MODULE sbcwave !!====================================================================== !! *** MODULE sbcwave *** !! Wave module !!====================================================================== !! History : 3.3 ! 2011-09 (M. Adani) Original code: Drag Coefficient !! : 3.4 ! 2012-10 (M. Adani) Stokes Drift !! 3.6 ! 2014-09 (E. Clementi,P. Oddo) New Stokes Drift Computation !! - ! 2016-12 (G. Madec, E. Clementi) update Stoke drift computation !! + add sbc_wave_ini routine !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_stokes : calculate 3D Stokes-drift velocities !! sbc_wave : wave data from wave model in netcdf files !! sbc_wave_init : initialisation fo surface waves !!---------------------------------------------------------------------- USE phycst ! physical constants USE oce ! ocean variables USE sbc_oce ! Surface boundary condition: ocean fields USE zdf_oce, ONLY : ln_zdfqiao USE bdy_oce ! open boundary condition variables USE domvvl ! domain: variable volume layers ! USE iom ! I/O manager library USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE fldread ! read input fields USE wrk_nemo ! IMPLICIT NONE PRIVATE PUBLIC sbc_stokes ! routine called in sbccpl PUBLIC sbc_wave ! routine called in sbcmod PUBLIC sbc_wave_init ! routine called in sbcmod ! Variables checking if the wave parameters are coupled (if not, they are read from file) LOGICAL, PUBLIC :: cpl_hsig = .FALSE. LOGICAL, PUBLIC :: cpl_phioc = .FALSE. LOGICAL, PUBLIC :: cpl_sdrftx = .FALSE. LOGICAL, PUBLIC :: cpl_sdrfty = .FALSE. LOGICAL, PUBLIC :: cpl_wper = .FALSE. LOGICAL, PUBLIC :: cpl_wnum = .FALSE. LOGICAL, PUBLIC :: cpl_wstrf = .FALSE. LOGICAL, PUBLIC :: cpl_wdrag = .FALSE. INTEGER :: jpfld ! number of files to read for stokes drift INTEGER :: jp_usd ! index of stokes drift (i-component) (m/s) at T-point INTEGER :: jp_vsd ! index of stokes drift (j-component) (m/s) at T-point INTEGER :: jp_hsw ! index of significant wave hight (m) at T-point INTEGER :: jp_wmp ! index of mean wave period (s) at T-point TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_cd ! structure of input fields (file informations, fields read) Drag Coefficient TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_sd ! structure of input fields (file informations, fields read) Stokes Drift TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_wn ! structure of input fields (file informations, fields read) wave number for Qiao TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_tauoc ! structure of input fields (file informations, fields read) normalized wave stress into the ocean REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: cdn_wave !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: hsw, wmp, wnum !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tauoc_wave !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tsd2d !: REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: div_sd !: barotropic stokes drift divergence REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: ut0sd, vt0sd !: surface Stokes drift velocities at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:,:) :: usd , vsd , wsd !: Stokes drift velocities at u-, v- & w-points, resp. !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.7 , NEMO Consortium (2014) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_stokes( ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_stokes *** !! !! ** Purpose : compute the 3d Stokes Drift according to Breivik et al., !! 2014 (DOI: 10.1175/JPO-D-14-0020.1) !! !! ** Method : - Calculate Stokes transport speed !! - Calculate horizontal divergence !! - Integrate the horizontal divergenze from the bottom !! ** action !!--------------------------------------------------------------------- INTEGER :: jj, ji, jk ! dummy loop argument INTEGER :: ik ! local integer REAL(wp) :: ztransp, zfac, ztemp, zsp0 REAL(wp) :: zdep_u, zdep_v, zkh_u, zkh_v, zda_u, zda_v REAL(wp), DIMENSION(:,:) , POINTER :: zk_t, zk_u, zk_v, zu0_sd, zv0_sd ! 2D workspace REAL(wp), DIMENSION(:,:,:), POINTER :: ze3divh ! 3D workspace !!--------------------------------------------------------------------- ! CALL wrk_alloc( jpi,jpj,jpk, ze3divh ) CALL wrk_alloc( jpi,jpj, zk_t, zk_u, zk_v, zu0_sd, zv0_sd ) ! ! zfac = 2.0_wp * rpi / 16.0_wp DO jj = 1, jpj ! exp. wave number at t-point (Eq. (19) in Breivick et al. (2014) ) DO ji = 1, jpi ! Stokes drift velocity estimated from Hs and Tmean ztransp = zfac * hsw(ji,jj)*hsw(ji,jj) / MAX( wmp(ji,jj) , 0.0000001_wp ) ! Stokes surface speed zsp0 = SQRT( ut0sd(ji,jj)*ut0sd(ji,jj) + vt0sd(ji,jj)*vt0sd(ji,jj) ) tsd2d(ji,jj) = zsp0 ! Wavenumber scale zk_t(ji,jj) = ABS( zsp0 ) / MAX( ABS( 5.97_wp*ztransp ) , 0.0000001_wp ) END DO END DO DO jj = 1, jpjm1 ! exp. wave number & Stokes drift velocity at u- & v-points DO ji = 1, jpim1 zk_u(ji,jj) = 0.5_wp * ( zk_t(ji,jj) + zk_t(ji+1,jj) ) zk_v(ji,jj) = 0.5_wp * ( zk_t(ji,jj) + zk_t(ji,jj+1) ) ! zu0_sd(ji,jj) = 0.5_wp * ( ut0sd(ji,jj) + ut0sd(ji+1,jj) ) zv0_sd(ji,jj) = 0.5_wp * ( vt0sd(ji,jj) + vt0sd(ji,jj+1) ) END DO END DO ! ! !== horizontal Stokes Drift 3D velocity ==! DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = 2, jpim1 zdep_u = 0.5_wp * ( gdept_n(ji,jj,jk) + gdept_n(ji+1,jj,jk) ) zdep_v = 0.5_wp * ( gdept_n(ji,jj,jk) + gdept_n(ji,jj+1,jk) ) ! zkh_u = zk_u(ji,jj) * zdep_u ! k * depth zkh_v = zk_v(ji,jj) * zdep_v ! ! Depth attenuation zda_u = EXP( -2.0_wp*zkh_u ) / ( 1.0_wp + 8.0_wp*zkh_u ) zda_v = EXP( -2.0_wp*zkh_v ) / ( 1.0_wp + 8.0_wp*zkh_v ) ! usd(ji,jj,jk) = zda_u * zu0_sd(ji,jj) * umask(ji,jj,jk) vsd(ji,jj,jk) = zda_v * zv0_sd(ji,jj) * vmask(ji,jj,jk) END DO END DO END DO !!gm CALL lbc_lnk( usd(:,:,:), 'U', vsd(:,:,:), 'V', -1. ) CALL lbc_lnk( usd(:,:,:), 'U', -1. ) CALL lbc_lnk( vsd(:,:,:), 'V', -1. ) ! ! !== vertical Stokes Drift 3D velocity ==! ! DO jk = 1, jpkm1 ! Horizontal e3*divergence DO jj = 2, jpj DO ji = fs_2, jpi ze3divh(ji,jj,jk) = ( e2u(ji ,jj) * e3u_n(ji ,jj,jk) * usd(ji ,jj,jk) & & - e2u(ji-1,jj) * e3u_n(ji-1,jj,jk) * usd(ji-1,jj,jk) & & + e1v(ji,jj ) * e3v_n(ji,jj ,jk) * vsd(ji,jj ,jk) & & - e1v(ji,jj-1) * e3v_n(ji,jj-1,jk) * vsd(ji,jj-1,jk) ) * r1_e1e2t(ji,jj) END DO END DO END DO ! IF( .NOT. AGRIF_Root() ) THEN IF( nbondi == 1 .OR. nbondi == 2 ) ze3divh(nlci-1, : ,:) = 0._wp ! east IF( nbondi == -1 .OR. nbondi == 2 ) ze3divh( 2 , : ,:) = 0._wp ! west IF( nbondj == 1 .OR. nbondj == 2 ) ze3divh( : ,nlcj-1,:) = 0._wp ! north IF( nbondj == -1 .OR. nbondj == 2 ) ze3divh( : , 2 ,:) = 0._wp ! south ENDIF ! CALL lbc_lnk( ze3divh, 'T', 1. ) ! IF( ln_linssh ) THEN ; ik = 1 ! none zero velocity through the sea surface ELSE ; ik = 2 ! w=0 at the surface (set one for all in sbc_wave_init) ENDIF DO jk = jpkm1, ik, -1 ! integrate from the bottom the hor. divergence (NB: at k=jpk w is always zero) wsd(:,:,jk) = wsd(:,:,jk+1) - ze3divh(:,:,jk) END DO ! IF( ln_bdy ) THEN DO jk = 1, jpkm1 wsd(:,:,jk) = wsd(:,:,jk) * bdytmask(:,:) END DO ENDIF ! !== Horizontal divergence of barotropic Stokes transport ==! div_sd(:,:) = 0._wp DO jk = 1, jpkm1 ! div_sd(:,:) = div_sd(:,:) + ze3divh(:,:,jk) END DO ! CALL iom_put( "ustokes", usd ) CALL iom_put( "vstokes", vsd ) CALL iom_put( "wstokes", wsd ) ! CALL wrk_dealloc( jpi,jpj,jpk, ze3divh ) CALL wrk_dealloc( jpi,jpj, zk_t, zk_u, zk_v, zu0_sd, zv0_sd ) ! END SUBROUTINE sbc_stokes SUBROUTINE sbc_wave( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_wave *** !! !! ** Purpose : read wave parameters from wave model in netcdf files. !! !! ** Method : - Read namelist namsbc_wave !! - Read Cd_n10 fields in netcdf files !! - Read stokes drift 2d in netcdf files !! - Read wave number in netcdf files !! - Compute 3d stokes drift using Breivik et al.,2014 !! formulation !! ** action !!--------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt ! ocean time step !!--------------------------------------------------------------------- ! IF( ln_cdgw .AND. .NOT. cpl_wdrag ) THEN !== Neutral drag coefficient ==! CALL fld_read( kt, nn_fsbc, sf_cd ) ! read from external forcing cdn_wave(:,:) = sf_cd(1)%fnow(:,:,1) ENDIF IF( ln_tauoc .AND. .NOT. cpl_wstrf ) THEN !== Wave induced stress ==! CALL fld_read( kt, nn_fsbc, sf_tauoc ) ! read wave norm stress from external forcing tauoc_wave(:,:) = sf_tauoc(1)%fnow(:,:,1) ENDIF IF( ln_sdw ) THEN !== Computation of the 3d Stokes Drift ==! ! IF( jpfld > 0 ) THEN ! Read from file only if the field is not coupled CALL fld_read( kt, nn_fsbc, sf_sd ) ! read wave parameters from external forcing IF( jp_hsw > 0 ) hsw (:,:) = sf_sd(jp_hsw)%fnow(:,:,1) ! significant wave height IF( jp_wmp > 0 ) wmp (:,:) = sf_sd(jp_wmp)%fnow(:,:,1) ! wave mean period IF( jp_usd > 0 ) ut0sd(:,:) = sf_sd(jp_usd)%fnow(:,:,1) ! 2D zonal Stokes Drift at T point IF( jp_vsd > 0 ) vt0sd(:,:) = sf_sd(jp_vsd)%fnow(:,:,1) ! 2D meridional Stokes Drift at T point ENDIF ! ! Read also wave number if needed, so that it is available in coupling routines IF( ln_zdfqiao .AND. .NOT.cpl_wnum ) THEN CALL fld_read( kt, nn_fsbc, sf_wn ) ! read wave parameters from external forcing wnum(:,:) = sf_wn(1)%fnow(:,:,1) ENDIF ! !== Computation of the 3d Stokes Drift ==! ! IF( jpfld == 4 ) CALL sbc_stokes() ! Calculate only if required fields are read ! ! In coupled wave model-NEMO case the call is done after coupling ! ENDIF ! END SUBROUTINE sbc_wave SUBROUTINE sbc_wave_init !!--------------------------------------------------------------------- !! *** ROUTINE sbc_wave_init *** !! !! ** Purpose : read wave parameters from wave model in netcdf files. !! !! ** Method : - Read namelist namsbc_wave !! - Read Cd_n10 fields in netcdf files !! - Read stokes drift 2d in netcdf files !! - Read wave number in netcdf files !! - Compute 3d stokes drift using Breivik et al.,2014 !! formulation !! ** action !!--------------------------------------------------------------------- INTEGER :: ierror, ios ! local integer INTEGER :: ifpr !! CHARACTER(len=100) :: cn_dir ! Root directory for location of drag coefficient files TYPE(FLD_N), ALLOCATABLE, DIMENSION(:) :: slf_i ! array of namelist informations on the fields to read TYPE(FLD_N) :: sn_cdg, sn_usd, sn_vsd, & & sn_hsw, sn_wmp, sn_wnum, sn_tauoc ! informations about the fields to be read ! NAMELIST/namsbc_wave/ sn_cdg, cn_dir, sn_usd, sn_vsd, sn_hsw, sn_wmp, sn_wnum, sn_tauoc !!--------------------------------------------------------------------- ! REWIND( numnam_ref ) ! Namelist namsbc_wave in reference namelist : File for drag coeff. from wave model READ ( numnam_ref, namsbc_wave, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_wave in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namsbc_wave in configuration namelist : File for drag coeff. from wave model READ ( numnam_cfg, namsbc_wave, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_wave in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namsbc_wave ) ! IF( ln_cdgw ) THEN IF( .NOT. cpl_wdrag ) THEN ALLOCATE( sf_cd(1), STAT=ierror ) !* allocate and fill sf_wave with sn_cdg IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_wave structure' ) ! ALLOCATE( sf_cd(1)%fnow(jpi,jpj,1) ) IF( sn_cdg%ln_tint ) ALLOCATE( sf_cd(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_cd, (/ sn_cdg /), cn_dir, 'sbc_wave_init', 'Wave module ', 'namsbc_wave' ) ENDIF ALLOCATE( cdn_wave(jpi,jpj) ) ENDIF IF( ln_tauoc ) THEN IF( .NOT. cpl_wstrf ) THEN ALLOCATE( sf_tauoc(1), STAT=ierror ) !* allocate and fill sf_wave with sn_tauoc IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_wave structure' ) ! ALLOCATE( sf_tauoc(1)%fnow(jpi,jpj,1) ) IF( sn_tauoc%ln_tint ) ALLOCATE( sf_tauoc(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_tauoc, (/ sn_tauoc /), cn_dir, 'sbc_wave_init', 'Wave module', 'namsbc_wave' ) ENDIF ALLOCATE( tauoc_wave(jpi,jpj) ) ENDIF IF( ln_sdw ) THEN ! Find out how many fields have to be read from file if not coupled jpfld=0 jp_usd=0 ; jp_vsd=0 ; jp_hsw=0 ; jp_wmp=0 IF( .NOT. cpl_sdrftx ) THEN jpfld = jpfld + 1 jp_usd = jpfld ENDIF IF( .NOT. cpl_sdrfty ) THEN jpfld = jpfld + 1 jp_vsd = jpfld ENDIF IF( .NOT. cpl_hsig ) THEN jpfld = jpfld + 1 jp_hsw = jpfld ENDIF IF( .NOT. cpl_wper ) THEN jpfld = jpfld + 1 jp_wmp = jpfld ENDIF ! Read from file only the non-coupled fields IF( jpfld > 0 ) THEN ALLOCATE( slf_i(jpfld) ) IF( jp_usd > 0 ) slf_i(jp_usd) = sn_usd IF( jp_vsd > 0 ) slf_i(jp_vsd) = sn_vsd IF( jp_hsw > 0 ) slf_i(jp_hsw) = sn_hsw IF( jp_wmp > 0 ) slf_i(jp_wmp) = sn_wmp ALLOCATE( sf_sd(jpfld), STAT=ierror ) !* allocate and fill sf_sd with stokes drift IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_wave structure' ) ! DO ifpr= 1, jpfld ALLOCATE( sf_sd(ifpr)%fnow(jpi,jpj,1) ) IF( slf_i(ifpr)%ln_tint ) ALLOCATE( sf_sd(ifpr)%fdta(jpi,jpj,1,2) ) END DO ! CALL fld_fill( sf_sd, slf_i, cn_dir, 'sbc_wave_init', 'Wave module ', 'namsbc_wave' ) ENDIF ALLOCATE( usd (jpi,jpj,jpk), vsd (jpi,jpj,jpk), wsd(jpi,jpj,jpk) ) ALLOCATE( hsw (jpi,jpj) , wmp (jpi,jpj) ) ALLOCATE( ut0sd(jpi,jpj) , vt0sd(jpi,jpj) ) ALLOCATE( div_sd(jpi,jpj) ) ALLOCATE( tsd2d (jpi,jpj) ) usd(:,:,:) = 0._wp vsd(:,:,:) = 0._wp wsd(:,:,:) = 0._wp ! Wave number needed only if ln_zdfqiao=T IF( .NOT. cpl_wnum ) THEN ALLOCATE( sf_wn(1), STAT=ierror ) !* allocate and fill sf_wave with sn_wnum IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable toallocate sf_wave structure' ) ALLOCATE( sf_wn(1)%fnow(jpi,jpj,1) ) IF( sn_wnum%ln_tint ) ALLOCATE( sf_wn(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_wn, (/ sn_wnum /), cn_dir, 'sbc_wave', 'Wave module', 'namsbc_wave' ) ENDIF ALLOCATE( wnum(jpi,jpj) ) ENDIF ! END SUBROUTINE sbc_wave_init !!====================================================================== END MODULE sbcwave