There is no rotation or external forcing and motion is simply initiated by an initial ssh slope.

The nn_wad_test parameter can takes values 1 to 6 and it is this parameter that determines which of the test cases will be run. All cases will run with the default settings but the simple linear slope cases (tests 1 and 5) can be run with lower values of rn_wdmin1 as will be illustarted below.

WAD test case 1: A simple linear slope

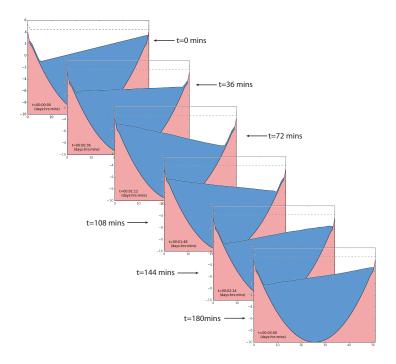
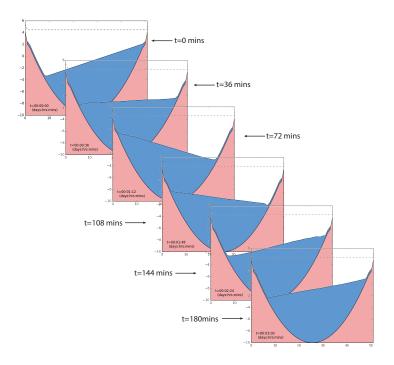

The first test case is a simple linear slope (in the x-direction, uniform in y) with an adverse SSH gradient that, when released, creates a surge up the slope. The parameters are chosen such that the surge rises above sea-level before falling back and oscillating towards an equilibrium position. This case can be run with rn_wdmin1 values as low as 0.075m.

Figure 1.2: The evolution of the sea surface height in WAD_TEST_CASE 1 from the initial state (t=0) over the first three hours of simulation. Note that in this time-frame the resultant surge reaches to nearly 2m above sea-level before retreating.

WAD test case 2: A parabolic channel

The second and third test cases use a closed channel which is parabolic in x and uniform in y. Test case 2 uses a gentler initial SSH slope which nevertheless demonstrates the ability to wet and dry on both sides of the channel. This solution requires values of rn_wdmin1 greater than 0.25m (*Q.: A function of the maximum topographic slope?*)

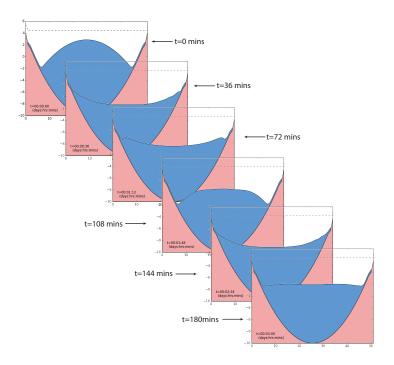

Figure 1.3: The evolution of the sea surface height in WAD_TEST_CASE 2 from the initial state (t=0) over the first three hours of simulation. Note that in this time-frame the resultant sloshing causes wetting and drying on both sides of the parabolic channel.

WAD test case 3 : A parabolic channel (extreme slope)

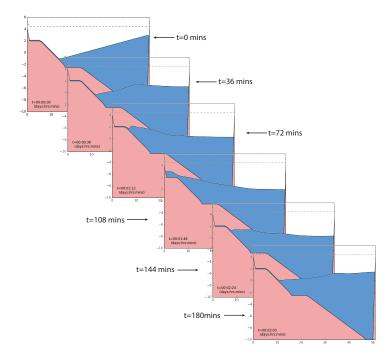
Same again but with a steeper initial SSH slope. The solution is similar but more vigorous.

WAD test case 4: A parabolic bowl

Test case 4 includes variation in the y-direction in the form of a parabolic bowl. The initial condition is now a raised bulge centred over the bowl. Figure 1.5 shows a cross-section of the SSH in the X-direction but features can be seen to propagate in all directions and interfere when return paths cross.


Figure 1.4: The evolution of the sea surface height in WAD_TEST_CASE 3 from the initial state (t=0) over the first three hours of simulation. Note that in this time-frame the resultant sloshing causes wetting and drying on both sides of the parabolic channel.

WAD test case 5: A double slope with shelf channel


Similar in nature to test case 1 but with a change in slope and a mid-depth shelf.

WAD test case 6: A parabolic channel with central bar

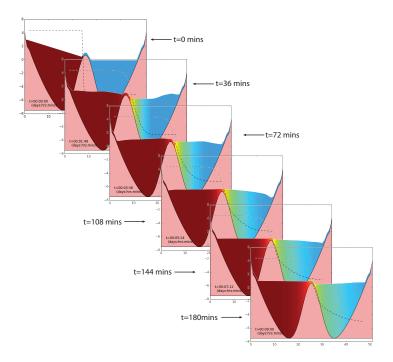

Test cases 1 to 5 have all used uniform T and S conditions. The dashed line in each plot shows the surface salinity along the y=17 line which remains satisfactorily constant. Test case 6 introduces variation in salinity by taking a parabolic channel divided by a central bar (gaussian) and using two different salinity values in each half of the channel. This step change in salinity is initially enforced by the central bar but the bar is subsequently over-topped after the initial SSH gradient is released. The time series in this case shows the SSH evolution with the water coloured according to local salinity values. Encroachment of the high salinity (red) waters into the low salinity (blue) basin can clearly be seen.

Figure 1.5: The evolution of the sea surface height in WAD_TEST_CASE 4 from the initial state (t=0) over the first three hours of simulation. Note that this test case is a parabolic bowl with variations occurring in the y-direction too (not shown here).

Figure 1.6: The evolution of the sea surface height in WAD_TEST_CASE 5 from the initial state (t=0) over the first three hours of simulation. The surge resulting in this case wets to the full depth permitted (2.5m above sea-level) and is only halted by the 4m high side walls.

Figure 1.7: The evolution of the sea surface height in WAD_TEST_CASE 6 from the initial state (t=0) over the first three hours of simulation. Water is coloured according to local salinity values. Encroachment of the high salinity (red) waters into the low salinity (blue) basin can clearly be seen although the largest influx occurs early in the sequence between the frames shown.