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4.8.2 Brunt-Vaisälä Frequency (neos = 0, 1 or 2) . . . . . . . . 74
4.8.3 Specific Heat (rcp, phycst.F90) . . . . . . . . . . . . . . . 74
4.8.4 Freezing Point of Seawater (ocfzpt.F90) . . . . . . . . . . 75

4.9 Horizontal Derivative in zps-coordinate (zpshde.F90) . . . . . . . 75

5 Ocean Dynamics (DYN) 79
5.1 Coriolis and Advection : vector invariant form . . . . . . . . . . . 80

5.1.1 Vorticity term (dynvor.F90) . . . . . . . . . . . . . . . . . 81
5.1.2 Kinetic Energy Gradient term (dynkeg.F90) . . . . . . . . 84
5.1.3 Vertical advection term (dynzad.F90) . . . . . . . . . . . 84

5.2 Coriolis and Advection : flux form . . . . . . . . . . . . . . . . . 85
5.2.1 Coriolis plus curvature metric terms (dynvor.F90) . . . . 85
5.2.2 Flux form Advection term (dynadv.F90) . . . . . . . . . 85

5.3 Hydrostatic pressure gradient (dynhpg.F90) . . . . . . . . . . . . 87
5.3.1 z-coordinate with full step (ln dynhpg zco=T) . . . . . . . 87
5.3.2 z-coordinate with partial step (ln dynhpg zps=T ) . . . . . 88
5.3.3 s- and s-z coordinates . . . . . . . . . . . . . . . . . . . . 88
5.3.4 Time-scheme (ln dynhpg imp=T/F) . . . . . . . . . . . . 89

5.4 Surface pressure gradient (dynspg.F90) . . . . . . . . . . . . . . 90
5.4.1 Linear free surface formulation (key exp or ts or flt) . . 90
5.4.2 Non-linear free surface formulation (key vvl) . . . . . . . 92
5.4.3 Rigid-lid formulation (key dynspg rl) . . . . . . . . . . . 92

5.5 Lateral diffusion term (dynldf.F90) . . . . . . . . . . . . . . . . . 93
5.5.1 Iso-level laplacian operator (ln dynldf lap=T) . . . . . . . 94
5.5.2 Rotated laplacian operator (ln dynldf iso=T) . . . . . . . 94
5.5.3 Iso-level bilaplacian operator . . . . . . . . . . . . . . . . 95

5.6 Vertical diffusion term (dynzdf.F90) . . . . . . . . . . . . . . . . 95
5.7 External Forcings . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.8 Time evolution term (dynnxt.F90) . . . . . . . . . . . . . . . . . 97
5.9 Diagnostic variables (ζ , χ, w) . . . . . . . . . . . . . . . . . . . . 97

5.9.1 horizontal divergence and relative vorticity (divcur.F90) . 97
5.9.2 Vertical velocity (wzvmod.F90) . . . . . . . . . . . . . . 98



iv

6 Surface Boundary Condition (SBC) 99
6.1 Surface boundary condition for the ocean . . . . . . . . . . . . . 100
6.2 Analytical formulation (sbcana module) . . . . . . . . . . . . . . 102
6.3 Flux formulation (sbcflx.F90 module, key sbcflx) . . . . . . . . . 102
6.4 Bulk formulation (sbcblk core.F90 orsbcblk clio.F90 module) . . 103
6.5 Coupled formulation (sbccpl.F90 module) . . . . . . . . . . . . . 104
6.6 Miscellanea options . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6.1 Surface restoring to observed SST and/or SSS (sbcssr.F90) 105
6.6.2 Handling of ice-covered area . . . . . . . . . . . . . . . . 105
6.6.3 Addition of river runoffs (sbcrnf.F90) . . . . . . . . . . . 105
6.6.4 Freshwater budget control (sbcfwb.F90) . . . . . . . . . . 106

7 Lateral Boundary Condition (LBC) 107
7.1 Boundary Condition at the Coast (shlat) . . . . . . . . . . . . . . 107
7.2 Model Domain Boundary Condition (jperio) . . . . . . . . . . . . 111

7.2.1 Closed, cyclic, south symmetric (jperio = 0, 1 or 2) . . . . 111
7.2.2 North-fold (jperio = 3 to 6) . . . . . . . . . . . . . . . . 112

7.3 Exchanged with neighbouring processors (lbclnk.F90, lib mpp.F90)112
7.4 Open Boundary Conditions (key obc) . . . . . . . . . . . . . . . 116
7.5 Flow Relaxation Scheme ( ? ? ?) . . . . . . . . . . . . . . . . . . 116

8 Lateral Ocean Physics (LDF) 117
8.1 Lateral Mixing Coefficient (key ldftra c.d and key ldfdyn c.d) . . 118
8.2 Direction of Lateral Mixing (ldfslp.F90) . . . . . . . . . . . . . . 120

8.2.1 slopes for tracer geopotential mixing in s-coordinate . . . 120
8.2.2 slopes for tracer iso-neutral mixing . . . . . . . . . . . . 121
8.2.3 slopes for momentum iso-neutral mixing . . . . . . . . . 124

8.3 Eddy Induced Velocity (traadv eiv.F90, ldfeiv.F90) . . . . . . . . 124

9 Vertical Ocean Physics (ZDF) 127
9.1 Vertical Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.1.1 Constant (key zdfcst) . . . . . . . . . . . . . . . . . . . 128
9.1.2 Richardson Number Dependent (key zdfric) . . . . . . . 128
9.1.3 TKE Turbulent Closure Scheme (key zdftke) . . . . . . . 129
9.1.4 K Profile Parametrisation (KPP) (key zdfkpp) . . . . . . 132

9.2 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.2.1 Non-Penetrative Convective Adjustment (ln tranpc=T) . . 133
9.2.2 Enhanced Vertical Diffusion (ln zdfevd=T) . . . . . . . . 134
9.2.3 Turbulent Closure Scheme (key zdftke) . . . . . . . . . . 135

9.3 Double Diffusion Mixing (key zdfddm) . . . . . . . . . . . . . . 135
9.4 Bottom Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



v

9.4.1 Linear Bottom Friction . . . . . . . . . . . . . . . . . . . 138
9.4.2 Non-Linear Bottom Friction . . . . . . . . . . . . . . . . 139

10 Miscellaneous Topics (xxx) 141
10.1 Representation of Unresolved Straits . . . . . . . . . . . . . . . . 142

10.1.1 Hand made geometry changes . . . . . . . . . . . . . . . 142
10.1.2 Cross Land Advection (tracla module) . . . . . . . . . . 142

10.2 Closed seas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.3 Sub-Domain Functionality (jpizoom, jpjzoom) . . . . . . . . . . . 142
10.4 Water column model : 1D model (key cfg 1d) . . . . . . . . . . . 144
10.5 Accelerating the Convergence (nn acc = 1) . . . . . . . . . . . . 145
10.6 Model optimisation, Control Print and Benchmark . . . . . . . . . 146
10.7 Elliptic solvers (SOL) . . . . . . . . . . . . . . . . . . . . . . . . 147

10.7.1 Successive Over Relaxation nsolv=2 . . . . . . . . . . . . 148
10.7.2 Preconditioned Conjugate Gradient . . . . . . . . . . . . 150
10.7.3 FETI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.7.4 Boundary Conditions — Islands (key islands defined) . . 151

10.8 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.8.1 Standard Model Output (default option or key dimg) . . . 152
10.8.2 Tracer/Dynamics Trends (key trdlmd, key diatrdtra) . . 152
10.8.3 On-line Floats trajectories . . . . . . . . . . . . . . . . . 152
10.8.4 Other Diagnostics . . . . . . . . . . . . . . . . . . . . . . 153

Index 154

Index 154

Bibliographie 159





Abstract / Résumé

The ocean engine of NEMO is a primitive equation model adapted to regional and
global ocean circulation. It is intended to be a flexible tool for studying the ocean and
its interactions with the others components of the earth climate system (atmosphere, sea-
ice, biogeochemical tracers, ...) over a wide range of space and time scales. Prognostic
variables are the three-dimensional velocity field, the sea surface height, the temperature
and the salinity. In the horizontal direction, the model uses a curvilinear orthogonal grid
and in the vertical direction, a z full or partial step coordinate, or s-coordinate, or a mixture
of the two. The distribution of variables is a three-dimensional Arakawa C-type grid.
Various physical choices are available to describe ocean physics, including TKE and KPP
turbulent closures for the vertical mixing. Within NEMO, the ocean is interfaced with
a sea-ice model (LIM), passive tracer and biogeochemical models (TOP) and, via the
OASIS coupler, with several atmospheric general circulation models.

Le moteur océanique de NEMO est un modèle aux équations primitives de la cir-
culation océanique régionale et globale. Il se veut un outil flexible pour étudier sur un
vaste spectre spatiotemporel l’océan et ses interactions avec les autres composantes du
système climatique terrestre (atmosphère, glace de mer, traceurs biogéochimiques...). Les
variables pronostiques sont le champ tridimensionnel de vitesse, la hauteur de la mer, la
temperature et la salinité. La distribution des variables se fait sur une grille C d’Arakawa
tridimensionnelle utilisant une coordonnée verticale z à niveaux entiers ou partiels, ou
une coordonnée s, ou encore une combinaison des deux. Différents choix sont proposés
pour décrire la physique océanique, incluant notamment une fermeture turbulente TKE
et KPP pour le mélange vertical. Via l’infrastructure NEMO, l’océan est interfacé avec
un modèle de glace de mer, des modèles biogéochimiques et de traceur passif, et, via le
coupleur OASIS, à plusieurs modèles de circulation générale atmosphérique.





Disclaimer

OPA (an acronym for Ocean PArallélisé) is the ocean component of NEMO (Nucleus
for European Modelling of the Ocean (www.locean-ipsl.upmc.fr/NEMO). Like all com-
ponents of NEMO, it is developed under the CECILL license, which is a french adaptation
of the GNU GPL (General Public license). Anyone may use OPA freely for research pur-
poses, and is encouraged to communicate back to the NEMO team its own developments
and improvements. The model and the present document have been made available as a
service to the community. We cannot certify that the code and its manual are free of er-
rors. Bugs are inevitable and some have undoubtedly survived the testing phase. Users
are encouraged to bring them to our attention. The author assumes no responsibility for
problems, errors, or incorrect usage of OPA.

The OPA OGCM reference in papers and other publications is as follows :

Madec, G., 2007 : NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-
Simon Laplace (IPSL), France, NXX, YYpp .





1 Introduction

The Nucleus for European Modelling of the Ocean (NEMO) is a framework of ocean
related engines, namely OPA for the Ocean dynamics and thermodynamics, LIM for
the sea-ice dynamics and thermodynamics, TOP for the biogeochemistry (both transport
(TRP) and sources minus sinks (LOBSTER, PISCES). It is intended to be a flexible tool
for studying the ocean and its interactions with the others components of the earth cli-
mate system (atmosphere, sea-ice, biogeochemical tracers, ...) over a wide range of space
and time scales. This documentation provides information about the physics represented
by the OPA ocean model and the rationale for the choice of numerical schemes and the
model design. More specific information about running the model on different compu-
ters, or how to set up a configuration, are found on the NEMOweb site (www.locean-
ipsl.upmc.fr/NEMO).

The ocean component of NEMOhas been developed from the OPA8.2 model descri-
bed in Madec et al. [1998]. This model has been used for a wide range of applications,
either regional or global, as a forced ocean model or coupled with the atmosphere. A
complete list of references is found on the NEMOweb site.

This manual is organised in as follows. Chapter 2 presents the model basics, i.e. the
equations and their assumptions, the vertical coordinates used, and the subgrid scale phy-
sics. This part deals with the continuous equations of the model (primitive equations, with
potential temperature, salinity and an equation of state). The equations are written in a
curvilinear coordinate system, with a choice of vertical coordinates (z, s, and variable
volumes). Momentum equations are formulated in the vector invariant form. The model
equations are written in dimensional units in the meter, kilogram, second (MKS) interna-
tional system.

The following chapters deal with the discrete equations. Chapter 3 presents the space
and time domain. The model is discretised on a staggered grid (Arakawa C grid) with
masking of land areas. Vertical discretisation uses z-coordinates (including partial step),
s- (terrain-following) coordinate (fixed volume thickness and linear free surface), or s∗-
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coordinate (variable volume thickness and nonlinear free surface). The following chapters
describe the discretisation of the prognostic equations (momentum and tracers). Explicit,
split-explicit or implicit free surface formulations are implemented as well as arid-lid ap-
proximation. A number of numerical schemes are available for momentum advection, for
the computation of the pressure gradients, as well as for the advection of tracers (second
or higher order advection schemes, including positive ones).

Other model characteristics are the lateral boundary conditions (chapter 7). Global
configurations of the model make use of the ORCA tripolar grid, with special north fold
boundary condition. Free-slip or no-slip boundary conditions are allowed at land bounda-
ries. Closed basin geometries as well as periodic domains and open boundary conditions
are possible.

Surface boundary conditions (chapter 6) can be implemented as prescribed fluxes, or
bulk formulations for the surface fluxes (wind stress, heat, freshwater). The model allows
penetration of solar radiation There is an optional geothermal heating at the ocean bottom.
Within the NEMOsystem the ocean model is interactively coupled with a sea ice model
(LIM) and with biogeochemistry models (PISCES, LOBSTER). Interactive coupling to
Atmospheric models is possible via the OASIS coupler [Valcke 2006].

Physical parameterisations are described in chapters 8 and 9. The model includes an
implicit treatment of vertical viscosity and diffusivity. The lateral Laplacian and biharmo-
nic viscosity and diffusion can be rotated following a geopotential or neutral direction.
There is an optional eddy induced velocity [Gent and Mcwilliams 1990] with a space and
time variable coefficient Tréguier et al. [1997]. The model has vertical harmonic visco-
sity and diffusion with a space and time variable coefficient, with options to compute the
coefficients with Blanke and Delecluse [1993], Large et al. [1994], or Pacanowski and
Philander [1981] mixing schemes.

Specific online diagnostics (not documented yet) are available in the model : output
of all the tendencies of the momentum and tracers equations, output of tracers tendencies
averaged over the time evolving mixed layer.

The model is implemented in FORTRAN 90, with preprocessing (C-pre-processor).
It runs under UNIX. It is optimized for vector computers and parallelised by domain
decomposition with MPI. All input and output is done in NetCDF (Network Common
Data Format) with a optional direct access format for output. To ensure the clarity and
readability of the code it is necessary to follow coding rules. The coding rules for OPA
include conventions for naming variables, with different starting letters for different types
of variables (real, integer, parameter. . . ) Those rules are presented in a document available
on the NEMOweb site..

The model is organized with a high internal modularity based on physics. In parti-
cular, each trend (e.g., a term in the rhs of the prognostic equation) for momentum and
tracers is computed in a dedicated module. To make it easier for the user to find his way
around the code, the module names follow the three-letter rule. Each module name is
made of three-letter sequences. For example, tradmp.F90 is a module related to the TRA-
cers equation, computing the DaMPing. The complete list of module names is presented
in annex. Furthermore, modules are organized in a few directories that correspond to their
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category, as indicated by the first three letters of their name. The manual follows this or-
ganization. After the presentation of the continuous equations (Chapter 2), the following
chapters refer to specific terms of the equations each associated with a group of modules .

Chapter 3 DOM Model DOMain
Chapter 4 TRA TRAcer equations (potential temperature and salinity)
Chapter 5 DYN DYNamic equations (momentum)
Chapter 6 SBC Surface Boundary Conditions
Chapter 7 LBC Lateral Boundary Conditions
Chapter 8 LDF Lateral DiFfusion (parameterisations)
Chapter 9 ZDF Vertical DiFfusion
Chapter 10 ... Miscellaneous topics

In the current release (v2.3), LBC directory (see Chap. 7) does not yet exist. When
created LBC will gather OBC directory (Open Boundary Condition), lbclnk.F90, mp-
pini.F90 and lib mpp.F90 modules.

Nota Bene :

OPA, like all research tools, is in perpetual evolution. The present document describes
the OPA model include in the release 2.3 of NEMO. This release differs significantly from
version 8, documented in Madec et al. [1998]. The major modifications are :
(1) transition to full native FORTRAN 90, deep code restructuring and drastic reduction of
CPP keys,
(2) introduction of partial step representation of bottom topography
(3) partial reactivation of a terrain-following vertical coordinate (s- and hybrid s-z) with
the addition of several options for pressure gradient computation 1,
(4) more choices for the treatment of the free surface : full explicit, split-explicit , filtered
and rigid-lid
(5) non linear free surface option (variable level thickness distributed on the whole water
column)
(6) additional schemes for vector and flux forms of the momentum advection
(7) addition of several advection schemes on tracers
(8) implementation of the AGRIF package (Adaptative Grid Refinement in FORTRAN )
(9) online diagnostics : tracers trend in the mixed layer and vorticity balance
(10) rewriting of the I/O management
(11) OASIS 3 and 4 couplers interfacing with atmospheric global circulation models.

1Partial support of s-coordinate : there is presently no support for neutral physics in s-
coordinate and for the new options for horizontal pressure gradient computation with true equation
of state.
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In addition, several minor modifications in the coding have been introduced with the
constant concern of improving performance on both scalar and vector computers.

At the time of this writing, the current release is NEMO 2.3. The new surface module
described in this document is not yet part of the current distribution.

Red color : not in the current reference version (v2.3) but expected soon.
Yellow color : missing references, text to be updated.
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10 Model basics

2.1 Primitive Equations

2.1.1 Vector Invariant Formulation
The ocean is a fluid that can be described to a good approximation by the primitive

equations, i.e. the Navier-Stokes equations along with a nonlinear equation of state which
couples the two active tracers (temperature and salinity) to the fluid velocity, plus the
following additional assumptions made from scale considerations :

(1) spherical earth approximation : the geopotential surfaces are assumed to be spheres
so that gravity (local vertical) is parallel to the earth’s radius

(2) thin-shell approximation : the ocean depth is neglected compared to the earth’s
radius

(3) turbulent closure hypothesis : the turbulent fluxes (which represent the effect of
small scale processes on the large-scale) are expressed in terms of large-scale features

(4) Boussinesq hypothesis : density variations are neglected except in their contribu-
tion to the buoyancy force

(5) Hydrostatic hypothesis : the vertical momentum equation is reduced to a balance
between the vertical pressure gradient and buoyancy force (this removes convective pro-
cesses from the initial Navier-Stokes equations : they must be parameterized)

(6) Incompressibility hypothesis : the three dimensional divergence of the velocity
vector is assumed to be zero.

Because the gravitational force is so dominant in the equations of large-scale motions,
it is quite useful to choose an orthogonal set of unit vectors (i,j,k) linked to the earth such
that k is the local upward vector and (i,j) are two vectors orthogonal to k, i.e. tangent to
the geopotential surfaces. Let us define the following variables : U the vector velocity,
U = Uh+w k (the subscript h denotes the local horizontal vector, i.e. over the (i,j) plan),
T the potential temperature, S the salinity, ρ the in situ density. The vector invariant form
of the primitive equations in the (i,j,k) vector system provides the following six equations
(namely the momentum balance, the hydrostatic equilibrium, the incompressibility, the
heat and salt conservation and an equation of state) :

∂Uh

∂t
= −

[
(∇×U)×U +

1
2
∇
(
U2
)]
h

− f k×Uh −
1
ρo
∇hp+ DU (2.1a)

∂p

∂z
= −ρ g (2.1b)

∇ ·U = 0 (2.1c)

∂T

∂t
= −∇ · (T U) +DT (2.1d)

∂S

∂t
= −∇ · (S U) +DS (2.1e)
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ρ = ρ (T, S, p) (2.1f)

where ∇ is the generalised derivative vector operator in (i, j,k) directions, t the time, z
the vertical coordinate, ρ the in situ density given by the equation of state (2.1f), ρo a re-
ference density, p the pressure, f = 2Ω ·k the Coriolis acceleration (where Ω is the Earth
angular velocity vector), and g the gravitational acceleration. DU,DT andDS are the pa-
rameterizations of small-scale physics for momentum, temperature and salinity, including
surface forcing terms. Their nature and formulation are discussed in §2.6, page 26.

.

2.1.2 Boundary Conditions
An ocean is bounded by complex coastlines and bottom topography at its base and by

an air-sea or ice-sea interface at its top. These boundaries can be defined by two surfaces,
z = −H(i, j) and z = η(i, j, k, t), where H is the depth of the ocean bottom and η
the height of the sea surface. Both H and η are usually referenced to a given surface,
z = 0, chosen as a mean sea surface (Fig. 2.1.2). Through these two boundaries, the
ocean can exchange fluxes of heat, fresh water, salt, and momentum with the solid earth,
the continental surfaces, the sea ice and the atmosphere. However, some of these fluxes are
so weak that even on climatic time scales of thousands of years they can be neglected. In
the following, we briefly review the fluxes exchanged at the interfaces between the ocean
and the other components of the earth system.

η(i,j)

0

z

i, j

—H(i,j)

FIG. 2.1 – The ocean is bounded by two surfaces, z = −H(i, j) and z =
η(i, j, k, t), where H is the depth of the sea floor and η the height of the sea
surface. Both H and η are referenced to z = 0.

Land - ocean interface : the major flux between continental surfaces and the ocean is
a mass exchange of fresh water through river runoff. Such an exchange modifies
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locally the sea surface salinity especially in the vicinity of major river mouths. It
can be neglected for short range integrations but has to be taken into account for
long term integrations as it influences the characteristics of water masses formed
(especially at high latitudes). It is required to close the water cycle of the climatic
system. It is usually specified as a fresh water flux at the air-sea interface in the
vicinity of river mouths.

Solid earth - ocean interface : heat and salt fluxes across the sea floor are negligibly
small, except in special areas of little extent. They are always neglected in the
model. The boundary condition is thus set to no flux of heat and salt across solid
boundaries. For momentum, the situation is different. There is no flow across solid
boundaries, i.e. the velocity normal to the ocean bottom and coastlines is zero (in
other words, the bottom velocity is parallel to solid boundaries). This kinematic
boundary condition can be expressed as :

w = −Uh · ∇h (H) (2.2)

In addition, the ocean exchanges momentum with the earth through friction pro-
cesses. Such momentum transfer occurs at small scales in a boundary layer. It must
be parameterized in terms of turbulent fluxes through bottom and/or lateral boun-
dary conditions. Its specification depends on the nature of the physical parameteri-
zation used for DU in (2.1a). They are discussed in in §2.6.1, page 26.

Atmosphere - ocean interface : the kinematic surface condition plus the mass flux of
fresh water PE (the precipitation minus evaporation budget) leads to :

w =
∂η

∂t
+ Uh|z=η · ∇h (η) + P − E (2.3)

The dynamic boundary condition, neglecting the surface tension (which removes
capillary waves from the system) leads to the continuity of pressure across the
interface z = η. The atmosphere and ocean also exchange horizontal momentum
(wind stress), and heat.

Sea ice - ocean interface : the two media exchange heat, salt, fresh water and momen-
tum. The sea surface temperature is constrained to be at the freezing point at the
interface. Sea ice salinity is very low (∼ 5 psu) compared to those of the ocean
(∼ 34 psu). The cycle of freezing/melting is associated with fresh water and salt
fluxes that cannot be neglected.

2.2 The Horizontal Pressure Gradient

2.2.1 Pressure Formulation
The total pressure at a given depth z is composed of a surface pressure ps at a refe-

rence geopotential surface (z = 0) and an hydrostatic pressure ph such that : p(i, j, k, t) =
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ps(i, j, t)+ ph(i, j, k, t). The latter is computed by integrating (2.1b), assuming that pres-
sure in decibars can be approximated by depth in meters in (2.1f). The hydrostatic pressure
is then given by :

ph (i, j, z, t) =
∫ ς=0

ς=z
g ρ (T, S, z) dς (2.4)

The surface pressure requires a more specific treatment. Two strategies can be considered :
(a) the introduction of a new variable η, the free-surface elevation, for which a prognostic
equation can be established and solved ; (b) the assumption that the ocean surface is a
rigid lid, on which the pressure (or its horizontal gradient) can be diagnosed. When the
former strategy is used, a solution of the free-surface elevation consists in the excitation
of external gravity waves. The flow is barotropic and the surface moves up and down with
gravity as the restoring force. The phase speed of such waves is high (some hundreds of
metres per second) so that the time step would have to be very short if they were present
in the model. The latter strategy filters these waves as the rigid lid approximation implies
η = 0, i.e. the sea surface is the surface z = 0. This well known approximation increases
the surface wave speed to infinity and modifies certain other longwave dynamics (e.g.
barotropic Rossby or planetary waves). In the present release of OPA, both strategies are
still available. They are further described in the next two sub-sections.

2.2.2 Free Surface Formulation
In the free surface formulation, a variable η, the sea-surface height, is introduced

which describes the shape of the air-sea interface. This variable is solution of a prognostic
equation which is established by forming the vertical average of the kinematics surface
condition (2.2) :

∂η

∂t
= −D + P − E where D = ∇ ·

[
(H + η) Uh

]
(2.5)

and using (2.1b) the surface pressure is given by : ps = ρ g η.
Allowing the air-sea interface to move introduces the external gravity waves (EGWs)

as a class of solution of the primitive equations. These waves are barotropic because of
hydrostatic assumption, and their phase speed is quite high. Their time scale is short with
respect to the other processes described by the primitive equations.

Three choices can be made regarding the implementation of the free surface in the
model, depending on the physical processes of interest.

• If one is interested in EGWs, in particular the tides and their interaction with the
baroclinic structure of the ocean (internal waves) possibly in shallow seas, then a non
linear free surface is the most adequate : this means that no approximation is made in
(2.5) and that the variation of the ocean volume is fully taken into account. Note that in
order to study the fast time scales associated with EGWs it is necessary to minimize time
filtering effects (use an explicit time scheme with very small time step, or a split-explicit
scheme with reasonably small time step, see §5.4.1 or §5.4.1.
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• If one is not interested in EGW but rather sees them as high frequency noise, it
is possible to apply a filter to slow down the fastest waves while not altering the slow
barotropic Rossby waves. In that case it is also generally sufficient to solve a linearized
version of (2.5), which allows to take into account freshwater fluxes applied at the ocean
surface [Roullet and Madec 2000].

• For process studies not involving external waves nor surface freshwater fluxes, it
is possible to use the rigid lid approximation see (next section). The ocean surface is
considered as a fixed surface, so that all external waves are removed from the system.

The filtering of EGWs in models with a free surface is usually a matter of discreti-
sation of the temporal derivatives, using the time splitting method [Killworth et al. 1991,
Zhang and Endoh 1992] or the implicit scheme [Dukowicz and Smith 1994]. In OPA, we
use a slightly different approach developed by Roullet and Madec [2000] : the damping
of EGWs is ensured by introducing an additional force in the momentum equation. (2.1a)
becomes :

∂Uh

∂t
= M− g∇ (ρ̃ η)− g Tc∇ (ρ̃ ∂tη) (2.6)

where Tc, is a parameter homogeneous to a time which characterizes the force, ρ̃ = ρ/ρo
is the dimensionless density, and represents the collected contributions of the Coriolis,
hydrostatic pressure gradient, non-linear and viscous terms in (2.1a).

The new force can be interpreted as a diffusion of vertically integrated volume flux
divergence. The time evolution of D is thus governed by a balance of two terms, −g
A η and g Tc A D, associated with a propagative regime and a diffusive regime in the
temporal spectrum, respectively. In the diffusive regime, the EGWs no longer propagates,
i.e. they are stationary and damped. The diffusion regime applies to the modes shorter
than Tc. For longer ones, the diffusion term vanishes. Hence, the temporally unresolved
EGWs can be damped by choosing Tc > ∆t. Roullet and Madec [2000] demonstrate
that (2.6) can be integrated with a leap frog scheme except the additional term which has
to be computed implicitly. This is not surprising since the use of a large time step has a
necessarily numerical cost. Two gains arise in comparison with the previous formulations.
Firstly, the damping of EGWs can be quantified through the magnitude of the additional
term. Secondly, the numerical scheme does not need any tuning. Numerical stability is
ensured as soon as Tc > ∆t.

When the variations of free surface elevation are small compared to the thickness of
the model layers, the free surface equation (2.5) can be linearized. As emphasized by
Roullet and Madec [2000] the linearization of (2.5) has consequences on the conservation
of salt in the model. With the nonlinear free surface equation, the time evolution of the
total salt content is

∂

∂t

∫
Dη

S dv =
∫
S

S (−∂η
∂t

−D + P − E) ds (2.7)

where S is the salinity, and the total salt is integrated in the whole ocean volume Dη

bounded by the time-dependent free surface. The right hand side (which is an integral over
the free surface) vanishes when the nonlinear equation (2.5) is satisfied, so that the salt
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is perfectly conserved. When the free surface equation is linearized, Roullet and Madec
[2000] show that the total salt content integrated in the fixed volume D (bounded by the
surface z = 0) is no longer conserved :

∂

∂t

∫
D

S dv = −
∫
S

S
∂η

∂t
ds (2.8)

The right hand side of (2.8) is small in equilibrium solutions [Roullet and Madec
2000]. It can be significant when the freshwater forcing is not balanced and the globally
averaged free surface is drifting. An increase in sea surface height η results in a decrease
of the salinity in the fixed volume D. Even in that case though, the total salt integrated in
the variable volume Dη varies much less, since (2.8) can be rewritten as

∂

∂t

∫
Dη

S dv =
∂

∂t

 ∫
D

S dv +
∫
S

Sη ds

 =
∫
S

η
∂S

∂t
ds (2.9)

Although the total salt content is not exactly conserved with the linearized free sur-
face, its variations are driven by correlations of the time variation of surface salinity with
the sea surface height, which is a negligible term. This situation contrasts with the case
of the rigid lid approximation (following section) in which case freshwater forcing is re-
presented by a virtual salt flux, leading to spurious sources or sinks of salt [Roullet and
Madec 2000].

2.2.3 Rigid-Lid formulation
With the rigid lid approximation, we assume that the ocean surface (z = 0) is a rigid

lid on which a pressure ps is exerted. This implies that the vertical velocity at the surface
is equal to zero. From the continuity equation (2.1c) and the kinematic condition at the
bottom (2.2) (no flux across the bottom), it can be shown that the vertically integrated
flowHŪh is non-divergent (where the overbar indicates a vertical average over the whole
water column, i.e. from z = −H , the ocean bottom, to z = 0 , the rigid-lid). Thus, can
be derived from a volume transport streamfunction ψ :

Uh =
1
H

(k×∇ψ) (2.10)

As ps does not depend on depth, its horizontal gradient is obtained by forming the
vertical average of (2.1a) and using (2.10) :

1
ρo
∇hps = M− ∂Uh

∂t
= M− 1

H

[
k×∇

(
∂ψ

∂t

)]
(2.11)

Here M = (Mu,Mv) represents the collected contributions of the Coriolis, hydro-
static pressure gradient, nonlinear and viscous terms in (2.1a). The time derivative of ψ is
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the solution of an elliptic equation which is obtained from the vertical component of the
curl of (2.11) : [

∇×
[

1
H

k×∇
(
∂ψ

∂t

)] ]
z

=
[
∇×M

]
z

(2.12)

Using the proper boundary conditions, (2.12) can be solved to find ∂tψ and thus using
(2.11) the horizontal surface pressure gradient. It should be noted that ps can be computed
by taking the divergence of (2.11) and solving the resulting elliptic equation. Thus the
surface pressure is a diagnostic quantity that can be recovered for analysis purposes.

A difficulty lies in the determination of the boundary condition on ∂tψ. The boundary
condition on velocity is that there is no flow normal to a solid wall, i.e. the coastlines are
streamlines. Therefore (I.2.7 is solved with the following Dirichlet boundary condition :
∂tψ is constant along each coastline of the same continent or of the same island. When
all the coastlines are connected (there are no islands), the constant value of ∂tψ along the
coast can be arbitrarily chosen to be zero. When islands are present in the domain, the
value of the barotropic streamfunction will generally be different for each island and for
the continent, and will vary with respect to time. So the boundary condition is : ψ = 0
along the continent and ψ = µn along island n (1 ≤ n ≤ Q), where Q is the number
of islands present in the domain and µn is a time dependent variable. A time evolution
equation of the unknown µn can be found by evaluating the circulation of the time deriva-
tive of the vertical average (barotropic) velocity field along a closed contour around each
island. Since the circulation of a gradient field along a closed contour is zero, from (2.11)
we have : ∮

n

1
H

[
k×∇

(
∂ψ

∂t

)]
· d` =

∮
n
M · d` 1 ≤ n ≤ Q (2.13)

Since (2.12) is linear, its solution ψ can be decomposed as follows :

ψ = ψo +
n=Q∑
n=1

µnψn (2.14)

where ψo is the solution of (2.12) with ψo = 0 long all the coastlines, and where ψn
is the solution of (2.12) with the right-hand side equal to 0, and with ψn = 1 long the
island n, ψn = 0 along the other boundaries. The function ψn is thus independent of time.
Introducing (2.14) into (2.13) yields :[∮

n

1
H

[k×∇ψm] · d`
]

1≤m6Q
1≤n6Q

(
∂µn
∂t

)
16n6Q

=
(∮

n

[
M− 1

H

[
k×∇

(
∂ψo
∂t

)]]
· d`
)

16n6Q
(2.15)

which can be rewritten as :

A
(
∂µn
∂t

)
16n6Q

= B (2.16)
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where A is a Q×Q matrix and B is a time dependent vector. As A is independent of time,
it can be calculated and inverted once. The time derivative of the streamfunction when
islands are present is thus given by :

∂ψ

∂t
=
∂ψo
∂t

+
n=Q∑
n=1

A−1B ψn (2.17)

2.3 Curvilinear z-coordinate System

2.3.1 Tensorial Formalism
In many ocean circulation problems, the flow field has regions of enhanced dynamics

(i.e. surface layers, western boundary currents, equatorial currents, or ocean fronts). The
representation of such dynamical processes can be improved by specifically increasing the
model resolution in these regions. As well, it may be convenient to use a lateral boundary-
following coordinate system to better represent coastal dynamics. Moreover, the common
geographical coordinate system has a singular point at the North Pole that cannot be easily
treated in a global model without filtering. A solution consists in introducing an appro-
priate coordinate transformation that shifts the singular point on land [Madec and Imbard
1996, Murray 1996]. As a conclusion, it is important to solve the primitive equations in
various curvilinear coordinate systems. An efficient way of introducing an appropriate
coordinate transform can be found when using a tensorial formalism. This formalism is
suited to any multidimensional curvilinear coordinate system. Ocean modellers mainly
use three-dimensional orthogonal grids on the sphere, with conservation of the local ver-
tical. Here we give the simplified equations for this particular case. The general case is
detailed by Eiseman and Stone [1980] in their survey of the conservation laws of fluid
dynamics.

Let (i,j,k) be a set of orthogonal curvilinear coordinates on the sphere associated with
the positively oriented orthogonal set of unit vectors (i,j,k) linked to the earth such that k
is the local upward vector and (i,j) are two vectors orthogonal to k, i.e. along geopotential
surfaces (2.3.1). Let (λ, ϕ, z) be the geographical coordinates system in which a position
is defined by the latitude ϕ(i, j), the longitude λ(i, j) and the distance from the centre of
the earth a + z(k) where a is the earth’s radius and z the altitude above a reference sea
level (2.3.1). The local deformation of the curvilinear coordinate system is given by e1,
e2 and e3, the three scale factors :

e1 = (a+ z)

[(
∂λ

∂i
cosϕ

)2

+
(
∂ϕ

∂i

)2
]1/2

e2 = (a+ z)

[(
∂λ

∂j
cosϕ

)2

+
(
∂ϕ

∂j

)2
]1/2

e3 =
(
∂z

∂k

)
(2.18)
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k
z

i

λ

j
ϕ

FIG. 2.2 – the geographical coordinate system (λ, ϕ, z) and the curvilinear coor-
dinate system (i,j,k).

Since the ocean depth is far smaller than the earth’s radius, a + z, can be replaced
by a in (2.18) (thin-shell approximation). The resulting horizontal scale factors e1, e2 are
independent of k while the vertical scale factor is a single function of k as k is parallel
to z. The scalar and vector operators that appear in the primitive equations (Eqs. (2.1a) to
(2.1f)) can be written in the tensorial form, invariant in any orthogonal horizontal curvili-
near coordinate system transformation :

∇q =
1
e1

∂q

∂i
i +

1
e2

∂q

∂j
j +

1
e3

∂q

∂k
k (2.19a)

∇ ·A =
1

e1 e2

[
∂ (e2 a1)

∂i
+
∂ (e1 a2)

∂j

]
+

1
e3

[
∂a3

∂k

]
(2.19b)

∇× A =
[

1
e2

∂a3

∂j
− 1

e3

∂a2

∂k

]
i +
[

1
e3

∂a1

∂k
− 1
e1

∂a3

∂i

]
j

+
1
e1e2

[
∂ (e2a2)
∂i

− ∂ (e1a1)
∂j

]
k

(2.19c)

∆q = ∇ · (∇q) (2.19d)

∆A = ∇ (∇ ·A)−∇× (∇×A) (2.19e)

where q is a scalar quantity and A = (a1, a2, a3) a vector in the (i, j, k) coordinate
system.
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2.3.2 Continuous Model Equations
In order to express the primitive equations in tensorial formalism, it is necessary to

compute the horizontal component of the non-linear and viscous terms of the equation
using (2.19a)) to (2.19e). Let us set U = (u, v,w) = Uh +w k, the velocity in the (i, j, k)
coordinate system and define the relative vorticity ζ and the divergence of the horizontal
velocity field χ, by :

ζ =
1
e1e2

[
∂ (e2 v)
∂i

− ∂ (e1 u)
∂j

]
(2.20)

χ =
1
e1e2

[
∂ (e2 u)
∂i

+
∂ (e1 v)
∂j

]
(2.21)

Using the fact that horizontal scale factors e1 and e2 are independent of k and that e3
is a function of the single variable k, the nonlinear term of (2.1a) can be transformed as
follows :[

(∇×U)×U +
1
2
∇
(
U2
)]
h

=

 [
1
e3
∂u
∂k −

1
e1
∂w
∂i

]
w − ζ v

ζ u−
[

1
e2
∂w
∂j −

1
e3
∂v
∂k

]
w

+
1
2

 1
e1

∂(u2+v2+w2)
∂i

1
e2

∂(u2+v2+w2)
∂j



=
(
−ζ v
ζ u

)
+

1
2

 1
e1

∂(u2+v2)
∂i

1
e2

∂(u2+v2)
∂j

+
1
e3

(
w ∂u

∂k

w ∂v
∂k

)
−

(
w
e1
∂w
∂i −

1
2e1

∂w2

∂i
w
e2
∂w
∂j −

1
2e2

∂w2

∂j

)

The last term of the right hand side is obviously zero, and thus the nonlinear term of
(2.1a) is written in the (i, j, k) coordinate system :[

(∇×U)×U +
1
2
∇
(
U2
)]
h

= ζ k×Uh +
1
2
∇h

(
U2
h

)
+

1
e3
w
∂Uh

∂k
(2.22)

This is the so-called vector invariant form of the momentum advection. For some
purposes, it can be advantageous to write this term in the so-called flux form, i.e. to write
it as the divergence of fluxes. For example, the first component of (2.22) (the i-component)
is transformed as follows :[

(∇× U)× U + 1
2∇
(
U2
)]
i

= −ζ v + 1
2 e1

∂(u2+v2)
∂i + 1

e3
w ∂u

∂k

= 1
e1 e2

(
−v ∂(e2 v)

∂i + v ∂(e1 u)
∂j

)
+ 1

e1e2

(
+e2 u∂u∂i + e2 v

∂v
∂i

)
+ 1

e3

(
w ∂u

∂k

)
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= 1
e1 e2

{
−
(
v2 ∂e2

∂i + e2 v
∂v
∂i

)
+
(
∂(e1 u v)

∂j − e1 u
∂v
∂j

)
+
(
∂(e2uu)

∂i − u∂(e2u)
∂i

)
+ e2v

∂v
∂i

}
+ 1

e3

(
∂(w v)
∂k − u∂w∂k

)

= 1
e1 e2

(
∂(e2 uu)

∂i + ∂(e1 u v)
∂j

)
+ 1

e3

∂(w v)
∂k

+ 1
e1e2

(
−u
(
∂(e1v)
∂j − v ∂e1

∂j

)
− u∂(e2u)

∂i

)
− 1

e3
∂w
∂k u+ 1

e1e2

(
−v2 ∂e2

∂i

)

= ∇ · (Uu)−∇ ·U u+ 1
e1e2

(
−v2 ∂e2

∂i + uv ∂e1
∂j

)
as ∇ ·U = 0 (incompressibility) it comes :

= ∇ · (Uu) + 1
e1e2

(
v ∂e2

∂i − u ∂e1
∂j

)
(−v)

The flux form of the momentum advection is therefore given by :[
(∇×U)×U +

1
2
∇
(
U2
)]
h

= ∇ ·
(

Uu
U v

)
+

1
e1e2

(
v
∂e2
∂i

− u
∂e1
∂j

)
k×Uh (2.23)

The flux form has two terms, the first one is expressed as the divergence of momentum
fluxes (so the flux form name given to this formulation) and the second one is due to the
curvilinear nature of the coordinate system used. The latter is called the metric term and
can be viewed as a modification of the Coriolis parameter :

f → f +
1

e1 e2

(
v
∂e2
∂i

− u
∂e1
∂j

)
(2.24)

Note that in the case of geographical coordinate, i.e. when (i, j) → (λ, ϕ) and
(e1, e2) → (a cosϕ, a), we recover the commonly used modification of the Coriolis pa-
rameter f → f + (u/a) tanϕ.

The equations solved by the ocean model can be written in the following tensorial
formalism :

• vector invariant form of the momentum equations :

∂u

∂t
= +(ζ + f) v − 1

e3
w
∂u

∂k
− 1
e1

∂

∂i

(
1
2
(
u2 + v2

)
+
ph + ps
ρo

)
+DU

u (2.25a)

∂v

∂t
= − (ζ + f) u− 1

e3
w
∂v

∂k
− 1
e2

∂

∂j

(
1
2
(
u2 + v2

)
+
ph + ps
ρo

)
+DU

v (2.25b)

where ζ is given by (2.20) and the surface pressure gradient is given by :
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∗ free surface formulation

1
ρo
∇hps =

(
g
e1
∂η
∂i

g
e2
∂η
∂j

)
where η is solution of (2.5) (2.26)

∗ rigid-lid approximation

1
ρo
∇hps =

 Mu + 1
H e2

∂
∂j

(
∂ψ
∂t

)
Mv − 1

H e1
∂
∂i

(
∂ψ
∂t

)  (2.27)

where M = (Mu,Mv) represents the collected contributions of nonlinear, viscous and
hydrostatic pressure gradient terms in (2.25) and the overbar indicates a vertical average
over the whole water column (i.e. from z = −H , the ocean bottom, to z = 0, the rigid-
lid), and where the time derivative of ψ is the solution of an elliptic equation :

∂

∂i

[
e2
H e1

∂

∂i

(
∂ψ

∂t

)]
+

∂

∂j

[
e1
H e2

∂

∂j

(
∂ψ

∂t

)]
=

∂

∂i

(
e2Mv

)
− ∂

∂j

(
e1Mu

)
(2.28)

The vertical velocity and the hydrostatic pressure are diagnosed from the following
equations :

∂w

∂k
= −χ e3 (2.29)

∂ph
∂k

= −ρ g e3 (2.30)

where the divergence of the horizontal velocity, χ is given by (I.3.8).
• tracer equations :

∂T

∂t
= − 1

e1e2

[
∂ (e2T u)

∂i
+
∂ (e1T v)

∂j

]
− 1
e3

∂ (T w)
∂k

+DT (2.31)

∂S

∂t
= − 1

e1e2

[
∂ (e2S u)

∂i
+
∂ (e1S v)

∂j

]
− 1
e3

∂ (S w)
∂k

+DS (2.32)

ρ = ρ (T, S, z(k)) (2.33)

The expression of DU , DS andDT depends on the subgrid scale parameterization
used. It will be defined in §2.6.1.
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2.4 Curvilinear s-coordinate System

2.4.1 Introduction
Several important aspects of the ocean circulation are influenced by bottom topo-

graphy. Of course, the most important is that bottom topography determines deep ocean
sub-basins, barriers, sills and channels that strongly constrain the path of water masses,
but more subtle effects exist. For example, the topographic β-effect is usually larger than
the planetary one along continental slopes. Topographic Rossby waves can be excited and
can interact with the mean current. In the z−coordinate system presented in the previous
section (§2.3), z−surfaces are geopotential surfaces. The bottom topography is discreti-
sed by steps. This often leads to a misrepresentation of a gradually sloping bottom and
to large localized depth gradients associated with large localized vertical velocities. The
response to such a velocity field often leads to numerical dispersion effects.

A terrain-following coordinate system (hereafter s−coordinates) avoids the discre-
tisation error in the depth field since the layers of computation are gradually adjusted
with depth to the ocean bottom. Relatively shallow topographic features in the deep
ocean, which would be ignored in typical z−model applications with the largest grid
spacing at greatest depths, can easily be represented (with relatively low vertical resolu-
tion) as can gentle, large-scale slopes of the sea floor. A terrain-following model (hereaf-
ter s−model) also facilitates the modelling of the boundary layer flows over a large depth
range, which in the framework of the z−model would require high vertical resolution over
the whole depth range. Moreover, with s−coordinates it is possible, at least in principle,
to have the bottom and the sea surface as the only boundaries of the domain. Nevertheless,
s−coordinates also have its drawbacks. Perfectly adapted to a homogeneous ocean, it has
strong limitations as soon as stratification is introduced. The main two problems come
from the truncation error in the horizontal pressure gradient and a possibly increased dia-
pycnal diffusion. The horizontal pressure force in s−coordinates consists of two terms
(see Appendix A ),

∇p|z = ∇p|s −
∂p

∂s
∇z|s (2.34)

The second term in (2.34) depends on the tilt of the coordinate surface and introduces
a truncation error that is not present in a z−model. In the special case of σ−coordinate
(i.e. a depth-normalised coordinate system σ = z/H), Haney [1991] and Beckmann and
Haidvogel [1993] have given estimates of the magnitude of this truncation error. It de-
pends on topographic slope, stratification, horizontal and vertical resolution, and the finite
difference scheme. This error limits the possible topographic slopes that a model can
handle at a given horizontal and vertical resolution. This is a severe restriction for large-
scale applications using realistic bottom topography. The large-scale slopes require high
horizontal resolution, and the computational cost becomes prohibitive. This problem can
be, at least partially, overcome by mixing s−coordinates and step-like representation of
bottom topography [Madec et al. 1996]. However, another problem is then raised in the
definition of the model domain.



2.4. Curvilinear s-coordinate System 23

Aike Beckmann’s solution
A minimum of diffusion along the coordinate surfaces of any finite difference model

is always required for numerical reasons. It causes spurious diapycnal mixing when coor-
dinate surfaces do not coincide with isoneutral surfaces. This is the case for a z−model
as well as for a s−model. However, density varies more strongly on s−surfaces than on
horizontal surfaces in regions of large topographic slopes, implying larger diapycnal diffu-
sion in a s−model than in a z−model. Whereas such a diapycnal diffusion in a z−model
tends to weaken horizontal density (pressure) gradients and thus the horizontal circula-
tion, it usually reinforces these gradients in a s−model, creating spurious circulation. For
example, imagine an isolated bump of topography in an ocean at rest with a horizontally
uniform stratification. Spurious diffusion along s−surfaces will induce a bump of iso-
neutral surfaces over the topography, and thus will generate there a baroclinic eddy. In
contrast, the ocean will stay at rest in a z−model. As for the truncation error, the pro-
blem can be reduced by introducing the terrain-following coordinate below the strongly
stratified portion of the water column (i.e. the main thermocline) [Madec et al. 1996].
An alternate solution consists in rotating the lateral diffusive tensor to geopotential or to
isoneutral surfaces (see §2.6.1 and Appendix B .

2.4.2 The s-coordinate Formulation
Starting from the set of equations established in §2.3 for the special case k = z

and thus e3 = 1, we introduce an arbitrary vertical coordinate s = s(i, j, k), which
includes z− and σ−coordinates as special cases (s = z and s = σ = z/H , resp.). A
formal derivation of the transformed equations is given in Appendix A . Let us define the
vertical scale factor by e3 = ∂sz (e3 is now a function of (i, j, k) ), and the slopes in the
(i,j) directions between s− and z−surfaces by :

σ1 =
1
e1

∂z

∂i

∣∣∣∣
s

, and σ2 =
1
e2

∂z

∂j

∣∣∣∣
s

(2.35)

We also introduce a ”vertical” velocity ω defined as the velocity normal to s−surfaces :

ω = w − σ1 u− σ2 v (2.36)

The equations solved by the ocean model (2.1) in s−coordinates can be written as fol-
lows :

* momentum equation :

∂u

∂t
= +(ζ + f) v − 1

e3
ω
∂u

∂k
− 1
e1

∂

∂i

(
1
2
(
u2 + v2

)
+
ph
ρo

)
+ g

ρ

ρo
σ1 −

1
ρoe1

∂ps
∂i

+DU
u (2.37)
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∂v

∂t
= − (ζ + f) u− 1

e3
ω
∂v

∂k
− 1
e2

∂

∂j

(
1
2
(
u2 + v2

)
+
ph
ρo

)
+ g

ρ

ρo
σ2 −

1
ρoe2

∂ps
∂j

+DU
v (2.38)

where the relative vorticity, ζ, the surface pressure gradient, and the hydrostatic pressure
have the same expressions as in z−coordinates although they do not represent exactly
the same quantities. ω is provided by the same equation as w, i.e. (2.29), with χ, the
divergence of the horizontal velocity field given by :

χ =
1

e1e2e3

[
∂ (e2e3 u)

∂i
+
∂ (e1e3 v)

∂j

]
(2.39)

* tracer equations :

∂T

∂t
= − 1

e1e2e3

[
∂ (e2e3T u)

∂i
+
∂ (e1e3T v)

∂j

]
− 1
e3

∂ (T ω)
∂k

+DT (2.40)

∂S

∂t
= − 1

e1e2e3

[
∂ (e2e3S u)

∂i
+
∂ (e1e3S v)

∂j

]
− 1
e3

∂ (S ω)
∂k

+DS (2.41)

The equation of state has the same expression as in z−coordinates. The expression of
DU , DS andDT depends on the subgrid scale parameterization used. It will be defined in
§2.6.

to be updated ==> The whole set of the continuous equations solved by the model
in the s−coordinate system is summarised in Table I.2.

Add a few works on z and zps and s and underlies the differences between all of them
<== end update
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2.5 Curvilinear z*- or s* coordinate System
to be updated ==>

In that case, the free surface equation is nonlinear, and the variations of volume are
fully taken into account. These coordinates systems is presented in a report [Levier et al.
2007] available on the NEMOweb site.

<== end update
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2.6 Subgrid Scale Physics
The primitive equations describe the behaviour of a geophysical fluid at space and

time scales larger than a few kilometres in the horizontal, a few meters in the vertical and
a few minutes. They are usually solved at larger scales, the specified grid spacing and
time step of the numerical model. The effects of smaller scale motions (coming from the
advective terms in the Navier-Stokes equations) must be represented entirely in terms of
large-scale patterns to close the equations. These effects appear in the equations as the
divergence of turbulent fluxes (i.e. fluxes associated with the mean correlation of small
scale perturbations). Assuming a turbulent closure hypothesis is equivalent to choose a
formulation for these fluxes. It is usually called the subgrid scale physics. It must be
emphasized that this is the weakest part of the primitive equations, but also one of the
most important for long-term simulations as small scale processes in fine balance the
surface input of kinetic energy and heat.

The control exerted by gravity on the flow induces a strong anisotropy between the
lateral and vertical motions. Therefore subgrid-scale physics DU, DS and DT in (2.1a),
(2.1d) and (2.1e) are divided into a lateral part DlU, DlS and DlT and a vertical part DvU ,
DvS and DvT . The formulation of these terms and their underlying physics are briefly
discussed in the next two subsections.

2.6.1 Vertical Subgrid Scale Physics
The model resolution is always larger than the scale at which the major sources of

vertical turbulence occurs (shear instability, internal wave breaking...). Turbulent motions
are thus never explicitly solved, even partially, but always parameterized. The vertical
turbulent fluxes are assumed to depend linearly on the gradients of large-scale quantities
(for example, the turbulent heat flux is given by T ′w′ = −AvT∂zT , where AvT is an
eddy coefficient). This formulation is analogous to that of molecular diffusion and dis-
sipation. This is quite clearly a necessary compromise : considering only the molecular
viscosity acting on large scale severely underestimates the role of turbulent diffusion and
dissipation, while an accurate consideration of the details of turbulent motions is simply
impractical. The resulting vertical momentum and tracer diffusive operators are of second
order :

DvU =
∂

∂z

(
Avm

∂Uh

∂z

)
,

DvT =
∂

∂z

(
AvT

∂T

∂z

)
, DvS =

∂

∂z

(
AvT

∂S

∂z

) (2.42)

where Avm and AvT are the vertical eddy viscosity and diffusivity coefficients, respecti-
vely. At the sea surface and at the bottom, turbulent fluxes of momentum, heat and salt
must be specified (see Chap. 6). All the vertical physics is embedded in the specification
of the eddy coefficients. They can be assumed to be either constant, or function of the lo-
cal fluid properties (as Richardson number, Brunt-Vaisälä frequency...), or computed from
a turbulent closure model. The choices available in OPA are discussed in §9).
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2.6.2 Lateral Diffusive and Viscous Operators Formulation
Lateral turbulence can be roughly divided into a mesoscale turbulence associated to

eddies which can be solved explicitly if the resolution is sufficient as their underlying
physics are included in the primitive equations, and a sub mesoscale turbulence which
is never explicitly solved even partially, but always parameterized. The formulation of
lateral eddy fluxes depends on whether the mesoscale is below or above the grid-spacing
(i.e. the model is eddy-resolving or not).

In non-eddy- resolving configurations, the closure is similar to that used for the verti-
cal physics. The lateral turbulent fluxes are assumed to depend linearly on the lateral gra-
dients of large-scale quantities. The resulting lateral diffusive and dissipative operators are
of second order. Observations show that lateral mixing induced by mesoscale turbulence
tends to be along isoneutral surfaces (or more precisely neutral surfaces, i.e. isoneutral
surfaces referenced at the local depth) rather than across them. As the slope of isoneutral
surfaces is small in the ocean, a common approximation is to assume that the ‘lateral’ di-
rection is the horizontal, i.e. the lateral mixing is performed along geopotential surfaces.
This leads to a geopotential second order operator for lateral subgrid scale physics. This
assumption can be relaxed : the eddy-induced turbulent fluxes can be better approached
by assuming that they depend linearly on the gradients of large-scale quantities computed
along isoneutral surfaces. In such a case, the diffusive operator is an isoneutral second or-
der operator and it has components in the three space directions. However, both horizontal
and isoneutral operators have no effect on mean (i.e. large scale) potential energy whereas
potential energy is a main source of turbulence (through baroclinic instabilities). Gent
and Mcwilliams [1990] have proposed a parameterization of mesoscale eddy-induced tur-
bulence which associates an eddy-induced velocity to the isoneutral diffusion. Its mean
effect is to reduce the mean potential energy of the ocean. This leads to a formulation
of lateral subgrid-scale physics made up of an isoneutral second order operator and an
eddy induced advective part. In all these lateral diffusive formulations, the specification
of the lateral eddy coefficients remains the problematic point as there is no satisfactory
formulation of these coefficients as a function of large-scale features.

In eddy-resolving configurations, a second order operator can be used, but usually a
more scale selective one (biharmonic operator) is preferred as the grid-spacing is usually
not small enough compared to the scale of the eddies. The role devoted to the subgrid-
scale physics is to dissipate the energy that cascades toward the grid scale and thus ensures
the stability of the model while not interfering with the solved mesoscale activity.

All these parameterizations of subgrid scale physics present advantages and disad-
vantages. There are not all available in OPA. In the z−coordinate formulation, four op-
tions are offered for active tracers (temperature and salinity) : second order geopotential
operator, second order isoneutral operator, Gent and Mcwilliams [1990] parameteriza-
tion and fourth order geopotential operator. The same options are available for momen-
tum, except Gent and Mcwilliams [1990] parameterization which only involves tracers.
In s−coordinate formulation, an additional option is offered for tracers : second order
operator acting along s−surfaces, and for momentum : fourth order operator acting along
s−surfaces (see §8).
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lateral second order tracer diffusive operator

The lateral second order tracer diffusive operator is defined by (see Appendix B ) :

DlT = ∇.
(
AlT < ∇T

)
with < =

 1 0 −r1
0 1 −r2
−r1 −r2 r21 + r22

 (2.43)

where r1 and r2 are the slopes between the surface along which the diffusive operator
acts and the surface of computation (z− or s−surfaces), and r1 and r2 is the differential
operator defined in §2.3 or §2.4 depending on the vertical coordinate used. Note that the
formulation of r1 and r2 is exact for the slopes between geopotential and s−surfaces,
while it is only an approximation for the slopes between isoneutral and z or s−surfaces.
Indeed, in the latter case, two assumptions are made to simplify r1 and r2 [Cox 1987] :
the ratio between lateral and vertical diffusive coefficients is known to be several orders of
magnitude smaller than unity, and the slopes are, generally less than 102 in the ocean (see
Appendix B ). This leads to the linear tensor (2.43) where the two isoneutral directions of

diffusion are independent and where the diapycnal diffusivity contribution is solely along
the vertical.

For geopotential diffusion, r1 and r2 are the slopes between the geopotential and
computational surfaces : in z-coordinates they are zero (r1 and r2) while in s−coordinate
they are equal to σ1 and σ2, respectively (see (2.35) ).

For isoneutral diffusion r1 and r2 are the slopes between the isoneutral and computa-
tional surfaces. Therefore, they have a same expression in z−and s−coor-dinates :

r1 =
e3
e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

, r1 =
e3
e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

(2.44)

When the Eddy Induced Velocity parametrisation (eiv) [Gent and Mcwilliams 1990]
is used, an additional tracer advection is introduced in combination with the isoneutral
diffusion of tracers :

DlT = ∇ ·
(
AlT < ∇T

)
+∇ · (U∗ T ) (2.45)

where U∗ = (u∗, v∗, w∗) is a non-divergent, eddy-induced transport velocity. This velo-
city field is defined by :

u∗ = +
1
e3

∂

∂k

[
Aeiv r̃1

]
v∗ = +

1
e3

∂

∂k

[
Aeiv r̃2

]
w∗ = − 1

e1e2

[
∂

∂i

(
Aeiv e2 r̃1

)
+

∂

∂j

(
Aeiv e1 r̃2

)] (2.46)

where Aeiv is the eddy induced velocity coefficient (or equivalently the isoneutral thick-
ness diffusivity coefficient), and r̃1 and r̃2 are the slopes between isoneutral and geopo-
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tential surfaces and thus depends on the coordinate considered :

r̃n =

{
rn in z−coordinate
rn + σn in s−coordinate

where n = 1, 2 (2.47)

The normal component of the eddy induced velocity is zero at all the boundaries. this
can be achieved by tapering either the eddy coefficient or the slopes to zero in the vicinity
of the boundaries.

lateral fourth order tracer diffusive operator

The lateral fourth order tracer diffusive operator is defined by :

DlT = ∆
(
AlT ∆T

)
where DlT = ∆

(
AlT ∆T

)
(2.48)

It is the second order operator given by (2.43) applied twice with the eddy diffusion
coefficient correctly placed.

lateral second order momentum diffusive operator

The second order momentum diffusive operator along z− or s−surfaces is found by
applying (2.19c) to the horizontal velocity vector (see Appendix B) :

DlU = ∇h

(
Almχ

)
− ∇h ×

(
Alm ζ k

)

=


1
e1

∂
(
Almχ

)
∂i

− 1
e2e3

∂
(
Alm e3ζ

)
∂j

1
e2

∂
(
Almχ

)
∂j

+
1
e1e3

∂
(
Alm e3ζ

)
∂i

 (2.49)

Such a formulation ensures a complete separation between the vorticity and horizontal
divergence fields (§ II.4c). Unfortunately, it is not available for geopotential diffusion in
s−coordinates and for isoneutral diffusion. In these two cases, the u and v−fields are
considered as independent scalar fields, so that the diffusive operator is given by :

DlU
u = ∇. (< ∇u)

DlU
v = ∇. (< ∇v)

(2.50)

where < is given by (I.5.2). It is the same expression as those used for diffusive operator
on tracers.

lateral fourth order momentum diffusive operator

As for tracers, the fourth order momentum diffusive operator along z or s−surfaces
is a re-entering second order operator (2.49) or (2.49) with the eddy viscosity coefficient
correctly placed :
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geopotential diffusion in z−coordinates :

DlU = ∇h

{
∇h.

[
Alm∇h (χ)

] }
+∇h ×

{
k · ∇ ×

[
Alm∇h × (ζ k)

] } (2.51)

geopotential diffusion in s−coordinates :DlU
u = ∆

(
Alm ∆u

)
DlU
v = ∆

(
Alm ∆v

) where ∆ (•) = ∇ · (<∇(•)) (2.52)
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Having defined the continuous equations in Chap. 2, we need to choose a discreti-
zation on a grid, and numerical algorithms. In the present chapter, we provide a general
description of the staggered grid used in OPA, and other information relevant to the main
directory routines (time stepping, main program) as well as the DOM (DOMain) directory.

3.1 Fundamentals of the Discretisation

3.1.1 Arrangement of Variables
The numerical techniques used to solve the Primitive Equations in this model are

based on the traditional, centred second-order finite difference approximation. Special
attention has been given to the homogeneity of the solution in the three space directions.
The arrangement of variables is the same in all directions. It consists in cells centred on
scalar points (T , S, p, ρ) with vector points (u, v, w) defined in the centre of each face
of the cells (Fig. 3.1.1). This is the generalisation to three dimensions of the well-known
“C” grid in Arakawa’s classification. The relative and planetary vorticity, ζ and f , are
defined in the centre of each vertical edge and the barotropic stream function ψ is defined
at horizontal points overlying the ζ and f -points.

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by the
transformation that gives (λ ,ϕ ,z) as a function of (i, j, k). The grid-points are located
at integer or integer and a half value of (i, j, k) as indicated on Table 3.1.1. In all the
following, subscripts u, v, w, f , uw, vw or fw indicate the position of the grid-point
where the scale factors are defined. Each scale factor is defined as the local analytical
value provided by (2.18). As a result, the mesh on which partial derivatives ∂

∂λ ,
∂
∂ϕ , and

∂
∂z are evaluated is a uniform mesh with a grid size unity. Discrete partial derivatives are
formulated by the traditional, centred second order finite difference approximation while
the scale factors are chosen equal to their local analytical value. An important point here is
that the partial derivative of the scale factors must be evaluated by centred finite difference
approximation, not from their analytical expression. This preserves the symmetry of the
discrete set of equations and therefore allows satisfying many of the continuous properties
(see Annexe C ). A similar, related remark can be made about the domain size : when
needed, an area, volume, or the total ocean depth must be evaluated as the sum of the
relevant scale factors (see (3.6)) in the next section).

3.1.2 Discrete Operators
Given the values of a variable q at adjacent points, the derivation and averaging ope-

rators at the midpoint between them are :

δi[q] = q(i+ 1/2)− q(i− 1/2) (3.1a)

qi = {q(i+ 1/2) + q(i− 1/2)} / 2 (3.1b)
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u
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v
u

vf

f

f

f

T

FIG. 3.1 – Arrangement of variables. T indicates scalar points where temperature,
salinity, density, pressure and horizontal divergence are defined. (u,v,w) indicates
vector points, and f indicates vorticity points where both relative and planetary
vorticities are defined

Similar operators are defined with respect to i + 1/2, j, j + 1/2, k, and k + 1/2.
Following (2.19a) and (2.19d), the gradient of a variable q defined at T -point has its three
components defined at (u, v, w) while its Laplacien is defined at T -point. These operators
have the following discrete forms in the curvilinear s-coordinate system :

∇q ≡ 1
e1u

δi+1/2 [q] i +
1
e2v

δj+1/2 [q] j +
1
e3w

δk+1/2 [q] k (3.2)
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T i j k
u i + 1/2 j k
v i j + 1/2 k
w i j k + 1/2
f i + 1/2 j + 1/2 k
uw i + 1/2 j k + 1/2
vw i j + 1/2 k + 1/2
fw i + 1/2 j + 1/2 k + 1/2

TAB. 3.1 – Location of grid-points as a function of integer or integer and a half
value of the column, line or level. This indexation is only used for the writing of
semi-discrete equation. In the code, the indexation use integer value only and has
a reverse direction in the vertical (see §3.1.3)

∆q ≡ 1
e1T e2T e3T

(
δi

[
e2ue3u
e1u

δi+1/2 [q]
]

+ δj

[
e1ve3v
e2v

δj+1/2 [q]
] )

+
1
e3T

δk

[
1
e3w

δk+1/2 [q]
]

(3.3)

Following (2.19c) and (2.19b), a vector A = (a1, a2, a3) defined at vector points
(u, v, w) has its three curl components defined at (vw, uw, f) and its divergence defined
at T -points :

∇×A ≡ 1
e2v e3vw

(
δj+1/2 [e3wa3]− δk+1/2 [e2va2]

)
i

+
1

e2ue3uw

(
δk+1/2 [e1ua1]− δi+1/2 [e3wa3]

)
j

+
e3f

e1f e2f

(
δi+1/2 [e2va2]− δj+12 [e1ua1]

)
k

(3.4)

∇ ·A =
1

e1T e2T e3T
(δi [e2ue3ua1] + δj [e1ve3va2]) +

1
e3T

δk [a3] (3.5)

In the special case of pure z-coordinates system, (3.3) and (3.5) can be simplified. In
this case, the vertical scale factor becomes a function of the single variable k and thus does
not depend on the horizontal location of a grid point. It can be simplified from outside and
inside the δi and δj operators.

The vertical average over the whole water column denoted by an overbar becomes for
a quantity q which is a masked field (i.e. equal to zero inside solid area) :

q̄ =
1
H

∫ ko

kb

q e3q dk ≡
1
Hq

∑
k

q e3q (3.6)
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where Hq the ocean depth, is the masked sum of the vertical scale factors at q points, kb

and ko are the bottom and surface k-index, and the symbol ko referring to a summation
over all grid points of the same species in the direction indicated by the subscript (here k).

In continuous, the following properties are satisfied :

∇×∇q = 0 (3.7)

∇ · (∇×A) = 0 (3.8)

It is straight forward to demonstrate that these properties are verified locally in discrete
form as soon as the scalar q is taken at T -points and the vector A has its components
defined at vector points (u, v, w).

Let a and b be two fields defined on the ocean mesh, extended to zero inside conti-
nental area. By integration by part it can be shown that the derivation operators (δi, δj and
δk) are anti-symmetric linear operators, and further that the averaging operators ·i, ·j and
·k) are symmetric linear operators, i.e.,∑

i

ai δi [b] ≡ −
∑
i

δi+1/2 [a] bi+1/2 (3.9)

∑
i

ai b
i ≡

∑
i

ai+1/2 bi+1/2 (3.10)

In other words, the adjoint of the derivation and averaging operators are δ∗i = δi+1/2

and ·i ∗ = ·i+1/2, respectively. These two properties will be used extensively in the
Appendix C to demonstrate integral conservative properties of the discrete formulation

chosen.

3.1.3 Numerical Indexation
The array representation used in the FORTRAN code requires an integer indexation

while the analytical definition of the mesh (see §3.1.1) is associated with the use of integer
values of (i, j, k) for T -points whereas all the other points use both integer and integer and
a half values of (i, j, k). Therefore a specific integer indexation must be defined for the
latter grid-points (i.e. velocity and vorticity grid-points). Furthermore, it has been chosen
to change the direction of the vertical indexation so that the surface level is at k = 1.

Horizontal Indexation

The indexation in the horizontal plane has been chosen as shown in Fig.3.1.3. For an
increasing i index (j index), the T -point and the eastward u-point (northward v-point)
have the same index (see the dashed area in Fig.3.1.3). A T -point and its nearby northeast
f -point have the same i-and j-indices.
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FIG. 3.2 – Horizontal integer indexation used in the FORTRAN code. The dashed
area indicates the cell in which variables contained in arrays have the same i- and
j-indices

Vertical Indexation

In the vertical plane, the chosen indexation requires special attention since the k-axis
is re-oriented downward in the FORTRAN code compared to the indexation used for the
semi-discrete equations and given in §3.1.1. The sea surface corresponds to the w-level
k = 1 like the T−level just below (Fig.3.1.3). The last w-level (k = jpk) is either the
ocean bottom or inside the ocean floor while the last T−level is always inside the floor
(Fig.3.1.3). Note that for an increasing k index, a w-point and the T -point just below have
the same k index, in opposition to what is done in the horizontal plane where it is the
T−point and the nearby velocity points in the direction of the horizontal axis that have
the same i or j index (compare the dashed area in Fig.3.1.3 and 3.1.3). As the scale factors
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FIG. 3.3 – Vertical integer indexation used in the FORTRAN code. Note that the
k-axis is oriented downward. The dashed area indicates the cell in which variables
contained in arrays have the same k-index.

are chosen to be strictly positive, a minus sign appears in the FORTRAN code before all
the vertical derivatives of the discrete equations given in this documentation.

Domain size

The total size of the computational domain is set by the parameters jpiglo, jpjglo
and jpk in the i, j and k directions respectively. They are given as parameters in the
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par oce.F90 module (or additional files included in this module such as par ORCA R2.h90,
specific to a given configuration). The use of parameters rather than variables (together
with dynamic allocation of arrays) was made because it ensured that the compiler would
optimize the executable code efficiently, especially on vector machines (optimization may
be less efficient when the problem size is unknown at the time of compilation). Neverthe-
less, it is possible to set up the code with full dynamical allocation by using the AGRIF
packaged (ref agrif !+ ref part of the doc) . Note that are other parameters in par oce.F90
that refer to the domain size. The two parameters jpidta and jpjdta, may be larger than
jpiglo, jpjglo when the user wants to use only a sub-region of a given configuration.
This is the ”zoom” capability described in §10.3. In most applications of the model,
jpidta = jpiglo, jpjdta = jpjglo, and jpizoom = jpjzoom = 1. Parameters jpi
and jpj refer to the size of each processor subdomain when the code is run in parallel
using domain decomposition (key mpp mpi defined, see §7.3).

3.2 Domain : Horizontal Grid (mesh) (domhgr.F90 mo-
dule)

3.2.1 Coordinates and scale factors

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by the
transformation that gives (λ, ϕ, z) as a function of (i, j, k). The grid-points are located
at integer or integer and a half values of as indicated in Table 3.1.1. The associated scale
factors are defined using the analytical first derivative of the transformation (2.18). These
definitions are done in two modules, domhgr.F90 and domzgr.F90, which provide the
horizontal and vertical meshes, respectively. This section deals with the horizontal mesh
parameters.

In a horizontal plane, the location of all the model grid points is defined from the
analytical expressions of the latitude ϕ and the longitude λ as a function of (i, j). The
horizontal scale factors are calculated using (2.18). For example, when the latitude and
longitude are function of a single value (j and i, respectively) (geographical configuration
of the mesh), the horizontal mesh definition reduces to define the wanted ϕ(j), ϕ′(j),
λ(i), and λ′(i) in the domhgr.F90 module. The model computes the grid-point positions
and scale factors in the horizontal plane as follows :

λT ≡ glamt = λ(i) ϕT ≡ gphit = ϕ(j)
λu ≡ glamu = λ(i+ 1/2) ϕu ≡ gphiu = ϕ(j)
λv ≡ glamv = λ(i) ϕv ≡ gphiv = ϕ(j + 1/2)
λf ≡ glamf = λ(i+ 1/2) ϕf ≡ gphif = ϕ(j + 1/2)
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e1T ≡ e1t = ra|λ′(i) cosϕ(j)| e2T ≡ e2t = ra|ϕ′(j)|
e1u ≡ e1t = ra|λ′(i+ 1/2) cosϕ(j)| e2u ≡ e2t = ra|ϕ′(j)|
e1v ≡ e1t = ra|λ′(i) cosϕ(j + 1/2)| e2v ≡ e2t = ra|ϕ′(j + 1/2)|
e1f ≡ e1t = ra|λ′(i+ 1/2) cosϕ(j + 1/2)| e2f ≡ e2t = ra|ϕ′(j + 1/2)|

where the last letter of each computational name indicates the grid point considered and ra
is the earth radius (defined in phycst.F90 along with all universal constants). Note that the
horizontal position and scale factors of w-points are exactly equal to those of T−points,
thus no specific arrays are defined at those grid-points.

Note that the definition of the scale factors — as the analytical first derivative of the
transformation that gives (λ, ϕ, z) as a function of (i, j, k) — is specific to the OPA model
[Marti et al. 1992]. As an example, e1T is defined locally at a T -point, whereas many
other models on a C grid choose to define such a scale factor as the distance between the
U -points on each side of the T -point. Relying on an analytical transformation has two
advantages : firstly, there is no ambiguity in the scale factors appearing in the discrete
equations, since they are first introduced in the continuous equations ; secondly, analytical
transformations encourage good practice by the definition of smooth grids [Tréguier et al.
1996]. An example of the effect of such a choice is shown in Fig. 3.2.1.

3.2.2 Choice of horizontal grids
The user has three options to define a horizontal grid, involving the parameter jphgr mesh

of the par oce.F90 module.

1. For the most general curvilinear orthogonal grids, the coordinates and their first
derivatives with respect to i and j are provided in a file, read in hgr read subroutine
of the domhgr module : jphgr mesh=0.

2. A few simple analytical grids are provided as examples, that can be selected by
setting jphgr mesh=1 to 5 (see below)

3. For other analytical grids, the domhgr.F90 module must be modified by the user.

There are two simple cases of geographical grids on the sphere. With jphgr mesh=1,
the grid is regular in space, with grid sizes specified by parameters ppe1 deg and ppe2 deg,
respectively. A geographical grid can be very anisotropic at high latitudes, because of the
convergence of meridians (the zonal scale factors e1 become much smaller than the me-
ridional scale factors e2). The Mercator grid (jphgr mesh=4) avoids this anisotropy by
refining the meridional scale factors in the same way as the zonal ones. In that case,
meridional scale factors and latitudes are calculated analytically using the formulae ap-
propriate for a Mercator projection, based on ppe1 deg which is a reference grid spacing
at the equator (this applies even when the geographical equator is situated outside the mo-
del domain). In those two cases (jphgr mesh=1 or 4), the grid position is defined by the
longitude and latitude of the south-westhernmost point (ppglamt0 and ppgphi0). Note that
for the Mercator grid the user need only provide an approximate starting latitude : the real
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FIG. 3.4 – (a) Traditional definition of grid-point position and grid-size in the
vertical versus (b) analytically derived grid-point position and scale factors. For
both grid here,a same w-point depth has been chosen but in (a) the T -points are set
at the middle of w-points while in (b) they are defined from an analytical function :
z(k) = 5 (i − 1/2)3 − 45 (i − 1/2)2 + 140 (i − 1/2) − 150. Note the resulting
difference between the value of the grid-size ∆k and those of the scale factor ek.

latitude will be recalculated analytically, so as to ensure that the equator corresponds to a
T - andU -point.

Rectangular grids ignoring the spherical geometry are defined with jphgr mesh = 2,
3, 5. The domain is either a f -plane (jphgr mesh = 2, Coriolis factor is constant) or a
beta-plane (jphgr mesh = 3, the Coriolis factor is linear in the j-direction). The grid size
is uniform in each direction, and given in meters by the parameters ppe1 m and ppe2 m
respectively. The zonal grid coordinate (glam. arrays) is in kilometers, starting at zero
with the first T point. The meridional coordinate (gphi. arrays) is in kilometers, and the
second T -point corresponds to coordinate gphit=0. The input parameter ppglam0 is igno-
red. ppgphi0 is used to set the reference latitude for computation of the Coriolis parameter.
In the case of the beta plane, ppgphi0 corresponds to the center of the domain. Finally,
the special case jphgr mesh=5 corresponds to a beta plane in a rotated domain for the
GYRE configuration representing a classical mid-latitude double gyre system. The rota-
tion allows to maximize the jet length relative to the gyre areas (and the number of grid



3.3. Domain : Vertical Grid (domzgr.F90 module) 41

points).
The choice of the grid must be consistent with the boundary conditions specified by

the parameter jperio (see §7).

3.2.3 Grid files
All the arrays related to a particular ocean model configuration (grid-point position,

scale factors, masks) can be saved in files if nmsh 6= 0 (namelist parameter). This can be
particularly useful for plots and off-line diagnostics. In some cases, the user may choose
to make a local modification of a scale factor in the code. This is the case in global confi-
gurations when restricting the width of a specific strait (usually a one-grid-point strait that
happens to be too wide due to the insufficient model resolution). On example is Lombok
Strait in the ORCA2 configuration. When such modifications are done, the output grid
written when nmsh 6= 0 is not exactly equal to the input grid.

3.3 Domain : Vertical Grid (domzgr.F90 module)
!-----------------------------------------------------------------------
&nam_zgr ! vertical coordinate
!-----------------------------------------------------------------------

ln_zco = .false. ! z-coordinate - full steps
! ! ("key_zco" may also be defined)
ln_zps = .true. ! z-coordinate - partial steps
ln_sco = .false. ! s- or hybrid z-s-coordinate

/

!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

ntopo = 1 ! = 1 read the bathymetry_level
e3zps_min = 5. ! minimum thickness of the partial step is the min of
e3zps_rat = 0.1 ! e3zps_min and e3zps_rat * e3t (with 0<e3zps_rat<1)
nmsh = 0 ! =1 create a mesh file (coordinates, scale factors, masks)
nacc = 0 ! the acceleration of convergence method
! ! = 0, no acceleration, rdt = rdttra
! ! = 1, acceleration used, rdt < rdttra(k)
atfp = 0.1 ! asselin time filter parameter
rdt = 5760. ! time step for the dynamics (and tracer if nacc=0)
rdtmin = 5760. ! minimum time step on tracers
rdtmax = 5760. ! maximum time step on tracers
rdth = 800. ! depth variation of tracer time step
rdtbt = 90. ! barotropic time step (for the time splitting algorithm)
nfice = 5 ! frequency of ice model call
nfbulk = 5 ! frequency of bulk formulea call (not used if ice used)
nclosea = 0 ! = 0 no closed sea in the model domain

! ! = 1 closed sea (Caspian Sea, Great US Lakes...)
/

In the vertical, the model mesh is determined by four things : (1) the bathymetry given
in meters ; (2) the number of levels of the model (jpk) ; (3) the analytical transformation
z(i, j, k) and the vertical scale factors (derivatives of the transformation) ; and (4) the
masking system, i.e. the number of wet model levels at each (i, j).
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FIG. 3.5 – The ocean bottom as seen by the model : (a) z-coordinate with full step,
(b) z-coordinate with partial step, (c) s-coordinate : terrain following representa-
tion, (d) hybrid s− z coordinate, (e) hybrid s− z coordinate with partial step, and
(f) same as (e) but with variable volume level associated with the non-linear free
surface. Note that the variable volume level (key vvl) could be used with any of
the 5 coordinates (a) to (e).

The choice of a vertical coordinate among all those offered in NEMO, even if it is
made through a namelist parameter, must be done once of all at the beginning of an ex-
periment. It is not intended as an option which can be enabled or disabled in the middle
of an experiment. Three main choices are offered (Fig. 3.3a to c) : z-coordinate with full
step bathymetry (ln zco=true), z-coordinate with partial step bathymetry (ln zps=true),
or generalized, s-coordinate (ln sco=true). Hybridation of the three main coordinates are
available : hybrid s − z or s − zps coordinate (Fig. 3.3d and 3.3e). When using the va-
riable volume option key vvl), the coordinate follow the time-variation of the free surface
so that the transformation is time dependent : z(i, j, k, t) (Fig. 3.3f). This option can be
used with full step bathymetry or s-coordinates (hybride and partial step coordinates not
yet implemented in NEMO v2.3).

Contrary to the horizontal grid, the vertical grid is computed in the code and no pro-
vision is made for reading it from a file. The only input file is the bathymetry (in meters).
After reading the bathymetry, the algorithm for vertical grid definition differs between the
different options :
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zco set a reference coordinate transformation z0(k), and set z(i, j, k, t) = z0(k).
zps set a reference coordinate transformation z0(k), and calculate the height at the dee-

pest levels using the bathymetry, to obtain the final three-dimensional depth and
scale factor arrays.

sco Smooth the bathymetry to fullfill the hydrostatic consistency criteria and set the three-
dimensional transformation.

s-z and s-zps Smooth the bathymetry to fullfill the hydrostatic consistency criteria and
set the three-dimensional transformation z(i, j, k), and possibly introduce masking
of extra land points to better fit the original bathymetry file

Generally, the arrays describing the grid point depths and vertical scale factors are
three dimensional arrays (i, j, k). In the special case of z-coordinates with full step bot-
tom topography, it is possible to define those arrays as one-dimensional, in order to save
memory. This is performed by defining the key zco C-Pre-Processor (CPP) key. To im-
prove the code readability while providing this flexibility, the vertical coordinates and
scale factors are defined as functions of (i, j, k) with ”fs” as prefix (examples : fsdep-
tht, fse3t, etc) that can be equal to three-dimensional arrays, or a one dimensional array
when key zco is defined. These functions are defined in the file domzgr substitute.h90 of
the DOM directory. They are used through the code, and replaced by the corresponding
arrays at the time of pre-processing (CPP capability).

3.3.1 Meter Bathymetry
Three options are possible for defining the bathymetry, according to the namelist va-

riable ntopo :
ntopo = 0 a flat-bottom domain is defined. The total depth zw(jpk) is given by the coor-

dinate transformation. The domain can either a closed basin or a periodic channel
according to the parameter jperio.

ntopo = -1 a domain with a bump of topography at the central latitude and 1/3 of the
domain width. This is meant for the ”EEL-R5” configuration, a periodic or open
boundary channel with a seamount.

ntopo = 1 read a bathymetry. The bathymetry file (Netcdf format) provides the ocean
depth (positive, in meters) at each grid point of the model grid. The bathymetry is
usually built by interpolating a standard bathymetry product (e.g., ETOPO2) onto
the horizontal ocean mesh. The bathymetry file defines the coastline : where the
bathymetry is zero, no model levels are defined (all levels are masked).

When using the rigid lid approximation (key dynspg rl defined) isolated land masses
(islands) must be identified by negative integers in the input bathymetry file (see §10.7.4).

When the ocean is coupled to an atmospheric model it is better to represent all large
water bodies (e.g, great lakes, Caspian sea...) even if the model resolution does not allow
to represent their communication with the rest of the ocean. This is unnecessary when the
ocean is forced by fixed atmospheric conditions. A possibility is offered to the user to set
to zero the bathymetry in rectangular regions covering those closed seas (see §10.2)
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FIG. 3.6 – Default vertical mesh for ORCA2-L30. Vertical level functions for (a)
T-point depth and (b) the associated scale factor as computed from (III.2.1) in
z-coordinates.

3.3.2 z-coordinate (ln zco=T or key zco) and reference coordinate

The reference coordinate transformation z0(k) defines the arrays gdept0 and gdepw0
for T - and w-points, respectively. As indicated on Fig.3.1.3 jpk is the number of w-levels.
gdepw(1) being the ocean surface. There are at most jpk-1 T -points in the ocean, the
additional T -point at jk = jpk is below the sea floor and is not used. The vertical loca-
tion of w- and T -levels is defined from the analytic expression of the depth z0(k) whose
analytic derivative with respect to k provides the vertical scale factors. The user must
provide the analytical expression of both z0and its first derivative with respect to k. This
is done in routine domzgr.F90 through statement functions, using parameters provided in
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the par oce.h90 file.
It is possible to define a simple regular vertical grid by giving zero stretching (ppacr=0).

In that case, the parameters jpk (number of w-levels) and pphmax (total ocean depth in
meters) fully define the grid.

For climate-related studies it is often desirable to concentrate the vertical resolution
near the ocean surface. The following function is proposed as a standard for z-coordinates
and partial steps :

z0(k) = hsur − h0 k − h1 log [ cosh ((k − hth)/hcr) ]

e03(k) = |−h0 − h1 tanh ((k − hth)/hcr)|
(3.11)

where k = 1 to jpk for w-levels and k = 1 to k = 1 for T−levels. Such an expression
allows us to define a nearly uniform vertical location of levels at the ocean top and bottom
with a smooth hyperbolic tangent transition in between (Fig. 3.3.2).

The first grid defined for ORCA2 had 10m (500m) resolution in the surface (bottom)
layers and a depth which varies from 0 at the sea surface to a minimum of −5000m. This
leads to the following conditions :

e3(1 + 1/2) = 10.
e3(jpk − 1/2) = 500.

z(1) = 0.
z(jpk) = −5000.

(3.12)

With the choice of the stretching hcr = 3 and the number of levels jpk=31, the four
coefficients hsur, h0, h1, and hth in (3.11) have been determined such that (3.12) is sa-
tisfied, through an optimisation procedure using a bisection method. For the first standard
ORCA2 vertial grid this led to the following values : hsur = 4762.96, h0 = 255.58, h1 =
245.5813, and hth = 21.43336. The resulting depths and scale factors as a function of the
model levels are shown in Fig. 3.3.2 and given in Table 3.3.2. Those values correspond to
the parameters ppsur, ppa0, ppa1, ppkth in the parameter file par oce.F90.

Rather than entering parameters hsur, h0, and h1 directly, it is possible to recalculate
them. In that case the user sets ppsur=ppa0=ppa1=pp to be computed, in par oce.F90,
and specifies instead the four following parameters :

– ppacr=hcr : stretching factor (nondimensional). The larger ppacr, the smaller the
stretching. Values from 3 to 10 are usual.

– ppkth=hth : is approximately the model level at which maximum stretching occurs
(nondimensional, usually of order 1/2 or 2/3 of jpk)

– ppdzmin : minimum thickness for the top layer (in meters)
– pphmax : total depth of the ocean (meters).

As an example, for the 45 layers used in DRAKKAR configuration those parameters are :
jpk=46, ppacr=9, ppkth=23.563, ppdzmin=6m, pphmax=5750m.

3.3.3 z-coordinate with partial step (ln zps=T)
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LEVEL GDEPT GDEPW E3T E3W
1 5.00 0.00 10.00 10.00
2 15.00 10.00 10.00 10.00
3 25.00 20.00 10.00 10.00
4 35.01 30.00 10.01 10.00
5 45.01 40.01 10.01 10.01
6 55.03 50.02 10.02 10.02
7 65.06 60.04 10.04 10.03
8 75.13 70.09 10.09 10.06
9 85.25 80.18 10.17 10.12
10 95.49 90.35 10.33 10.24
11 105.97 100.69 10.65 10.47
12 116.90 111.36 11.27 10.91
13 128.70 122.65 12.47 11.77
14 142.20 135.16 14.78 13.43
15 158.96 150.03 19.23 16.65
16 181.96 169.42 27.66 22.78
17 216.65 197.37 43.26 34.30
18 272.48 241.13 70.88 55.21
19 364.30 312.74 116.11 90.99
20 511.53 429.72 181.55 146.43
21 732.20 611.89 261.03 220.35
22 1033.22 872.87 339.39 301.42
23 1405.70 1211.59 402.26 373.31
24 1830.89 1612.98 444.87 426.00
25 2289.77 2057.13 470.55 459.47
26 2768.24 2527.22 484.95 478.83
27 3257.48 3011.90 492.70 489.44
28 3752.44 3504.46 496.78 495.07
29 4250.40 4001.16 498.90 498.02
30 4749.91 4500.02 500.00 499.54
31 5250.23 5000.00 500.56 500.33

TAB. 3.2 – Default vertical mesh in z-coordinate for 30 layers ORCA2 configura-
tion as computed from (3.11) using the coefficients given in (3.12)
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!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

ntopo = 1 ! = 1 read the bathymetry_level
e3zps_min = 5. ! minimum thickness of the partial step is the min of
e3zps_rat = 0.1 ! e3zps_min and e3zps_rat * e3t (with 0<e3zps_rat<1)
nmsh = 0 ! =1 create a mesh file (coordinates, scale factors, masks)
nacc = 0 ! the acceleration of convergence method
! ! = 0, no acceleration, rdt = rdttra
! ! = 1, acceleration used, rdt < rdttra(k)
atfp = 0.1 ! asselin time filter parameter
rdt = 5760. ! time step for the dynamics (and tracer if nacc=0)
rdtmin = 5760. ! minimum time step on tracers
rdtmax = 5760. ! maximum time step on tracers
rdth = 800. ! depth variation of tracer time step
rdtbt = 90. ! barotropic time step (for the time splitting algorithm)
nfice = 5 ! frequency of ice model call
nfbulk = 5 ! frequency of bulk formulea call (not used if ice used)
nclosea = 0 ! = 0 no closed sea in the model domain

! ! = 1 closed sea (Caspian Sea, Great US Lakes...)
/

In that case, the depths of the model levels are still defined by the reference analytical
function z0(k) as described in the previous section, excepted in the bottom layer. The thi-
ckness of the bottom layer is allowed to vary as a function of geographical location (λ, ϕ)
to allow a better representation of the bathymetry, especially in the case of small slopes
(where the bathymetry varies by less than one level thickness from one grid point to the
next). The reference layer thicknesses e03t have been defined in the absence of bathymetry.
With partial steps, layers from 1 to jpk-2 can have a thickness smaller than e3t(jk). The
model deepest layer (jpk-1) is allowed to have either a smaller or larger thickness than
e3t(jpk) : the maximum thickness allowed is 2 ∗ e3t(jpk − 1). This has to be kept in
mind when specifying the maximum depth pphmax in partial steps : for example, with
pphmax= 5750 m for the DRAKKAR 45 layers grid, the maximum ocean depth allowed
is actually 6000 m (the default thickness e3t(jpk − 1) being 250 m). Two variables in
the namdom namelist are used to define the partial step vertical grid. The mimimum wa-
ter thickness (in meters) allowed for a cell partially filled with bathymetry at level jk is
the minimum of e3zpsmin (thickness in meters, usually 20 m) or e3t(jk) ∗ e3zps rat (a
fraction, usually 10%, of the default thickness e3t(jk)).

Add a figure here of pstep especially at last ocean level

3.3.4 s-coordinate (ln sco=T)
!-----------------------------------------------------------------------
&nam_zgr_sco ! s-coordinate or hybrid z-s-coordinate
!-----------------------------------------------------------------------

sbot_min = 300. ! minimum depth of s-bottom surface (>0) (m)
sbot_max = 5250. ! maximum depth of s-bottom surface (>0) (m)
! ! (= maximum ocean depth allowed)
theta = 6.0 ! surface control parameter (0<=theta<=20)
thetb = 0.75 ! bottom control parameter (0<=thetb<= 1)
r_max = 0.15 ! maximum cut-off r-value allowed (0<r_max<1)

/
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FIG. 3.7 – examples of the stretching function applied to a sea mont : from left to
right, surface, surface and bottom, and bottom intensified resolution

In s-coordinate (key sco defined), the depths of the model levels are defined from the
product of a depth field and a stretching function and its derivative, respectively :

z(k) = h(i, j) z0(k)
e3(k) = h(i, j) z′0(k)

(3.13)

where h is the depth of the lastw-level (z0(k)) defined at T−point location in the horizon-
tal and z0(k) is a function which varies from 0 at the sea surface to 1 at the ocean bottom.
The depth field h is not necessary the ocean depth as a mixed step-like and bottom follo-
wing representation of the topography can be used (Fig. 3.3d-e). In the example provided
(zgr s.h90 file) h is a smooth envelope bathymetry and steps are used to represent sharp
bathymetric gradients.

A new flexible stretching function, modified from Song and Haidvogel [1994] is pro-
vided as an example :

z = hc + (h− hc) cs)

c(s) =
[tanh (θ (s+ b))− tanh (θ b)]

2 sinh (θ)
(3.14)

where hcis the thermocline depth and θ and b are the surface and bottom control parame-
ters such that 0 6 θ 6 20, and 0 6 b 6 1. Examples of the stretching function applied to
a seamount are given in Fig. 3.3.4.

3.3.5 z∗- or s∗-coordinate (add key vvl)
This option is described in the report by Levier et al. (2007), available on the NEMO

web site.
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3.3.6 level bathymetry and mask
Whatever the vertical coordinate used, the model offers the possibility of representing

the bottom topography with steps that follow the face of the model cells (step like topo-
graphy) [Madec et al. 1996]. The distribution of the steps in the horizontal is defined in
a 2D integer array, mbathy, which gives the number of ocean levels (i.e. those that are
not masked) at each T -point. mbathy is computed from the meter bathymetry using the
definiton of gdept as the number of T -points which gdept ≤ bathy. Note that in version
NEMO v2.3, the user still has to provide the ”level” bathymetry in a NetCDF file when
using the full step option (ln zco), rather than the bathymetry in meters : both will be
allowed in future versions.

Modifications of the model bathymetry are performed in the bat ctl routine (see domzgr.F90
module) after mbathy is computed. Isolated grid points that do not communicate with ano-
ther ocean point at the same level are eliminated.

In case of rigid-lid approximation and islands in the computational domain (ln dynspg rl=true
and key island defined), the mbathy array must be provided and takes values from−N to
jpk-1. It provides the following information : mbathy(i, j) = −n, n ∈ ]0, N ], T−points
are land points of the nth island ; mbathy(i, j) = 0, T−points are land points of the main
land (continent) ; mbathy(i, j) = k, the first k T - and w-points are ocean points, the
others land points. This is used to compute the island barotropic stream function used in
rigid lid computation (see §??).

From the mbathy array, the mask fields are defined as follows :

tmask(i, j, k) =

{
1 if k ≤ mbathy(i, j)
0 if k ≤ mbathy(i, j)

umask(i, j, k) = tmask(i, j, k) . tmask(i+ 1, j, k)
umask(i, j, k) = tmask(i, j, k) . tmask(i, j + 1, k)
umask(i, j, k) = tmask(i, j, k) . tmask(i+ 1, j, k)

. tmask(i, j, k) . tmask(i+ 1, j, k)

Note that wmask is not defined as it is exactly equal to tmask with the numerical
indexation used (§ 3.1.3). Moreover, the specification of closed lateral boundaries requires
that at least the first and last rows and columns of mbathy array are set to zero. In the
particular case of an east-west cyclic boundary condition, mbathy has its last column
equal to the second one and its first column equal to the last but one (and so the mask
arrays) (see § 7.2).

Add one word on tricky trick ! mbathy in further modified in zdfbfr. . . .

3.4 Time Discretisation
The time stepping used in OPA is a three level scheme that can be presented as fol-

lows :
xt+∆t = xt−∆t + 2 ∆t RHSt−∆t,t,t+∆t

x (3.15)



50 Space and Time Domain (DOM)

where x stand for u, v, T or S, RHS is the Right-Hand-Side of the corresponding time
evolution equation, ∆t is the time step and the overscripts indicate the time at which a
quantity is evaluated. Each term of the RHS is evaluated at specific time step(s) depending
on the physics to which it is associated. The choice of the time step used for this evaluation
is discussed below as well as the implication in term of starting or restarting a model
simulation. Note that the time stepping is generally performed in a one step operation : it
would be dangerous to let a prognostic variable evolve in time for each term successively.

The three level scheme requires three arrays for the prognostic variables. For each
variable x there is xb (before) and xn (now). The third array, although referred to as xa
(after) in the code, is usually not the variable xa at the next time step ; rather, it is used to
store the time derivative (RHS in (3.15)) prior to time-stepping the equation. Generally, the
time stepping is performed once at each time step in tranxt.F90 and dynnxt.F90 modules,
excepted for implicit vertical diffusion or sea surface height when time-splitting options
are used.

3.4.1 Non-Diffusive Part — Leapfrog Scheme
The time stepping used for non-diffusive processes is the well-known leapfrog scheme.

It is a time centred scheme, i.e. the RHS are evaluated at time step t, the now time step.
It is only used for non-diffusive terms, that is momentum and tracer advection, pressure
gradient, and coriolis terms. This scheme is widely used for advective processes in low-
viscosity fluids. It is an efficient method that achieves second-order accuracy with just
one right hand side evaluation per time step. Moreover, it does not artificially damp li-
near oscillatory motion nor does it produce instability by amplifying the oscillations.
These advantages are somewhat diminished by the large phase-speed error of the leapfrog
scheme, and the unsuitability of leapfrog differencing for the representation of diffusive
and Rayleigh damping processes. However, the most serious problem associated with the
leapfrog scheme is a high-frequency computational noise called ”time-splitting” [Halti-
ner and Williams 1980] that develops when the method is used to model non linear fluid
dynamics : the even and odd time steps tend to diverge between a physical and a compu-
tational mode. Time splitting can be controlled through the use of an Asselin time filter
(first designed by [Robert 1966] and more comprehensively studied by Asselin [1972]) or
by periodically reinitialising the leapfrog solution through a single integration step with a
two-level scheme. In OPA we follow the first strategy :

xtF = xt + γ
[
xt−∆t
f − 2xt + xt+∆t

]
(3.16)

where the subscript f denotes filtered values and γ is the asselin coefficient. γ is initialized
as atfp (namelist parameter). Its default value is atfp=0.1. This default value causes a si-
gnificant dissipation of high frequency motions. Recommanded values in idealized studies
of shallow water turbulence are two order of magnitude lower ([Farge 1987]). Both stra-
tegies do, nevertheless, degrade the accuracy of the calculation from second to first order.
The leapfrog scheme associated to a Robert-Asselin time filter has been preferred to other
time differencing schemes such as predictor corrector or trapezoidal schemes because the
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user can better control the magnitude and the spatial structure of the time diffusion of the
scheme. In association with the centred space discretisation of the advective terms in the
momentum and tracer equations, it avoids implicit numerical diffusion in both the time
and space discretisation of the advective term : they are both set explicitly by the user
through the Robert-Asselin filter parameter and the viscous and diffusive coefficients.

Alternative time stepping schemes are currently under investigation.

3.4.2 Diffusive Part — Forward or Backward Scheme
The leapfrog differencing is unsuitable for the representation of diffusive and dam-

ping processes. For D, a horizontal diffusive terms and/or the restoring terms to a tracer
climatology (when they are present, see § 4.6), a forward time differencing scheme is
used :

xt+∆t = xt−∆t + 2 ∆t RHSt−∆t
x (3.17)

This is diffusive in time and conditionally stable. For example, the condition of stabi-
lity for a second and fourth order horizontal diffusions are [Griffies 2004] :

Ah <


e2

8 ∆t
laplacian diffusion

e4

64 ∆t
bilaplacian diffusion

(3.18)

where e is the smallest grid size in the two horizontal direction and Ah the mixing coef-
ficient. The linear constraint (3.18) is a necessary condition, but not sufficient. If it is not
satisfied, even mildly, then the model soon becomes wildly unstable. The instability can
be removed by either reducing the time steps or reducing the mixing coefficient.

For the vertical diffusion terms, a forward time differencing scheme can be used, but
usually the numerical stability condition implies a strong constraint on the time step. Two
solutions are available in OPA to overcome the stability constraint : (a) a forward time
differencing scheme using a time splitting technique (ln zdfexp=T) or (b) a backward (or
implicit) time differencing scheme by ln zdfexp=F). In (a), the master time step ∆t is cut
into N fractional time steps so that the stability criterion is reduced by a factor of N . The
computation is done as follows :

ut−∆t
∗ = ut−∆t

u
t−∆t+L 2∆t

N
∗ = u

t−∆t+(L−1) 2∆t
N

∗ +
2∆t
N

DFt−∆t+(L−1) 2∆t
N for L = 1 to N

ut+∆t = ut+∆t
∗

(3.19)

with DF a vertical diffusion term. The number of fractional time steps, N , is given by
setting n zdfexp, (namelist parameter). The scheme (b) is unconditionally stable but dif-
fusive. It can be written as follows :

xt+∆t = xt−∆t + 2 ∆t RHSt+∆t
x (3.20)
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This scheme is rather time consuming since it requires a matrix inversion, but it be-
comes attractive since a splitting factor of 3 or more is needed for the forward time dif-
ferencing scheme. For example, the finite difference approximation of the temperature
equation is :

T (k)t+1 − T (k)t−1

2 ∆t
≡ RHS +

1
e3T

δk

[
AvTw
e3w

δk+1/2

[
T t+1

]]
(3.21)

where RHS is the right hand side of the equation except the vertical diffusion term. We
rewrite (3.20) as :

−c(k + 1) ut+1(k + 1) + d(k) ut+1(k)− c(k) ut+1(k − 1) ≡ b(k) (3.22)

where

c(k) = Avmw (k) / e3uw(k)
d(k) = e3u(k) / (2∆t) + ck + ck+1

b(k) = e3u(k)
(
ut−1(k) / (2∆t) + RHS

)
(3.22) is a linear system of equations. All the elements of the corresponding matrix va-

nish except those on the diagonals. Moreover, c(k) and d(k) are positive and the diagonal
term is greater than the sum of the two extra-diagonal terms, therefore a special adaptation
of the Gauss elimination procedure is used to find the solution (see for example Richtmyer
and Morton [1967]).

3.4.3 Start/Restart strategy
!-----------------------------------------------------------------------
&namrun ! parameters of the run
!-----------------------------------------------------------------------

no = 0 ! job number
cexper = "ORCA2" ! experience name for vairmer format
ln_rstart = .false. ! boolean term for restart (true or false)
nrstdt = 0 ! restart control = 0 restart, do not control nit000 in the restart file.

! = 1 restart, control nit000 in the restart file. Do not
! use the date in the restart file (use ndate0 in namelist)
! = 2 restart, control nit000 in the restart file, use the date
! in the restart file. ndate0 in the namelist is ignored.

nit000 = 1 ! number of the first time step
nitend = 5475 ! number of the first time step
ndate0 = 010101 ! initial calendar date aammjj
nleapy = 0 ! Leap year calendar (0/1)
ninist = 0 ! initial state output flag (0/1)
nstock = 5475 ! number of the first time step
nwrite = 5475 ! frequency of OUTPUT file
nrunoff = 2 ! = 0 no, 1 runoff, 2 runoff+river mouth ups adv

/

The first time step of this three level scheme when starting from initial conditions is a
forward step (Euler time integration) : x1 = x0 + ∆t RHS0.

It is also possible to restart from a previous computation, by using a restart file. The
restart strategy is designed to ensure perfect restartability of the code : the user should
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obtain the same results to machine precision either by running the model for 2N time
steps in one go, or by performing two consecutive experiments of N steps with a restart.
This requires saving two time levels and many auxiliary data in the restart files in double
precision.

3.4.4 Time domain
add here a few word on nit000 and nitend
Write documentation on the calendar and the key variable adatrj
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Using the representation described in Chap. 3, several semi-discrete space forms of
the tracer equations are available depending on the vertical coordinate used and on the
physics used. In all the equations presented here, the masking has been omitted for sim-
plicity. One must be aware that all the quantities are masked fields and that each time a
mean or difference operator is used, the resulting field is multiplied by a mask.

The two active tracers are potential temperature and salinity. Their prognostic equa-
tion can be summarized as follows :

NXT = ADV + LDF + ZDF + SBC (+QSR) (+BBC) (+BBL) (+DMP)

NXT stands for next, referring to the time-stepping. From left to right, the terms on the
rhs of the tracer equations are the advection (ADV), the lateral diffusion (LDF), the verti-
cal diffusion (ZDF), the contributions from the external forcings (SBC : Surface Boundary
Condition, QSR : Solar Radiation penetration, and BBC : Bottom Boundary Condition),
the contribution from the bottom boundary Layer (BBL) parametrisation, and an inter-
nal damping (DMP) term. The last four have been put inside brackets as they are optional.
The external forcings and parameterizations require complex inputs and calculations (bulk
formulae, estimation of mixing coefficients) that are carried out in modules of the SBC,
LDF and ZDF categories and described in chapters §6, §8 and §9, respectively. Note that
tranpc.F90, the non-penetrative convection module, although (temporarily) located in the
NEMO/OPA//TRA directory, is described with the model vertical physics (ZDF).

In the present chapter we also describe the diagnostic equations used to compute the
sea-water properties (density, Brunt-Vaisälä frequency, specific heat and freezing point)
although the associated modules (i.e. eosbn2.F90, ocfzpt.F90 and phycst.F90) are (tem-
porarily) located in the NEMO/OPA directory.

The different options available to the user are managed by namelist logical or CPP
keys. For each equation term ttt, the namelist logicals are ln trattt xxx, where xxx is a 3
or 4 letter acronym accounting for each optional scheme. The CPP key (when it exists) is
key trattt. The corresponding code can be found in the trattt or trattt xxx module, in the
NEMO/OPA/TRA directory.

The user has the option of extracting each tendency term on the rhs of the tracer
equation (key trdtra defined), as described in Chap. 10.
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4.1 Tracer Advection (traadv.F90)
!-----------------------------------------------------------------------
&nam_traadv ! advection scheme for tracer
!-----------------------------------------------------------------------

ln_traadv_cen2 = .true. ! 2nd order centered scheme
ln_traadv_tvd = .false. ! TVD scheme
ln_traadv_muscl = .false. ! MUSCL scheme
ln_traadv_muscl2 = .false. ! MUSCL2 scheme
ln_traadv_ubs = .false. ! UBS scheme

/

The advection tendency in flux form is the divergence of the advective fluxes. Its
discrete expression is given by :

ADVτ = − 1
e1T e2T e3T

( δi [e2ue3u u τu] + δj [e1v e3v v τv] )− 1
e3T

δk [w τw] (4.1)

which, in pure z-coordinate (key zco defined), reduces to :

ADVτ = − 1
e1T e2T

( δi [e2u u τu] + δj [e1v v τv] )− 1
e3T

δk [w τw] (4.2)

as the vertical scale factors are function of k only, and thus e3u = e3v = e3T .
The flux form requires implicitly the use of the continuity equation : ∇ · (U T) =

U · ∇T using ∇ · U = 0) or ∂te3 + ∇ · U = 0 in variable volume case (i.e. key vvl
defined). Therefore it is of paramount importance to design the discrete analogue of the
advection tendency so that it is consistent with the continuity equation in order to enforce
conservation properties of the continuous equations. In other words, by substituting τ by 1
in (4.1) we recover discrete form of the continuity equation which is used to calculate the
vertical velocity. The advection schemes used in OPA differ by the choice made in space
and time interpolation to define the value of the tracer at the velocity points (4.1). Along
solid lateral and bottom boundaries a zero tracer flux is naturally specified, since the nor-
mal velocity is zero there. At the sea surface the boundary condition depends on the type
of sea surface chosen : (1) in rigid-lid formulation, w = 0 at the surface, so the advective
fluxes through the surface is zero ; (2) in non-linear free surface (variable volume case,
key vvl defined), convergence/divergence in the first ocean level moves up/down the free
surface : there is no tracer advection through it so that the advective fluxes through the
surface is also zero ; (3) in the linear free surface, the first level thickness is constant in
time. The vertical boundary condition is applied at the fixed surface z = 0 rather than
on the moving surface z = η. There is a non-zero advective flux which is set for all
advection schemes as the product of surface velocity (at z = 0) by the first level tracer
value : τw|k=1/2 = Tk=1. This boundary condition retains local conservation of tracer.
Strict global conservation is not possible in linear free surface but is achieved to a good
approximation since the non-conservative term is the product of the time derivative of the
tracer and the free surface height, two quantities that are not correlated (see §2.2.2, and
also Roullet and Madec [2000], Griffies et al. [2001], Campin et al. [2004]).

The velocity field that appears in (4.1) and (4.2) is the centred (now) eulerian ocean
velocity (see §5). Nevertheless, when advective bottom boundary layer (bbl) and/or eddy
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FIG. 4.1 – Schematic representation of some ways used to evaluate the tracer value
at u-point and the amount of tracer exchanged between two neighbouring grid
points. Upsteam biased scheme (ups) : the upstream value is used and the black
area is exchanged. Piecewise parabolic method (ppm) : a parabolic interpolation
is used and black + dark grey areas is exchanged. Monotonic upstream scheme
for conservative laws (muscl) : a parabolic interpolation is used and black + dark
grey + grey areas are exchanged. Second order scheme (cen2) : the mean value is
used and black + dark grey + grey + light grey areas are exchanged. Note that this
illustration does not include the flux limiter used in ppm and muscl schemes.

induced velocity (eiv) parameterisations are used it is the now effective velocity (i.e. the
sum of the eulerian, the bbl and/or the eiv velocities) which is used.

The choice of an advection scheme is made in the nam traadv namelist, by setting
to true one and only one of the logicals ln traadv xxx. The corresponding code can be
found in traadv xxx.F90 module, where xxx is a 3 or 4 letter acronym accounting for each
scheme. Details of the advection schemes are given below. The choice of an advection
scheme is a complex matter which depends on the model physics, model resolution, type
of tracer, as well as the issue of numerical cost.

Note that (1) cen2, cen4 and TVD schemes require an explicit diffusion operator while
the other schemes are diffusive enough so that they do not require additional diffusion ;
(2) cen2, cen4, MUSCL2, and UBS are not positive schemes, meaning false extrema are
permitted. It is not recommended to use them on passive tracers ; (3) It is highly recom-
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mended to use the same advection-diffusion scheme on both active and passive tracers. In
particular, if a source or sink of a passive tracer depends on a active one, the difference of
treatment of active and passive tracers can create very nice-looking frontal structures that
are pure numerical artefacts.

4.1.1 2nd order centred scheme (cen2) (ln traadv cen2=T)
In the centred second order formulation, the tracer at velocity points is evaluated as

the mean of the two neighbouring T -points. For example, in the i-direction :

τ cen2
u = T

i+1/2 (4.3)

The scheme is non diffusive (i.e. it conserves the tracer variance, τ2) but dispersive
(i.e. it may create false extrema). It is therefore notoriously noisy and must be used in
conjunction with an explicit diffusion operator to produce a sensible solution. The asso-
ciated time-stepping is performed using a leapfrog scheme in conjunction with an Asselin
time-filter, so T in (4.3) is the now tracer value.

Note that using cen2 scheme, the overall tracer advection is of second order accuracy
since both (4.1) and (4.3) have this order of accuracy.

4.1.2 4nd order centred scheme (cen4) (ln traadv cen4=T)
In the 4th order formulation (to be implemented), tracer is evaluated at velocity points

as the 4th order interpolation of T , and thus use the four neighbouring T -points. For
example, in the i-direction :

τ cen4
u = T − 1

6
δi
[
δi+1/2[T ]

] i+1/2

(4.4)

Strictly speaking, the cen4 scheme is not a 4th order advection scheme but a 4th order
evaluation of advective fluxes since the divergence of advective fluxes, (4.1), is kept at 2nd

order. The “4th order scheme” denomination used in oceanographic literature is usually
associated with the scheme presented here. Introducing a true 4th order advection scheme
is feasible but, for consistency reasons, it requires changes in the discretisation of the
tracer advection together with changes in both the continuity equation and the momentum
advection.

A direct consequence of the pseudo-fourth order nature of the scheme is that it is not
non-diffusive, i.e. the global variance of a tracer is not preserved through cen4. Further-
more, it must be used in conjunction with an explicit diffusion operator to produce a sen-
sible solution. The time-stepping is also performed using a leapfrog scheme in conjunction
with an Asselin time-filter, so T in (4.4) is the now tracer.

At T -grid cell abutted to a boundary (coastline, bottom and surface), an additional
hypothesis must be made to evaluate τ cen4

u . This hypothesis usually reduces the order
of the scheme. Here we choose to set the gradient of T across the boundary to zero.
Alternative conditions can be specified such as the reduction to a second order scheme for
near boundary grid point.
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4.1.3 Total Variance Dissipation scheme (TVD) (ln traadv tvd=T)
In the Total Variance Dissipation (TVD) formulation, the tracer at velocity points

is evaluated as a combination of upstream and centred scheme. For example, in the i-
direction :

τupsu =

{
Ti+1 if ui+1/2 < 0
Ti if ui+1/2 ≥ 0

τ tvdu = τupsu + cu
(
τ cen2
u − τupsu

) (4.5)

where cu is a flux limiter function taking values between 0 and 1. There exists many ways
to define cu., each correcponding to a different total variance decreasing scheme. The one
chosen in OPA is described in Zalesak [1979]. cu only departs from 1 when the advective
term produces a local extremum in the tracer field. The resulting scheme is quite expensive
but positive. It can be used on both active and passive tracers. This scheme is tested and
compared with MUSCL and the MPDATA scheme in Lévy et al. [2001] ; note that in this
paper it is referred to as ”FCT” (Flux corrected transport) rather than TVD.

For stability reasons in (4.5) τ cen2
u is evaluated using the now velocity (leap-frog en-

vironment : centred in time) while τupsu is evaluated using the before velocity (diffusive
part : forward in time).

4.1.4 Monotone Upstream Scheme for Conservative Laws (MUSCL)
(ln traadv muscl=T)

The Monotone Upstream Scheme for Conservative Laws (MUSCL) has been imple-
mented by Lévy et al. [2001]. In its formulation, the tracer at velocity points is evaluated
assuming a linear tracer variation between two T -points (Fig.4.1). For example, in the
i-direction :

τmusu =


τi +

1
2

(
1−

ui+1/2 ∆t
e1u

)
∂̃iτ if ui+1/2 > 0

τi+1/2 +
1
2

(
1 +

ui+1/2 ∆t
e1u

)
∂̃i+1/2τ if ui+1/2 < 0

(4.6)

where ∂̃iτ is the slope of the tracer on which a limitation is imposed to ensure the positive
character of the scheme.

The time stepping is performed using a forward scheme, that is the before tracer field
is used to evaluate τmusu .

For an ocean grid point abutted to land and where the ocean velocity is toward land,
two choices are available : use of an upstream flux (ln traadv muscl=T) or use of second
order flux (ln traadv muscl2=T). Note that the latter choice does not insure the positive
character of the scheme. Only the former can be used on both active and passive tracers.
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4.1.5 Upstream Biased Scheme (UBS) (ln traadv ubs=T)
The UBS advection scheme is an upstream biased third order scheme based on an

upstream-biased parabolic interpolation. It is also known as Cell Averaged QUICK scheme
(Quadratic Upstream Interpolation for Convective Kinematics). For example, in the i-
direction :

τubsu = T
i+1/2 − 1

6

{
τ”i if ui+1/2 > 0

τ”i+1 if ui+1/2 < 0
(4.7)

where τ”i = δi
[
δi+1/2 [τ ]

]
.

This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error [Shche-
petkin and McWilliams 2005]. The overall performance of the advection scheme is similar
to that reported in Farrow and Stevens [1995]. It is a relatively good compromise between
accuracy and smoothness. It is not a positive scheme meaning false extrema are permitted
but the amplitude of such are significantly reduced over the centred second order method.
Nevertheless it is not recommended to apply it to a passive tracer that requires positivity.

The intrinsic diffusion of UBS makes its use risky in the vertical direction where the
control of artificial diapycnal fluxes is of paramount importance. It has therefore been
preferred to evaluate the vertical flux using the TVD scheme when ln traadv ubs=T.

For stability reasons, in (4.7), the first term which corresponds to a second order cen-
tred scheme is evaluated using the now velocity (centred in time) while the second term
which is the diffusive part of the scheme, is evaluated using the before velocity (forward
in time. This is discussed by Webb et al. [1998] in the context of the Quick advection
scheme. UBS and QUICK schemes only differ by one coefficient. Substituting 1/6 with
1/8 in (4.7) leads to the QUICK advection scheme [Webb et al. 1998]. This option is not
available through a namelist parameter, since the 1/6 coefficient is hard coded. Never-
theless it is quite easy to make the substitution in traadv ubs.F90 module and obtain a
QUICK scheme

NB 1 : When a high vertical resolution O(1m) is used, the model stability can be
controlled by vertical advection (not vertical diffusion which is usually solved using an
implicit scheme). Computer time can be saved by using a time-splitting technique on
vertical advection. This possibility have been implemented and validated in ORCA05-
L301. It is not currently offered in the current reference version.

NB 2 : In a forthcoming release four options will be proposed for the vertical com-
ponent used in the UBS scheme. τubsw will be evaluated using either (a) a centred 2nd

order scheme , or (b) a TVD scheme, or (c) an interpolation based on conservative para-
bolic splines following Shchepetkin and McWilliams [2005] implementation of UBS in
ROMS, or (d) an UBS. The 3rd case has dispersion properties similar to an eight-order
accurate conventional scheme.

NB 3 : It is straight forward to rewrite (4.7) as follows :

τubsu =


τ cen4
u +

1
12
τ”i if ui+1/2 > 0

τ cen4
u − 1

12
τ”i+1 if ui+1/2 < 0

(4.8)
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or equivalently

ui+1/2 τ
ubs
u = ui+1/2 T −

1
6
δi
[
δi+1/2[T ]

] i+1/2

− 1
2
|u|i+1/2

1
6
δi+1/2[τ”i] (4.9)

(4.9) has several advantages. First it clearly evidence that the UBS scheme is based on
the fourth order scheme to which is added an upstream biased diffusive term. Second,
this emphasises that the 4th order part have to be evaluated at now time step, not only the
2th order part as stated above using (4.7) and also as it is coded in NEMO v2.3. Third,
the diffusive term is in fact a biharmonic operator with a eddy coefficient with is simply
proportional to the velocity :Almu = − 1

12 e1u
3 |u|. Note that the current version of NEMO

uses (4.7), not (4.9).

4.1.6 QUICKEST scheme (QCK) (ln traadv qck=T)
The Quadratic Upstream Interpolation for Convective Kinematics with Estimated

Streaming Terms (QUICKEST) scheme proposed by Leonard [1979] is the third order
Godunov scheme. It is associated with ULTIMATE QUICKEST limiter [Leonard 1991].
It has been implemented in NEMO by G. Reffray (MERCATOR-ocean).

The resulting scheme is quite expensive but positive. It can be used on both active and
passive tracers.

4.1.7 Piecewise Parabolic Method (PPM) (ln traadv ppm=T)
The Piecewise Parabolic Method (PPM) proposed by Colella and Woodward (1984)

is based on a quadradic piecewise rebuilding. As QCK scheme, it is associated with UL-
TIMATE QUICKEST limiter [Leonard 1991]. It has been implemented in NEMOby G.
Reffray (MERCATOR-ocean) but is not yet offered in the current reference version.

4.2 Tracer Lateral Diffusion (traldf.F90)
!-----------------------------------------------------------------------
&nam_traldf ! lateral diffusion scheme for tracer
!-----------------------------------------------------------------------

! Type of the operator :
ln_traldf_lap = .true. ! laplacian operator
ln_traldf_bilap = .false. ! bilaplacian operator

! Direction of action :
ln_traldf_level = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (+ "key_ldfslp" if ln_sco=T)
ln_traldf_iso = .true. ! iso-neutral (+ "key_ldfslp")

! Coefficient
! "key_ldftra_c1d" ! Aht = F(k)
! "key_ldftra_c2d" ! Aht = F(i,j)
! "key_ldftra_c3d" ! Aht = F(i,j,k)
aht0 = 2000. ! lateral eddy diffusivity coef. (m2/s)
ahtb0 = 0. ! background coef. for isopycnal diffusion (m2/s)
aeiv0 = 2000. ! eddy induced velocity coefficient (m2/s)
! ! (+ "key_traldf_eiv")

/
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The options available for lateral diffusion are laplacian (rotated or not) or biharmo-
nic operators, that latter being more scale-selective (more diffusive at small scales). The
specification of eddy diffusivity coefficients (either constant, variable in space and time)
as well as the computation of the slope along which the operators act are performed in
ldftra.F90 and ldfslp.F90 modules, respectively. This is described in Chap. 8. The lateral
diffusion of tracers is evaluated using a forward scheme, i.e. the tracers appearing in its
expression are the before tracers in time, except for the pure vertical component that ap-
pears when a tensor of rotation is used. This latter term is solved implicitly together with
the vertical diffusion term (see §3.4)

4.2.1 Iso-level laplacian operator (traldf lap.F90, ln traldf lap)

A laplacian diffusive operator (i.e. a harmonic operator) acting along the model sur-
faces is given by :

DlT
T =

1
e1T e2T e3T

[
δi

[
AlTu

(
e2ue3u
e1u

δi+1/2 [T ]
)]

+ δj

[
AlTv

(
e1ve3v
e2v

δj+1/2 [T ]
)] ] (4.10)

This lateral operator is a horizontal one (i.e. acting along geopotential surfaces) in
z-coordinate with or without partial step, but it is simply an iso-level operator in s-
coordinate. It is thus used when, in addition to ln traldf lap=T, we have ln traldf level=T,
or both ln traldf hor=T and ln zco=F. In both cases, it significantly contributes to diapyc-
nal mixing. It is therefore not recommended to use it.

Notes : In pure z-coordinate (key zco defined), e3u = e3v = e3T , so that the vertical
scale factors disappear from (4.10).

Notes : In partial step z-coordinate (ln zps=T), tracers in horizontally adjacent cells
are located at different depths in vicinity of the bottom. In this case, horizontal derivatives
in (4.10) at the bottom level require a specific treatment. They are calculated in module
zpshde, described in §4.9.

4.2.2 Rotated laplacian operator (traldf iso.F90, ln traldf lap)

The general form of the second order lateral tracer subgrid scale physics (2.42) takes
the following semi-discrete space form in z- and s-coordinates :
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DlT
T =

1
e1T e2T e3T{
δi

[
AlTu

(
e2u e3u
e1u

δi+1/2[T ]− e2u r1u δk+1/2[T ]
i+1/2,k

)]
+ δj

[
AlTv

(
e1v e3v
e2v

δj+1/2 [T ]− e1v r2v δk+1/2 [T ]
j+1/2,k

)]
+ δk

[
AlTw

(
−e2w r1w δi+1/2 [T ]

i,k+1/2

− e1w r2w δj+1/2 [T ]
j,k+1/2

+
e1w e2w
e3w

(
r21w + r22w

)
δk+1/2 [T ]

)] }

(4.11)

where r1 and r2 are the slopes between the surface of computation (z- or s-surfaces)
and the surface along which the diffusive operator acts (i.e. horizontal or iso-neutral sur-
faces). It is thus used when, in addition to ln traldf lap=T, we have ln traldf iso=T, or
both ln traldf hor=T and ln zco=T. The way these slopes are evaluated is given in §8.2.
At the surface, bottom and lateral boundaries, the turbulent fluxes of heat and salt are set
to zero using the mask technique (see §7.1).

The operator in (4.11) involves both lateral and vertical derivatives. For numerical sta-
bility, the vertical second derivative must be solved using the same implicit time scheme as
those used in the vertical physics (see §4.3). For computer efficiency reasons, this term is
not computed in traldf.F90 module, but in trazdf.F90 module where, if iso-neutral mixing
is used, the vertical mixing coefficient is simply increased by e1w e2w

e3w

(
r21w + r22w

)
.

This formulation conserves the tracer but does not ensure the decrease of the tracer
variance. Nevertheless the treatment performed on the slopes (see §8) allows to run safely
without any additional background horizontal diffusion [Guilyardi et al. 2001]. An alter-
nate scheme [Griffies et al. 1998] which preserves both tracer and its variance is currently
been tested in NEMO.

Note that in partial step z-coordinate (ln zps=T), the horizontal derivatives in (4.11)
at the bottom level require a specific treatment. They are calculated in module zpshde,
described in §4.9.

4.2.3 Iso-level bilaplacian operator (traldf bilap.F90, ln traldf bilap)
The lateral fourth order operator formulation on tracers is obtained by applying (4.10)

twice. It requires an additional assumption on boundary conditions : first and third deri-
vative terms normal to the coast are set to zero.

It is used when, in addition to ln traldf bilap=T, we have ln traldf level=T, or both
ln traldf hor=T and ln zco=F. In both cases, it can contributes to diapycnal mixing even
if it should be less than in the laplacian case. It is therefore not recommended to use it.
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Notes : In the code, the bilaplacian routine does not call twice the laplacian routine
but is rather a specific routine. This is due to the fact that we introduce the eddy diffusivity
coefficient, A, in the operator as : ∇ · ∇ (A∇ · ∇T ) and instead of −∇ · a∇ (∇ · a∇T )
where a =

√
|A| and A < 0. This was a mistake : both formulations ensure the total va-

riance decrease, but the former requires a larger number of code-lines. It will be corrected
in a forthcoming release.

4.2.4 Rotated bilaplacian operator (traldf bilapg.F90, ln traldf bilap)
The lateral fourth order operator formulation on tracers is obtained by applying (4.11)

twice. It requires an additional assumption on boundary conditions : first and third deri-
vative terms normal to the coast, the bottom and the surface are set to zero.

It is used when, in addition to ln traldf bilap=T, we have ln traldf iso=T, or both
ln traldf hor=T and ln zco=T. Nevertheless, this rotated bilaplacian operator has never
been seriously tested. No warranties that it is neither free of bugs or correctly formulated.
Moreover, the stability range of such an operator will be probably quite narrow, requiring
a significantly smaller time-step than the one used on unrotated operator.

4.3 Tracer Vertical Diffusion (trazdf.F90)
!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------

ln_zdfnpc = .false. ! Non-Penetrative Convection
avm0 = 1.2e-4 ! Kz on momemtum (m2/s)
! ! (background Kz if not "key_zdfcst")
avt0 = 1.2e-5 ! Kz for tracers (m2/s)
! ! (background Kz if not "key_zdfcst")
ln_zdfevd = .true. ! enhanced vertical diffusion
avevd = 100. ! Kz for enhanced diffusion scheme (m2/s)
n_evdm = 0 ! enhanced mixing Kz apply on tracer (=0)
! ! or on both tracer and momentum (=1)
ln_zdfexp = .false. ! =T/F split explicit / implicit
n_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

The formulation of the vertical subgrid scale tracer physics is the same for all the
vertical coordinates, based on a laplacian operator. The vertical diffusive operator given
by (2.42) takes the following semi-discrete space form :

DvT
T =

1
e3T

δk

[
AvTw
e3w

δk+1/2[T ]
]

DvS
T =

1
e3T

δk

[
AvSw
e3w

δk+1/2[S]
] (4.12)

where AvTw and AvSw are the vertical eddy diffusivity coefficients on Temperature and
Salinity, respectively. Generally, AvTw = AvSw ecept when double diffusion mixing is para-
meterised (key zdfddm defined). The way these coefficients can be evaluated is given in
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§9 (ZDF). Furthermore, when iso-neutral mixing is used, the both mixing coefficient are
increased by e1w e2w

e3w

(
r21w + r22w

)
to account for the vertical second derivative of (4.11).

At the surface and bottom boundaries, the turbulent fluxes of momentum, heat and
salt must be specified. At the surface they are prescribed from the surface forcing (see
§4.4.1), while at the bottom they are set to zero for heat and salt, unless a geothermal flux
forcing is prescribed as a bottom boundary condition (§4.4.3).

The large eddy coefficient found in the mixed layer together with high vertical reso-
lution implies a too restrictive constraint on the time step in explicit time stepping case
(ln zdfexp=True). Therefore, the default implicit time stepping is generally preferred for
the vertical diffusion as it overcomes the stability constraint. A forward time differencing
scheme (ln zdfexp=T) using a time splitting technique (n zdfexp > 1) is provided as an
alternative. Namelist variables ln zdfexp and n zdfexp apply to both tracers and dynamics.

4.4 External Forcing

4.4.1 surface boundary condition (trasbc.F90)
The surface boundary condition for tracers is implemented in a separate module

(trasbc.F90) instead of entering as a boundary condition on the vertical diffusion ope-
rator (as in the case of momentum). This has been found to enhance readability of the
code. The two formulations are completely equivalent ; the forcing terms in trasbc are the
surface fluxes divided by the thickness of the top model layer. Following Roullet and Ma-
dec [2000] the forcing on an ocean tracer, c, can be split into two parts : FCext, the flux of
tracer crossing the sea surface and not linked with the water exchange d at the surface with
the atmosphere, and FCwf the forcing on the concentration associated with the water flux.
The latter forcing has also two components : a direct effect of change in concentration
associated with the tracer carried by the water flux, and an indirect concentration/dilution
effect :

FC = Fext + F dwf + F iwf

= Fext − (cE E − cp P − cRR) + c (E − P −R)

Two cases must be distinguished, the nonlinear free surface case (key vvl defined)
and the linear free surface case. The first case is simpler, because the indirect concentra-
tion/dilution effect is naturally taken into account by letting the vertical scale factors vary
in time. The salinity of water exchanged at the surface is assumed to be zero, so there is
no salt flux at the free surface, excepted in the presence of sea ice. The heat flux at the free
surface is the sum of Fext, the direct heating/cooling (by the total non-penetrative heat
flux) and F ewf the heat carried by the water exchanged through the surface (evaporation,
precipitation, runoff). The temperature of precipitations is not well known. In the model
we assume that this water has the same temperature as the sea surface temperature, The
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resulting forcing terms for temperature T and salinity S are :

F T =
Qns

ρo Cp e3T
−

EMP T |k=1

e3T

FS =
EMPS S|k=1

e3T

(4.13)

where EMP is the freshwater budget (evaporation minus precipitation minus river
runoff) which forces the ocean volume, Qns is the non-penetrative part of the net surface
heat flux (difference between the total surface heat flux and the fraction of the short wave
flux that penetrates in the water column), the product EMPS . S|k=1 is the ice-ocean salt
flux, and S|k=1 is the sea surface salinity (SSS). The total salt content is conserved in this
formulation (excepted for the effect of the Asselin filter).

In the second case (linear free surface), the vertical scale factors are fixed in time so
that the concentration/dilution effect must be added in trasbc. Because of the hypothesis
made for the temperature of precipitation and runoffs, for temperature F ewf + F iwf = 0.
The resulting forcing term for temperature is :

F T =
Qns

ρo Cp e3T
(4.14)

The salinity forcing is still given by (4.13) but the definition of EMPS is different : it
is the total surface freshwater budget (evaporation minus precipitation minus river runoff
plus the rate of change of the sea ice thickness). The total salt content is not exactly
conserved (Roullet and Madec [2000], see also §2.2.2).

In the case of the rigid lid approximation, the surface salinity forcing F s is also ex-
pressed by (4.13) but now the global integral of the product EMP*S is not compensated by
the advection of fluid through the top level : in the rigid lid case (contrary to the linear free
surface), because w(k=1) = 0. As a result, even if the budget of EMP is zero in average
over the whole ocean domain, the associated salt flux is not, as sea-surface salinity and
EMP are intrinsically correlated (high SSS are found where evaporation is strong while
low SSS is usually associated with high precipitation or river runoff input).

The Qns and EMP fields are defined and updated in sbcmod.F90 module (see §6).

4.4.2 Solar Radiation Penetration (traqsr.F90)
!-----------------------------------------------------------------------
&namqsr ! penetrative solar radiation
!-----------------------------------------------------------------------

ln_traqsr = .true. ! penetrative solar radiation (T) or not (F)
rabs = 0.58 ! fraction of qsr associated with xsi1
xsi1 = 0.35 ! first depth of extinction
xsi2 = 23.0 ! second depth of extinction

/
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When the penetrative solar radiation option is used (ln flxqsr=T, the solar radiation
penetrates the top few meters of the ocean, otherwise all the heat flux is absorbed in the
first ocean level (ln flxqsr=F). A term is thus added to the time evolution equation of
temperature (2.1d) while the surface boundary condition is modified to take into account
only the non-penetrative part of the surface heat flux :

∂T

∂t
= . . .+

1
ρoCp e3

∂I

∂k

Qns = QTotal −Qsr

(4.15)

where I is the downward irradiance. The additional term in (4.15) is discretized as
follows :

1
ρoCp e3

∂I

∂k
≡ 1
ρoCp e3T

δk [Iw] (4.16)

A formulation including extinction coefficients is assumed for the downward irra-
diance I [Paulson and Simpson 1977] :

I(z) = Qsr

[
Re−z/ξ1 + (1−R) e−z/ξ2

]
(4.17)

where Qsr is the penetrative part of the surface heat flux, ξ1 and ξ2 are two extinction
length scales and R determines the relative contribution of the two terms. The default
values used correspond to a Type I water in Jerlov’s [1968] classification : ξ1 = 0.35m,
ξ2 = 0.23m and R = 0.58 ((corresponding to xsi1, xsi2 and rabs namelist parameters,
respectively). I is masked (no flux through the ocean bottom), so all the solar radiation
that reaches the last ocean level is absorbed in that level. The trend in (4.16) associa-
ted with the penetration of the solar radiation is added to the temperature trend and the
surface heat flux modified in routine traqsr.F90. Note that in z-coordinates, the depth of
T−levels depends on the single variable k. A one dimensional array of the coefficients
gdsr(k) = Re−zw(k)/ξ1 + (1 − R)e−zw(k)/ξ2 can then be computed once and saved in
central memory. Moreover nksr, the level at which gdrs becomes negligible (less than the
computer precision) is computed once and the trend associated with the penetration of the
solar radiation is only added until that level. At last, note that when the ocean is shallow
(¡ 200 m), the part of the solar radiation can reach the ocean floor. In this case, we have
chosen that all the radiation is absorbed at the last ocean level (i.e. Iw is masked).

When coupling with a biology model (PISCES or LOBSTER), it is possible to cal-
culate the light attenuation using information from the biology model. At the time of this
writing, reading the light attenuation from a file is not implemented yet in the reference
version.

case 4 bands and bio-coupling to add ! ! !

4.4.3 Bottom Boundary Condition (trabbc.F90 + key bbc)
!-----------------------------------------------------------------------
&nambbc ! bottom boundary condition (on temperature only)
!-----------------------------------------------------------------------
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FIG. 4.2 – Geothermal Heat flux (in mW.m−2) as inferred from the age of the sea
floor and the formulae of Stein and Stein [1992].

! "key_trabbc" ! Activate geothermal forcing (bbc)
ngeo_flux = 2 ! = 0 no geothermal heat flux
! ! = 1 constant geothermal heat flux
! ! = 2 variable geothermal heat flux
! ! (read in geothermal_heating.nc in mW/m2)
ngeo_flux_const = 86.4e-3 ! Constant value of geothermal heat flux (W/m2)

/

Usually it is considered that there is no exchange of heat nor salt through the ocean
bottom, i.e. a no flux boundary condition is applied on active tracers at the bottom. This
is the default option in NEMO, and it is implemented using the masking technique. Ne-
vertheless, there exists a non-zero heat flux across the seafloor that is associated with the
solid earth cooling. This flux is weak compared with surface fluxes — a mean global va-
lue of ∼ 0.1 W/m2 [Stein and Stein 1992] — but it is systematically positive and it acts
only on the densest water masses. Taking this flux into account in a global ocean model
increases by a few Sverdrups the deepest overturning cell (i.e. the one associated with the
Antarctic Bottom Water).

The presence or not of a geothermal heating is controlled by the namelist parame-
ter ngeo flux. Set to 1, a constant geothermal heatingis introducted which value is given
by the ngeo flux const, also a namelist parameter. Set to 2, a spatially varying geother-
mal heat flux is introducted which is provided in the geothermal heating.nc NetCDF file
(Fig.4.4.3).
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4.5 Bottom Boundary Layer (trabbl.F90 + key bbl diff or
key bbl adv)
!-----------------------------------------------------------------------
&nam_trabbl ! bottom boundary layer scheme
!-----------------------------------------------------------------------
! "key_trabbl_dif" ! Activate the diffusive bbl
! "key_trabbl_adv" ! Activate the advective bbl

atrbbl = 10000. ! lateral tracer coeff. for bbl scheme (m2/s)
/

In z-coordinate configuration, the bottom topography is represented as a series of dis-
crete steps. This is not adequate to represent gravity driven downslope flows. Such flows
arise downstream of sills such as the Strait of Gibraltar, Bab El Mandeb, or Denmark
Strait, where dense water formed in marginal seas flows into a basin filled with less dense
water. The amount of entrainment that occurs in those gravity plumes is critical to deter-
mine the density and volume flux of the densest waters of the ocean, such as the Antarctic
Bottom water, or the North Atlantic Deep Water. z-coordinate models tend to overesti-
mate the entrainment because the gravity flow is mixed down vertically by convection
as it goes “downstairs” following the step topography, sometimes over a thickness much
larger than the thickness of the observed gravity plume. A similar problem occurs in s-
coordinate when the thickness of the bottom level varies in large proportions downstream
of a sill [Willebrand et al. 2001], and the thickness of the plume is not resolved.

The idea of the bottom boundary layer parameterization first introduced by Beckmann
and Döscher [1998] is to allow a direct communication between two adjacent bottom cells
at varying level, whenever the densest water is located above the less dense water. The
communication can be by diffusive fluxes (diffusive BBL), advective fluxes (advective
BBL) or both. Only tracers are modified, not the velocities. Implementing a BBL para-
meterization for momentum is a more complex problem because of the pressure gradient
errors.

4.5.1 Diffusive Bottom Boundary layer (trabbl.F90)
The lateral diffusivity Aσl in the BBL can be prescribed with a spatial dependence,

e.g., in the conditional form

Aσl (i, j, t) =


large if ∇ρ · ∇H < 0

0 otherwise
(4.18)

The large value of the coefficient when the diffusive BBL is active is given by the
namelist parameter atrbbl.

4.5.2 Advective Bottom Boundary Layer (trabb adv.F90)
Implemented in NEMO v2.
Documentation to be added here
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4.6 Tracer damping (tradmp.F90)
!-----------------------------------------------------------------------
&namdmp tracer newtonian damping (’key_tradmp’)
!-----------------------------------------------------------------------

ndmp = -1 ! type of damping in temperature and salinity
! ! =’latitude’, damping poleward of ’ndmp’ degrees
! ! and function of the distance-to-coast.
! ! Red and Med Seas as ndmp=-1
! ! =-1 damping only in Med and Red Seas
ndmpf = 1 ! =1 create a damping.coeff NetCDF file
nmldmp = 1 ! type of damping in the mixed layer
! ! =0 damping throughout the water column
! ! =1 no damping in the mixing layer (avt >5cm2/s )
! ! =2 no damping in the mixed layer (rho<rho(surf)+.01 )
sdmp = 50. ! surface time scale for internal damping (days)
bdmp = 360. ! bottom time scale for internal damping (days)
hdmp = 800. ! depth of transition between sdmp and bdmp (meters)

/

In some applications it can be useful to add a Newtonian damping term in the tempe-
rature and salinity equations :

∂T

∂t
= · · · − γ (T − To)

∂S

∂t
= · · · − γ (S − So)

(4.19)

where γ is the inverse of a time scale, and To and So are given temperature and salinity
fields (usually a climatology). The restoring term is added when key tradmp is defined.
It also requires that both key temdta and key saldta are defined (i.e. that To and So are
read). The restoring coefficient So is a three-dimensional array initialized by the user in
dtacof routine also located in tradmp.F90.

The two main cases in which (4.19) is used are (a) the specification of the boundary
conditions along artificial walls of a limited domain basin and (b) the computation of the
velocity field associated with a given T -S field (for example to build the initial state of a
prognostic simulation, or to use the resulting velocity field for a passive tracer study). The
first case applies to regional models that have artificial walls instead of open boundaries.
In the vicinity of these walls, So takes large values (equivalent to a few day time scale)
whereas it is zero in the interior of the model domain. The second case corresponds to
the use of the robust diagnostic method [Sarmiento and Bryan 1982]. It allows to find
the velocity field consistent with the model dynamics while having a T -S field close to
a given climatology field (To − So). The time scale associated with So is generally not a
constant but spatially varying in order to respect some considerations. For example, it is
usually set to zero in the mixed layer (defined either on a density or So criterion) [Madec
et al. 1996] and in the equatorial region [Reverdin et al. 1991, Fujio and Imasato 1991,
Marti 1992] as those two regions have a small time scale of adjustment, while smaller
So are used in the deep ocean where the typical time scale is long [Sarmiento and Bryan
1982]. In addition it is reduced (and even zero) along the western boundary to allow the
model to reconstruct its own western boundary structure in equilibrium with its physics.
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The choice of a Newtonian damping acting in the mixed layer or not is controlled by
nmldmp (namelist nmldmpparameter).

The robust diagnostic method is very efficient to prevent the temperature drift in in-
termediate waters but it produces artificial sources of heat and salt within the ocean. It has
also undesirable effects on the ocean convection. It tends to prevent deep convection and
subsequent deep-water formation by stabilising too much the water columns.

An example of computation of So for robust diagnostic experiments with the ORCA2
model is provided in the tradmp.F90 module (subroutines dtacof and cofdis which com-
pute coefficient and the distance to the bathymetry, respectively). Those routines are pro-
vided as examples and can be customised by the user.

4.7 Tracer time evolution (tranxt.F90)
!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

ntopo = 1 ! = 1 read the bathymetry_level
e3zps_min = 5. ! minimum thickness of the partial step is the min of
e3zps_rat = 0.1 ! e3zps_min and e3zps_rat * e3t (with 0<e3zps_rat<1)
nmsh = 0 ! =1 create a mesh file (coordinates, scale factors, masks)
nacc = 0 ! the acceleration of convergence method
! ! = 0, no acceleration, rdt = rdttra
! ! = 1, acceleration used, rdt < rdttra(k)
atfp = 0.1 ! asselin time filter parameter
rdt = 5760. ! time step for the dynamics (and tracer if nacc=0)
rdtmin = 5760. ! minimum time step on tracers
rdtmax = 5760. ! maximum time step on tracers
rdth = 800. ! depth variation of tracer time step
rdtbt = 90. ! barotropic time step (for the time splitting algorithm)
nfice = 5 ! frequency of ice model call
nfbulk = 5 ! frequency of bulk formulea call (not used if ice used)
nclosea = 0 ! = 0 no closed sea in the model domain

! ! = 1 closed sea (Caspian Sea, Great US Lakes...)
/

The general framework of dynamics time stepping is a leap-frog scheme, i.e. a three
level centred time scheme associated with a Asselin time filter (cf. §3.4) :

T t+∆t = T t−∆t + 2 ∆t RHStT

T tf = T t + γ
[
T t−∆t
f − 2T t + T t+∆t

] (4.20)

where RHST is the right hand side of the temperature equation, the subscript f denotes
filtered values and γ is the Asselin coefficient. γ is initialized as atfp (namelist parameter).
Its default value is atfp=0.1.

When the vertical mixing is solved implicitly, the update of the next tracer fields is
done in module trazdf.F90. In that case only the swap of arrays and the Asselin filtering
is done in tranxt.F90 module.

In order to prepare the computation of the next time step, a swap of tracer arrays is
performed : T t−∆t = T t and T t = Tf .
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4.8 Equation of State (eosbn2.F90)
!-----------------------------------------------------------------------
&nameos ! ocean physical parameters
!-----------------------------------------------------------------------

neos = 0 ! type of equation of state and Brunt-Vaisala frequency
! = 0, Jackett and McDougall (1994) and of McDougall (1987)
! = 1, linear: rho(T) = rau0 * ( 1.028 - ralpha * T )
! = 2, linear: rho(T,S) = rau0 * ( rbeta * S - ralpha * T )

ralpha = 2.e-4 ! thermal expension coefficient (neos= 1 or 2)
rbeta = 0.001 ! saline expension coefficient (neos= 2)

/

4.8.1 Equation of State (neos = 0, 1 or 2)
It is necessary to know the equation of state for the ocean very accurately to deter-

mine stability properties (especially the Brunt-Vaisälä frequency), particularly in the deep
ocean. The ocean density is a non linear empirical function of in situ temperature, salinity
and pressure. The reference is the equation of state defined by the Joint Panel on Ocea-
nographic Tables and Standards [UNESCO 1983]. It was the standard equation of state
used in early releases of OPA. Even though this computation is fully vectorised, it is quite
time consuming (15 to 20% of the total CPU time) as it requires the prior computation of
the in situ temperature from the model potential temperature using the [Bryden 1973] po-
lynomial for adiabatic lapse rate and a 4th order Runge-Kutta integration scheme. Since
OPA6, we have chosen the Jackett and McDougall [1995] equation of state for seawater. It
allows the computation of the in situ ocean density directly as a function of potential tem-
perature relative to the sea surface (an OPA variable), the practical salinity (another OPA
variable) and the pressure (assuming no pressure variation along geopotential surfaces,
i.e. the pressure in decibars is approximated by the depth in meters). Both the UNESCO
[1983] and Jackett and McDougall [1995] equations of state have the same expression
except that the values of the various coefficients have been adjusted by Jackett and Mc-
Dougall [1995] in order to use directly the potential temperature instead of the in situ one.
This reduces the CPU time of the in situ density computation to about 3% of the total
CPU time, while maintaining a quite accurate equation of state.

In the computer code, a true density, d, is computed, i.e. the ratio of seawater volu-
mic mass over ρo, a reference volumic mass (rau0 defined in phycst.F90, usually rau0 =
1, 020 Kg/m3). The default option (neos=0) is the Jackett and McDougall [1995] equa-
tion of state. It is highly recommended to use it. Nevertheless, for process studies, it is
often convenient to use a linear approximation of the density∗1. Two linear formulations
are available : a function of T only (neos=1) and a function of both T and S (neos=2) :

d(T ) = ρ(T )/ρ0 = 1.028− α T

d(T, S) = ρ(T, S) = β S − α T
(4.21)

1∗ With the linear equation of state there is no longer a distinction between in situ and potential
density. Cabling and thermobaric effects are also removed.
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where α and β are the thermal and haline expansion coefficients, and ρo, the reference
volumic mass, rau0. α and β can be modified through ralpha and rbeta namelist para-
meters). Note that when d is a function of T only (neos=1), the salinity is a passive tracer
and can be used as such.

4.8.2 Brunt-Vaisälä Frequency (neos = 0, 1 or 2)

An accurate computation of the ocean stability (i.e. ofN , the brunt-Vaisälä frequency)
is of paramount importance as it is used in several ocean parameterisations (namely TKE,
KPP, Richardson number dependent vertical diffusion, enhanced vertical diffusion, non-
penetrative convection, iso-neutral diffusion). In particular, one must be aware that N2

has to be computed with an in situ reference. The expression of N2 depends on the type
of equation of state used (neos namelist parameter).

For neos=0 (Jackett and McDougall [1995] equation of state), the McDougall [1987]
polynomial expression is used with the pressure in decibar approximated by the depth in
meters :

N2 =
g

e3w
β(T k+1/2

, S̃, zw) {
α/β(T k+1/2

, S̃, zw) δk+1/2[T ]− δk+1/2[S]
}

(4.22)

where T is the potential temperature, S̃ = S
k+1/2 − 35. a salinity anomaly, and α (β )

the thermal (haline) expansion coefficient. Both α and β depend on potential temperature,
salinity which are averaged at w-points prior to the computation.

When a linear equation of state is used (neos=1 or 2, (4.22) reduces to :

N2 =
g

e3w

(
β δk+1/2[S]− α δk+1/2[T ]

)
(4.23)

where α and β are the constant coefficients used to defined the linear equation of state
(4.21).

4.8.3 Specific Heat (rcp, phycst.F90)

The specific heat of sea water, Cp, is a function of temperature, salinity and pres-
sure [UNESCO 1983]. It is only used in the model to convert surface heat fluxes into
surface temperature increase, thus the pressure dependence is neglected. The dependence
on T and S is weak. For example, with S = 35 psu, Cp increases from 3989 to 4002
when T varies from -2 ˚C to 31 ˚C. Therefore, Cp has been chosen as a constant :
Cp = 4.103 J Kg−1 ˚K−1. Its computer name is rcp and its value is set in phycst.F90
module.
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4.8.4 Freezing Point of Seawater (ocfzpt.F90)
The freezing point of seawater is a function of salinity and pressure [UNESCO 1983] :

Tf (S, p) =
(
−0.0575 + 1.710523 10−3

√
S − 2.154996 10−4 S

)
S

− 7.53 10−3 p
(4.24)

(4.24) is only used to compute the potential freezing point of sea water (i.e. referenced
to the surface p = 0), thus the pressure dependent terms in (4.24) (last term) has been
dropped. The before and now surface freezing point is introduced in the code as fzptb
and fzptn 2D arrays together with a now mask (freezn) which takes 0 or 1 whether the
ocean temperature is above or at the freezing point. Caution : do not confuse freezn with
the fraction of lead (frld) defined in LIM.

4.9 Horizontal Derivative in zps-coordinate (zpshde.F90)
With partial bottom cells (ln zps=T), tracers in horizontally adjacent cells generally

live at different depths. Horizontal gradients of tracers are needed for horizontal diffu-
sion (traldf.F90 module) and for the hydrostatic pressure gradient (dynhpg.F90 module).
Before taking horizontal gradients between the tracers next to the bottom, a linear inter-
polation is used to approximate the deeper tracer as if it actually lived at the depth of the
shallower tracer point (Fig. 4.9). For example on temperature in the i-direction, the needed
interpolated temperature, T̃ , is :

T̃ =



T i+1 −
(
ei+1
3w − ei3w

)
ei+1
3w

δkT
i+1 if ei+1

3w ≥ ei3w

T i +

(
ei+1
3w − ei3w

)
ei3w

δkT
i+1 if ei+1

3w < ei3w

and the resulting formulation of horizontal derivative and horizontal mean value of T at
U -point are :

δi+1/2T =


T̃ − T i if ei+1

3w ≥ ei3w

T i+1 − T̃ if ei+1
3w < ei3w

T
i+1/2 =


(T̃ − T i)/2 if ei+1

3w ≥ ei3w

(T i+1 − T̃ )/2 if ei+1
3w < ei3w

(4.25)

The computation of horizontal derivative of tracers as well as of density is performed
once for all at each time step in zpshde.F90 module and stored in shared arrays to be used
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δi+1/2Tk = T̃ i+1

k − T i
k and the mean by : T

i+1/2

k = (T̃
i+1/2
k − T i

k )/2.



4.9. Horizontal Derivative in zps-coordinate (zpshde.F90) 77

when needed. It has to be emphasized that the computation of the interpolated density, ρ̃,
is not identical to the one of T and S. Instead of forming a linear approximation of density,
we compute ρ̃ from the interpolated value of T and S, and the pressure of at u-point (in
the equation of state pressure is approximated by depth, see §4.8.1 ) :

ρ̃ = ρ(T̃ , S̃, zu) where zu = min
(
zi+1
T , ziT

)
(4.26)

This is a much better approximation as the variation of ρ with depth (and thus pres-
sure) is highly non-linear with a true equation of state and thus is badly approximated with
a linear interpolation. This approximation is used to compute both the horizontal pressure
gradient (§5.3) and the slopes of neutral surfaces (§8.2)

Notes : in almost all the advection schemes presented in this Chapter, both mean and
derivative operators appear. Yet, it has been chosen not to use (4.25) in those schemes. :
contrary to diffusion and pressure gradient computation, no correction for partial steps
is applied for advection.The main motivation was to preserve the domain averaged mean
variance of the field advected when using 2nd order centred scheme. Sensitivity of the
advection schemes to the way horizontal means are performed in the vicinity of partial
cells should be further investigated in a near future.
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Using the representation described in Chap. 3, several semi-discrete space forms of
the dynamical equations are available depending on the vertical coordinate used and on
the conservative properties of the vorticity term. In all the equations presented here, the
masking has been omitted for simplicity. One must be aware that all the quantities are
masked fields and that each time a mean or difference operator is used, the resulting field
is multiplied by a mask.

The prognostic ocean dynamics equation can be summarized as follows :

NXT =
(

VOR + KEG + ZAD
COR + ADV

)
+ HPG + SPG + LDF + ZDF

NXT stands for next, referring to the time-stepping. The first group of terms on the
rhs of the momentum equations corresponds to the Coriolis and advection terms that
are decomposed in a vorticity part (VOR), a kinetic energy part (KEG) and the verti-
cal advection (ZAD) in the vector invariant formulation, and into Coriolis and advec-
tion (COR+ADV) in the flux formulation. The following terms are the pressure gradient
contributions (HPG, Hydrostatic Pressure Gradient, and SPG, Surface Pressure Gradient).
Contributions from lateral diffusion and vertical diffusion are added to the rhs in the
dynldf.F90 and dynzdf.F90 modules ; the latter includes the surface and bottom stresses.
The external forcings and parameterisations require complex inputs (surface wind stress
calculation using bulk formulae, estimation of mixing coefficients) that are carried out
in modules of the SBC, LDF and ZDF categories and described in Chapters 6, 8 and 9,
respectively.

In the present chapter we also describe the diagnostic equations used to compute the
horizontal divergence and curl of the velocities (divcur module) as well as the vertical
velocity (wzvmod module).

The different options available to the user are managed by namelist variables. For
equation term ttt, the logical namelist variables are ln dynttt xxx, where xxx is a 3 or 4
letter acronym accounting for each optional scheme. If a CPP key is used for this term
its name is key ttt. The corresponding code can be found in the dynttt xxx module, in the
DYN directory, and it is usually computed in the dyn ttt xxx subroutine.

The user has the option of extracting each tendency term on the rhs of the 3D momen-
tum equation (key trddyn defined) and of the 2D barotropic vorticity balance (key trdvor
defined), as described in Chap. 10.

5.1 Coriolis and Advection : vector invariant form
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!-----------------------------------------------------------------------
&nam_dynadv ! option of physics/algorithm (not control by CPP keys)
!-----------------------------------------------------------------------

ln_dynadv_vec = .TRUE. ! vector form (T) flux form (F)
ln_dynadv_cen2 = .FALSE. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .FALSE. ! flux form - 3rd order UBS scheme

/

The vector invariant form of the momentum equations is the most often used in ap-
plications of the ocean model. The flux form option (next section) has been introduced
recently in version 2 of NEMO. Coriolis and momentum advection terms are evaluated
using a leapfrog scheme, i.e. the velocity appearing in their expressions is centred in time
(now velocity). At the lateral boundaries either free slip, no slip or partial slip boundary
conditions are applied following Chap. 7.

5.1.1 Vorticity term (dynvor.F90)
!-----------------------------------------------------------------------
&nam_dynvor ! option of physics/algorithm
!-----------------------------------------------------------------------

ln_dynvor_ene = .false. ! enstrophy conserving scheme
ln_dynvor_ens = .true. ! energy conserving scheme
ln_dynvor_mix = .false. ! mixed energy/enstrophy conserving scheme
ln_dynvor_een = .false. ! energy and enstrophy scheme

/

Different discretisations of the vorticity term (selected by the ln dynvor xxx name-
list variable to true) are available, that conserve potential enstrophy of horizontally non-
divergent flow, horizontal kinetic energy, or potential enstrophy for the relative vorticity
term and horizontal kinetic energy for the planetary vorticity term (see appendix C ).
The vorticity terms are given below for the general case (s-coordinate or partial step to-
pography), but note that in full step z-coordinate (key zco defined), e3u = e3v = e3f so
that the vertical scale factors disappear.

enstrophy conserving scheme (ln dynvor ens=T)

In this case, the discrete formulation of the vorticity term provides a global conserva-
tion of the enstrophy ([(ζ + f)/e3f ]2 in s-coordinates) for a horizontally non-divergent
flow (i.e. χ = 0), but does not conserve of the total kinetic energy. It is given by :


− 1
e1u

(
ζ + f

e3f

) i

(e1ve3vv)
i,j+1/2

+
1
e2v

(
ζ + f

e3f

) j

(e2ue3uu)
i+1/2,j

(5.1)
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energy conserving scheme (ln dynvor ene=T)

The kinetic energy conserving scheme conserves the global kinetic energy but not the
global enstrophy. It is given by :

− 1
e1u

(
ζ + f

e3f

)
(e1ve3vv)

i+1/2
j

+
1
e2v

(
ζ + f

e3f

)
(e2ue3uu)

j+1/2
i

(5.2)

mixed energy/enstrophy conserving scheme (ln dynvor mix=T)

In this case, a mixture of the two previous schemes is used. It consists of the enstrophy
conserving scheme (5.1) applied to the relative vorticity term and of the horizontal kinetic
energy conserving scheme (5.2) applied to the planetary vorticity term.

− 1
e1u

(
ζ

e3f

) i

(e1v e3v v)
i,j+1/2

− 1
e1u

(
f

e3f

)
(e1v e3v v)

i+1/2
j

+
1
e2v

(
ζ

e3f

)j
(e2u e3u u)

i+1/2,j
+

1
e2v

(
f

e3f

)
(e2u e3u u)

j+1/2
i

(5.3)

energy and enstrophy conserving scheme (ln dynvor een=T)

In this case, the vorticity term is evaluated using the vorticity advection scheme of
Arakawa and Hsu [1990]. This scheme conserves both total energy and potential enstro-
phy in the limit of horizontally nondivergent flow (i.e. χ=0), While this scheme is more
complicated that the vorticity advection scheme of Sadourny [1975] and does not conserve
potential enstrophy and total energy in general flow, as does a scheme from Arakawa and
Lamb [1981], it tolerates arbitrarily thin layers. This feature is essential for simulating
either outcropping isopycnals or large amplitude topography.

The Arakawa and Hsu [1990] vorticity advection scheme for a single layer is modified
for spherical coordinates as described by Arakawa and Lamb [1981].

The potential vorticity, defined at f -point, is :

qf =
ζ + f

e3f
(5.4)

where the relative vorticity is defined by (5.29), the Coriolis parameter is given by f =
2 Ω sinϕf and the layer thickness at F -points is :

e3f = e3t
i+1/2,j+1/2 (5.5)

Note that a key point in (5.5) is that the averaging in i- and j- directions uses the
masked vertical scale factor but is always divided by 4, not by the sum of the mask at
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T
F
V

i i+1

j

j+1

j-1

i i+1

j

j+1

i-1

FIG. 5.1 – Triads used in the energy and enstrophy conserving scheme (een) for
u-component (upper panel) and v-component (lower panel).

T -point. This preserves the continuity of e3f when one or more of the neighbouring e3T
tends to zero and extends by continuity the value of e3f in the land areas.
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The vorticity terms are represented as :

+q e3 v ≡ +
1
e1u

 aij+1/2 (e1ve3v v)
i+1/2
j+1 + bij+1/2 (e1ve3v v)

i−1/2
j+1

+ cij−1/2 (e1ve3v v)
i+1/2
j + dij+1/2 (e1ve3v v)

i+1/2
j+1



−q e3 u ≡ − 1
e2v

 aij−1/2 (e2ue3v u)
i+1/2
j+1 + bi+1

j−1/2 (e2ue3v u)
i+1
j+1/2

+ ci+1
j+1/2 (e2ue3v u)

i+1
j+1/2 + dij+1/2 (e2ue3v u)

i
j+1/2


(5.6)

where a, b, c and d are triad combinations of the neighbouring potential vorticities (Fig.
5.1.1) : 

aij+1/2 =
1
12

(
qi+1
j+1/2 + qij+1/2 + qij−1/2

)

bij+1/2 =
1
12

(
qi−1
j+1/2 + qij+1/2 + qij−1/2

)

cij+1/2 =
1
12

(
qi−1
j−1/2 + qij+1/2 + qij−1/2

)

dij+1/2 =
1
12

(
qi+1
j−1/2 + qij+1/2 + qij−1/2

)

(5.7)

5.1.2 Kinetic Energy Gradient term (dynkeg.F90)

There is a single discrete formulation of the kinetic energy gradient term, that conserves
the total kinetic energy together with the formulation chosen for the vertical advection (see
below). 

− 1
2 e1u

δi+1/2

[
u2

i
+ v2

j
]

− 1
2 e2v

δj+1/2

[
u2

i
+ v2

j
] (5.8)

5.1.3 Vertical advection term (dynzad.F90)

The discrete formulation of the vertical advection term conserves the total kinetic
energy together with the formulation chosen for the gradient of kinetic energy (KE). In-
deed, the change of KE due to the vertical advection is exactly balanced by the change of
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KE due to the gradient of KE (see Annexe C ).
− 1
e1u e2u e3u

e1T e2T w i+1/2 δk+1/2 [u]
k

− 1
e1v e2v e3v

e1T e2T w j+1/2 δk+1/2 [u]
k

(5.9)

5.2 Coriolis and Advection : flux form
!-----------------------------------------------------------------------
&nam_dynadv ! option of physics/algorithm (not control by CPP keys)
!-----------------------------------------------------------------------

ln_dynadv_vec = .TRUE. ! vector form (T) flux form (F)
ln_dynadv_cen2 = .FALSE. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .FALSE. ! flux form - 3rd order UBS scheme

/ In the flux form (as in the vector invariant form), the Coriolis and momentum ad-
vection terms are evaluated using a leapfrog scheme, i.e. the velocity appearing in their
expressions is centred in time (now velocity). At the lateral boundaries either free slip, no
slip or partial slip boundary conditions are applied following Chap. 7.

5.2.1 Coriolis plus curvature metric terms (dynvor.F90)
In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis para-

meter has been modified to account for the ”metric” term. This altered Coriolis parameter
is thus discretised at F -points. It is given by :

f +
1
e1e2

(
v
∂e2
∂i

− u
∂e1
∂j

)
≡ f +

1
e1fe2f

(
vi+1/2δi+1/2 [e2u]− uj+1/2δj+1/2 [e1u]

)
(5.10)

Any of the (5.1), (5.2) and (5.6) schemes can be used to compute the product of the
Coriolis parameter and the vorticity. However, the energy-conserving scheme (5.6) has
exclusively been used to date. This term is evaluated using a leapfrog scheme, i.e. the
velocity is centred in time (now velocity).

5.2.2 Flux form Advection term (dynadv.F90)
The discrete expression of the advection term is given by :

1
e1u e2u e3u

(
δi+1/2

[
e2u e3u u

i uT
]
+ δj

[
e1u e3u v

i+1/2 uF

]
+δk

[
e1w e2ww

i+1/2 uuw

])
1

e1v e2v e3v

(
δi

[
e2u e3u u

j+1/2 vF

]
+ δj+1/2

[
e1u e3u v

i vT
]

+δk
[
e1w e2w w

j+1/2 vvw

])
(5.11)
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Two advection schemes (2nd order centered finite difference scheme, CEN2, or a 3rd

order upstream biased scheme, UBS). The latter is described in Shchepetkin and Mc-
Williams [2005]. The schemes are selected using the namelist variable ln dynadv xxx In
flux form, the advection schemes differ by the choice of a space and time interpolation to
define the value of u and v at the centre of each face of u- and v-cells, i.e. at the T -, f -,
and uw-points and f -, T - and vw-points for u and v, respectively.

2nd order centred scheme (cen2) (ln dynadv cen2=T)

In the centered 2nd order formulation, the velocity is evaluated as the mean of the two
neighbouring points :{

ucen2
T = ui ucen2

F = uj+1/2 ucen2
uw = uk+1/2

vcen2
F = vi+1/2 vcen2

F = vj vcen2
vw = vk+1/2

(5.12)

The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive (i.e. it
may create false extrema). It is therefore notoriously noisy and must be used in conjunc-
tion with an explicit diffusion operator to produce a sensible solution. The associated
time-stepping is performed using a leapfrog scheme in conjunction with an Asselin time-
filter, so u and v are the now velocities.

Upstream Biased Scheme (UBS) (ln dynadv ubs=T)

The UBS advection scheme is an upstream biased third order scheme based on an
upstream-biased parabolic interpolation. For example, the evaluation of uubsT is done as
follows :

uubsT = ui − 1
6

{
u”i−1/2 if e2u e3u ui > 0
u”i+1/2 if e2u e3u ui < 0

(5.13)

where u”i+1/2 = δi+1/2 [δi [u]]. This results in a dissipatively dominant (i.e. hyper-
diffusive) truncation error [Shchepetkin and McWilliams 2005]. The overall performance
of the advection scheme is similar to that reported in Farrow and Stevens [1995]. It is a re-
latively good compromise between accuracy and smoothness. It is not a positive scheme,
meaning that false extrema are permitted but their amplitude is significantly reduced over
the centred second order method.

The UBS scheme is not used in all the direction. In the vertical, it has been preferred
to keep the centred 2nd order evaluation of the advection, i.e. uubsuw and uubsvw in (5.12) are
used. Indeed, UBS is diffusive, it is associated with vertical mixing of momentum. Since
vertical mixing of momentum is source term of the TKE equation. . .

For stability reasons, in (5.13), the first term which corresponds to a second order
centred scheme is evaluated using the now velocity (centred in time) while the second
term which is the diffusive part of the scheme, is evaluated using the before velocity
(forward in time). This is discussed by Webb et al. [1998] in the context of the Quick
advection scheme.
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NB 1 : UBS and Quadratic Upstream Interpolation for Convective Kinematics (QUICK)
schemes only differ by one coefficient. Substituting 1/6 with 1/8 in (5.13) leads to the
QUICK advection scheme [Webb et al. 1998]. This option is not available through a na-
melist parameter, since the 1/6 coefficient is hard coded. Nevertheless it is quite easy to
make the substitution in dynadv ubs.F90 module and obtain a QUICK scheme.

NB 2 : In the current version of dynadv ubs.F90, there is also a possibility of using a
4th order evaluation of the advective velocity as in ROMS. This is an error and should be
suppressed soon.

5.3 Hydrostatic pressure gradient (dynhpg.F90)
!-----------------------------------------------------------------------
&nam_dynhpg ! Hydrostatic pressure gradient option
!-----------------------------------------------------------------------

ln_hpg_zco = .false. ! z-coordinate - full steps
ln_hpg_zps = .true. ! z-coordinate - partial steps (interpolation)
ln_hpg_sco = .false. ! s-coordinate (standard jacobian formulation)
ln_hpg_hel = .false. ! s-coordinate (helsinki modification)
ln_hpg_wdj = .false. ! s-coordinate (weighted density jacobian)
ln_hpg_djc = .false. ! s-coordinate (Density Jacobian with Cubic polynomial)
ln_hpg_rot = .false. ! s-coordinate (ROTated axes scheme)
gamm = 0.e0 ! weighting coefficient (wdj scheme)

/

!-----------------------------------------------------------------------
&namflg ! algorithm flags (algorithm not control by CPP keys)
!-----------------------------------------------------------------------

ln_dynhpg_imp = .false. ! hydrostatic pressure gradient:
! ! = T : semi-implicit time scheme
! ! = f : centered time scheme
nn_dynhpg_rst = 0 ! add dynhpg implicit variables in restart ot not (1/0)

/

Suppress the namflg namelist and incorporate it in the namhpg namelist
The key distinction between the different algorithms is the vertical coordinate used,

since HPG is a horizontal pressure gradient, i.e. computed along geopotential surfaces. As
a result, any tilt of the surface of the computational levels will require a specific treatment
to compute the hydrostatic pressure gradient.

The hydrostatic pressure gradient term is evaluated either using a leapfrog scheme,
i.e. the density appearing in its expression is centred in time (now velocity), or a semi-
implcit scheme. At the lateral boundaries either free slip, no slip or partial slip boundary
conditions are applied.

5.3.1 z-coordinate with full step (ln dynhpg zco=T)
The hydrostatic pressure can be obtained by integrating the hydrostatic equation ver-

tically from the surface. Nevertheless, the pressure is quite large at great depth while its
horizontal gradient is several orders of magnitude smaller. This may lead to large trun-
cation error in the pressure gradient terms. Thus, the two horizontal components of the
hydrostatic pressure gradient are computed directly as follows :
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for k = km (surface layer, jk = 1 in the code)
δi+1/2

[
ph
]∣∣∣
k=km

=
1
2
g δi+1/2 [e3w ρ]

∣∣
k=km

δj+1/2

[
ph
]∣∣∣
k=km

=
1
2
g δj+1/2 [e3w ρ]

∣∣
k=km

(5.14)

for 1 < k < km (interior layer)
δi+1/2

[
ph
]∣∣∣
k

= δi+1/2

[
ph
]∣∣∣
k−1

+
1
2
g δi+1/2

[
e3w ρ

k+1/2
]∣∣∣
k

δj+1/2

[
ph
]∣∣∣
k

= δj+1/2

[
ph
]∣∣∣
k−1

+
1
2
g δj+1/2

[
e3w ρ

k+1/2
]∣∣∣
k

(5.15)

Note that the 1/2 factor in (5.14) is adequate because of the definition of e3w as the
vertical derivative of the scale factor at the surface level (z = 0).

5.3.2 z-coordinate with partial step (ln dynhpg zps=T )
With partial bottom cells, tracers in horizontally adjacent cells generally live at dif-

ferent depths. Before taking horizontal gradients between these tracers, a linear interpo-
lation is used to approximate the deeper tracer as if it actually lived at the depth of the
shallower tracer point.

It is necessary to do so at the last ocean level ; otherwise the horizontal hydrosta-
tic pressure gradient evaluated in z-coordinate with partial step is exactly as in pure z-
coordinate case. As explained in detail in section §4.9, the nonlinearity of pressure effects
in the equation of state is such that it is better to interpolate vertically temperature and
salinity before computing the density. Horizontal gradients of and salinity are needed for
the TRA modules, which is the reason why the horizontal gradients of density at the dee-
pest model level are computed in module zpsdhe.F90 located in the TRA directory and
described in §4.9.

5.3.3 s- and s-z coordinates
Pressure gradient formulations in s coordinates have been the subject of a vast lite-

rature (e.g., Song [1998], Shchepetkin and McWilliams [2003]). A number of different
pressure gradient options are coded, but they are not yet fully documented nor tested.

Traditional coding (see for example Madec et al. [1996] : (ln dynhpg sco, ln dynhpg hel)
− 1
ρo e1u

δi+1/2

[
ph
]

+
g ρi+1/2

ρo e1u
δi+1/2 [zT ]

− 1
ρo e2v

δj+1/2

[
ph
]

+
g ρj+1/2

ρo e2v
δj+1/2 [zT ]

(5.16)

Where the first term is the pressure gradient along coordinates, computed as in (II.3.2),
and zT is the depth of T -point evaluated from the sum of the vertical scale factor at W-
point (e3w). The version ln dynhpg hel has been added by Aike Beckmann and involves
a redefinition of the relative position of T points relative to w points.
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Weighted density Jacobian (wdj) [Song 1998] (ln dynhpg wdj=T)
Density Jacobian with cubic polynomial scheme (djc) [Shchepetkin and McWilliams

2003] (ln dynhpg djc=T)
Rotated axes scheme (rot) [Thiem and Berntsen 2006] (ln dynhpg rot=T)
Note that expression (5.16) is used when the variable volume formulation is activated

(key vvl) because in that case, even with a flat bottom, the coordinate surface are not
horizontal but follow the free surface [Levier et al. 2007]. The other pressure gradient
options are not yet available.

5.3.4 Time-scheme (ln dynhpg imp=T/F)
The default time differencing scheme used for the horizontal pressure gradient is a

leapfrog scheme and therefore the density used in all discrete expressions given above
is the now density, computed from the now temperature and salinity. In some specific
cases (usually high resolution simulations over a ocean domain including weakly stratified
regions) the physical phenomena that control the time-step are internal gravity waves
(IGWs). A semi-implicit scheme for doubling the stability limit associated with IGWs
can be used [Brown and Campana 1978, Maltrud et al. 1998]. It consists in evaluating
the hydrostatic pressure gradient as an average over the three time levels t − ∆t, t, and
t+ ∆t (i.e. before, now and after time-steps), rather than at central time level t only as in
standard leapfrog scheme.

leapfrog scheme (ln dynhpg imp=F) :

ut+∆t − ut−∆t

2∆t
= · · · − 1

ρo e1u
δi+1/2

[
pth
]

(5.17)

semi-implicit scheme (ln dynhpg imp=T) :

ut+∆t − ut−∆t

2∆t
= · · · − 1

ρo e1u
δi+1/2

[
pt+∆t
h + 2pth + pt−∆t

h

4

]
(5.18)

The semi-implicit time scheme (5.18) is made possible without significant additional
computation as the density can be updated to time level t+ ∆t before computing the ho-
rizontal hydrostatic pressure gradient. It can be easily shown that the Courant-Friedrichs-
Lewy (CFL) limit associated to the hydrostatic pressure gradient double using (5.18) com-
pared to the standard leapfrog scheme (5.17). Note that (5.18) is equivalent to applying
a time filter to the pressure gradient to eliminate high frequency IGWs. Obviously, when
using (5.18), the doubling of the time-step is achievable only if no other factors control
the time-step, such as the CFL limits associated with advection or diffusion.

In practice, the semi-implicit scheme is used when ln dynhpg imp=T. In this case, we
choose to apply the time filter to temperature and salinity used in the equation of state,
instead of applying it to the hydrostatic pressure or to the density, so that no additional
storage array has to be defined. The density used to compute the hydrostatic pressure
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gradient (whatever the formulation) is evaluated as follows :

ρt = ρ(T̃ , S̃, zT ) with •̃ =
•t+∆t + 2 •t +•t−∆t

4
(5.19)

Note that in the semi-implicit case, it is necessary to save one extra three-dimentional
field in the restart file to restart the model with exact reproducibility, namely, the filtered
density. This option is controlled by the namelist parameter nn dynhpg rst.

5.4 Surface pressure gradient (dynspg.F90)
!-----------------------------------------------------------------------
&nam_dynspg ! surface pressure gradient (CPP key only)
!-----------------------------------------------------------------------
! "key_vvl" ! Activate the variable volume level
! "key_dynspg_exp" ! explicit free surface
! "key_dynspg_flt" ! filtered free surface
! "key_dynspg_ts" ! split-explicit free surface
! "key_dynspg_rl" ! rigid-lid
/
The surface pressure gradient term is related to the representation of the free surface
(§2.2). The main distinction is between the fixed volume case (linear free surface or rigid
lid) and the variable volume case (nonlinear free surface, key vvl is active). In the linear
free surface case (§2.2.2) and rigid lid (§2.2.3), the vertical scale factors e3 are fixed in
time, while in the nonlinear case (§2.2.2) they are time-dependent. With both linear and
nonlinear free surface, external gravity waves are allowed in the equations, which imposes
a very small time step when an explicit time stepping is used. Two methods are proposed
to allow a longer time step for the three-dimensional equations : the filtered free surface,
which is a modification of the continuous equations (see (2.6)), and the split-explicit free
surface described below. The extra term introduced in the filtered method is calculated
implicitly, so that the update of the next velocities is done in module dynspg flt.F90 and
not in dynnxt.F90.

5.4.1 Linear free surface formulation (key exp or ts or flt)
In the linear free surface formulation, the sea surface height is assumed to be small

compared to the thickness of the ocean levels, so that (a) the time evolution of the sea
surface height becomes a linear equation, and (b) the thickness of the ocean levels is
assumed to be constant with time. As mentioned in (§2.2.2) the linearization affects the
conservation of tracers.

Explicit (key dynspg exp)

In the explicit free surface formulation, the model time step is chosen small enough to
describe the external gravity waves (typically a few ten seconds). The sea surface height
is given by :

∂η

∂t
≡ EMP

ρw
+

1
e1T e2T

∑
k

(δi [e2ue3uu] + δj [e1ve3vv]) (5.20)
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where EMP is the surface freshwater budget (evaporation minus precipitation, and
minus river runoffs (if the later are introduced as a surface freshwater flux, see §6) expres-
sed in Kg.m−2.s−1, and ρw = 1, 000Kg.m−3 is the volumic mass of pure water. The
sea-surface height is evaluated using a leapfrog scheme in combination with an Asselin
time filter, i.e. the velocity appearing in (5.20) is centred in time (now velocity).

The surface pressure gradient, also evaluated using a leap-frog scheme, is then simply
given by : 

− 1
e1u

δi+1/2 [ η ]

− 1
e2v

δj+1/2 [ η ]

(5.21)

Consistent with the linearization, a ρ|k=1 /ρo factor is omitted in (5.21).

Split-explicit time-stepping (key dynspg ts)
!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

ntopo = 1 ! = 1 read the bathymetry_level
e3zps_min = 5. ! minimum thickness of the partial step is the min of
e3zps_rat = 0.1 ! e3zps_min and e3zps_rat * e3t (with 0<e3zps_rat<1)
nmsh = 0 ! =1 create a mesh file (coordinates, scale factors, masks)
nacc = 0 ! the acceleration of convergence method
! ! = 0, no acceleration, rdt = rdttra
! ! = 1, acceleration used, rdt < rdttra(k)
atfp = 0.1 ! asselin time filter parameter
rdt = 5760. ! time step for the dynamics (and tracer if nacc=0)
rdtmin = 5760. ! minimum time step on tracers
rdtmax = 5760. ! maximum time step on tracers
rdth = 800. ! depth variation of tracer time step
rdtbt = 90. ! barotropic time step (for the time splitting algorithm)
nfice = 5 ! frequency of ice model call
nfbulk = 5 ! frequency of bulk formulea call (not used if ice used)
nclosea = 0 ! = 0 no closed sea in the model domain

! ! = 1 closed sea (Caspian Sea, Great US Lakes...)
/

The split-explicit free surface formulation used in OPA follows the one proposed by Grif-
fies [2004]. The general idea is to solve the free surface equation with a small time step,
while the three dimensional prognostic variables are solved with a longer time step that is
a multiple of rdtbt (Figure III.3).

The split-explicit formulation has a damping effect on external gravity waves, which
is weaker than the filtered free surface but still significant as shown by Levier et al. [2007]
in the case of an analytical barotropic Kelvin wave.

Filtered formulation (key dynspg flt)

The filtered formulation follows the Roullet and Madec [2000] implementation. The
extra term introduced in the equations (see §I.2.2) is solved implicitly. The elliptic solvers
available in the code are documented in §10. The amplitude of the extra term is given by
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t-Δt t t+2Δtt+Δt

M U
η

FIG. 5.2 – Schematic of the split-explicit time stepping scheme for the barotropic
and baroclinic modes, after Griffies [2004]. Time increases to the right. Baroclinic
time steps are denoted by t − ∆t, t, t + ∆t, and t + 2∆t. The curved line repre-
sents a leap-frog time step, and the smaller barotropic time steps N∆t = 2∆t are
denoted by the zig-zag line. The vertically integrated forcing M(t) computed at
baroclinic time step t represents the interaction between the barotropic and baro-
clinic motions. While keeping the total depth, tracer, and freshwater forcing fields
fixed, a leap-frog integration carries the surface height and vertically integrated
velocity from t to t + 2∆t using N barotropic time steps of length ∆t. Time ave-
raging the barotropic fields over the N+1 time steps (endpoints included) centers
the vertically integrated velocity at the baroclinic timestep t + ∆t. A baroclinic
leap-frog time step carries the surface height to t + ∆t using the convergence of
the time averaged vertically integrated velocity taken from baroclinic time step t.

the namelist variable rnu. The default value is 1, as recommended by Roullet and Madec
[2000]

rnu=1 to be suppressed from namelist !

5.4.2 Non-linear free surface formulation (key vvl)

In the non-linear free surface formulation, the variations of volume are fully taken
into account. This option is presented in a report [Levier et al. 2007] available on the
NEMO web site. The three time-stepping methods (explicit, split-explicit and filtered) are
the same as in §5.4.1 except that the ocean depth is now time-dependent. In particular,
this means that in filtered case, the matrix to be inverted has to be recomputed at each
time-step.

5.4.3 Rigid-lid formulation (key dynspg rl)

With the rigid lid formulation, an elliptic equation has to be solved for the barotropic
streamfunction. For consistency this equation is obtained by taking the discrete curl of the
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discrete vertical sum of the discrete momentum equation :

1
ρo
∇hps ≡

 Mu + 1
H e2

δj [∂tψ]

Mv − 1
H e1

δi [∂tψ]

 (5.22)

Here M = (Mu,Mv) represents the collected contributions of nonlinear, viscous and
hydrostatic pressure gradient terms in (2.1a) and the overbar indicates a vertical average
over the whole water column (i.e. from z = −H , the ocean bottom, to z = 0, the rigid-
lid). The time derivative of ψ is the solution of an elliptic equation :

δi+1/2

[
e2v

Hv e1v
δi [∂tψ]

]
+ δj+1/2

[
e1u

Hu e2u
δj [∂tψ]

]
= δi+1/2 [e2vMv]− δj+1/2 [e1uMu] (5.23)

The elliptic solvers available in the code are documented in §10). The boundary condi-
tions must be given on all separate landmasses (islands), which is done by integrating the
vorticity equation around each island. This requires identifying each island in the bathy-
metry file, a cumbersome task. This explains why the rigid lid option is not recommended
with complex domains such as the global ocean. Parameters jpisl (number of islands) and
jpnisl (maximum number of points per island) of the par oce.h90 file are related to this
option.

5.5 Lateral diffusion term (dynldf.F90)
!-----------------------------------------------------------------------
&nam_dynldf ! lateral diffusion on momentum
!-----------------------------------------------------------------------

! ! Type of the operator :
ln_dynldf_lap = .true. ! laplacian operator
ln_dynldf_bilap = .false. ! bilaplacian operator

! Direction of action :
ln_dynldf_level = .false. ! iso-level
ln_dynldf_hor = .true. ! horizontal (+ "key_ldfslp" if ln_sco=T)
ln_dynldf_iso = .false. ! iso-neutral (+ "key_ldfslp")
! ! Coefficient
! "key_ldfdyn_c1d" ! Ahm = F(k)
! "key_ldfdyn_c2d" ! Ahm = F(i,j)
! "key_ldfdyn_c3d" ! Ahm = F(i,j,k)
ahm0 = 40000. ! horizontal eddy viscosity for the dynamics (m2/s)
ahmb0 = 0. ! background eddy viscosity for isopycnal diffusion (m2/s)

/The options available for lateral diffusion are laplacian (rotated or not) or biharmonic
operators. The coefficients may be constant or spatially variable ; the description of the
coefficients is found in the chapter on lateral physics (Chap. 8). The lateral diffusion of
momentum is evaluated using a forward scheme, i.e. the velocity appearing in its expres-
sion is the before velocity in time, except for the pure vertical component that appears
when a tensor of rotation is used. This latter term is solved implicitly together with the
vertical diffusion term (see §3.4)

At the lateral boundaries either free slip, no slip or partial slip boundary conditions
are applied following user’s choice (see Chap. §7).
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5.5.1 Iso-level laplacian operator (ln dynldf lap=T)

For lateral iso-level diffusion, the discrete operator is :


DlU
u =

1
e1u

δi+1/2

[
AlmT χ

]
− 1
e2ue3u

δj

[
Almf e3fζ

]

DlU
v =

1
e2v

δj+1/2

[
AlmT χ

]
+

1
e1v e3v

δi

[
Almf e3fζ

] (5.24)

As explained in §2.6.2, this formulation (as the gradient of a divergence and curl of
the vorticity) preserves symmetry and ensures a complete separation between the vorticity
and divergence parts. Note that in pure z-coordinate (key zco defined), e3u = e3v = e3f
so that they disappear from the rotational part of (5.24).

5.5.2 Rotated laplacian operator (ln dynldf iso=T)

A rotation of lateral momentum diffusive operator is needed for isoneutral diffusion in
z-coordinates (ln dynldf iso=T) and for either isoneutral (ln dynldf iso=T) or geopotential
(ln dynldf hor=T) diffusion in s-coordinates. In the partial step case, coordinates are ho-
rizontal excepted at the deepest level and no rotation is performed when ln dynldf hor=T.
The diffusive operator is defined simply as the divergence of down gradient momen-
tum fluxes on each momentum components. It must be emphasized that this formulation
ignores constraints on the stress tensor such as symmetry. The resulting discrete represen-
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tation is :

DlU
u =

1
e1u e2u e3u{
δi+1/2

[
AlmT

(
e2T e3T
e1T

δi[u]− e2T r1T δk+1/2[u]
i, k
)]

+ δj

[
Almf

(
e1f e3f
e2f

δj+1/2[u]− e1f r2f δk+1/2[u]
j+1/2, k

)]
+ δk

[
Almuw

(
−e2u r1uw δi+1/2[u]

i+1/2, k+1/2

− e1u r2uw δj+1/2[u]
j, k+1/2

+
e1u e2u
e3uw

(
r21uw + r22uw

)
δk+1/2[u]

)] }

DlV
v =

1
e1v e2v e3v{
δi+1/2

[
Almf

(
e2f e3f
e1f

δi+1/2[v]− e2f r1f δk+1/2[v]
i+1/2, k

)]
+ δj

[
AlmT

(
e1T e3T
e2T

δj [v]− e1T r2T δk+1/2[v]
j, k
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+ δk

[
Almvw

(
−e2v r1vw δi+1/2[v]

i+1/2, k+1/2

− e1v r2vw δj+1/2[v]
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+
e1v e2v
e3vw

(
r21vw + r22vw

)
δk+1/2[v]

)] }

(5.25)

where r1 and r2 are the slopes between the surface along which the diffusive operator acts
and the surface of computation (z- or s-surfaces). The way these slopes are evaluated is
given in lateral physics chapter (Chap. §8).

5.5.3 Iso-level bilaplacian operator
The lateral fourth order operator formulation on momentum is obtained by applying

(5.24) twice. It requires an additional assumption on boundary conditions : the first deri-
vative term normal to the coast depends on the free or no-slip lateral boundary conditions
chosen, while the third derivative terms normal to the coast are set to zero (see Chap. 7).

add a remark on the the change in the position of the coefficient

5.6 Vertical diffusion term (dynzdf.F90)
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!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------

ln_zdfnpc = .false. ! Non-Penetrative Convection
avm0 = 1.2e-4 ! Kz on momemtum (m2/s)
! ! (background Kz if not "key_zdfcst")
avt0 = 1.2e-5 ! Kz for tracers (m2/s)
! ! (background Kz if not "key_zdfcst")
ln_zdfevd = .true. ! enhanced vertical diffusion
avevd = 100. ! Kz for enhanced diffusion scheme (m2/s)
n_evdm = 0 ! enhanced mixing Kz apply on tracer (=0)
! ! or on both tracer and momentum (=1)
ln_zdfexp = .false. ! =T/F split explicit / implicit
n_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

The large vertical diffusion coefficient found in the surface mixed layer, together with
high vertical resolution, implies a too restrictive constraint on the time step in a pure
explicit time stepping case. Two time stepping schemes can be used for the vertical dif-
fusion term : (a) a forward time differencing scheme (ln zdfexp=T) using a time split-
ting technique (n zdfexp > 1) or (b) a backward (or implicit) time differencing scheme
(ln zdfexp=F) (see §3.4). Note that namelist variables ln zdfexp and n zdfexp apply to both
tracers and dynamics.

The formulation of the vertical subgrid scale physics is the same whatever the vertical
coordinate is. The vertical diffusive operators given by (2.42) take the following semi-
discrete space form : 

Dvm
u ≡ 1

e3u
δk

[
Avmuw
e3uw

δk+1/2[u ]
]

Dvm
v ≡ 1

e3v
δk

[
Avmvw
e3vw

δk+1/2[ v ]
] (5.26)

where Avmuw andAvmvw are the vertical eddy viscosity and diffusivity coefficients. The way
these coefficients can be evaluated depends on the vertical physics used (see §9).

The surface boundary condition on momentum is given by the stress exerted by the
wind. At the surface, the momentum fluxes are prescribed as the boundary condition on
the vertical turbulent momentum fluxes,(

Avm

e3

∂Uh

∂k

)∣∣∣∣
z=1

=
1
ρo

(
τu
τv

)
(5.27)

where (τu, τv) are the two components of the wind stress vector in the (i,j) coordinate
system. The high mixing coefficients in the surface mixed layer ensure that the surface
wind stress is distributed in the vertical over the mixed layer depth. If the vertical mixing
coefficient is small (when no mixed layer scheme is used) the surface stress enters only
the top model level, as a body force. The surface wind stress is calculated in the surface
module routines (SBC, see Chap. §6)

The turbulent flux of momentum at the bottom is specified through a bottom friction
parameterization (see §9.4)
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5.7 External Forcings
Besides the surface and bottom stresses (see the above section) which are introduced

as boundary conditions on the vertical mixing, two other forcings enter the dynamical
equations.

One is the effect of atmospheric pressure on the ocean dynamics (to be introduced
later).

Another forcing term is the tidal potential, which will be introduced in the reference
version soon.

5.8 Time evolution term (dynnxt.F90)
!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

ntopo = 1 ! = 1 read the bathymetry_level
e3zps_min = 5. ! minimum thickness of the partial step is the min of
e3zps_rat = 0.1 ! e3zps_min and e3zps_rat * e3t (with 0<e3zps_rat<1)
nmsh = 0 ! =1 create a mesh file (coordinates, scale factors, masks)
nacc = 0 ! the acceleration of convergence method
! ! = 0, no acceleration, rdt = rdttra
! ! = 1, acceleration used, rdt < rdttra(k)
atfp = 0.1 ! asselin time filter parameter
rdt = 5760. ! time step for the dynamics (and tracer if nacc=0)
rdtmin = 5760. ! minimum time step on tracers
rdtmax = 5760. ! maximum time step on tracers
rdth = 800. ! depth variation of tracer time step
rdtbt = 90. ! barotropic time step (for the time splitting algorithm)
nfice = 5 ! frequency of ice model call
nfbulk = 5 ! frequency of bulk formulea call (not used if ice used)
nclosea = 0 ! = 0 no closed sea in the model domain

! ! = 1 closed sea (Caspian Sea, Great US Lakes...)
/ The general framework of dynamics time stepping is a leap-frog scheme, i.e. a three
level centred time scheme associated with a Asselin time filter (cf. §3.4)

ut+∆t = ut−∆t + 2 ∆t RHStu

utf = ut + γ
[
ut−∆t
f − 2ut + ut+∆t

] (5.28)

where RHS is the right hand side of the momentum equation, the subscript f denotes
filtered values and γ is the Asselin coefficient. γ is initialized as atfp (namelist parameter).
Its default value is atfp=0.1.

Note that whith the filtered free surface, the update of the next velocities is done in the
dynsp flt.F90 module, and nly the swap of arrays and Asselin filter is done in dynnxt..F90

5.9 Diagnostic variables (ζ , χ, w)

5.9.1 horizontal divergence and relative vorticity (divcur.F90)
The vorticity is defined at F-point (i.e. corner point) as follows :
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ζ =
1

e1f e2f

(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
(5.29)

The horizontal divergence is defined at T-point. It is given by :

χ =
1

e1T e2T e3T
(δi [e2u e3u u] + δj [e1v e3v v]) (5.30)

Note that in z-coordinate with full step (key zco defined), e3u = e3v = e3f so that
they disappear from (5.30).

Note also that whereas the vorticity have the same discrete expression in z- and s-
coordinate, its physical meaning is not identical. ζ is a pseudo vorticity along s-surfaces
(only pseudo because (u, v) are still defined along geopotential surfaces, but are no more
necessary defined at the same depth).

The vorticity and divergence at the before step are used in the computation of the ho-
rizontal diffusion of momentum. Note that because they have been calculated prior to the
Asselin filtering of the before velocities, the before vorticity and divergence arrays must
be included in the restart file to ensure perfect restartability. The vorticity and divergence
at the now time step are used respectively for the nonlinear advection and the computation
of the vertical velocity.

5.9.2 Vertical velocity (wzvmod.F90)
The vertical velocity is computed by an upward integration of the horizontal diver-

gence from the bottom : 
w|3/2 = 0

w|k+1/2 = w|k+1/2 + e3t χ|k

(5.31)

With a free surface, the top vertical velocity is non-zero, due the freshwater forcing
and the variations of the free surface elevation. When the free surface is linear or with
a rigid lid, the upper boundary condition applies at a fixed level z = 0. Note that in the
rigid-lid case (key dynspg rl defined), the surface boundary condition (w|surface = 0) is
automatically achieved at least at the computer accuracy, due to the discrete expression of
the surface pressure gradient ( Appendix C ).

Note also that whereas the vertical velocity has the same discrete expression in z- and
s-coordinate, its physical meaning is not the same : in the second case, w is the velocity
normal to the s-surfaces.

With the variable volume option, the calculation of the vertical velocity is modified
(see Levier et al. [2007], report available on the NEMO web site).
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At the time of this writing, the new surface module
that is described in this chapter (SBC) is not yet part
of the current distribution. The current way to specify
the surface boundary condition is such a mess that we
did not attempt to describe it. Nevertheless, apart from
the way the surface forcing is implemented, the infor-
mation given here are relevant for a NEMO v2.3 user.

The ocean needs 7 fields as surface boundary condition :
The two components of the surface ocean stress (τu , τv)
The incoming solar and non solar heat fluxes (Qns , Qsr)
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The surface freshwater budget (EMP , EMPS)
The river runoffs (RUNOFF)

Four different ways are offered to provide those 7 fields to the ocean : an analytical
formulation, a flux formulation, a bulk formulae formulation (CORE or CLIO bulk formu-
lae) and a coupled formulation (exchanges with a atmospheric model via OASIS coupler).
In addition, the resulting fields can be further modified on used demand via several na-
melist option. These option control the addition of a surface restoring term to observed
SST and/or SSS, the modification of fluxes below ice-covered area (using observed ice-
cover or a sea-ice model), the addition of river runoffs as surface freshwater fluxes, and
the addition of a freshwater flux adjustment on order to avoid a mean sea-level drift.

In this chapter we first discuss where the surface boundary condition appears in the
model equations. Then we present the four ways of providing the surface boundary condi-
tion. Finally, the different options that modify the fluxes inside the ocean are discussed.

6.1 Surface boundary condition for the ocean
The surface ocean stress is the stress exerted by the wind and the sea-ice on the ocean.

Their two components are assumed to be interpolated on the ocean mesh, i.e. provided
at U- and V-points and projected onto the (i,j) referential. They are applied as a surface
boundary condition of the computation of the momentum vertical mixing trend (dynzdf
module) : (

Avm

e3

∂Uh

∂k

)∣∣∣∣
z=1

=
1
ρo

(
τu
τv

)
(6.1)

where (τu, τv) = (utau, vtau) are the two components of the wind stress vector in the
(i, j) coordinate system.

The surface heat flux is decomposed in two parts, a non solar and solar heat fluxes.
The former is the non penetrative part of the heat flux (i.e. sensible plus latent plus long
wave heat fluxes). It is applied as a surface boundary condition trend of the first level
temperature time evolution equation (trasbc.F90 module).

∂T

∂t
≡ · · · +

Qns
ρo Cp e3T

∣∣∣∣
k=1

(6.2)

The latter is the penetrative part of the heat flux. It is applied as a 3D trends of the
temperature equation (traqsr.F90 module) when ln traqsr=T.

∂T

∂t
≡ · · · +

Qsr
ρoCp e3T

δk [Iw] (6.3)

where Iw is an adimensional function that describes the way the light penetrates inside
the water column. It is generally a sum of decreasing exponential (see §4.4.2).

The surface freshwater budget is provided through two non-necessary identical fields
EMP and EMPS . Indeed, a surface freshwater flux has two effects : it changes the volume
of the ocean and it changes the surface concentration of salt (an others tracers). Therefore
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it appears in the sea surface height and salinity time evolution equations as a volume
flux, EMP (dynspg xxx modules), and concentration/dilution effect, EMPS (trasbc.F90
module), respectively.

∂η

∂t
≡ · · · + EMP

∂S

∂t
≡ · · · +

EMPS S
e3T

∣∣∣∣
k=1

(6.4)

In the real ocean, EMP=EMPS and the ocean salt content is conserved, but it exist
several numerical reason why this equality should be broken. For example :

When rigid-lid assumption is made, the ocean volume becomes constant and thus,
EMP=0, not EMPS .

When a sea-ice model is considered, the water exchanged between ice and ocean
is not fresh as mean ice salinity is ∼4 psu. In this case, EMPS take into account both
concentration/dilution effect associated with freezing/melting together with salt flux bet-
ween ice and ocean, while EMP is only the volume flux. In addition, in the current version
of NEMO, the sea-ice is assumed to be above the ocean. Freezing/melting does not change
the ocean volume (not impact on EMP) while it modifies the SSS (see § on LIM sea-ice model) .

Note that SST can also be modified by a freshwater flux. Precipitations (in particular
solid one) may have a temperature significantly different from the SST. Due to the lack
of information about the temperature of precipitations, we assume it is equal to the SST.
Therefore, no concentration/dilution term appears in the temperature equation. It has to be
emphasised that this absence does not mean that there is not heat flux associated with pre-
cipitation ! An excess of precipitation will change the ocean heat content and is therefore
associated with a heat flux (not diagnosed in the model) [Roullet and Madec 2000]).

Miss :
A extensive description of all namsbc namelist (parameter that have to be created !)
Especially the nf sbc, the sbc oce.F90 module (fluxes + mean sst sss ssu ssv) i.e.

information required by flux computation or sea-ice
Add nqsr = 0 / 1 replace key traqsr

sbc oce.F90 containt the definition in memory of the 7 fields (6+runoff), add a word
on runoff : included in surface bc or add as lateral obc. . . .

Sbcmod manage the “providing” (fourniture) to the ocean the 7 fields
Fluxes update only each nf sbc time step (namsbc) explain relation between nf sbc

and nf ice, do we define nf blk ? ? ? ? only one nf sbc
Explain here all the namlist namsbc variable. . . .
End Miss

The ocean model provides the following variables averaged over nf sbc time-step :
The mean computation is done in sbcmod (
Penser a mettre dans le restant l’info nf sbc ET nf sbc*rdt de sorte de reinitialiser la

moyenne si on change la frequence ou le pdt
NB : creer cn sbc ice (cn = character in the namelist) with 3 cases :
= ‘noice’ no specific call
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Variable desciption Computer name Units point
i-component of the surface current ssu u m.s−1 U
j-component of the surface current ssv m m.s−1 V
Sea surface temperature sst m ˚ K T
Sea surface salinty sss m psu T

= ‘iceif ‘ “ice-if” sea ice, i.e. read observed ice-cover and modified sbc bellow those
area.

= ‘lim’ LIM sea-ice model is called which update the sbc fields in ice covered area
? modify the nsbc ice variable depending of this parameter (from –1, 0 to 1) End Penser a

6.2 Analytical formulation (sbcana module)
!-----------------------------------------------------------------------
&namtau ! surface wind stress
!-----------------------------------------------------------------------

ntau000 = 0 ! gently increase the stress over the first ntau_rst time-steps
tau0x = 0.e0 ! uniform value used as default surface heat flux
tau0y = 0.e0 ! uniform value used as default solar radiation flux

/

!-----------------------------------------------------------------------
&namflx ! surface fluxes
!-----------------------------------------------------------------------

q0 = 0.e0 ! uniform value used as default surface heat flux
qsr0 = 0.e0 ! uniform value used as default solar radiation flux
emp0 = 0.e0 ! uniform value used as default surface freswater budget (E-P)
dqdt0 = -40. ! feedback coefficient for SST damping (W/m2/K)
deds0 = 0. ! feedback coefficient for SSS damping (mm/day)

/

The analytical formulation of the surface boundary condition is set by default. In this
case, all the 6 fluxes needed by the ocean are assumed to be uniform in space. They take
constant values given in the namlist namsbc ana : utau0, vtau0, qns0, qsr0, emp0 and
emps0. while the runoff is set to zero. In addition, the wind is allowed to reach its nominal
value within a given number of time step (ntau000).

If a user wants to applied a different analytical forcing, sbcana.F90 module is the
very place to do that. As an example, one can have a look to the sbc ana gyre.F90 routine
which provides the analytical forcing of the GYRE configuration (see GYRE configura-
tion manual, in preparation).

6.3 Flux formulation (sbcflx.F90 module, key sbcflx)
In the flux formulation (key sbcflx defined), the surface boundary condition fields are

directly read from input files. The user has to define in the namelist namsbc flx the name
of the file, the name of the variable read in the file, the time frequency at which it is given,
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and a logical setting whether a time interpolation to the model time step is asked are not
for this field). (fld i namelist structure).

Describe the information given ?

Add an info about on-line interpolation or not ? at with which scale. . .
Caution : when the frequency is set to –12, the data are monthly values. There are

assumed to be climatological values, so time interpolation between December the 15th

and January the 15th is done using record 12 and 1
When higher frequency is set and time interpolation is demanded, the model will try

to read the last (first) record of previous (next) year in a file having the same name but
a suffix prev year (next year) being added. These file must only content a single record.
If they don’t exist, the will assume that the previous year last record is equal to the first
record of the previous year, and similarly, that the first record of the next year is equal to
the last record of the current year. This will cause the forcing to remain constant over the
first and last half fld frequ hours.

Note that in general, a flux formulation is used in associated with a damping term to
observed SST and/or SSS. See §6.6.1 for its specification.

6.4 Bulk formulation (sbcblk core.F90 orsbcblk clio.F90
module)

In the bulk formulation, the surface boundary condition fields are computed using
bulk formulae and atmospheric fields and ocean (and ice) variables.

The atmospheric fields used depends on the bulk formulae used. Two of them are
available : the CORE and CLIO bulk formulea. The choice is made by activating the CPP
key key sbcblk core or key sbcblk clio, respectively.

Note : if a sea-ice model is used then blah blah blah. . .
CORE bulk formulea
The CORE bulk formulae have been developed by Large and Yeager [2004]. They

have been design to handle the CORE forcing, a mixture of NCEP reanalysis and satellite
data. They use an inertial dissipative method to compute the turbulent transfer coefficients
(momentum, sensible heat and evaporation) from the 10 meter wind speed, air temperature
and specific humidity).

The required 8 input fields are :
Note that the air velocity can be provided at either tracer ocean point or velocity ocean

point.
Explain low resolution, better to provide it at U-V, high resolution better

at T-point. . . Explain why, scheme ?

Add a namelist parameter to provide a switch from U/V or T (or I ? ?) point

for utau/vtau
CLIO bulk formulea
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Variable desciption Computer name Units point
i-component of the 10m air velocity utau m.s−1 T or U
j-component of the 10m air velocity vtau m.s−1 T or V
10m air temperature tair ˚ K T
Specific humidity humi % T
Incoming long wave radiation qlw W.m−2 T
Incoming short wave radiation qsr W.m−2 T
Total precipitation (liquid + solid) precip Kg.m−2.s−1 T
Solid precipitation snow Kg.m−2.s−1 T

The CLIO bulk formulae have been developed several years ago for the Louvain-la-
neuve coupled ice-ocean model (CLIO, Goosse et al. 1997). It is a simpler bulk formulae
that assumed the stress to be known and computes the radiative fluxes from a climatolo-
gical cloud cover.

The required 7 input fields are :

Variable desciption Computer name Units point
i-component of the ocean stress utau N.m−2 U
j-component of the ocean stress vtau N.m−2 V
Wind speed module vatm m.s−1 T
10m air temperature tair ˚ K T
Secific humidity humi % T
Cloud cover % T
Total precipitation (liquid + solid) precip Kg.m−2.s−1 T
Solid precipitation snow Kg.m−2.s−1 T

As for the flux formulation, the input data information required by the model is pro-
vided in the namsbc blk core or namsbc blk clio namelist (via the structure fld i). The
same assumption is made about the value of the first and last record in each file.

6.5 Coupled formulation (sbccpl.F90 module)

In the coupled formulation of the surface boundary condition, the fluxes are provided
by the OASIS coupler at each nf cpl time-step, while sea and ice surface temperature,
ocean and ice albedo, and ocean currents are sent to the atmospheric component.
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6.6 Miscellanea options

6.6.1 Surface restoring to observed SST and/or SSS (sbcssr.F90)
In forced mode using flux formulation (default option or key flx defined), a feedback

term must be added to the specified surface heat flux Qons :

Qns = Qons +
dQ

dT
(T |k=1 − SSTObs) (6.5)

where SST is a sea surface temperature field (observed or climatological), T is the model
surface layer temperature and dQ

dT is a negative feedback coefficient usually taken equal to
−40W.m−2. ˚ K−1. For a 50m mixed-layer depth, this value corresponds to a relaxation
time scale of two months. This term ensures that if T perfectly fits SST then Q is equal to
Qo.

In the fresh water budget, a feedback term can also be added :

EMP = EMPo + γ−1
s (S − SSSObs) |S (6.6)

where EMPo is a net surface fresh water flux (observed, climatological or atmosphe-
ric model product), SSSObsis a sea surface salinity (usually a time interpolation of the
monthly mean PHC climatology [Steele et al. 2001], S is the model surface layer sali-
nity and γs is a negative feedback coefficient which is provided as a namelist parameter.
Unlike heat flux, there is no physical justification for the feedback term in (III.4.4) as the
atmosphere does not care about ocean surface salinity [Madec and Delecluse 1997]. The
SSS restoring term can only be view as a flux correction on freshwater fluxes to reduce
the uncertainties we have on the observed freshwater budget.

6.6.2 Handling of ice-covered area
The presence of sea-ice at the top of the ocean strongly modify the surface fluxes
The presence at the sea surface of an ice cover area modified all the fluxes transmitted

to the ocean. There is two cases whereas a sea-ice model is used or not.
Without sea ice model, the information of ice-cover / open ocean is read in a file

(either the directly the ice-cover or the observed SST from which ice-cover is deduced
using a criteria on freezing point temperature).

6.6.3 Addition of river runoffs (sbcrnf.F90)
It is convenient to introduce the river runoff in the model as a surface fresh water

fluxes. . . . blah blah. . . .
Nevertheless, Pb of vertical resolution and increase of Kz in vicinity of

river mouths. . .
Control of the mean sea level
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6.6.4 Freshwater budget control (sbcfwb.F90)
!-----------------------------------------------------------------------
&namfwb ! freshwater budget correction
!-----------------------------------------------------------------------

ln_fwb = .true. ! flag for freshwater budget correction (0 annual mean)
/

freshwater budget correction. . .
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7.1 Boundary Condition at the Coast (shlat)
!-----------------------------------------------------------------------
&namlbc ! lateral momentum boundary condition
!-----------------------------------------------------------------------
! "key_noslip_accurate" ! Activate accurate no-slip boundary condition

shlat = 2. ! shlat = 0 : free slip
! 0 < shlat < 2 : "partial" free-slip
! shlat = 2 : no slip
! 2 < shlat : "strong" no-slip

/

The discrete representation of a domain with complex boundaries (coastlines and bot-
tom topography) leads to arrays that include large portions where a computation is not
required as the model variables remain at zero. Nevertheless, vectorial supercomputers
are far more efficient when computing over a whole array, and the readability of a code is
greatly improved when boundary conditions are applied in an automatic way rather than
by a specific computation before or after each do loop. An efficient way to work over
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FIG. 7.1 – Lateral boundary (thick line) at T-level. The velocity normal to the
boundary is set to zero.

the whole domain while specifying the boundary conditions is to use the multiplication
by mask arrays in the computation. A mask array is a matrix which elements are 1in the
ocean domain and 0 elsewhere. A simple multiplication of a variable by its own mask
ensures that it will remain zero over land areas. Since most of the boundary conditions
consist of a zero flux across the solid boundaries, they can be simply settled by multi-
plying variables by the right mask arrays, i.e. the mask array of the grid point where the
flux is evaluated. For example, the heat flux in the i-direction is evaluated at u-points.
Evaluating this quantity as,

AlT

e1

∂T

∂i
≡ AlTu
e1u

δi+1/2 [T ] masku (7.1)

where masku is the mask array at u-point, ensures that the heat flux is zero inside land
and at the boundaries as masku is zero at solid boundaries defined at u-points in this case
(normal velocity u remains zero at the coast) (Fig. 7.1).

On momentum the situation is a bit more complex as two boundary conditions must
be provided along the coast (one on the normal velocity and the other on the tangen-
tial velocity). The boundary of the ocean in C-grid is defined by the velocity-faces. For
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example, at a given T -level, the lateral boundary (coastline or intersection with the bottom
topography) is made of segments joining f -points, and normal velocity points are located
between two f−points (Fig. 7.1). The boundary condition on the normal velocity (no flux
through solid boundaries) can thus be easily settled by the mask system. The boundary
condition on the tangential velocity requires a more specific treatment. It influences the
relative vorticity and momentum diffusive trends, and is only required to compute the
vorticity at the coast. Four different type of the lateral boundary condition are available,
controlled by the value of shlat namelist parameter (which is equal to the value of the
maskf array along the coastline) :

free-slip boundary condition (shlat=0) : the tangential velocity at the coastline is equal
to the offshore velocity, i.e. the normal derivative of the tangential velocity is zero
at the coast, so the vorticity : maskf array is set to zero inside the land and just at
the coast (Fig. 7.1-a).

no-slip boundary condition (shlat=2) : the tangential velocity vanishes at the coastline.
Assuming that the tangential velocity decreases linearly from the closest ocean
velocity grid point to the coastline, the normal derivative is evaluated as if the
closest land velocity gridpoint were of the same magnitude as the closest ocean
velocity gridpoint but in the opposite direction (Fig. 7.1-b). Therefore, the vorticity
along the coastlines is given by :

ζ ≡ 2
(
δi+1/2 [e2vv]− δj+1/2 [e1uu]

)
/ (e1fe2f ) ,

where u and v are masked fields. Setting the maskf array to 2 along the coastline
allows to provide a vorticity field computed with the no-slip boundary condition
simply by multiplying it by the maskf :

ζ ≡ 1
e1f e2f

(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
maskf (7.2)

”partial” free-slip boundary condition (0<shlat<2) : the tangential velocity at the coast-
line is smaller than the offshore velocity, i.e. there is a lateral friction but not strong
enough to vanish the tangential velocity at the coast (Fig. 7.1-c). This can be settled
by providing a value of maskf strictly inbetween 0 and 2.

”strong” no-slip boundary condition (2<shlat) : the viscous boundary layer is assu-
med to be smaller than half the grid size (Fig. 7.1-d). The friction is thus larger
than in the no-slip case.

Note that when the bottom topography is entirely represented by the s-coordinates
(pure s-coordinate), the lateral boundary condition on momentum tangential velocity is
of much little importance as it is only applied next to the coast where the minimum water
depth can be quite shallow.

The alternative numerical implementation of the no-slip boundary conditions for an
arbitrary coast line of Shchepetkin and O’Brien [1996] is also available through the acti-
vation of key noslip accurate. It is based on a fourth order evaluation of the shear at the
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FIG. 7.2 – lateral boundary condition (a) free-slip (shlat = 0) ; (b) no-slip
(shlat = 2) ; (c) ”partial” free-slip (0 < shlat < 2) and (d) ”strong” no-slip
(2 < shlat). Implied ”ghost” velocity inside land area is display in grey.
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coast which, in turn, allows a true second order scheme in the interior of the domain (i.e.
the numerical boundary scheme simulates the truncation error of the numerical scheme
used in the interior of the domain). Shchepetkin and O’Brien [1996] found that such a
technique considerably improves the quality of the numerical solution. In NEMO, the im-
provement have not been found so spectacular in the half-degree global ocean (ORCA05),
but significant reduction of numerically induced coast upwellings were found in eddy re-
solving simulation of the Alboran Sea [Olivier 2001]. Nevertheless, as no-slip boundary
condition is not recommended in eddy permitting or resolving simulation [?], the use of
this option is not recommended.

In practice, the no-slip accurate option changes the way the curl is evaluated at the
coast (see divcur.F90 module), and requires to qualify the nature of coastline grid point
(convex or concave corners, straight north-south or east-west coast) which is performed
in domask.F90 module, dom msk nsa routine.

7.2 Model Domain Boundary Condition (jperio)
At the model domain boundaries several choices are offered : closed, cyclic east-west,

south symmetric across the equator, a north-fold, and combination closed-north fold or
cyclic-north-fold. The north-fold boundary condition is associated with the 3-pole ORCA
mesh.

7.2.1 Closed, cyclic, south symmetric (jperio = 0, 1 or 2)
The choice of closed, cyclic or symmetric model domain boundary condition is made

by setting jperio to 0, 1 or 2 in par oce.F90 file. Each time such a boundary condition is
needed, it is set by a call to lbclnk.F90 routine. The computation of momentum and tracer
trends proceed from i = 2 to i = jpi− 1 and from j = 2 to j = jpj − 1, i.e.in the inner
model domain. To choose a lateral model boundary condition is to specify the first and
last rows and columns of the model variables.

- For closed boundary (jperio=0), solid walls are imposed at all model boundaries :
first and last rows and columns are set to zero.

- For cyclic east-west boundary (jperio=1), first and last rows are set to zero (closed)
while first column is set to the value of the before last column and last column to the value
of the second one (Fig. 7.2.1-a). Whatever flows out of the eastern (western) end of the
basin enters the western (eastern) end. Note that there is neither option for north-south
cyclic nor doubly cyclic cases.

- For symmetric boundary condition across the equator (jperio=2), last rows, and first
and last columns are set to zero (closed). The row of symmetry is chosen to be the u- and
T−points equator line (j = 2, i.e. at the southern end of the domain). For arrays defined
at u− or T−points, the first row is set to the value of the third row while for most of v-
and f -points arrays (v, ζ, jψ, but scalar arrays such as eddy coefficients) the first row is
set to minus the value of the second row (Fig. 7.2.1-b). Note that this boundary condition
is not yet available on massively parallel computer (key mpp defined).
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row(jpj) = row(2)

row(1) = row(jpj-1) line(1) = -line(2)

line(1) = line(2)

T- or u-point
variables

v- or f-point
variables

(a) (b)

FIG. 7.3 – setting of (a) east-west cyclic (b) symmetric across the equator boun-
dary conditions.

7.2.2 North-fold (jperio = 3 to 6)

The north fold boundary condition have been introduced in order to handle the north
boundary of an three-polar ORCA grid. Such a grid has two poles in the northern hemis-
phere. to be completed...

7.3 Exchanged with neighbouring processors (lbclnk.F90,
lib mpp.F90)

For massively parallel processing (mpp), a domain decomposition method is used.
The basis of the method consists in splitting the large computation domain of a numerical
experiment into several smaller domains and solving the set of equations by addressing
independent local problems. Each processor has its own local memory and computes the
model equation over a subdomain of the whole model domain. The subdomain boundary
conditions are specified through communications between processors which are explicitly
organized by specific statements (message passing method).

A big advantage is that the method does not need many modifications of the initial
FORTRAN code. For the modeller’s point of view, each sub domain running on a pro-
cessor is identical to the ”mono-domain” code. In addition, the programmer manages the
communications between subdomains, and the code presents more scalability when the
number of processors is increased. The porting of OPA code on a iPSC860 was achie-
ved during Guyon’s PhD [Guyon et al. 1994, 1995] in collaboration with CETIIS and
ONERA. The implementation in the operational context and the studies of performances
on a T3D and T3E Cray computers have been made in collaboration with IDRIS and
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FIG. 7.4 – North fold boundary with a T -point pivot and cyclic east-west boundary
condition (jperio = 4), as used in ORCA 2, 1/4, and 1/12. Pink shaded area
corresponds to the inner domain mask (see text).

CNRS. The present implementation is largely inspired from Guyon’s work [Guyon 1995].
The parallelization strategy is defined by the physical characteristics of the ocean mo-

del. Second order finite difference schemes leads to local discrete operators that depend
at the very most on one neighbouring point. The only non-local computations concerne
the vertical physics (implicit diffusion, 1.5 turbulent closure scheme, ...) (delocalization
over the whole water column), and the solving of the elliptic equation associated with
the surface pressure gradient computation (delocalization over the whole horizontal do-
main). Therefore, a pencil strategy is used for the data sub-structuration : the 3D initial
domain is laid out on local processor memories following a 2D horizontal topological
splitting. Each sub-domain computes its own surface and bottom boundary conditions
and has a side wall overlapping interface which stocks lateral boundary conditions for
computations in the inner sub-domain. The overlapping area is reduced to one row. After
a computation, a communication phase starts : each processor sends to its neighbouring
processors the update values of the point corresponding to the overlapping area of its
neighbouring sub-domain. The communication is done through message passing. Usually
the parallel virtual language, PVM, is used as it is a standard language available on nearly
all MPP cumputers. More specific languages (i.e. computer dependant languages) can be
easily used to speed up the communication, such as SHEM on T3E computer. The data
exchanges between processors are required at the very place where lateral domain boun-
dary conditions are set in the mono-domain computation (§III.10-c) : the lbc lnk routine
which manages such conditions is substituted by mpplnk.F or mpplnk2.F routine when
running on MPP computer (key mpp mpi defined). It has to be noticed that when using
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FIG. 7.5 – Positioning of a sub-domain when massively parallel processing is
used.

MPP version of the model, the east-west cyclic boundary condition is implicitly done,
while the south-symmetric boundary condition option is not available.

In the standard version of the OPA model, the splitting is regular and arithmetic. the
i-axis is divided by jpni and the j-axis by jpnj for a number of processors jpnij most of-
ten equal to jpni× jpnj (model parameters set in par oce.F90). Each processor is inde-
pendent and without message passing or synchronous process, programs run alone and ac-
cess just at its own local memory. For this reason, the main model dimensions are now the
local dimensions of the subdomain (pencil) that are noted jpi, jpj, jpk. These dimensions
include the internal domain and the overlapping rows. The number of overlapping rows is
usually set to one (jpreci=1, in par oce.F90). The whole domain dimensions are named
jpiglo, jpjglo and jpk. The relationship between the whole domain and a sub-domain is :

jpi = (jpiglo− 2 ∗ jpreci+ (jpni− 1))/jpni+ 2 ∗ jpreci
jpj = (jpjglo− 2 ∗ jprecj + (jpnj − 1))/jpnj + 2 ∗ jprecj (7.3)

where jpni, jpnj are the number of processors following the i- and j-axis.
Figure IV.3 : example of a domain splitting with 9 processors and no east-west cyclic boundary conditions.

One defines also variables nldi and nlei which correspond to the internal domain
bounds, and the variables nimpp and njmpp which are the position of the (1,1) grid-point
in the global domain. An element of Tl, a local array (subdomain) corresponds to an ele-
ment of Tg, a global array (whole domain) by the relationship :

Tg(i+ nimpp− 1, j + njmpp− 1, k) = Tl(i, j, k), (7.4)
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with 1 ≤ i ≤ jpi, 1 ≤ j ≤ jpj , and 1 ≤ k ≤ jpk.
Processors are numbered from 0 to jpnij − 1, the number is saved in the variable

nproc. In the standard version, a processor has no more than four neighbouring processors
named nono (for north), noea (east), noso (south) and nowe (west) and two variables,
nbondi and nbondj, indicate the situation of the processor (see Fig.IV.3) :

– nbondi = -1 an east neighbour, no west processor,
– nbondi = 0 an east neighbour, a west neighbour,
– nbondi = 1 no east processor, a west neighbour,
– nbondi = 2 no splitting following the i-axis.

During the simulation, processors exchange data with their neighbours. If there is effecti-
vely a neighbour, the processor receives variables from this processor on its overlapping
row, and sends the data issued from internal domain corresponding to the overlapping row
of the other processor.

Figure IV.4 : pencil splitting with the additional outer halos
The OPA model computes equation terms with the help of mask arrays ( 0 onto land

points and 1 onto sea points). It is easily readable and very efficient in the context of
the vectorial architecture. But in the case of scalar processor, computations over the land
regions becomes more expensive in term of CPU time. It is all the more when we use a
complex configuration with a realistic bathymetry like the global ocean where more than
50 % of points are land points. For this reason, a pre-processing tool allows to search
in the mpp domain decomposition strategy if a splitting can be found with a maximum
number of only land points processors which could be eliminated (mppini2 program).
This optimisation is made with the knowledge of the specific bathymetry in a first time
and after, the OPA model, in its initialization part, take account only processors with a
sea region. For that, one must indicate in the parameter file the initial cutting along i- and
j-axes with jpni and jpnjand the ocean processor number jpnij ¡ jpni x jpnj. Each processor
name and neighbour parameters (nbound, nono, noea,...) are modified by an algorithm in
the inimpp2.F subroutine.

The OPA model computes equation terms with the help of mask arrays (0 onto land
points and 1 onto sea points). It is easily readable and very efficient in the context of
the vectorial architecture. But in the case of scalar processor, computations over the land
regions becomes more expensive in term of CPU time. It is all the more so when we use a
complex configuration with a realistic bathymetry like the global ocean where more than
50 % of points are land points. For this reason, a pre-processing tool allows to search
in the mpp domain decomposition strategy if a splitting can be found with a maximum
number of only land points processors which could be eliminated : the mpp optimiz tools
(available from the DRAKKAR web site). This optimisation is made with the knowledge
of the specific bathymetry. The user chooses optimal parameters jpni, jpnj and jpnij with
jpnij < jpni×jpnj, leading to the elimination of jpni×jpnj−jpnij land processors.
When those parameters are specified in module par oce.F90, the algorithm in the inimpp2
routine set each processor name and neighbour parameters (nbound, nono, noea,...) so that
the land processors are not taken into account.

Note that the inimpp2 routine is general so that the original inimpp routine should be suppressed from the code.
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When land processors are eliminated, the value corresponding to these locations in
the model output files is zero. Note that this is a problem for a mesh output file written by
such a model configuration, because model users often divide by the scale factors (e1t,
e2t, etc) and do not expect the grid size to be zero, even on land. It may be best not to
eliminate land processors when running the model especially to write the mesh files as
outputs (when nmsh namelist parameter differs from 0).

(a) (b)

FIG. 7.6 – Example of Atlantic domain defined for the CLIPPER projet. Initial
grid is composed by 773 x 1236 horizontal points. (a) the domain is splitting onto
9 subdomains (jpni=9, jpnj=20). 52 subdomains are land areas. (b) 52 subdomains
are eliminated (white rectangles) and the resulting number of processors really
used during the computation is jpnij=128.

7.4 Open Boundary Conditions (key obc)

7.5 Flow Relaxation Scheme ( ? ? ?)
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The lateral physics on momentum and tracer equations have been given in §2.6.1 and
their discrete formulation in §4.2 and §5.5). In this section we further discuss the choices
that underlie each lateral physics option. Choosing one lateral physics means for the user
defining, (1) the space and time variations of the eddy coefficients ; (2) the direction along
which the lateral diffusive fluxes are evaluated (model level, geopotential or isopycnal
surfaces) ; and (3) the type of operator used (harmonic, or biharmonic operators, and for
tracers only, eddy induced advection on tracers). These three aspects of the lateral diffu-
sion are set through namelist parameters and CPP keys (see the nam traldf and nam dynldf
below).
!-----------------------------------------------------------------------
&nam_traldf ! lateral diffusion scheme for tracer
!-----------------------------------------------------------------------

! Type of the operator :
ln_traldf_lap = .true. ! laplacian operator
ln_traldf_bilap = .false. ! bilaplacian operator

! Direction of action :
ln_traldf_level = .false. ! iso-level
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ln_traldf_hor = .false. ! horizontal (+ "key_ldfslp" if ln_sco=T)
ln_traldf_iso = .true. ! iso-neutral (+ "key_ldfslp")

! Coefficient
! "key_ldftra_c1d" ! Aht = F(k)
! "key_ldftra_c2d" ! Aht = F(i,j)
! "key_ldftra_c3d" ! Aht = F(i,j,k)
aht0 = 2000. ! lateral eddy diffusivity coef. (m2/s)
ahtb0 = 0. ! background coef. for isopycnal diffusion (m2/s)
aeiv0 = 2000. ! eddy induced velocity coefficient (m2/s)
! ! (+ "key_traldf_eiv")

/

!-----------------------------------------------------------------------
&nam_dynldf ! lateral diffusion on momentum
!-----------------------------------------------------------------------

! ! Type of the operator :
ln_dynldf_lap = .true. ! laplacian operator
ln_dynldf_bilap = .false. ! bilaplacian operator

! Direction of action :
ln_dynldf_level = .false. ! iso-level
ln_dynldf_hor = .true. ! horizontal (+ "key_ldfslp" if ln_sco=T)
ln_dynldf_iso = .false. ! iso-neutral (+ "key_ldfslp")
! ! Coefficient
! "key_ldfdyn_c1d" ! Ahm = F(k)
! "key_ldfdyn_c2d" ! Ahm = F(i,j)
! "key_ldfdyn_c3d" ! Ahm = F(i,j,k)
ahm0 = 40000. ! horizontal eddy viscosity for the dynamics (m2/s)
ahmb0 = 0. ! background eddy viscosity for isopycnal diffusion (m2/s)

/

8.1 Lateral Mixing Coefficient (key ldftra c.d and key ldfdyn c.d)
Introducing a space variation in the lateral eddy mixing coefficients changes the model

core memory requirement, adding up to four three-dimensional arrays for geopotential or
isopycnal second order operator applied to momentum. Six cpp keys control the space
variation of eddy coefficients : three for momentum and three for tracer. They allow to
specify a space variation in the three space directions, in the horizontal plane, or in the
vertical only. The default option is a constant value over the whole ocean on momentum
and tracers.

The number of additional arrays that have to be defined and the gridpoint position at
which they are defined depend on both the space variation chosen and the type of operator
used. The resulting eddy viscosity and diffusivity coefficients can be either single or mul-
tiple valued functions. Changes in the computer code when switching from one option to
another have been minimized by introducing the eddy coefficients as statement function
(include file ldftra substitute.h90 and ldfdyn substitute.h90). The functions are replaced
by their actual meaning during the preprocessing step (cpp capability). The specification
of the space variation of the coefficient is settled in ldftra.F90 and ldfdyn.F90, or more
precisely in include files ldftra cNd.h90 and ldfdyn cNd.h90, with N=1, 2 or 3. The user
can change these include files following his desiderata. The way the mixing coefficient
are set in the reference version can be briefly described as follows :
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Constant Mixing Coefficients (default option)

When none of the key ldfdyn ... and key ldftra ... keys are defined, a constant value
over the whole ocean on momentum and tracers that is specified through ahm0 and aht0
namelist parameters.

Vertically varying Mixing Coefficients (key ldftra c1d and key ldfdyn c1d)

The 1D option is only available in z-coordinate with full step. Indeed in all the other
type of vertical coordinate, the depth is a 3D function of (i,j,j) and therefore, introdu-
cing depth-dependant mixing coefficients will requires 3D arrays, i.e. key ldftra c3d and
key ldftra c3d. In the 1D option, a hyperbolic variation of the lateral mixing coefficient
is introduced in which the surface value is aht0 (ahm0), the bottom value is 1/4 of the
surface value, and the transition is round z=300 m with a width of 300 m (i.e. both the
depth and the width of the inflection point are set to 300 m). This profile is hard coded in
ldftra c1d.h90 file, but can be easily modified by users.

Horizontally Varying Mixing Coefficients (key ldftra c2d and key ldfdyn c2d)

By default the horizontal variation of the eddy coefficient depend on the local mesh
size and the type of operator used :

Al =


max(e1, e2)

emax
Alo for laplacian operator

max(e1, e2)3

e3max
Alo for bilaplacian operator

comments (8.1)

where emax is the max of e1 and e2 taken over the whole masked ocean domain, and Alo
is ahm0 (momentum) or aht0 (tracer) namelist parameters. This variation is intended to
reflect the lesser need for subgrid scale eddy mixing where the grid size is smaller in the
domain. It was introduced in the context of the DYNAMO modelling project [Willebrand
et al. 2001].

Other formulations can be introduced by the user for a given configuration. For example,
in the ORCA2 global ocean model (key orca r2), the laplacian viscous operator uses
ahm0 = 4.104m2.s−1 poleward of 20◦ north and south and decreases to aht0 = 2.103m2.s−1

at the equator [Madec et al. 1996, Holland et al. 2000]. This specification can be found in
ldf dyn c2d orca routine defined in ldfdyn c2d.F90. Similar specific horizontal variation
can be found for Antarctic or Arctic sub-domain of ORCA2 and ORCA05 (key antarctic
or key arctic defined, see ldfdyn antarctic.h90 and ldfdyn arctic.h90).

Space Varying Mixing Coefficients (key ldftra c3d and key ldfdyn c3d)

The 3D space variation of the mixing coefficient is simply the combination of the 1D
and 2D cases, i.e. a hyperbolic tangent variation with depth associated with a grid size
dependence of the magnitude of the coefficient.
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Space and time Varying Mixing Coefficients

There is no default specification of space and time varying mixing coefficient. The
only case available is specific to ORCA2 and ORCA05 global ocean configurations (key orca r2
or key orca r05). It provides only a tracer mixing coefficient for eddy induced velo-
city (ORCA2) or both iso-neutral and eddy induced velocity (ORCA05) that depends on
the local growth rate of baroclinic instability. This specification is actually used when a
ORCA key plus key traldf eiv plus key traldf c2d are defined.

A space variation in the eddy coefficient appeals several remarks :
(1) the momentum diffusive operator acting along model level surfaces is written in

terms of curl and divergent components of the horizontal current (see §2.6.2). Although
the eddy coefficient can be set to different values in these two terms, this option is not
available.

(2) with a horizontal varying viscosity, the quadratic integral constraints on enstrophy
and on the square of the horizontal divergence for operators acting along model-surfaces
are no more satisfied ( Appendix C ).

(3) for isopycnal diffusion on momentum or tracers, an additional purely horizontal
background diffusion with uniform coefficient can be added by setting a non zero va-
lue of ahmb0 or ahtb0, a background horizontal eddy viscosity or diffusivity coefficient
(namelist parameters which default value are 0). Nevertheless, the technique used to
compute the isopycnal slopes allows to get rid of such a background diffusion which in-
troduces spurious diapycnal diffusion (see §8.2).

(4) when an eddy induced advection is used (key trahdf eiv),Aeiv , the eddy induced
coefficient has to be defined. Its space variations are controlled by the same CPP variable
as for the eddy diffusivity coefficient (i.e. key traldf cNd).

(5) the eddy coefficient associated to a biharmonic operator must be set to a negative
value.

8.2 Direction of Lateral Mixing (ldfslp.F90)
A direction for lateral mixing has to be defined when the desired operator does not

act along the model levels. This occurs when (a) horizontal mixing is required on tracer
or momentum (ln traldf hor or ln dynldf hor) in s or mixed s-z-coordinate, and (b) iso-
neutral mixing is required whatever the vertical coordinate is. This direction of mixing is
defined by its slopes in the i- and j-directions at the face of the cell of the quantity to be
diffused. For tracer, this leads to the following four slopes : r1u, r1w, r2v, r2w (see (4.11)),
while for momentum the slopes are r1T , r1uw, r2f , r2uw for u and r1f , r1vw, r2T , r2vw
for v.

8.2.1 slopes for tracer geopotential mixing in s-coordinate
In s-coordinates, geopotential mixing (i.e. horizontal one) r1 and r2 are the slopes

between the geopotential and computational surfaces. Their discrete formulation is found
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by locally vanishing the diffusive fluxes when T is horizontally uniform, i.e. by replacing
in (4.11) T by zT , the depth of T -point, and setting to zero the diffusive fluxes in the three
directions. This leads to the following expression for the slopes :

r1u =
e3u(

e1u e3w
i+1/2, k

) δi+1/2[zT ] ≈ 1
e1u

δi+1/2[zT ]

r2v =
e3v(

e2v e3w
j+1/2, k

) δj+1/2[zT ] ≈ 1
e2v

δj+1/2[zT ]

r1w =
1
e1w

δi+1/2[zT ]
i, k+1/2

≈ 1
e1w

δi+1/2[zuw]

r2w =
1
e2w

δj+1/2[zT ]
j, k+1/2

≈ 1
e2w

δj+1/2[zvw]

(8.2)

These slopes are computed once in ldfslp init when ln sco=T and ln traldf hor=T or
ln dynldf hor=T.

8.2.2 slopes for tracer iso-neutral mixing
In iso-neutral mixing r1 and r2 are the slopes between the iso-neutral and computa-

tional surfaces. Their formulation does not depend on the vertical coordinate used. Their
discrete formulation is found using the fact that the diffusive fluxes of locally referenced
potential density (i.e. insitu density) vanish. So, substituting T by ρ in (4.11) and set-
ting to zero diffusive fluxes in the three directions leads to the following definition for the
neutral slopes :

r1u =
e3u
e1u

δi+1/2[ρ]

δk+1/2[ρ]
i+1/2, k

r2v =
e3v
e2v

δj+1/2 [ρ]

δk+1/2[ρ]
j+1/2, k

r1w =
e3w
e1w

δi+1/2[ρ]
i, k+1/2

δk+1/2[ρ]

r2w =
e3w
e2w

δj+1/2[ρ]
j, k+1/2

δk+1/2[ρ]

(8.3)

As the mixing is performed along neutral surfaces, the gradient of ρ in (8.3) have to
be evaluated at the same local pressure (which, in decibars, is approximated by the depth
in meters in the model). Therefore (8.3) cannot be used as such, but further transformation
is needed depending on the vertical coordinate used :
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z-coordinate with full step : in (8.3) the densities appearing in the i and j derivatives
are taken at the same depth, thus the insitu density can be used. it is not the case
for the vertical derivatives. δk+1/2[ρ] is replaced by−ρN2/g, whereN2 is the local
Brunt-Vaisälä frequency evaluated following McDougall [1987] (see §4.8.2).

z-coordinate with partial step : the technique is identical to the full step case except
that at partial step level, the horizontal density gradient is evaluated as described in
§??.

s- or hybrid s-z coordinate : in the current release of NEMO, there is no specific treat-
ment for iso-neutral mixing in s-coordinate. In other word, iso-neutral mixing will
only be accurately represented with a linear equation of state (neos=1 or 2). In
the case of a ”true” equation of state, the evaluation of i and j derivatives in (8.3)
will include a pressure dependent part, leading to a wrong evaluation of the neutral
slopes.
Note : The solution for s-coordinate passes trough the use of different (and bet-
ter) expression for the constraint on iso-neutral fluxes. Following Griffies [2004],
instead of specifying directly that there is a zero neutral diffusive flux of locally
referenced potential density, we stay in the T -S plane and consider the balance
between the neutral direction diffusive fluxes of potential temperature and salinity :

α F(T ) = β F(S) (8.4)

This constraint leads to the following definition for the slopes :

r1u =
e3u
e1u

αu δi+1/2[T ]− βu δi+1/2[S]

αu δk+1/2[T ]
i+1/2, k

− βu δk+1/2[S]
i+1/2, k

r2v =
e3v
e2v

αv δj+1/2[T ]− βv δj+1/2[S]

αv δk+1/2[T ]
j+1/2, k

− βv δk+1/2[S]
j+1/2, k

r1w =
e3w
e1w

αw δi+1/2[T ]
i, k+1/2

− βw δi+1/2[S]
i, k+1/2

αw δk+1/2[T ]− βw δk+1/2[S]

r2w =
e3w
e2w

αw δj+1/2[T ]
j, k+1/2

− βw δj+1/2[S]
j, k+1/2

αw δk+1/2[T ]− βw δk+1/2[S]

(8.5)

where α and β, the thermal expansion and saline contracion coefficients introduced
in §4.8.2, have to be evaluated at the three velocity point. Inorder to save computa-
tion time, they should be approximated by the mean of their values at T -points (for
example in the case of α : αu = αT

i+1/2, αv = αT
j+1/2 and αw = αT

k+1/2).
Note that such a formulation could be also used in z and zps cases.

This implementation is a rather old one. It is similar to the one proposed by Cox
[1987], except for the background horizontal diffusion. Indeed, the Cox implementation
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of isopycnal diffusion in GFDL-type models requires a minimum background horizontal
diffusion for numerical stability reasons. To overcome this problem, several techniques
have been proposed in which the numerical schemes of the OGCM are modified [Weaver
and Eby 1997, Griffies et al. 1998]. Here, another strategy has been chosen [Lazar 1997] :
a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents the develop-
ment of grid point noise generated by the iso-neutral diffusive operator (Fig. 8.2.2). This
allows an iso-neutral diffusion scheme without additional background horizontal mixing.
This technique can be viewed as a diffusive operator that acts along large-scale (2 ∆x)
iso-neutral surfaces. The diapycnal diffusion required for numerical stability is thus mi-
nimized and its net effect on the flow is quite small when compared to the effect of a
horizontal background mixing.

Nevertheless, this iso-neutral operator does not ensure that variance cannot increase,
contrary to the Griffies et al. [1998] operator which has that property.

FIG. 8.1 – averaging procedure for isopycnal slope computation.

In addition and also for numerical stability reasons [Cox 1987, Griffies 2004], the
slopes are bounded by 1/100 everywhere. This limit is decreasing linearly to zero fom
70 meters depth and the surface (the fact that the eddies ”feel” the surface motivates this
flattening of isopycnals near the surface).

add here a discussion about the flattening of the slopes, vs tapering the coefficient.
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8.2.3 slopes for momentum iso-neutral mixing
The diffusive iso-neutral operator on momentum is the same as the on used on tracer

but applied to each component of the velocity (see (5.25) in section 5.5.2). The slopes
between the surface along which the diffusive operator acts and the surface of computation
(z- or s-surfaces) are defined at T -, f−, and uw-points for the u-component, and f − T -,
vw-points for the v-component. They are computed as follows from the slopes used for
tracer diffusion, i.e. (8.2) and (8.3) :

r1T = r1u
i r1f = r1u

i+1/2

r2f = r2v
j+1/2 r2T = r2v

j

r1uw = r1w
i+1/2 and r1vw = r1w

j+1/2

r2uw = r2w
j+1/2 r2vw = r2w

j+1/2

(8.6)

The major issue remains in the specification of the boundary conditions. The choice
made consists in keeping the same boundary conditions as for lateral diffusion along mo-
del level surfaces, i.e. using the shear computed along the model levels and with no addi-
tional friction at the ocean bottom (see §7.1).

8.3 Eddy Induced Velocity (traadv eiv.F90, ldfeiv.F90)
When Gent and McWilliams [1990] diffusion is used (key traldf eiv defined), an

eddy induced tracer advection term is added, the formulation of which depends on the
slopes of iso-neutral surfaces. Contrary to iso-neutral mixing, the slopes use here are
referenced to the geopotential surfaces, i.e. (8.2) is used in z-coordinates, and the sum
(8.2) + (8.3) in s-coordinates. The eddy induced velocity is given by :

u∗ =
1

e2ue3u
δk

[
e2uA

eiv
uw r1w

i+1/2
]

v∗ =
1

e1ue3v
δk

[
e1v A

eiv
vw r2w

j+1/2
]

w∗ =
1

e1we2w

{
δi

[
e2uA

eiv
uw r1w

i+1/2
]

+ δj

[
e1v A

eiv
vw r2w

j+1/2
]} (8.7)

where Aeiv is the eddy induced velocity coefficient set through aeiv, a nam traldf na-
melist parameter. The three components of the eddy induced velocity are computed and
add to the eulerian velocity in the mdltraadv eiv. This has been preferred to a separate
computation of the advective trends associated to the eiv velocity as it allows to take ad-
vantage of all the advection schemes offered for the tracers (see §4.1) and not only the 2nd

order advection scheme as in previous release of OPA [Madec et al. 1998]. This is parti-
cularly useful for passive tracers where positivityof the advection scheme is of paramount
importance.

At surface, lateral and bottom boundaries, the eddy induced velocity and thus the
advective eddy fluxes of heat and salt are set to zero.
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FIG. 8.2 – Vertical profile of the slope used for lateral mixing in the mixed layer :
(a) in the real ocean the slope is the iso-neutral slope in the ocean interior and
their have to adjust to the surface boundary (i.e. tend to zero at the surface as there
is no mixing across the air-sea interface : wall boundary condition). Nevertheless,
the profile between surface zero value and interior iso-neutral one is unknown,
and especially the value at the based of the mixed layer ; (b) profile of slope using
a linear tapering of the slope near the surface and imposing a maximum slope of
1/100 ; (c) profile of slope actuelly used in NEMO : linear decrease of the slope
from zero at the surface to its ocean interior value computed just below the mixed
layer. Note the huge change in the slope at the based of the mixed layer between
(b) and (c). .
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9.1 Vertical Mixing
The discrete form of the ocean subgrid scale physics has been presented in §4.3 and

§5.6. At the surface and bottom boundaries, the turbulent fluxes of momentum, heat and
salt have to be defined. At the surface they are prescribed from the surface forcing (see
Chap. 6), while at the bottom they are set to zero for heat and salt, unless a geothermal flux



128 Vertical Ocean Physics (ZDF)

forcing is prescribed as a bottom boundary condition (i.e. key trabbl defined, see §4.4.3),
and specified through a bottom friction parameterization for momentum (see §9.4).

In this section we briefly discuss the various choices offered to compute the vertical
eddy viscosity and diffusivity coefficients, Avmu , Avmv and AvT (AvS), defined at uw-,
vw- and w-points, respectively (see §4.3 and §5.6). These coefficients can be assumed
to be either constant, or a function of the local Richardson number, or computed from
a turbulent closure model (either TKE or KPP formulation). The computation of these
coefficients is initialized in zdfini.F90 module and performed in zdfric.F90, zdftke.F90 or
zdfkpp.F90 modules. The trends due to the vertical momentum and tracer diffusion, inclu-
ding the surface forcing, are computed and added to the general trend in dynzdf.F90 and
trazdf.F90 modules, respectively. These trends can be computed using either a forward
time scheme (cpp variable np zdfexp or a backward time scheme (default option) depen-
ding on the magnitude of the mixing coefficients used, and thus of the formulation used
(see §3.4).

9.1.1 Constant (key zdfcst)
!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------

ln_zdfnpc = .false. ! Non-Penetrative Convection
avm0 = 1.2e-4 ! Kz on momemtum (m2/s)
! ! (background Kz if not "key_zdfcst")
avt0 = 1.2e-5 ! Kz for tracers (m2/s)
! ! (background Kz if not "key_zdfcst")
ln_zdfevd = .true. ! enhanced vertical diffusion
avevd = 100. ! Kz for enhanced diffusion scheme (m2/s)
n_evdm = 0 ! enhanced mixing Kz apply on tracer (=0)
! ! or on both tracer and momentum (=1)
ln_zdfexp = .false. ! =T/F split explicit / implicit
n_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

When the key zdfcst is defined, the momentum and tracer vertical eddy coefficients
are set to constant values over the whole ocean. This is the crudest way to define the
vertical ocean physics. It is recommended to use this option only in process studies, not
in basin scale simulation. Typical values used in this case are :

Avmu = Avmv = 1.2 10−4 m2.s−1

AvT = AvS = 1.2 10−5 m2.s−1

These values are set through avm0 and avt0 namelist parameters. In any case, do not
use values smaller that those associated to the molecular viscosity and diffusivity, that is
∼ 10−6 m2.s−1 for momentum, ∼ 10−7 m2.s−1 for temperature and ∼ 10−9 m2.s−1 for
salinity.

9.1.2 Richardson Number Dependent (key zdfric)
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!-----------------------------------------------------------------------
&namric richardson number dependent vertical diffusion
!-----------------------------------------------------------------------
! "key_zdfric" ! Activate Kz =function of Ri

avmri = 100.e-4 ! maximum value of the vertical viscosity
alp = 5. ! coefficient of the parameterization
nric = 2 ! coefficient of the parameterization

/

When key zdfric is defined, a local Richardson number dependent formulation of
the vertical momentum and tracer eddy coefficients is set. The vertical mixing coeffi-
cients are diagnosed from the large scale variables computed by the model (order 0.5
closure scheme). In situ measurements allow to link vertical turbulent activity to large
scale ocean structures. The hypothesis of a mixing mainly maintained by the growth of
Kelvin-Helmholtz like instabilities leads to a dependency between the vertical turbulent
eddy coefficients and the local Richardson number (i.e. ratio of stratification over vertical
shear). Following Pacanowski and Philander [1981], the following formulation has been
implemented : 

AvT =
AvTric

(1 + a Ri)n
+AvTb

Avm =
AvT

(1 + a Ri)
+Avmb

(9.1)

whereRi = N2/ (∂zUh)
2 is the local Richardson number,N is the local brunt-Vaisälä fre-

quency (see §4.8.2), AvTb and Avmb are the constant background values set as in constant
case (see §9.1.1), and AvTric = 10−4 m2.s−1 is the maximum value that can be reached by
the coefficient when Ri ≤ 0, a = 5 and n = 2. The last three coefficients can be modified
by setting avmri, alp and nric namelist parameter, respectively.

9.1.3 TKE Turbulent Closure Scheme (key zdftke)
!-----------------------------------------------------------------------
&namtke ! turbulent eddy kinetic dependent vertical diffusion
!-----------------------------------------------------------------------
! "key_zdftke" ! Activate the TKE physics

ln_rstke = .false. ! restart with tke from a run without tke
nitke = 50 ! number of restart iterative loops
ediff = 0.1 ! coef. for avt (avt=ediff*mxl*sqrt(e))
ediss = 0.7 ! coef. for Kolmogoroff dissipation
ebb = 3.75 ! coef. for surface input of tke
efave = 1. ! coef. for enhance Kz on tke (avtke=efave*avm)
emin = 1.e-6 ! background value of tke (mˆ2/sˆ2)
emin0 = 1.e-4 ! surface minimum value of tke (mˆ2/sˆ2)

!! ri_c = 0.22222222 ! critic richardson number (default = 2/9)
nmxl = 2 ! mixing length type
! ! = 0 bounded by the distance to surface & bottom
! ! = 1 bounded by the local vertical scale factor
! ! = 2 abs( dz(mxl) /e3 ) < 1
! ! = 3 same as 2 with ldiss /= lmix
npdl = 1 ! prandtl number
! ! = 0 no vertical prandtl number (avt=avm)
! ! = 1 prandtl number = F(Ri) (avt=pdl*avm)
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! ! = 2 same as =1 but with a shapiro filter on pdl
nave = 1 ! horizontal filter on avt and amv (=1) or not (=0)
navb = 0 ! constant (=0) or profile (=1) background on avt

/

The vertical eddy viscosity and diffusivity coefficients are computed from a TKE
turbulent closure model based on a prognostic equation for ē, the turbulent kinetic energy,
and a closure assumption for the turbulent length scales. This turbulent closure model
has been developed by Bougeault and Lacarrere [1989] in atmospheric cases, adapted by
Gaspar et al. [1990] for oceanic cases, and embedded in OPA by Blanke and Delecluse
[1993] for equatorial Atlantic simulations. Since then, significant modifications have been
introduced by Madec et al. [1998] in both the implementation and the formulation of the
mixing length scale. The time evolution of ē is the result of the production of ē through
vertical shear, its destruction through stratification, its vertical diffusion and its dissipation
of Kolmogorov [1942] type :

∂ē

∂t
=
Avm

e3

[(
∂u

∂k

)2

+
(
∂v

∂k

)2
]
−AvT N2 +

1
e3

∂

∂k

[
Avm

e3

∂ē

∂k

]
− cε

ē3/2

lε
(9.2)

Avm = Ck lk
√
ē

AvT = Avm/Prt
(9.3)

where N designates the local Brunt-Vaisälä frequency (see §4.8.2), lε and lκ are the dis-
sipation and mixing turbulent length scales, Prt is the Prandtl number. The constants
Ck =

√
2/2 and Cε = 0.1 are designed to deal with vertical mixing at any depth [Gaspar

et al. 1990]. They are set through namelist parameter ediff and ediss. Prt can be set to
unity or, following Blanke and Delecluse [1993], be a function of the local Richardson
number, Ri :

Prt =


1 if Ri ≤ 0.2

5Ri if 0.2 ≤ Ri ≤ 2
10 if 2 ≤ Ri

Note that a horizontal Shapiro filter can be optionally applied to Ri. Nevertheless it is
an obsolescent option that is notrecommanded. The choice of Prt is controlled by npdl
namelist parameter.

For computational efficiency, the original formulation of the turbulent length scales
proposed by Gaspar et al. [1990] has been simplified. Four formulations are proposed, the
choice of which is controlled by nmxl namelist parameter. The first two are based on the
following first order approximation [Blanke and Delecluse 1993] :

lk = lε =
√

2ē/N (9.4)

which is obtained in a stable stratified region with constant values of the brunt-Vaisälä fre-
quency. The resulting turbulent length scale is bounded by the distance to the surface or
to the bottom (nmxl=0) or by the local vertical scale factor (nmxl=1). Blanke and Dele-
cluse [1993] notice that this simplification has two major drawbacks : it has no sense for
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lup

ldwn

l

lk

FIG. 9.1 – Illustration of the mixing length computation.

local unstable stratification and the computation no longer uses the whole information
contained in the vertical density profile. To overcome this drawbacks, Madec et al. [1998]
introduces the nmxl=2 or 3 cases, which add of an hypothesis on the vertical gradient of
the computed length scale. So, the length scales are first evaluated as in (9.4) and then
bounded such that :

1
e3

∣∣∣∣ ∂l∂k
∣∣∣∣ ≤ 1 with l = lk = lε (9.5)

(9.5) means that the vertical variations of the length scale cannot be larger than the va-
riations of depth. It provides a better approximation of the Gaspar et al. [1990] formulation
while being much less time consuming. In particular, it allows the length scale to be limi-
ted not only by the distance to the surface or to the ocean bottom but also by the distance
to a strongly stratified portion of the water column such as the thermocline (Fig. 9.1.3). In
order to imposed (9.5) constraint, we introduce two additonnal length scal : lup and ldwn,
the upward and downward length scale, and evaluate the dissipation and mixing turbulent
length scales as (caution here we use the numerical indexation) :

l(k)up = min
(
l(k) , l(k+1)

up + e
(k)
3T

)
from k = 1 to jpk

l
(k)
dwn = min

(
l(k) , l

(k−1)
dwn + e

(k−1)
3T

)
from k = jpk to 1

(9.6)

where l(k) is compute using (9.4), i.e. l(k) =
√

2ē(k)/N (k).
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In the nmxl=2 case, the dissipation and mixing turbulent length scales take a same
value : lk = lε = min ( lup , ldwn ), while in the nmxl=2 case, the dissipation and mixing
turbulent length scales are give as in Gaspar et al. [1990] :

lk =
√
lup ldwn

lε = min ( lup , ldwn )
(9.7)

At the sea surface the value of ē is prescribed from the wind stress field : ē = ebb |τ |
(ebb = 60 by default) with a minimal threshold of emin0 = 10−4 m2.s−2 (namelist
parameters). Its bottom value is assumed to be equal to the value of the level just above.
The time integration of the ē equation may formally lead to negative values because the
numerical scheme does not ensure the positivity. To overcome this problem, a cut-off in
the minimum value of ē is used. Following Gaspar et al. [1990], the cut-off value is set
to
√

2/2 10−6 m2.s−2. This allows the subsequent formulations to match Gargett [1984]
one for the diffusion in the thermocline and deep ocean (AvT = 10−3/N). In addition,
a cut-off is applied on Avm and AvT to avoid numerical instabilities associated with too
weak vertical diffusion. They must be specified at least larger than the molecular values,
and are set through avm0 and avt0 (namelist parameters).

9.1.4 K Profile Parametrisation (KPP) (key zdfkpp)
!-----------------------------------------------------------------------
&namkpp ! K-Profile Parameterization dependent vertical mixing
!-----------------------------------------------------------------------
! "key_zdfkpp" ! activate the KPP physics
! "key_kppcustom" ! KPP option 1
! "key_kpplktb" ! KPP option 2

ln_kpprimix = .true. ! shear instability mixing (default T)
difmiw = 1.0e-04 ! constant internal wave viscosity (m2/s)
difsiw = 0.1e-04 ! constant internal wave diffusivity (m2/s)
Riinfty = 0.8 ! local Richardson Number limit for shear instability
difri = 0.0050 ! maximum shear mixing at Rig = 0 (m2/s)
bvsqcon = -0.01e-07 ! Brunt-Vaisala squared (1/s**2) for maximum convection
difcon = 1. ! maximum mixing in interior convection (m2/s)
navb = 0 ! horizontal averaged (=1) or not (=0) on avt and amv
nave = 1 ! constant (=0) or profile (=1) background on avt

/

The KKP scheme has been implemented by J. Chanut ... Add a description of KPP here.

9.2 Convection
!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------

ln_zdfnpc = .false. ! Non-Penetrative Convection
avm0 = 1.2e-4 ! Kz on momemtum (m2/s)
! ! (background Kz if not "key_zdfcst")
avt0 = 1.2e-5 ! Kz for tracers (m2/s)
! ! (background Kz if not "key_zdfcst")
ln_zdfevd = .true. ! enhanced vertical diffusion
avevd = 100. ! Kz for enhanced diffusion scheme (m2/s)
n_evdm = 0 ! enhanced mixing Kz apply on tracer (=0)
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! ! or on both tracer and momentum (=1)
ln_zdfexp = .false. ! =T/F split explicit / implicit
n_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

Static instabilities (i.e. light potential densities under heavy ones) may occur at par-
ticular ocean grid points. In nature, convective processes quickly re-establish the static
stability of the water column. These processes have been removed from the model via the
hydrostatic assumption : they must be parameterized. Three parameterisations are avai-
lable to deal with convective processes : either a non-penetrative convective adjustment or
an enhanced vertical diffusion, or/and the use of a turbulent closure scheme.

9.2.1 Non-Penetrative Convective Adjustment (ln tranpc=T)
!-----------------------------------------------------------------------
&namnpc ! non penetrative convective adjustment
!-----------------------------------------------------------------------

nnpc1 = 1 ! computation frequency (time-step)
nnpc2 = 365 ! control print frequency (time-step)

/

The non-penetrative convective adjustment algorithm is used when ln zdfnpc=T. It
is applied at each nnpc1 time step and mixes downwards instantaneously the statically
unstable portion of the water column, but only until the density structure becomes neu-
trally stable (i.e. until the mixed portion of the water column has exactly the density of
the water just below) [Madec et al. 1991a]. This algorithm is an iterative process used
in the following way (Fig. 9.2.1) : going from the top of the ocean towards the bottom,
the first instability is searched. Assume in the following that the instability is located bet-
ween levels k and k + 1. The two levels are vertically mixed, for potential temperature
and salinity, conserving the heat and salt contents of the water column. The new density
is then computed by a linear approximation. If the new density profile is still unstable
between levels k + 1 and k + 2, levels k, k + 1 and k + 2 are then mixed. This process is
repeated until stability is established below the level k (the mixing process can go down
to the ocean bottom). The algorithm is repeated to check if the density profile between
level k − 1 and k is unstable and/or if there is no deeper instability.

This algorithm is significantly different from mixing two by two statically unstable
levels. The latter procedure cannot converge with a finite number of iterations for some
vertical profiles while the algorithm used in OPA converges for any profile in a number
of iterations less than the number of vertical levels. This property is of paramount im-
portance as pointed out by Killworth [1989] : it avoids the existence of permanent and
unrealistic static instabilities at the sea surface. This non-penetrative convective algorithm
has been proved successful in studying the deep water formation in the north-western
Mediterranean Sea [Madec et al. 1991a;b, Madec and Crépon 1991].

Note that in this algorithm the potential density referenced to the sea surface is used
to check whether the density profile is stable or not. Moreover, the mixing in potential
density is assumed to be linear. This assures the convergence of the algorithm even when
the equation of state is non-linear. Small static instabilities can thus persist due to cabbe-
ling : they will be treated at the next time step. Moreover, temperature and salinity, and
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FIG. 9.2 – Example of an unstable density profile treated by the non penetrative
convective adjustment algorithm. 1st step : the initial profile is checked from the
surface to the bottom. It is found to be unstable between levels 3 and 4. They
are mixed. The resulting ρ is still larger than ρ(5) : levels 3 to 5 are mixed. The
resulting ρ is still larger than ρ(6) : levels 3 to 6 are mixed. The 1st step ends since
the density profile is then stable below the level 3. 2nd step : the new ρ profile is
checked following the same procedure as in 1st step : levels 2 to 5 are mixed. The
new density profile is checked. It is found stable : end of algorithm.

thus density, are mixed, but the corresponding velocity fields remain unchanged. When
using a Richardson dependent eddy viscosity, the mixing of momentum is done through
the vertical diffusion : after a static adjustment, the Richardson number is zero and thus
the eddy viscosity coefficient is at a maximum. When this algorithm is used with constant
vertical eddy viscosity, spurious solution can occur as the vertical momentum diffusion
remains small even after a static adjustment. In that latter case, we recommend to add mo-
mentum mixing in a manner that mimics the mixing in temperature and salinity [Speich
1992, Speich et al. 1996].

9.2.2 Enhanced Vertical Diffusion (ln zdfevd=T)
!-----------------------------------------------------------------------
&namzdf ! vertical physics
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!-----------------------------------------------------------------------
ln_zdfnpc = .false. ! Non-Penetrative Convection
avm0 = 1.2e-4 ! Kz on momemtum (m2/s)
! ! (background Kz if not "key_zdfcst")
avt0 = 1.2e-5 ! Kz for tracers (m2/s)
! ! (background Kz if not "key_zdfcst")
ln_zdfevd = .true. ! enhanced vertical diffusion
avevd = 100. ! Kz for enhanced diffusion scheme (m2/s)
n_evdm = 0 ! enhanced mixing Kz apply on tracer (=0)
! ! or on both tracer and momentum (=1)
ln_zdfexp = .false. ! =T/F split explicit / implicit
n_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T

/

The enhanced vertical diffusion parameterization is used when ln zdfevd is defined.
In this case, the vertical eddy mixing coefficients are assigned to be very large (a typical
value is 1 m2s−1) in regions where the stratification is unstable (i.e. when the Brunt-
Vaisälä frequency is negative) [Lazar 1997, Lazar et al. 1999]. This is done either on tra-
cers only (n evdm=0) or on both momentum and tracers (n evdm=1) mixing coefficients.

In practice, when N2 ≤ 10−12, AvTT and AvST are set to a large value, avevd, and if
n evdm=1, the four neighbouring Avmu and Avmv . Typical value for avevd is in-between
1 and 100 m2.s−1. This parameterisation of convective processes is less time consuming
than the convective adjustment algorithm presented above when mixing both tracers and
momentum in case of static instabilities. It requires the use of an implicit time stepping
on vertical diffusion terms (i.e. ln zdfexp=F).

9.2.3 Turbulent Closure Scheme (key zdftke)
The turbulent closure scheme presented in §9.1.3 and used when the key zdftke

is defined allows, in theory, to deal with statically unstable density profiles. In such a
case, the term of destruction of turbulent kinetic energy through stratification in (9.2) be-
comes a source term as N2 is negative. It results large values of both AvTT and the four
neighbouringAvmu and Avmv (up to 1 m2s−1) that are able to restore the static stability of
the water column in a way similar to that of the enhanced vertical diffusion parameteri-
zation (§9.2.2). Nevertheless, the eddy coefficients computed by the turbulent scheme do
usually not exceed 10−2m.s−1 in the vicinity of the sea surface (first ocean layer) due to
the bound of the turbulent length scale by the distance to the sea surface (see §VI.7-c). It
can thus be useful to combine the enhanced vertical diffusion with the turbulent closure,
i.e. defining np zdfevd and key zdftke CPP variables all together.

The KPP scheme includes enhanced vertical diffusion in the case of convection, as
governed by the variables bvsqcon and difcon found in zdfkpp.F90, therefore np zdfevd
should not be used with the KPP scheme.

9.3 Double Diffusion Mixing (key zdfddm)
!-----------------------------------------------------------------------
&namddm ! double diffusive mixing parameterization
!-----------------------------------------------------------------------
! "key_zdfddm" ! Activate ddm phisics
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avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
hsbfr = 1.6 ! heat/salt buoyancy flux ratio

/

Double diffusion occurs when relatively warm, salty water overlies cooler, fresher
water, or vice versa. The former condition leads to salt fingering and the latter to diffu-
sive convection. Double-diffusive phenomena contribute to diapycnal mixing in extensive
regions of the oceans. Merryfield et al. [1999] include a parameterization of such phe-
nomena in a global ocean model and show that it leads to relatively minor changes in
circulation but exerts significant regional influences on temperature and salinity.

Diapycnal mixing of S and T are described by diapycnal diffusion coefficients

AvT = AvTo +AvTf +AvTd

AvS = AvSo +AvSf +AvSd

where subscript f represents mixing by salt fingering, d by diffusive convection, and o
by processes other than double diffusion. The rates of double-diffusive mixing depend on
buoyancy ratio Rρ = α∂zT/∂zS, where α and β are coefficients of thermal expansion
and saline contraction (see §4.8.1. To represent mixing of S and T by salt fingering, we
adopt the diapycnal diffusivities suggested by Schmitt (1981) :

AvSf =

{
A∗v

1+(Rρ/Rc)n if Rρ > 1 and N2 > 0

0 otherwise
(9.8)

AvTf = 0.7 AvSf /Rρ (9.9)

The factor 0.7 in (9.8) reflects the measured ratio αFT /βFS ≈ 0.7 of buoyancy fluxes
due to transport of heat and salt (e.g., McDougall and Taylor 1984). Following Merryfield
et al. [1999], we adopt Rc = 1.6, n = 6, and A∗v = 10−4 m2.s−1.

To represent mixing of S and T by diffusive layering, the diapycnal diffusivities sug-
gested by Federov (1988) is used :

AvTd =

{
1.3635 exp

(
4.6 exp

[
−0.54 (R−1

ρ − 1)
])

if 0 < Rρ < 1 and N2 > 0
0 otherwise

(9.10)

AvSd =


AvTd (1.85Rρ − 0.85) if 0.5 ≤ Rρ < 1 and N2 > 0
AvTd 0.15 Rρ if 0 < Rρ < 0.5 and N2 > 0
0 otherwise

(9.11)

The dependences of (9.8) to (9.10) on Rρ are illustrated in Fig. 9.3. Implementing
this requires computing Rρ at each grid point and time step. This is done in eosbn2.F90
at the same time as N2 is computed. This avoids duplication in the computation of α and
β (which is usually quite expensive).
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FIG. 9.3 – From Merryfield et al. [1999] : (a) Diapycnal diffusivities AvT
f and AvS

f

for temperature and salt in regions of salt fingering. Heavy curves denote A∗v =
10−3 m2.s−1 and thin curves A∗v = 10−4 m2.s−1 ; (b) diapycnal diffusivities AvT

d

and AvT
d for temperature and salt in regions of diffusive convection. Heavy curves

denote the Federov parameterization and thin curves the Kelley parameterization.
The latter is not implemented in NEMO

9.4 Bottom Friction
!-----------------------------------------------------------------------
&nambfr ! bottom friction
!-----------------------------------------------------------------------

nbotfr = 1 ! type of bottom friction
! ! = 0 : no slip , = 2 : nonlinear friction

! = 1 : linear friction, = 3 : free slip
bfri1 = 4.e-4 ! bottom drag coefficient (linear case)
bfri2 = 1.e-3 ! bottom drag coefficient (non linear case)
bfeb2 = 2.5e-3 ! bottom tke background (mˆ2/sˆ2)

/

Both surface momentum flux (wind stress) and the bottom momentum flux (bottom
friction) enter the equations as a condition on the vertical diffusive flux. For the bottom
boundary layer, one has :

Avm (∂Uh/∂z) = Fh (9.12)

where Fh is supposed to represent the horizontal momentum flux outside the logarith-
mic turbulent boundary layer (thickness of the order of 1 m in the ocean). How Fh in-
fluences the interior depends on the vertical resolution of the model near the bottom re-
lative to the Ekman layer depth. For example, in order to obtain an Ekman layer depth
d =

√
2 Avm/f = 50 m, one needs a vertical diffusion coefficient Avm = 0.125 m2s−1

(for a Coriolis frequency f = 10−4 m2s−1). With a background diffusion coefficient
Avm = 10−4 m2s−1, the Ekman layer depth is only 1.4 m. When the vertical mixing
coefficient is this small, using a flux condition is equivalent to entering the viscous forces
(either wind stress or bottom friction) as a body force over the depth of the top or bottom
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model layer. To illustrate this, consider the equation for u at k, the last ocean level :

∂u (k)
∂t

=
1
e3u

[
Avm (k)

U (k − 1)− U (k)
e3uw (k − 1)

− Fu

]
≈ − Fu

e3u
(9.13)

For example, if the bottom layer thickness is 200 m, the Ekman transport will be distribu-
ted over that depth. On the other hand, if the vertical resolution is high (1 m or less) and a
turbulent closure model is used, the turbulent Ekman layer will be represented explicitly
by the model. However, the logarithmic layer is never represented in current primitive
equation model applications : it is necessary to parameterize the flux Fh. Two choices are
available in OPA : a linear and a quadratic bottom friction. Note that in both cases, the
rotation between the interior velocity and the bottom friction is neglected in the present
release of OPA.

9.4.1 Linear Bottom Friction
(namelist !nbotfr : nbotfr = 0, = 1 or = 3)

The linear bottom friction parameterization assumes that the bottom friction is pro-
portional to the interior velocity (i.e. the velocity of the last model level) :

Fh =
Avm

e3

∂Uh

∂k
= rUb

h (9.14)

where Ub
h is the horizontal velocity vector of the bottom ocean layer and r a friction

coefficient expressed in m.s−1. This coefficient is generally estimated by setting a typical
decay time τ in the deep ocean, r = H/τ . Commonly accepted values of τ are of the order
of 100 to 200 days [Weatherly 1984]. A value τ−1 = 10−7 s−1 corresponding to 115 days
is usually used in quasi-geostrophic models. One may consider the linear friction as an
approximation of quadratic friction, r ≈ 2 CD Uav (Gill [1982], Eq. 9.6.6). With a drag
coefficient CD = 0.002, a typical value of tidal currents Uav = 0.1 m.s−1, and assuming
an ocean depth H = 4000 m, the resulting friction coefficient is r = 4 10−4 m.s−1. This
is the default value used in OPA. It corresponds to a decay time scale of 115 days. It can
be changed by specifying bfric1 (namelist parameter).

In the code, the bottom friction is specified by updating the value of the vertical eddy
coefficient at the bottom level. Indeed, the discrete formulation of (9.14) at the last ocean
T−level, using the fact that Uh = 0 inside the bottom, leads to

Avmu = r e3uw

Avmv = r e3uw
(9.15)

Such an update is done in zdfbfr.F90 when nbotfr=1 and the value of r used is bfric1.
Setting nbotfr=3 is equivalent to set r = 0 and leads to a free-slip bottom boundary
condition, while setting nbotfr=0 imposes r = 2 AU

vb, where AU
vb is the background ver-

tical eddy coefficient : a no-slip boundary condition is used. Note that this latter choice
generally leads to an underestimation of the bottom friction : for a deepest level thickness
of 200 m and AU

vb = 10−4m2.s−1, the friction coefficient is only r = 10−6m.s−1.
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9.4.2 Non-Linear Bottom Friction
(namelist !nbotfr : nbotfr = 2)

The non-linear bottom friction parameterization assumes that the bottom friction is
quadratic :

Fh =
Avm

e3

∂Uh

∂k
= CD

√
u2
b + v2

b + eb Ub
h (9.16)

with Ub
h = (ub , vb) the horizontal interior velocity (i.e. the horizontal velocity of

the bottom ocean layer), CD a drag coefficient, and eb a bottom turbulent kinetic energy
due to tides, internal waves breaking and other short time scale currents. A typical value
of the drag coefficient is CD = 10−3. As an example, the CME experiment [?] uses
CD = 10−3 and eb = 2.5 10−3m2.s−2, while the FRAM experiment [?] uses eb = 0 and
eb = 2.5 10−3m2.s−2. The FRAM choices have been set as default value (bfric2 and
bfeb2 namelist parameters).

As for the linear case, the bottom friction is specified in the code by updating the value
of the vertical eddy coefficient at the bottom level :

Avmu = CD e3uw

[
u2 +

(
¯̄vi+1,j

)2 + eb

]1/2
Avmv = CD e3uw

[(
¯̄ui+1,j

)2 + v2 + eb

]1/2 (9.17)

This update is done in zdfbfr.F90. The coefficients that control the strength of the non-
linear bottom friction are initialized as namelist parameters : (CD= bfri2, and eb =bfeb2).
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10.1 Representation of Unresolved Straits

10.1.1 Hand made geometry changes
• reduced scale factor, also called partially open face (Hallberg, personnal communi-

cation 2006) • increase of the viscous boundary layer by local increase of the fmask value
at the coast

Add a short description of scale factor changes staff and fmask increase

10.1.2 Cross Land Advection (tracla module)
!-----------------------------------------------------------------------
&namcro ! cross land advection
!-----------------------------------------------------------------------
! n_cla advection between 2 ocean pts separates by land

n_cla = 1
/

Add a short description of CLA staff here or in lateral boundary condition chapter ?

10.2 Closed seas

10.3 Sub-Domain Functionality (jpizoom, jpjzoom)
The sub-domain functionality, also improperly called zoom option (improperly be-

cause it is not associated with a change in model resolution) is a quite simple function
that allows to perform a simulation over a sub-domain of an already defined configuration
(i.e. without defining a new set of mesh, initial state and forcings). This option can be
useful for testing the user setting of surface boundary conditions, or the initial ocean state
of a huge ocean model configuration while having a small central memory requirement.
It can also be used to easily test specific physics in a sub-domain (for example, test of
the coupling between sea-ice and ocean model over the Arctic or Antarctic ocean as they
are set in the global ocean version of OPA [Madec et al. 1996]. In standard, this option
does not include any specific treatment for ocean boundaries of the sub-domain : they are
considered as artificial vertical walls. Nevertheless, it is quite easy to add a restoring term
toward a climatology in the vicinity of those boundaries (see §4.6).

In order to easily define a sub-domain over which the computation can be performed,
the dimension of all input arrays (ocean mesh, bathymetry, forcing, initial state, ...) are de-
fined as jpidta, jpjdta and jpkdta (par oce.F90 module), while the computational domain
is defined through jpiglo, jpjglo and jpk (par oce.F90 module). When running the mo-
del over the whole configuration, the user set jpiglo=jpidta jpjglo=jpjdta and jpk=jpkdta.
When running the model over a sub-domain, the user have to provide the size of the sub-
domain, (jpiglo, jpjglo, jpkglo), and the indices of the south western corner as jpizoom
and jpjzoom in the par oce.F90 module (Fig. 10.3).
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Viscous Boundary
layer

fmask set to value > 2

FIG. 10.1 – Example of the Gibraltar strait defined in a 1 ˚ x 1 ˚ mesh. Top :
using partially open cells. The meridional scale factor at V -point is reduced on
both sides of the strait to account for the real width of the strait (about 20 km).
Note that the scale factors of the strait T -point remains unchanged. Bottom : using
viscous boundary layers. The four fmask along the strait coastlines are set to a
value larger than 4, i.e. ”strong” no-slip case (see Fig.7.1) creating a large viscous
boundary layer that allows a reduced transport through the strait.
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Note that a third set of dimension exist, jpi, jpj and jpk which is actually used to
perform the computation. It is set by default to jpi=jpjglo and jpj=jpjglo, except for mas-
sively parallel computing where the computational domain is laid out on local processor
memories following a 2D horizontal splitting (see §IV.2-c)

jpjdta

jpidta1
1

jpjzoom

jpizoom

input data
domain

model
domain

jpiglo1
1

jpjglo

FIG. 10.2 – position of a model domain compared to the data input domain when
the zoom functionality is used.

10.4 Water column model : 1D model (key cfg 1d)
The 1D model is a stand alone water column based on the 3D NEMO system. It can

be applied to the ocean alone or to the ocean-ice system and can include passive tracers or
a biogeochemical model. It is set up by defining the key cfg 1d CPP key. This 1D model
is a very useful tool (a) to learn about the physics and numerical treatment of vertical
mixing processes ; (b) to investigate suitable parameterizations of unresolved turbulence
(wind steering, langmuir circulation, skin layers) ; (c) to compare the behaviour of dif-
ferent mixing vertical scheme ; (d) to perform sensitivity study to the vertical diffusion on
a particular point of the ocean global domain ; (d) to access to specific diagnostics, aside
from the standard model variables, because of having small in core memory requirement.

The methodology is based on the use of the zoom functionality (see §10.3), and the
addition of some specific routines. There is no need of defining a new set of mesh, bathy-
metry, initial state and forcing, as the 1D model will use those of the configuration it is a
zoom of.
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10.5 Accelerating the Convergence (nn acc = 1)
!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

ntopo = 1 ! = 1 read the bathymetry_level
e3zps_min = 5. ! minimum thickness of the partial step is the min of
e3zps_rat = 0.1 ! e3zps_min and e3zps_rat * e3t (with 0<e3zps_rat<1)
nmsh = 0 ! =1 create a mesh file (coordinates, scale factors, masks)
nacc = 0 ! the acceleration of convergence method
! ! = 0, no acceleration, rdt = rdttra
! ! = 1, acceleration used, rdt < rdttra(k)
atfp = 0.1 ! asselin time filter parameter
rdt = 5760. ! time step for the dynamics (and tracer if nacc=0)
rdtmin = 5760. ! minimum time step on tracers
rdtmax = 5760. ! maximum time step on tracers
rdth = 800. ! depth variation of tracer time step
rdtbt = 90. ! barotropic time step (for the time splitting algorithm)
nfice = 5 ! frequency of ice model call
nfbulk = 5 ! frequency of bulk formulea call (not used if ice used)
nclosea = 0 ! = 0 no closed sea in the model domain

! ! = 1 closed sea (Caspian Sea, Great US Lakes...)
/

Searching an equilibrium state with an ocean model requires very long time integra-
tion (a few thousand years for a global model). Due to the size of the time step required for
numerical stability consideration (less than a few hours), this is usually requires a large
elapse time. In order overcome this problem, Bryan [1984] introduces a technique that
allows to accelerate the spin up to the equilibrium. It consists in using a larger time step in
the thermodynamic evolution equations than in the dynamic evolution equations. It does
not affect the equilibrium solution but modifies the trajectory to reach it.

The acceleration of convergence is used when nn acc=1. In that case, ∆t = rdt is the
time step of dynamics while ∆̃t = rdttra is the tracer time-step. Both are settled from
rdt and rdttra namelist parameters. The set of prognostic equations to solve becomes :

∂Uh

∂t
≡

Ut+1
h − Ut−1

h

2∆t
= . . .

∂T

∂t
≡ T t+1 − T t−1

2∆̃t
= . . .

∂S

∂t
≡ St+1 − St−1

2∆̃t
= . . .

(10.1)

Bryan [1984] has analysed the consequences of this distorted physics. Free waves
have a slower phase speed, their meridional structure is slightly modified, and the growth
rate of baroclinically unstable waves is reduced but there is a wider range of instability.
This technique is efficient for searching an equilibrium state in coarse resolution models.
However its application is not suitable for many oceanic problems : it cannot be used
for transient or time evolving problems (in particular, it is very questionable to keep this
technique when using a seasonal cycle in the forcing fields), and it cannot be used in high-
resolution models where baroclinically unstable processes are important. Moreover, the
vertical variation of ∆t̃ implies that the heat and salt contents are no more conserved due
to the vertical coupling of the ocean level through both advection and diffusion.
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10.6 Model optimisation, Control Print and Benchmark
!-----------------------------------------------------------------------
&nam_ctl ! Control prints & Benchmark
!-----------------------------------------------------------------------

ln_ctl = .false. ! trends control print (expensive!)
nprint = 0 ! level of print (0 no print)
nictls = 0 ! start i indice to make the control SUM (very usefull to compare mono-
nictle = 0 ! end i indice to make the control SUM (-versus multi processor runs)
njctls = 0 ! start j indice to make the control SUM (very usefull to compare mono-
njctle = 0 ! end j indice to make the control SUM (-versus multi processor runs)
isplt = 1 ! number of processors following i
jsplt = 1 ! number of processors following j
nbench = 0 ! = 1 Bench run (no physical meaning)

! = 0 Standard simulation
nbit_cmp = 0 ! = 1 enables bit comparison between mono and mpp runs

! = 0 faster mpp run
/

Three points to be described here :
• Vector and memory optimisation :
key vectopt loop enable the internal loop collapse, a very efficient way to increase

the length of vector and thus speed up the model on vector computers.
Add here also one word on NPROMA technique that has been found useless, since

compiler have made significant progress during the last decade.
Add also one word on NEC specific optimisation (Novercheck option for example)
key vectopt memory has been introduced in order to reduce the memory require-

ment of the model. This is obviously done by incresing the CPU time requirement, as
it suppress intermediate computation saved in in-core memory. This possibility have not
been intensively used. In fact up to now, it only concern the TKE physics, in which, when
key vectopt memory is defined, the coefficient used for horizontal smoothing of ATv and
Amv are no more computed once for all. This reduces the memory requirement by three
2D arrays.

• Control print : describe here 4 things :
1- ln ctl : compute and print the inner domain averaged trends in all TRA, DYN LDF

and ZDF modules. Very useful to detect the origin of an undesired change in model results.
2- also ln ctl but using the nictl. njctl. namelist parameters to check the origin of

differences between mono and multi processor
3- key esopa (to be rename key nemo) : also a option of model management. When

defined, this key force the activation of all options and CPP keys. For example, all the
tracer and momentum advection scheme are called ! There is therefore no physical mea-
ning associated with model results. In fact, this option allows both the compilator and the
model run to go through all the Fortran lines of the model. This allows to check is there
is obvious compilation or running bugs for CPP options, and running bugs for namelist
options.

5- last digit comparison (nbit cmp). In MPP simulation, the computation of sum of
the whole domain is performed as the sum over all processors of the sum of the inner
domain of each processor. This double sum nevr give exactly the same result as a single
sum over the whole domain, due to truncature differences. The ”bit comparison” option
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has been introduced in order to be able to check that mono-processor and multi-processor
give exactly the same results.

• Benchmark (nbench). This option, defines a benchmark run based on GYRE confi-
guration in which the resolution remains the same whatever the domain size is. This allows
to run very large model domain by just changing the domain size (jpiglo, jpjglo) without
adjusting neither the time-step nor the physical parametrisations.

10.7 Elliptic solvers (SOL)
!-----------------------------------------------------------------------
&namsol ! elliptic solver / island / free surface
!-----------------------------------------------------------------------

nsolv = 1 ! type of elliptic solver
! ! =1 preconditioned conjugate gradient (pcg)

! =2 successive-over-relaxation (sor)
! =3 FETI (fet) (+ "key_feti")
! =4 sor with extra outer halo

nsol_arp = 0 ! absolute/relative (0/1) precision convergence test
nmin = 300 ! minimum of iterations for the SOR solver
nmax = 800 ! maximum of iterations for the SOR solver
nmod = 10 ! frequency of test for the SOR solver
eps = 1.E-6 ! absolute precision of the solver
resmax = 1.E-10 ! absolute precision for the SOR solver
sor = 1.92 ! optimal coefficient for SOR solver
epsisl = 1.e-10 ! absolute precision on stream function solver
nmisl = 4000 ! maximum pcg iterations for island ("key_islands")
rnu = 1. ! strength of the additional force ("key_dynspg_flt)

/

The computation of the surface pressure gradient with a rigid lid assumption requires
to compute ∂tψ, the time evolution of the barotropic streamfunction. ∂tψ is solution of an
elliptic equation (I.2.4) for which two solvers are available, a Successive-Over-Relaxation
(SOR) or a preconditioned conjugate gradient (PCG) [Madec et al. 1988, Madec 1990].
The PCG is a very efficient method for solving elliptic equations on vector computers. It
is a fast and rather easy to use method, which is an attractive feature for a large number
of ocean situations (variable bottom topography, complex coastal geometry, variable grid
spacing, islands, open or cyclic boundaries, etc ...). It does not require the search of an
optimal parameter as in the SOR method. Nevertheless, the SOR has been kept because it
is a linear solver, a very useful property when using the adjoint model of OPA.

The surface pressure gradient is computed in dynspg.F90. The default option is the
use of PCG or SOR depending on nsolv (namelist parameter). At each time step the time
derivative of the barotropic streamfunction is the solution of (II.2.3). Introducing the fol-
lowing coefficients :

CNSi,j =
e2v(i, j)

(Hv(i, j)e1v(i, j))

CEWi,j =
e1u(i, j)

(Hu(i, j)e2u(i, j))
Bi,j = δi (e2vMv)− δj (e1uMu)

(10.2)
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the five-point finite difference equivalent equation (II.2.3) can be rewritten as :

CNSi+1,j

(
∂ψ

∂t

)
i+1,j

+ CEWi,j+1

(
∂ψ

∂t

)
i,j+1

+ CNSi,j

(
∂ψ

∂t

)
i−1,j

+ CEWi,j

(
∂ψ

∂t

)
i,j−1

−
(
CNSi+1,j + CEWi,j+1 + CNSi,j + CEWi,j

)(∂ψ
∂t

)
i,j

= Bi,j (10.3)

(10.3) is a linear symmetric system of equations. All the elements of the corresponding
matrix A vanish except those of five diagonals. With the natural ordering of the grid points
(i.e. from west to east and from south to north), the structure of A is block-tridiagonal with
tridiagonal or diagonal blocks. A is a positive-definite symmetric matrix of size (jpi ·
jpj)2, and B, the right hand side of (10.3), is a vector.

10.7.1 Successive Over Relaxation nsolv=2
Let us introduce the four cardinal coefficients :ASi,j = CNSi,j /Di,j ,AWi,j = CEWi,j /Di,j ,

AEi,j = CEWi,j+1/Di,j and ANi,j = CNSi+1,j/Di,j , and define B̃i,j = Bi,j/Di,j , where
Di,j = CNSi,j + CNSi+1,j + CEWi,j + CEWi,j+1 (i.e. the diagonal of A). (VII.5.1) can be re-
written as :

ANi,j

(
∂ψ

∂t

)
i+1,j

+ AEi,j

(
∂ψ

∂t

)
i,j+1

+ ASi,j

(
∂ψ

∂t

)
i−1,j

+ AWi,j

(
∂ψ

∂t

)
i,j−1

−
(
∂ψ

∂t

)
i,j

= B̃i,j (10.4)

The SOR method used is an iterative method. Its algorithm can be summarised as
follows [see Haltiner and Williams [1980] for further discussion] :

initialisation (evaluate a first guess from former time step computations)(
∂ψ

∂t

)0

i,j

= 2
(
∂ψ

∂t

)t
i,j

−
(
∂ψ

∂t

)t−1

i,j

(10.5)

iteration n, from n = 0until convergence, do :

Rni,j = ANi,j

(
∂ψ

∂t

)n
i+1,j

+ AEi,j

(
∂ψ

∂t

)n
i,j+1

+ ASi,j

(
∂ψ

∂t

)n+1

i−1,j

+ AWi,j

(
∂ψ

∂t

)n+1

i,j−1

−
(
∂ψ

∂t

)n
i,j

− B̃i,j (10.6)

(
∂ψ

∂t

)n+1

i,j

=
(
∂ψ

∂t

)n
i,j

+ ω Rni,j (10.7)
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where ω satisfies 1 ≤ ω ≤ 2. An optimal value exists for ω which accelerates significantly
the convergence, but it has to be adjusted empirically for each model domain, except for
an uniform grid where an analytical expression for ω can be found [Richtmyer and Morton
1967]. This parameter is defined as sor, a namelist parameter. The convergence test is of
the form :

δ =

∑
i,j
Rni,jR

n
i,j∑

i,j
B̃n
i,jB̃

n
i,j

≤ ε (10.8)

where ε is the absolute precision that is required. It is highly recommended to use a ε
smaller or equal to 10−2 as larger values may leads to numerically induced basin scale
barotropic oscillations, and to use a two or three order of magnitude smaller value in eddy
resolving configuration. The precision of the solver is not only a numerical parameter, but
influences the physics. Indeed, the zero change of kinetic energy due to the work of surface
pressure forces in rigid-lid approximation is only achieved at the precision demanded on
the solver (§ C.1-e). The precision is specified by setting eps (namelist parameter). In
addition, two other tests are used to stop the iterative algorithm. They concern the number
of iterations and the module of the right hand side. If the former exceeds a specified
value, nmax (namelist parameter), or the latter is greater than 1015, the whole model
computation is stopped while the last computed time step fields are saved in the standard
output file. In both cases, this usually indicates that there is something wrong in the model
configuration (error in the mesh, the initial state, the input forcing, or the magnitude of
the time step or of the mixing coefficients). A typical value of nmax is a few hundred for
ε = 10−2, increasing to a few thousand for ε = 10−12.

The vectorization of the SOR algorithm is not straightforward. (VII.5.4) contains
two linear recurrences on i and j. This inhibits the vectorisation (§ IV.2-a). Therefore
(VII.5.4a) has been rewritten as :

Rni,j = ANi,j

(
∂ψ

∂t

)n
i+1,j

+ AEi,j

(
∂ψ

∂t

)n
i,j+1

+ ASi,j

(
∂ψ

∂t

)n
i−1,j

+ AWi,j

(
∂ψ

∂t

)n
i,j−1

−
(
∂ψ

∂t

)n
i,j

− B̃i,j (10.9)

Rni,j = Rni,j − ω ASi,j R
n
i,j−1 (10.10)

Rni,j = Rni,j − ω AWi,j R
n
i−1,j (10.11)

If the three equations in (VII.5.6) are solved inside the same do-loop, (VII.5.4a) and
(VII.5.6) are strictly equivalent. In the model they are solved successively over the whole
domain. The convergence is slower but (VII.5.6a) and (VII.5.6b) are vector loops on i-
index (the inner loop) and (VII.5.6c) is adapted to Cray vector computers by using a rou-
tine from the Cray library (namely the FOLR routine) to solve the first-order linear recur-
rence. The SOR method is very flexible and can be used under a wide range of conditions,
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including irregular boundaries, interior boundary points, etc. Proofs of convergence, etc.
may be found in the standard numerical methods texts for partial equations.

10.7.2 Preconditioned Conjugate Gradient
(nbsfs=1, namelist parameter)

A is a definite positive symmetric matrix, thus solving the linear system (VII.5.1) is
equivalent to the minimisation of a quadratic functional :

Ax = b ↔ x = infy φ(y) , φ(y) = 1/2〈Ay, y〉 − 〈b, y〉

where 〈, 〉 is the canonical dot product. The idea of the conjugate gradient method is to
search the solution in the following iterative way : assuming that xn is obtained, xn+1 is
searched under the form xn+1 = xn + αndn which satisfies :

xn+1 = inf y= xn+α dn φ( y) ⇔ dφ

dα
= 0

and expressing φ(y) as a function of α, we obtain the value that minimises the functional :

αn = 〈rn, rn〉/〈 A dn,dn〉

where rn = b − A xn = A(x − xn) is the error at rank n. The choice of the descent
vector dn depends on the error : dn = rn + βn dn−1. βn is searched such that the descent
vectors form an orthogonal base for the dot product linked to A. Expressing the condition
〈A dn,dn−1〉 = 0 the value of βn is found : βn = 〈rn, rn〉/〈rn−1, rn−1〉. As a result, the
errors rn form an orthogonal base for the canonic dot product while the descent vectors
dn form an orthogonal base for the dot product linked to A. The resulting algorithm is
thus the following one :

initialisation :

x0 =
(
∂ψ

∂t

)0

i,j

= 2
(
∂ψ

∂t

)t
i,j

−
(
∂ψ

∂t

)t−1

i,j

, the initial guess

r0 = d0 = b− A x0

γ0 = 〈r0, r0〉
iteration n, from n = 0 until convergence, do :

zn = A dn

αn = γn〈zn,dn〉
xn+1 = xn + αn dn

rn+1 = rn − αn zn

γn+1 = 〈rn+1, rn+1〉
βn+1 = γn+1/γn

dn+1 = rn+1 + βn+1 dn

(10.12)
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The convergence test is :

δ = γn /〈b,b〉 ≤ ε (10.13)

where ε is the absolute precision that is required. As for the SOR algorithm, both the PCG
algorithm and the whole model computation are stopped when the number of iteration,
nmax, or the module of the right hand side exceeds a specified value (see § VII.5-a for
further discussion). The precision and the maximum number of iteration are specified by
setting eps and nmax (namelist parameters).

It can be demonstrated that the algorithm is optimal, provides the exact solution in a
number of iterations equal to the size of the matrix, and that the convergence rate is all the
more fast as the matrix is closed to identity (i.e. the eigen values are closed to 1). There-
fore, it is more efficient to solve a better conditioned system which has the same solution.
For that purpose, we introduce a preconditioning matrix Q which is an approximation of
A but much easier to invert than A and solve the system :

Q−1A x = Q−1b (10.14)

The same algorithm can be used to solve (VII.5.7) if instead of the canonical dot
product the following one is used : 〈a,b〉Q = 〈a,Q b〉, and if b̃ = Q−1 b and Ã = Q−1 A
are substituted to b and A [Madec et al. 1988]. In OPA, Q is chosen as the diagonal of
A, i.e. the simplest form for Q so that it can be easily inverted. In this case, the discrete
formulation of (VII.5.8) is in fact given by (VII.5.2) and thus the matrix and right hand
side are computed independently from the solver used.

10.7.3 FETI
FETI is a powerfull solver that was developed by Marc Guyon (ref ! ! !). It as been just

converted from Fortan 77 to 90, but never successfully tested after that. Since then, nobody
has found enough time to further investigate the implmenntationof FETI and debug it.

Its main advantaged is to save a lot of CPU time compared to SOR or PCG algorithm.
Nevertheless, its main drawbacks is that the solution is depends on the domain decom-
position chosen. Using a different number of processors, the solution is the same at the
precision required, but not the same at the computer precision. This make it hard to debug.

10.7.4 Boundary Conditions — Islands (key islands defined)
The boundary condition used for both solvers is that the time derivative of the barotro-

pic streamfunction is zero along all the coastlines. When islands are present in the model
domain, additional computations must be done to determine the barotropic streamfunction
with the correct boundary conditions. This is detailed below.

The model does not recognise itself the islands which must be defined using bathy-
metry information, i.e. mbathy array, equals −1 over the first island, −2 over the second,
... , −N over the N th island (see § VII.2-b). The model determines the position of island
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grid-points and defines a closed contour around each island which will be used to compute
the circulation around each island. The closed contour is formed of the ocean grid-points
which are the closest to the island.

First, the island barotropic streamfunctions ψn are computed using the PCG (they are
solutions of (VII.5.1) with the right-hand side equals to zero and with ψn = 1 along the
island n and ψn = 0 along the other coastlines) (Note that specifying 1 as boundary condi-
tion on an island for ψ is equivalent to define a specific right hand side for (VII.5.1) ). The
precision of this computation can be very high since it is done once. The absolute preci-
sion, epsisl, and the maximum number of iteration, nmisl, are the namelist parameters
used for that computation. Their typical values are epsisl = 10−10 and nmisl = 4000.
Then the island matrix A is computed from (I.2.8) and reversed. At each time step, ψ0, the
solution of (I.2.4) with ψ0 = 0 along all coastlines, is computed using either SOR or PCG.
It has to be noted that the first guess of this computation is defined as in (VII.5.3) except
that ∂tψ0 is used, not ∂tψ. Indeed we are computing ∂tψ0 which is usually far different
from ∂tψ. Then, it is easy to find the time evolution of the barotropic streamfunction on
each island and to deduce ∂tψ using (I.2.9) in order to compute the surface pressure gra-
dient. Note that the value of the barotropic streamfunction itself is also computed as the
time integration of ∂tψ for further diagnostics.

10.8 Diagnostics

10.8.1 Standard Model Output (default option or key dimg)

10.8.2 Tracer/Dynamics Trends (key trdlmd, key diatrdtra)
When key diatrddyn and/or key diatrddyn cpp variables are defined, each trends

of the dynamics and/or temperature and salinity time evolution equations are stored in
three-dimensional arrays just after their computation (i.e. at the end of each dyn · · · .F
and/or tra · · · .F routines). These trends are then used in diagnostic routines diadyn.F
and diatra.F respectively. In standard, these routines check the basin averaged proper-
ties of the momentum and tracer equations every ntrd time-steps (namelist parameter).
These routines are given as an example ; they must be adapted by the user to his/her desi-
derata.

These two options imply the definition of several arrays in the in core memory, in-
creasing quite sensitively the code memory requirements (search for key diatrddyn or
key diatrdtrain common.h file)

10.8.3 On-line Floats trajectories
!-----------------------------------------------------------------------
&namflo ! float parameters ("key_float")
!-----------------------------------------------------------------------

ln_rstflo = .false. ! boolean term for float restart (true or false)
nwritefl = 75 ! frequency of float output file
nstockfl = 5475 ! frequency of float restart file
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ln_argo = .false. ! Argo type floats (stay at the surface each 10 days)
ln_flork4 = .false. ! = T trajectories computed with a 4th order Runge-Kutta

! = F (default) computed with Blanke’ scheme
/

a description is to be added here

10.8.4 Other Diagnostics
Aside from the standard model variables, some other diagnostics are computed on-

line or can be added in the model. The available ready-to-add diagnostics can be found in
DIA. Among the available diagnostics one can quote :

- the mixed layer depth (based on a density criterion) (diamxl.F90)
- the turbocline depth (based on a turbulent mixing coefficient criterion) (diamxl.F90)
- the depth of the 20 ˚ C isotherm (diahth.F90)
- the depth of the thermocline (maximum of the vertical temperature gradient) (diahth.F90)
- the meridional heat and salt transports and their decomposition (diamfl.F90)
- the surface pressure (diaspr.F90)
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CPP keys
key antarctic, 119
key arctic, 119
key bbc, 68
key bbl adv, 69
key bbl diff, 69
key cfg 1d, 144
key diatrddyn, 152
key diatrdtra, 152
key dimg, 152
key dynspg exp, 90
key dynspg flt, 91
key dynspg rl, 43, 91, 98
key dynspg ts, 91
key esopa, 146
key flx, 105
key island, 49
key ldfdyn c1d, 119
key ldfdyn c2d, 119
key ldfdyn c3d, 119
key ldftra c1d, 119
key ldftra c2d, 119
key ldftra c3d, 119

key mpp mpi, 38, 113
key noslip accurate, 109
key obc, 116
key orca r05, 120
key orca r2, 119, 120
key saldta, 71
key sbcblk clio, 103
key sbcblk core, 103
key sbcflx, 102
key sco, 48
key temdta, 71
key trabbl, 128
key tradmp, 71
key trahdf eiv, 120
key traldf c2d, 120
key traldf eiv, 120, 124
key trddyn, 80
key trdlmd, 152
key trdtra, 56
key trdvor, 80
key vectopt loop, 146
key vectopt memory, 146
key vvl, 42, 48, 57, 66, 90, 91
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key zco, 43, 44, 57, 63, 81, 93, 97
key zdfcst, 128
key zdfddm, 65, 135
key zdfkpp, 132
key zdfric, 128, 129
key zdftke, 129, 135

h90 file
ldfdyn antarctic, 119
ldfdyn arctic, 119
ldfdyn substitute, 118
ldftra c1d, 119
ldftra substitute, 118
zgr s, 48

Model parameters
jperio, 41, 43, 111
jphgr mesh, 39, 40
jpi, 114, 144
jpidta, 142
jpiglo, 37, 114, 142, 147
jpizoom, 142
jpj, 114, 144
jpjdta, 142
jpjdta , 142
jpjglo, 37, 114, 142, 144, 147
jpjzoom, 142
jpk, 37, 41, 44, 45, 47, 49, 114, 142,

144
jpkdta, 142
jpkglo, 142
jpni, 114, 115
jpnij, 114, 115
jpnj, 114, 115
jpreci, 114
pp to be computed, 45
ppa0, 45
ppa1, 45
ppacr, 45
ppacr=0, 45
ppdzmin, 45
ppe1 deg, 39
ppe1 m, 40
ppe2 deg, 39

ppe2 m, 40
ppglam0, 40
ppglamt0, 39
ppgphi0, 39, 40
pphmax, 45, 47
ppkth, 45
ppsur, 45

Modules
diahth, 153
diamfl, 153
diamxl, 153
diaspr, 153
divcur, 97, 111
domask, 111
domhgr, 38, 39
domzgr, 38, 41, 44, 49
dynadv, 85
dynadv ubs, 86
dynhpg, 75, 87
dynkeg, 84
dynldf, 80, 93
dynnxt, 50, 90, 96
dynnxt., 97
dynsp flt, 97
dynspg, 89, 147
dynspg flt, 90
dynvor, 81, 85
dynzad, 84
dynzdf, 80, 95, 128
eosbn2, 56, 72, 137
lbclnk, 7, 111, 112
ldfdyn, 118
ldfdyn c2d, 119
ldfeiv, 124
ldfslp, 63, 120
ldftra, 63, 118
lib mpp, 7, 112
mppini, 7
ocfzpt, 56, 74
par oce, 38, 39, 45, 111, 114, 115, 142
phycst, 39, 56, 73, 74
sbc ana gyre, 102
sbc oce, 101
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sbcana, 102
sbcblk clio, 103
sbcblk core, 103
sbccpl, 104
sbcflx, 102
sbcfwb, 106
sbcmod, 67
sbcrnf, 105
sbcssr, 105
traadv, 57
traadv eiv, 124
traadv ubs, 61
trabb adv, 70
trabbc, 68
trabbl, 69, 70
tradmp, 6, 70–72
traldf, 62, 64, 75
traldf bilap, 64
traldf bilapg, 65
traldf iso, 63
traldf lap, 63
tranpc, 56
tranxt, 50, 72
traqsr, 67, 68, 100
trasbc, 66, 100, 101
trazdf, 64, 65, 72, 128
wzvmod, 97
zdfbfr, 138, 139
zdfini, 128
zdfkpp, 128, 135
zdfric, 128
zdftke, 128
zpsdhe, 88
zpshde, 75

Namelist parameters
aeiv, 124
ahm0, 119
ahmb0, 120
aht0, 119
ahtb0, 120
alp, 129
atfp, 50, 72, 97
atfp=0.1, 72

atrbbl., 70
avevd, 135
avm0, 128
avmri, 129
avt0, 128
bfeb2, 139
bfri2, 139
bfric1, 138
bfric2, 139
e3zps rat, 47
e3zpsmin, 47
ediff, 130
ediss, 130
ln ctl, 146
ln dynadv cen2, 86
ln dynadv ubs, 86
ln dynhpg djc, 88
ln dynhpg hel, 88
ln dynhpg imp, 88, 89
ln dynhpg rot, 88
ln dynhpg sco, 88
ln dynhpg wdj, 88
ln dynhpg zco, 87
ln dynhpg zps, 88
ln dynldf hor, 94, 120, 121
ln dynldf iso, 94
ln dynldf lap, 93
ln dynspg rl, 49
ln dynvor een, 82
ln dynvor ene, 82
ln dynvor ens, 81
ln dynvor mix, 82
ln flxqsr, 68
ln sco, 42, 47, 121
ln traadv cen2, 59
ln traadv cen4, 59
ln traadv muscl, 60
ln traadv muscl2, 60
ln traadv ppm, 62
ln traadv qck, 62
ln traadv tvd, 60
ln traadv ubs, 61
ln traldf bilap, 64, 65
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ln traldf hor, 63–65, 120, 121
ln traldf iso, 64, 65
ln traldf lap, 63, 64
ln traldf level, 63, 64
ln tranpc, 133
ln traqsr, 100
ln zco, 42, 44, 49, 63–65
ln zdfevd, 134, 135
ln zdfexp, 51, 66, 95, 135
ln zdfnpc, 133
ln zps, 42, 45, 63, 64, 75, 76
n evdm, 135
n zdfexp, 51, 66, 95
nam traadv, 58
nbench, 147
nbit cmp, 146
nbotfr, 138
neos, 73, 74, 122
nf cpl, 104
nf sbc, 101
ngeo flux, 69
ngeo flux const, 69
nmldmp, 71
nmsh, 41, 116
nmxl, 130, 131
nn acc, 145
nn dynhpg rst, 89
nnpc1, 133
np zdfevd, 135
np zdfexp, 128
npdl, 130
nric, 129
nsolv, 147, 148
ntopo, 43
rabs, 68
ralpha, 73
rbeta, 73
rdt, 145
rdtbt, 91
rdttra, 145
rnu, 91
shlat, 107, 109
xsi1, 68

xsi2, 68

Routines
cofdis, 72
dom msk nsa, 111
dtacof, 71, 72
hgr read, 39
inimpp2, 115
ldf dyn c2d orca, 119
ldfslp init, 121
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et Marie Curie, Paris, France, 194pp.

Madec, G., M. Chartier, and M. Crépon, 1991a : Effect of thermohaline forcing variability
on deep water formation in the northwestern mediterranean sea - a high resulution
three-dimensional study. Dyn. Atmos. Ocean.

Madec, G., M. Chartier, P. Delecluse, and M. Crépon, 1991b : A three-dimensional nu-
merical study of deep water formation in the northwestern mediterranean sea . J. Phys.
Oceanogr., 21.

Madec, G. and M. Crépon, 1991 : Deep convection and deep water formation in the
oceans, chap. Thermohaline-driven deep water formation in the Northwestern Medi-
terranean Sea. Elsevier Oceanographic Series.

Madec, G. and P. Delecluse, 1997 : The opa/arpege and opa/lmd global ocean-atmosphere
coupled model. Int. WOCE Newsletter, 26, 12–15.

Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998 : Opa 8 ocean general circulation
model - reference manual. Tech. rep., LODYC/IPSL Note 11.

Madec, G. and M. Imbard, 1996 : A global ocean mesh to overcome the north pole singu-
larity. Clim. Dyn., 12, 381–388.

Madec, G., F. Lott, P. Delecluse, and M. Crépon, 1996 : Large-scale preconditioning
of deep-water formation in the northwestern mediterranean sea. J. Phys. Oceanogr.,
26 (8), 1393–1408.

Madec, G., C. Rahier, and M. Chartier, 1988 : A comparison of two-dimensional elliptic
solvers for the barotropic streamfunction in a multilevel ogcm. Ocean Modelling, 78.



BIBLIOGRAPHIE 163

Maltrud, M. E., R. D. Smith, A. J. Semtner, and R. C. Malone, 1998 : Global eddy-
resolving ocean simulations driven by 1985-1995 atmospheric winds. J. Geophys. Res,
103(C13), 30,825–30,854.
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