MODULE limthd !!====================================================================== !! *** MODULE limthd *** !! LIM-3 : ice thermodynamic !!====================================================================== !! History : LIM ! 2000-01 (M.A. Morales Maqueda, H. Goosse, T. Fichefet) LIM-1 !! 2.0 ! 2002-07 (C. Ethe, G. Madec) LIM-2 (F90 rewriting) !! 3.0 ! 2005-11 (M. Vancoppenolle) LIM-3 : Multi-layer thermodynamics + salinity variations !! - ! 2007-04 (M. Vancoppenolle) add lim_thd_glohec, lim_thd_con_dh and lim_thd_con_dif !! 3.2 ! 2009-07 (M. Vancoppenolle, Y. Aksenov, G. Madec) bug correction in wfx_snw !! 3.3 ! 2010-11 (G. Madec) corrected snow melting heat (due to factor betas) !! 4.0 ! 2011-02 (G. Madec) dynamical allocation !! - ! 2012-05 (C. Rousset) add penetration solar flux !!---------------------------------------------------------------------- #if defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' LIM3 sea-ice model !!---------------------------------------------------------------------- !! lim_thd : thermodynamic of sea ice !! lim_thd_init : initialisation of sea-ice thermodynamic !!---------------------------------------------------------------------- USE phycst ! physical constants USE dom_oce ! ocean space and time domain variables USE ice ! sea-ice variables USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE thd_ice ! thermodynamic sea-ice variables USE limthd_dif ! vertical diffusion USE limthd_dh ! ice-snow growth and melt USE limthd_da ! lateral melting USE limthd_sal ! ice salinity USE limthd_ent ! ice enthalpy redistribution USE limthd_lac ! lateral accretion USE limitd_th ! remapping thickness distribution USE limtab ! 1D <==> 2D transformation USE limvar ! USE limcons ! conservation tests USE limctl ! control print ! USE in_out_manager ! I/O manager USE lbclnk ! lateral boundary condition - MPP links USE lib_mpp ! MPP library USE wrk_nemo ! work arrays USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC lim_thd ! called by limstp module PUBLIC lim_thd_init ! called by sbc_lim_init !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/LIM3 3.3 , UCL - NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_thd( kt ) !!------------------------------------------------------------------- !! *** ROUTINE lim_thd *** !! !! ** Purpose : This routine manages ice thermodynamics !! !! ** Action : - Initialisation of some variables !! - Some preliminary computation (oceanic heat flux !! at the ice base, snow acc.,heat budget of the leads) !! - selection of the icy points and put them in an array !! - call lim_thd_dif for vertical heat diffusion !! - call lim_thd_dh for vertical ice growth and melt !! - call lim_thd_ent for enthalpy remapping !! - call lim_thd_sal for ice desalination !! - call lim_thd_temp to retrieve temperature from ice enthalpy !! - back to the geographic grid !! !! ** References : !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! number of iteration ! INTEGER :: ji, jj, jk, jl ! dummy loop indices INTEGER :: nbpb ! nb of icy pts for vertical thermo calculations REAL(wp) :: zfric_u, zqld, zqfr REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b REAL(wp), PARAMETER :: zfric_umin = 0._wp ! lower bound for the friction velocity (cice value=5.e-04) REAL(wp), PARAMETER :: zch = 0.0057_wp ! heat transfer coefficient REAL(wp), POINTER, DIMENSION(:,:) :: zu_io, zv_io, zfric ! ice-ocean velocity (m/s) and frictional velocity (m2/s2) ! !!------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('limthd') CALL wrk_alloc( jpi,jpj, zu_io, zv_io, zfric ) IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*)'' WRITE(numout,*)' lim_thd ' WRITE(numout,*)' ~~~~~~~~' ENDIF ! conservation test IF( ln_limdiachk ) CALL lim_cons_hsm(0, 'limthd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) CALL lim_var_glo2eqv !---------------------------------------------! ! computation of friction velocity at T points !---------------------------------------------! IF( ln_limdyn ) THEN zu_io(:,:) = u_ice(:,:) - ssu_m(:,:) zv_io(:,:) = v_ice(:,:) - ssv_m(:,:) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 zfric(ji,jj) = rn_cio * ( 0.5_wp * & & ( zu_io(ji,jj) * zu_io(ji,jj) + zu_io(ji-1,jj) * zu_io(ji-1,jj) & & + zv_io(ji,jj) * zv_io(ji,jj) + zv_io(ji,jj-1) * zv_io(ji,jj-1) ) ) * tmask(ji,jj,1) END DO END DO ELSE ! if no ice dynamics => transmit directly the atmospheric stress to the ocean DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 zfric(ji,jj) = r1_rau0 * SQRT( 0.5_wp * & & ( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) & & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) ) * tmask(ji,jj,1) END DO END DO ENDIF CALL lbc_lnk( zfric, 'T', 1. ) ! !----------------------------------! ! Initialization and units change !----------------------------------! ftr_ice(:,:,:) = 0._wp ! part of solar radiation transmitted through the ice ! Change the units of heat content; from J/m2 to J/m3 DO jl = 1, jpl DO jk = 1, nlay_i DO jj = 1, jpj DO ji = 1, jpi rswitch = MAX( 0._wp , SIGN( 1._wp , v_i(ji,jj,jl) - epsi20 ) ) !Energy of melting q(S,T) [J.m-3] e_i(ji,jj,jk,jl) = rswitch * e_i(ji,jj,jk,jl) / MAX( v_i(ji,jj,jl) , epsi20 ) * REAL( nlay_i ) END DO END DO END DO DO jk = 1, nlay_s DO jj = 1, jpj DO ji = 1, jpi rswitch = MAX( 0._wp , SIGN( 1._wp , v_s(ji,jj,jl) - epsi20 ) ) !Energy of melting q(S,T) [J.m-3] e_s(ji,jj,jk,jl) = rswitch * e_s(ji,jj,jk,jl) / MAX( v_s(ji,jj,jl) , epsi20 ) * REAL( nlay_s ) END DO END DO END DO END DO !--------------------------------------------------------------------! ! Partial computation of forcing for the thermodynamic sea ice model !--------------------------------------------------------------------! DO jj = 1, jpj DO ji = 1, jpi rswitch = tmask(ji,jj,1) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice ! ! ! solar irradiance transmission at the mixed layer bottom and used in the lead heat budget ! ! practically no "direct lateral ablation" ! ! ! net downward heat flux from the ice to the ocean, expressed as a function of ocean ! ! temperature and turbulent mixing (McPhee, 1992) ! ! --- Energy received in the lead, zqld is defined everywhere (J.m-2) --- ! zqld = tmask(ji,jj,1) * rdt_ice * & & ( pfrld(ji,jj) * qsr_oce(ji,jj) * frq_m(ji,jj) + pfrld(ji,jj) * qns_oce(ji,jj) + qemp_oce(ji,jj) ) ! --- Energy needed to bring ocean surface layer until its freezing (<0, J.m-2) --- ! zqfr = tmask(ji,jj,1) * rau0 * rcp * e3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) ! --- Energy from the turbulent oceanic heat flux (W/m2) --- ! zfric_u = MAX( SQRT( zfric(ji,jj) ), zfric_umin ) fhtur(ji,jj) = MAX( 0._wp, rswitch * rau0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) ) ) ! W.m-2 fhtur(ji,jj) = rswitch * MIN( fhtur(ji,jj), - zqfr * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ) ! upper bound for fhtur: the heat retrieved from the ocean must be smaller than the heat necessary to reach ! the freezing point, so that we do not have SST < T_freeze ! This implies: - ( fhtur(ji,jj) * at_i(ji,jj) * rtdice ) - zqfr >= 0 !-- Energy Budget of the leads (J.m-2). Must be < 0 to form ice qlead(ji,jj) = MIN( 0._wp , zqld - ( fhtur(ji,jj) * at_i(ji,jj) * rdt_ice ) - zqfr ) ! If there is ice and leads are warming, then transfer energy from the lead budget and use it for bottom melting IF( zqld > 0._wp ) THEN fhld (ji,jj) = rswitch * zqld * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ! divided by at_i since this is (re)multiplied by a_i in limthd_dh.F90 qlead(ji,jj) = 0._wp ELSE fhld (ji,jj) = 0._wp ENDIF ! ! Net heat flux on top of the ice-ocean [W.m-2] ! --------------------------------------------- hfx_in(ji,jj) = qns_tot(ji,jj) + qsr_tot(ji,jj) END DO END DO ! In case we bypass open-water ice formation IF( .NOT. ln_limdO ) qlead(:,:) = 0._wp ! In case we bypass growing/melting from top and bottom: we suppose ice is impermeable => ocean is isolated from atmosphere IF( .NOT. ln_limdH ) hfx_in(:,:) = pfrld(:,:) * ( qns_oce(:,:) + qsr_oce(:,:) ) + qemp_oce(:,:) IF( .NOT. ln_limdH ) fhtur (:,:) = 0._wp ; fhld (:,:) = 0._wp ! --------------------------------------------------------------------- ! Net heat flux on top of the ocean after ice thermo (1st step) [W.m-2] ! --------------------------------------------------------------------- ! First step here : non solar + precip - qlead - qturb ! Second step in limthd_dh : heat remaining if total melt (zq_rema) ! Third step in limsbc : heat from ice-ocean mass exchange (zf_mass) + solar DO jj = 1, jpj DO ji = 1, jpi hfx_out(ji,jj) = pfrld(ji,jj) * qns_oce(ji,jj) + qemp_oce(ji,jj) & ! Non solar heat flux received by the ocean & - qlead(ji,jj) * r1_rdtice & ! heat flux taken from the ocean where there is open water ice formation & - at_i(ji,jj) * fhtur(ji,jj) & ! heat flux taken by turbulence & - at_i(ji,jj) * fhld(ji,jj) ! heat flux taken during bottom growth/melt ! (fhld should be 0 while bott growth) END DO END DO !------------------------------------------------------------------------------! ! Thermodynamic computation (only on grid points covered by ice) !------------------------------------------------------------------------------! DO jl = 1, jpl !loop over ice categories ! select ice covered grid points nbpb = 0 DO jj = 1, jpj DO ji = 1, jpi IF ( a_i(ji,jj,jl) > epsi10 ) THEN nbpb = nbpb + 1 npb(nbpb) = (jj - 1) * jpi + ji ENDIF END DO END DO ! debug point to follow jiindex_1d = 0 IF( ln_limctl ) THEN DO ji = mi0(iiceprt), mi1(iiceprt) DO jj = mj0(jiceprt), mj1(jiceprt) jiindex_1d = (jj - 1) * jpi + ji WRITE(numout,*) ' lim_thd : Category no : ', jl END DO END DO ENDIF IF( lk_mpp ) CALL mpp_ini_ice( nbpb , numout ) IF( nbpb > 0 ) THEN ! If there is no ice, do nothing. ! s_i_new (:) = 0._wp ; dh_s_tot (:) = 0._wp ! --- some init --- ! dh_i_surf (:) = 0._wp ; dh_i_bott(:) = 0._wp dh_snowice(:) = 0._wp ; dh_i_sub (:) = 0._wp CALL lim_thd_1d2d( nbpb, jl, 1 ) ! --- Move to 1D arrays --- ! ! IF( ln_limdH ) CALL lim_thd_dif( 1, nbpb ) ! --- Ice/Snow Temperature profile --- ! ! IF( ln_limdH ) CALL lim_thd_dh( 1, nbpb ) ! --- Ice/Snow thickness --- ! ! IF( ln_limdH ) CALL lim_thd_ent( 1, nbpb, q_i_1d(1:nbpb,:) ) ! --- Ice enthalpy remapping --- ! ! CALL lim_thd_sal( 1, nbpb ) ! --- Ice salinity --- ! ! CALL lim_thd_temp( 1, nbpb ) ! --- temperature update --- ! ! IF( ln_limdH ) THEN IF ( ( nn_monocat == 1 .OR. nn_monocat == 4 ) .AND. jpl == 1 ) THEN CALL lim_thd_lam( 1, nbpb ) ! --- extra lateral melting if monocat --- ! END IF END IF ! CALL lim_thd_1d2d( nbpb, jl, 2 ) ! --- Move to 2D arrays --- ! ! IF( lk_mpp ) CALL mpp_comm_free( ncomm_ice ) !RB necessary ?? ENDIF ! END DO !jl IF( ln_limdA) CALL lim_thd_da ! --- lateral melting --- ! ! Enthalpies are global variables we have to readjust the units (heat content in J/m2) DO jl = 1, jpl DO jk = 1, nlay_i e_i(:,:,jk,jl) = e_i(:,:,jk,jl) * a_i(:,:,jl) * ht_i(:,:,jl) * r1_nlay_i END DO DO jk = 1, nlay_s e_s(:,:,jk,jl) = e_s(:,:,jk,jl) * a_i(:,:,jl) * ht_s(:,:,jl) * r1_nlay_s END DO END DO ! Change thickness to volume v_i(:,:,:) = ht_i(:,:,:) * a_i(:,:,:) v_s(:,:,:) = ht_s(:,:,:) * a_i(:,:,:) smv_i(:,:,:) = sm_i(:,:,:) * v_i(:,:,:) ! update ice age (in case a_i changed, i.e. becomes 0 or lateral melting in monocat) DO jl = 1, jpl DO jj = 1, jpj DO ji = 1, jpi rswitch = MAX( 0._wp , SIGN( 1._wp, a_i_b(ji,jj,jl) - epsi10 ) ) oa_i(ji,jj,jl) = rswitch * oa_i(ji,jj,jl) * a_i(ji,jj,jl) / MAX( a_i_b(ji,jj,jl), epsi10 ) END DO END DO END DO CALL lim_var_zapsmall ! control checks IF( ln_limctl ) CALL lim_prt( kt, iiceprt, jiceprt, 1, ' - ice thermodyn. - ' ) ! control print ! IF( ln_limdiachk ) CALL lim_cons_hsm(1, 'limthd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) !------------------------------------------------! ! Transport ice between thickness categories !------------------------------------------------! ! Given thermodynamic growth rates, transport ice between thickness categories. IF( ln_limdiachk ) CALL lim_cons_hsm(0, 'limitd_th_rem', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) IF( jpl > 1 ) CALL lim_itd_th_rem( 1, jpl, kt ) IF( ln_limdiachk ) CALL lim_cons_hsm(1, 'limitd_th_rem', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) !------------------------------------------------! ! Add frazil ice growing in leads !------------------------------------------------! IF( ln_limdiachk ) CALL lim_cons_hsm(0, 'limthd_lac', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) IF( ln_limdO ) CALL lim_thd_lac ! conservation test IF( ln_limdiachk ) CALL lim_cons_hsm(1, 'limthd_lac', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) ! Control print IF( ln_ctl ) CALL lim_prt3D( 'limthd' ) ! CALL wrk_dealloc( jpi,jpj, zu_io, zv_io, zfric ) ! IF( nn_timing == 1 ) CALL timing_stop('limthd') END SUBROUTINE lim_thd SUBROUTINE lim_thd_temp( kideb, kiut ) !!----------------------------------------------------------------------- !! *** ROUTINE lim_thd_temp *** !! !! ** Purpose : Computes sea ice temperature (Kelvin) from enthalpy !! !! ** Method : Formula (Bitz and Lipscomb, 1999) !!------------------------------------------------------------------- INTEGER, INTENT(in) :: kideb, kiut ! bounds for the spatial loop ! INTEGER :: ji, jk ! dummy loop indices REAL(wp) :: ztmelts, zaaa, zbbb, zccc, zdiscrim ! local scalar !!------------------------------------------------------------------- ! Recover ice temperature DO jk = 1, nlay_i DO ji = kideb, kiut ztmelts = -tmut * s_i_1d(ji,jk) + rt0 ! Conversion q(S,T) -> T (second order equation) zaaa = cpic zbbb = ( rcp - cpic ) * ( ztmelts - rt0 ) + q_i_1d(ji,jk) * r1_rhoic - lfus zccc = lfus * ( ztmelts - rt0 ) zdiscrim = SQRT( MAX( zbbb * zbbb - 4._wp * zaaa * zccc, 0._wp ) ) t_i_1d(ji,jk) = rt0 - ( zbbb + zdiscrim ) / ( 2._wp * zaaa ) ! mask temperature rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp , - ht_i_1d(ji) ) ) t_i_1d(ji,jk) = rswitch * t_i_1d(ji,jk) + ( 1._wp - rswitch ) * rt0 END DO END DO ! END SUBROUTINE lim_thd_temp SUBROUTINE lim_thd_lam( kideb, kiut ) !!----------------------------------------------------------------------- !! *** ROUTINE lim_thd_lam *** !! !! ** Purpose : Lateral melting in case monocategory !! ( dA = A/2h dh ) !!----------------------------------------------------------------------- INTEGER, INTENT(in) :: kideb, kiut ! bounds for the spatial loop ! INTEGER :: ji ! dummy loop indices REAL(wp) :: zhi_bef ! ice thickness before thermo REAL(wp) :: zdh_mel, zda_mel ! net melting REAL(wp) :: zvi, zvs ! ice/snow volumes !!----------------------------------------------------------------------- ! DO ji = kideb, kiut zdh_mel = MIN( 0._wp, dh_i_surf(ji) + dh_i_bott(ji) + dh_snowice(ji) + dh_i_sub(ji) ) IF( zdh_mel < 0._wp .AND. a_i_1d(ji) > 0._wp ) THEN zvi = a_i_1d(ji) * ht_i_1d(ji) zvs = a_i_1d(ji) * ht_s_1d(ji) ! lateral melting = concentration change zhi_bef = ht_i_1d(ji) - zdh_mel rswitch = MAX( 0._wp , SIGN( 1._wp , zhi_bef - epsi20 ) ) zda_mel = rswitch * a_i_1d(ji) * zdh_mel / ( 2._wp * MAX( zhi_bef, epsi20 ) ) a_i_1d(ji) = MAX( epsi20, a_i_1d(ji) + zda_mel ) ! adjust thickness ht_i_1d(ji) = zvi / a_i_1d(ji) ht_s_1d(ji) = zvs / a_i_1d(ji) ! retrieve total concentration at_i_1d(ji) = a_i_1d(ji) END IF END DO ! END SUBROUTINE lim_thd_lam SUBROUTINE lim_thd_1d2d( nbpb, jl, kn ) !!----------------------------------------------------------------------- !! *** ROUTINE lim_thd_1d2d *** !! !! ** Purpose : move arrays from 1d to 2d and the reverse !!----------------------------------------------------------------------- INTEGER, INTENT(in) :: kn ! 1= from 2D to 1D ; 2= from 1D to 2D INTEGER, INTENT(in) :: nbpb ! size of 1D arrays INTEGER, INTENT(in) :: jl ! ice cat ! INTEGER :: jk ! dummy loop indices !!----------------------------------------------------------------------- ! SELECT CASE( kn ) ! CASE( 1 ) ! from 2D to 1D ! CALL tab_2d_1d( nbpb, at_i_1d (1:nbpb), at_i , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, a_i_1d (1:nbpb), a_i(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, ht_i_1d (1:nbpb), ht_i(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, ht_s_1d (1:nbpb), ht_s(:,:,jl) , jpi, jpj, npb(1:nbpb) ) ! CALL tab_2d_1d( nbpb, t_su_1d (1:nbpb), t_su(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sm_i_1d (1:nbpb), sm_i(:,:,jl) , jpi, jpj, npb(1:nbpb) ) DO jk = 1, nlay_s CALL tab_2d_1d( nbpb, t_s_1d(1:nbpb,jk), t_s(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, q_s_1d(1:nbpb,jk), e_s(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) END DO DO jk = 1, nlay_i CALL tab_2d_1d( nbpb, t_i_1d(1:nbpb,jk), t_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, q_i_1d(1:nbpb,jk), e_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, s_i_1d(1:nbpb,jk), s_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) END DO ! CALL tab_2d_1d( nbpb, qprec_ice_1d(1:nbpb), qprec_ice(:,:) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, qevap_ice_1d(1:nbpb), qevap_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, qsr_ice_1d (1:nbpb), qsr_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, fr1_i0_1d (1:nbpb), fr1_i0 , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, fr2_i0_1d (1:nbpb), fr2_i0 , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, qns_ice_1d (1:nbpb), qns_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, ftr_ice_1d (1:nbpb), ftr_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, evap_ice_1d (1:nbpb), evap_ice(:,:,jl), jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, dqns_ice_1d(1:nbpb), dqns_ice(:,:,jl), jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, t_bo_1d (1:nbpb), t_bo , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sprecip_1d (1:nbpb), sprecip , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, fhtur_1d (1:nbpb), fhtur , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, qlead_1d (1:nbpb), qlead , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, fhld_1d (1:nbpb), fhld , jpi, jpj, npb(1:nbpb) ) ! CALL tab_2d_1d( nbpb, wfx_snw_1d (1:nbpb), wfx_snw , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_sub_1d (1:nbpb), wfx_sub , jpi, jpj, npb(1:nbpb) ) ! CALL tab_2d_1d( nbpb, wfx_bog_1d (1:nbpb), wfx_bog , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_bom_1d (1:nbpb), wfx_bom , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_sum_1d (1:nbpb), wfx_sum , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_sni_1d (1:nbpb), wfx_sni , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_res_1d (1:nbpb), wfx_res , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_spr_1d (1:nbpb), wfx_spr , jpi, jpj, npb(1:nbpb) ) ! CALL tab_2d_1d( nbpb, sfx_bog_1d (1:nbpb), sfx_bog , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_bom_1d (1:nbpb), sfx_bom , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_sum_1d (1:nbpb), sfx_sum , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_sni_1d (1:nbpb), sfx_sni , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_bri_1d (1:nbpb), sfx_bri , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_res_1d (1:nbpb), sfx_res , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_sub_1d (1:nbpb), sfx_sub , jpi, jpj,npb(1:nbpb) ) ! CALL tab_2d_1d( nbpb, hfx_thd_1d (1:nbpb), hfx_thd , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_spr_1d (1:nbpb), hfx_spr , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_sum_1d (1:nbpb), hfx_sum , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_bom_1d (1:nbpb), hfx_bom , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_bog_1d (1:nbpb), hfx_bog , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_dif_1d (1:nbpb), hfx_dif , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_opw_1d (1:nbpb), hfx_opw , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_snw_1d (1:nbpb), hfx_snw , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_sub_1d (1:nbpb), hfx_sub , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_err_1d (1:nbpb), hfx_err , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_res_1d (1:nbpb), hfx_res , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_err_dif_1d (1:nbpb), hfx_err_dif , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_err_rem_1d (1:nbpb), hfx_err_rem , jpi, jpj, npb(1:nbpb) ) ! CASE( 2 ) ! from 1D to 2D ! CALL tab_1d_2d( nbpb, at_i , npb, at_i_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, ht_i(:,:,jl) , npb, ht_i_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, ht_s(:,:,jl) , npb, ht_s_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, a_i (:,:,jl) , npb, a_i_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, t_su(:,:,jl) , npb, t_su_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sm_i(:,:,jl) , npb, sm_i_1d (1:nbpb) , jpi, jpj ) DO jk = 1, nlay_s CALL tab_1d_2d( nbpb, t_s(:,:,jk,jl), npb, t_s_1d (1:nbpb,jk), jpi, jpj) CALL tab_1d_2d( nbpb, e_s(:,:,jk,jl), npb, q_s_1d (1:nbpb,jk), jpi, jpj) END DO DO jk = 1, nlay_i CALL tab_1d_2d( nbpb, t_i(:,:,jk,jl), npb, t_i_1d (1:nbpb,jk), jpi, jpj) CALL tab_1d_2d( nbpb, e_i(:,:,jk,jl), npb, q_i_1d (1:nbpb,jk), jpi, jpj) CALL tab_1d_2d( nbpb, s_i(:,:,jk,jl), npb, s_i_1d (1:nbpb,jk), jpi, jpj) END DO CALL tab_1d_2d( nbpb, qlead , npb, qlead_1d (1:nbpb) , jpi, jpj ) ! CALL tab_1d_2d( nbpb, wfx_snw , npb, wfx_snw_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_sub , npb, wfx_sub_1d(1:nbpb) , jpi, jpj ) ! CALL tab_1d_2d( nbpb, wfx_bog , npb, wfx_bog_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_bom , npb, wfx_bom_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_sum , npb, wfx_sum_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_sni , npb, wfx_sni_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_res , npb, wfx_res_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_spr , npb, wfx_spr_1d(1:nbpb) , jpi, jpj ) ! CALL tab_1d_2d( nbpb, sfx_bog , npb, sfx_bog_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_bom , npb, sfx_bom_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_sum , npb, sfx_sum_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_sni , npb, sfx_sni_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_res , npb, sfx_res_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_bri , npb, sfx_bri_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_sub , npb, sfx_sub_1d(1:nbpb) , jpi, jpj ) ! CALL tab_1d_2d( nbpb, hfx_thd , npb, hfx_thd_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_spr , npb, hfx_spr_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_sum , npb, hfx_sum_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_bom , npb, hfx_bom_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_bog , npb, hfx_bog_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_dif , npb, hfx_dif_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_opw , npb, hfx_opw_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_snw , npb, hfx_snw_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_sub , npb, hfx_sub_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_err , npb, hfx_err_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_res , npb, hfx_res_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_err_rem , npb, hfx_err_rem_1d(1:nbpb), jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_err_dif , npb, hfx_err_dif_1d(1:nbpb), jpi, jpj ) ! CALL tab_1d_2d( nbpb, qns_ice(:,:,jl), npb, qns_ice_1d(1:nbpb) , jpi, jpj) CALL tab_1d_2d( nbpb, ftr_ice(:,:,jl), npb, ftr_ice_1d(1:nbpb) , jpi, jpj ) ! END SELECT ! END SUBROUTINE lim_thd_1d2d SUBROUTINE lim_thd_init !!----------------------------------------------------------------------- !! *** ROUTINE lim_thd_init *** !! !! ** Purpose : Physical constants and parameters linked to the ice !! thermodynamics !! !! ** Method : Read the namicethd namelist and check the ice-thermo !! parameter values called at the first timestep (nit000) !! !! ** input : Namelist namicether !!------------------------------------------------------------------- INTEGER :: ios ! Local integer output status for namelist read NAMELIST/namicethd/ rn_kappa_i, nn_conv_dif, rn_terr_dif, nn_ice_thcon, ln_it_qnsice, nn_monocat, rn_cdsn, & & ln_limdH, rn_betas, & & ln_limdA, rn_beta, rn_dmin, & & ln_limdO, rn_hnewice, ln_frazil, rn_maxfrazb, rn_vfrazb, rn_Cfrazb, rn_himin !!------------------------------------------------------------------- ! REWIND( numnam_ice_ref ) ! Namelist namicethd in reference namelist : Ice thermodynamics READ ( numnam_ice_ref, namicethd, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in reference namelist', lwp ) REWIND( numnam_ice_cfg ) ! Namelist namicethd in configuration namelist : Ice thermodynamics READ ( numnam_ice_cfg, namicethd, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in configuration namelist', lwp ) IF(lwm) WRITE ( numoni, namicethd ) ! IF ( ( jpl > 1 ) .AND. ( nn_monocat == 1 ) ) THEN nn_monocat = 0 IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' nn_monocat forced to 0 as jpl>1, i.e. multi-category case is chosen' ENDIF ! IF(lwp) THEN ! control print WRITE(numout,*) 'lim_thd_init : Ice Thermodynamics' WRITE(numout,*) '~~~~~~~~~~~~~' WRITE(numout,*)' -- limthd_dif --' WRITE(numout,*)' extinction radiation parameter in sea ice rn_kappa_i = ', rn_kappa_i WRITE(numout,*)' maximal n. of iter. for heat diffusion computation nn_conv_dif = ', nn_conv_dif WRITE(numout,*)' maximal err. on T for heat diffusion computation rn_terr_dif = ', rn_terr_dif WRITE(numout,*)' switch for comp. of thermal conductivity in the ice nn_ice_thcon = ', nn_ice_thcon WRITE(numout,*)' iterate the surface non-solar flux (T) or not (F) ln_it_qnsice = ', ln_it_qnsice WRITE(numout,*)' virtual ITD mono-category parameterizations (1) or not nn_monocat = ', nn_monocat WRITE(numout,*)' thermal conductivity of the snow rn_cdsn = ', rn_cdsn WRITE(numout,*)' -- limthd_dh --' WRITE(numout,*)' activate ice thick change from top/bot (T) or not (F) ln_limdH = ', ln_limdH WRITE(numout,*)' coefficient for ice-lead partition of snowfall rn_betas = ', rn_betas WRITE(numout,*)' -- limthd_da --' WRITE(numout,*)' activate lateral melting (T) or not (F) ln_limdA = ', ln_limdA WRITE(numout,*)' Coef. beta for lateral melting param. rn_beta = ', rn_beta WRITE(numout,*)' Minimum floe diameter for lateral melting param. rn_dmin = ', rn_dmin WRITE(numout,*)' -- limthd_lac --' WRITE(numout,*)' activate ice growth in open-water (T) or not (F) ln_limdO = ', ln_limdO WRITE(numout,*)' ice thick. for lateral accretion rn_hnewice = ', rn_hnewice WRITE(numout,*)' Frazil ice thickness as a function of wind or not ln_frazil = ', ln_frazil WRITE(numout,*)' Maximum proportion of frazil ice collecting at bottom rn_maxfrazb = ', rn_maxfrazb WRITE(numout,*)' Thresold relative drift speed for collection of frazil rn_vfrazb = ', rn_vfrazb WRITE(numout,*)' Squeezing coefficient for collection of frazil rn_Cfrazb = ', rn_Cfrazb WRITE(numout,*)' -- limitd_th --' WRITE(numout,*)' minimum ice thickness rn_himin = ', rn_himin WRITE(numout,*)' check heat conservation in the ice/snow con_i = ', con_i ENDIF ! END SUBROUTINE lim_thd_init #else !!---------------------------------------------------------------------- !! Default option Dummy module NO LIM3 sea-ice model !!---------------------------------------------------------------------- #endif !!====================================================================== END MODULE limthd