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Abstract / Résumé

The ocean engine of NEMO (Nucleus for European Modelling of the Ocean) is a primitive
equation model adapted to regional and global ocean circulation problems. It is intended to
be a flexible tool for studying the ocean and its interactions with the others components of
the earth climate system over a wide range of space and time scales. Prognostic variables
are the three-dimensional velocity field, a non-linear sea surface height, the Conservative
Temperature and the Absolute Salinity. In the horizontal direction, the model uses a curvi-
linear orthogonal grid and in the vertical direction, a full or partial step z-coordinate, or
s-coordinate, or a mixture of the two. The distribution of variables is a three-dimensional
Arakawa C-type grid. Various physical choices are available to describe ocean physics,
including TKE, and GLS vertical physics. Within NEMO, the ocean is interfaced with a
sea-ice model (LIM or CICE), passive tracer and biogeochemical models (TOP) and, via
the OASIS coupler, with several atmospheric general circulation models. It also support
two-way grid embedding via the AGRIF software.






Disclaimer

Like all components of NEMO, the ocean component is developed under the CE-
CILL license, which is a French adaptation of the GNU GPL (General Public Li-
cense). Anyone may use it freely for research purposes, and is encouraged to
communicate back to the NEMO team its own developments and improvements.
The model and the present document have been made available as a service to the
community. We cannot certify that the code and its manual are free of errors. Bugs
are inevitable and some have undoubtedly survived the testing phase. Users are
encouraged to bring them to our attention. The author assumes no responsibility
for problems, errors, or incorrect usage of NEMO.

NEMO reference in papers and other publications is as follows:
Madec, G., and the NEMO team, 2008: NEMO ocean engine. Note du Pdle

de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No
1288-1619.

Additional information can be found on nemo-ocean.eu website.


http://www.nemo-ocean.eu/




Introduction

The Nucleus for European Modelling of the Ocean (NEMO) is a framework of
ocean related engines, namely OPA! for the ocean dynamics and thermodynamics,
LIM? for the sea-ice dynamics and thermodynamics, TOP? for the biogeochem-
istry (both transport (TRP) and sources minus sinks (LOBSTER, PISCES)*. It is
intended to be a flexible tool for studying the ocean and its interactions with the
other components of the earth climate system (atmosphere, sea-ice, biogeochemi-
cal tracers, ...) over a wide range of space and time scales. This documentation pro-
vides information about the physics represented by the ocean component of NEMO
and the rationale for the choice of numerical schemes and the model design. More
specific information about running the model on different computers, or how to set
up a configuration, are found on the NEMO web site (Wwww.nemo-ocean.eu).

The ocean component of NEMO has been developed from the OPA model,
release 8.2, described in ?. This model has been used for a wide range of appli-
cations, both regional or global, as a forced ocean model and as a model coupled
with the sea-ice and/or the atmosphere.

This manual is organised in as follows. Chapter ?? presents the model basics,
i.e. the equations and their assumptions, the vertical coordinates used, and the
subgrid scale physics. This part deals with the continuous equations of the model
(primitive equations, with temperature, salinity and an equation of seawater). The
equations are written in a curvilinear coordinate system, with a choice of vertical
coordinates (z, s, z*, s* Z, §, and a mixture of them). Momentum equations
are formulated in vector invariant or flux form. Dimensional units in the meter,
kilogram, second (MKS) international system are used throughout.

'OPA = Océan PArallélisé

2LIM= Louvain)la-neuve Ice Model

3TOP = Tracer in the Ocean Paradigm

“Both LOBSTER and PISCES are not acronyms just name
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The following chapters deal with the discrete equations. Chapter ?? presents
the time domain. The model time stepping environment is a three level scheme in
which the tendency terms of the equations are evaluated either centered in time, or
forward, or backward depending of the nature of the term. Chapter ?? presents the
space domain. The model is discretised on a staggered grid (Arakawa C grid) with
masking of land areas. Vertical discretisation used depends on both how the bottom
topography is represented and whether the free surface is linear or not. Full step
or partial step z-coordinate or s- (terrain-following) coordinate is used with linear
free surface (level position are then fixed in time). In non-linear free surface, the
corresponding rescaled height coordinate formulation (z* or s*) is used (the level
position then vary in time as a function of the sea surface heigh). The following two
chapters (?? and ??) describe the discretisation of the prognostic equations for the
active tracers and the momentum. Explicit, split-explicit and filtered free surface
formulations are implemented. A number of numerical schemes are available for
momentum advection, for the computation of the pressure gradients, as well as
for the advection of tracers (second or higher order advection schemes, including
positive ones).

Surface boundary conditions (chapter ??) can be implemented as prescribed
fluxes, or bulk formulations for the surface fluxes (wind stress, heat, freshwater).
The model allows penetration of solar radiation There is an optional geothermal
heating at the ocean bottom. Within the NEMO system the ocean model is in-
teractively coupled with a sea ice model (LIM) and with biogeochemistry models
(PISCES, LOBSTER). Interactive coupling to Atmospheric models is possible via
the OASIS coupler [?]. Two-way nesting is also available through an interface to
the AGRIF package (Adaptative Grid Refinement in FORTRAN) [?]. The interface
code for coupling to an alternative sea ice model (CICE, ?) has now been upgraded
so that it works for both global and regional domains, although AGRIF is still not
available.

Other model characteristics are the lateral boundary conditions (chapter ??).
Global configurations of the model make use of the ORCA tripolar grid, with spe-
cial north fold boundary condition. Free-slip or no-slip boundary conditions are
allowed at land boundaries. Closed basin geometries as well as periodic domains
and open boundary conditions are possible.

Physical parameterisations are described in chapters ?? and ??. The model in-
cludes an implicit treatment of vertical viscosity and diffusivity. The lateral Lapla-
cian and biharmonic viscosity and diffusion can be rotated following a geopotential
or neutral direction. There is an optional eddy induced velocity [?] with a space
and time variable coefficient ?. The model has vertical harmonic viscosity and
diffusion with a space and time variable coefficient, with options to compute the
coefficients with ?, ?, or ? mixing schemes.

CPP keys and namelists are used for inputs to the code.



CPP keys

Some CPP keys are implemented in the FORTRAN code to allow code selection at
compiling step. This selection of code at compilation time reduces the reliability of
the whole platform since it changes the code from one set of CPP keys to the other.
It is used only when the addition/suppression of the part of code highly changes
the amount of memory at run time. Usual coding looks like :

#if defined key_optionl

This part of the FORTRAN code will be active

only if key_optionl is activated at compiling step
#endif
Namelists

The namelist allows to input variables (character, logical, real and integer) into

the code. There is one namelist file for each component of NEMO (dynamics,
sea-ice, biogeochemistry...) containing all the FOTRAN namelists needed. The
implementation in NEMO uses a two step process. For each FORTRAN namelist,
two files are read:

1. Areference namelist (in CONFIG/SHARED/namelist_ref ) is read first. This
file contains all the namelist variables which are initialised to default values

2. A configuration namelist ( in CONFIG/CFG_NAME/EXPOO/namelist_cfg )
is read aferwards. This file contains only the namelist variables which are
changed from default values, and overwrites those.

A template can be found in NEMO/OPA _SRC/module.example The effective namelist,
taken in account during the run, is stored at execution time in an output_namelist_dyn
(or _ice or _top) file.

Model outputs management and specific online diagnostics are described in
chapters ??. The diagnostics includes the output of all the tendencies of the mo-
mentum and tracers equations, the output of tracers tendencies averaged over the
time evolving mixed layer, the output of the tendencies of the barotropic vortic-
ity equation, the computation of on-line floats trajectories... Chapter ?? describes
a tool which reads in observation files (profile temperature and salinity, sea sur-
face temperature, sea level anomaly and sea ice concentration) and calculates an
interpolated model equivalent value at the observation location and nearest model
timestep. Originally developed of data assimilation, it is a fantastic tool for model
and data comparison. Chapter ?? describes how increments produced by data as-
similation may be applied to the model equations. Finally, Chapter ?? provides a
brief introduction to the pre-defined model configurations (water column model,
ORCA and GYRE families of configurations).

The model is implemented in FORTRAN 90, with preprocessing (C-pre-processor).
It runs under UNIX. It is optimized for vector computers and parallelised by do-
main decomposition with MPIL. All input and output is done in NetCDF (Network
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Table 1.1: Organization of Chapters mimicking the one of the model directories.

Chapter ?? | - model time STePping environment

Chapter 2? | DOM | model DOMain

Chapter ?? | TRA | TRAcer equations (potential temperature and salinity)
Chapter ?? | DYN | DYNamic equations (momentum)

Chapter ?? | SBC | Surface Boundary Conditions

Chapter ?? | LBC | Lateral Boundary Conditions (also OBC and BDY)
Chapter ?? | LDF | Lateral DiFfusion (parameterisations)

Chapter ?? | ZDF | vertical (Z) DiFfusion (parameterisations)

Chapter ?? | DIA | I/O and DIAgnostics (also IOM, FLO and TRD)
Chapter ?? | OBS | OBServation and model comparison

Chapter ?? | ASM | ASsiMilation increment

Chapter ?? | SOL | Miscellaneous topics (including solvers)

Chapter ?? | - predefined configurations (including C1D)

Common Data Format) with a optional direct access format for output. To ensure
the clarity and readability of the code it is necessary to follow coding rules. The
coding rules for OPA include conventions for naming variables, with different start-
ing letters for different types of variables (real, integer, parameter...). Those rules
are briefly presented in Appendix ?? and a more complete document is available
on the NEMO web site.

The model is organized with a high internal modularity based on physics. For
example, each trend (¢.e., a term in the RHS of the prognostic equation) for mo-
mentum and tracers is computed in a dedicated module. To make it easier for the
user to find his way around the code, the module names follow a three-letter rule.
For example, traldf.F90 is a module related to the TRAcers equation, computing
the Lateral DiFfussion. Furthermore, modules are organized in a few directories
that correspond to their category, as indicated by the first three letters of their name
(Tab. 2?2).

The manual mirrors the organization of the model. After the presentation of the
continuous equations (Chapter ??), the following chapters refer to specific terms
of the equations each associated with a group of modules (Tab. ??).

Changes between releases

NEMOY/OPA, like all research tools, is in perpetual evolution. The present docu-
ment describes the OPA version include in the release 3.4 of NEMO. This release
differs significantly from version 8, documented in ?.

e The main modifications from OPA v8 and NEMO/OPA v3.2 are :



10.

11.

12.

13.

14.

15.

16.

. transition to full native FORTRAN 90, deep code restructuring and drastic

reduction of CPP keys;

. introduction of partial step representation of bottom topography [???];

partial reactivation of a terrain-following vertical coordinate (s- and hybrid

s-z) with the addition of several options for pressure gradient computation
5.

B

more choices for the treatment of the free surface: full explicit, split-explicit
or filtered schemes, and suppression of the rigid-lid option;

non linear free surface associated with the rescaled height coordinate z* or
S5

. additional schemes for vector and flux forms of the momentum advection;

additional advection schemes for tracers;

implementation of the AGRIF package (Adaptative Grid Refinement in FOR-
TRAN) [?];

online diagnostics : tracers trend in the mixed layer and vorticity balance;
rewriting of the I/O management with the use of an 1/O server;

generalized ocean-ice-atmosphere-CO2 coupling interface, interfaced with
OASIS 3 coupler ;

surface module (SBC) that simplify the way the ocean is forced and include
two bulk formulea (CLIO and CORE) and which includes an on-the-fly in-
terpolation of input forcing fields ;

RGB light penetration and optional use of ocean color

major changes in the TKE schemes: it now includes a Langmuir cell pa-
rameterization [?], the ? surface wave breaking parameterization, and has
a time discretization which is energetically consistent with the ocean model
equations [??];

tidal mixing parametrisation (bottom intensification) + Indonesian specific
tidal mixing [?];

introduction of LIM-3, the new Louvain-la-Neuve sea-ice model (C-grid rhe-
ology and new thermodynamics including bulk ice salinity) [??

3Partial support of s-coordinate: there is presently no support for neutral physics in s- coordinate
and for the new options for horizontal pressure gradient computation with a non-linear equation of

state.
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e The main modifications from NEMO/OPA v3.2 and v3.3 are :

10.

11.

12.

13.

14.

15.

16.

17.

18.

. introduction of a modified leapfrog-Asselin filter time stepping scheme [?];

additional scheme for iso-neutral mixing [?], although it is still a “work in
progress”;

. arewriting of the bottom boundary layer scheme, following ?;

addition of a Generic Length Scale vertical mixing scheme, following ?;

. addition of the atmospheric pressure as an external forcing on both ocean

and sea-ice dynamics;

addition of a diurnal cycle on solar radiation [?];

. river runoffs added through a non-zero depth, and having its own temperature

and salinity;

. CORE II normal year forcing set as the default forcing of ORCA2-LIM con-

figuration ;

. generalisation of the use of fldread.F90 for all input fields (ocean climatol-

ogy, sea-ice damping...) ;

addition of an on-line observation and model comparison (thanks to NEMOVAR
project);

optional application of an assimilation increment (thanks to NEMOVAR
project);

coupling interface adjusted for WRF atmospheric model;
C-grid ice rheology now available fro both LIM-2 and LIM-3 [?];
LIM-3 ice-ocean momentum coupling applied to LIM-2 ;

a deep re-writting and simplification of the off-line tracer component (OFF_SRC)

the merge of passive and active advection and diffusion modules ;

Use of the Flexible Configuration Manager (FCM) to build configurations,
generate the Makefile and produce the executable ;

Linear-tangent and Adjoint component (TAM) added, phased with v3.0
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In addition, several minor modifications in the coding have been introduced with
the constant concern of improving the model performance.

e The main modifications from NEMO/OPA v3.3 and v3.4 are :

1. finalisation of above iso-neutral mixing [?]”;

2. ”Neptune effect” parametrisation;

3. horizontal pressure gradient suitable for s-coordinate;
4. semi-implicit bottom friction;

5. finalisation of the merge of passive and active tracers advection-diffusion
modules;

6. a new bulk formulae (so-called MFS);
7. use fldread for the off-line tracer component (OFF_SRC) ;
8. use MPI point to point communications for north fold;

9. diagnostic of transport ;

e The main modifications from NEMO/OPA v3.4 and v3.6 are :

e The main modifications from NEMO/OPA v3.6 and v4.0 are :

1. new definition of configurations ;

2. bulk formulation ;
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Primitive Equations

Vector Invariant Formulation

The ocean is a fluid that can be described to a good approximation by the primitive
equations, ¢.e. the Navier-Stokes equations along with a nonlinear equation of state
which couples the two active tracers (temperature and salinity) to the fluid velocity,
plus the following additional assumptions made from scale considerations:

(1) spherical earth approximation: the geopotential surfaces are assumed to be
spheres so that gravity (local vertical) is parallel to the earth’s radius

(2) thin-shell approximation: the ocean depth is neglected compared to the
earth’s radius

(3) turbulent closure hypothesis: the turbulent fluxes (which represent the ef-
fect of small scale processes on the large-scale) are expressed in terms of large-
scale features

(4) Boussinesq hypothesis: density variations are neglected except in their con-
tribution to the buoyancy force

(5) Hydrostatic hypothesis: the vertical momentum equation is reduced to a
balance between the vertical pressure gradient and the buoyancy force (this re-
moves convective processes from the initial Navier-Stokes equations and so con-
vective processes must be parameterized instead)

(6) Incompressibility hypothesis: the three dimensional divergence of the ve-
locity vector is assumed to be zero.

Because the gravitational force is so dominant in the equations of large-scale
motions, it is useful to choose an orthogonal set of unit vectors (i,j,k) linked to the
earth such that k is the local upward vector and (i,j) are two vectors orthogonal to
k, i.e. tangent to the geopotential surfaces. Let us define the following variables:
U the vector velocity, U = Uy, 4+ wk (the subscript i denotes the local horizontal
vector, i.e. over the (i,j) plane), T' the potential temperature, .S the salinity, p the
in situ density. The vector invariant form of the primitive equations in the (i,j,k)
vector system provides the following six equations (namely the momentum bal-
ance, the hydrostatic equilibrium, the incompressibility equation, the heat and salt
conservation equations and an equation of state):

ouU 1 1
(Tth:_ (VxU)x U+ V(U7 —kaUh—p—Vhp—i—DU—l—FU
h o
(2.1a)
0
871;:*,09 (2.1b)

V-U=0 (2.1c)
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aaz;:—V'(TU)-i-DT-FFT (2.1d)
% =-V-(SU)+D°+F% (2.1e)
p=p(T,S,p) (2.19)

where V is the generalised derivative vector operator in (i, j, k) directions, ¢ is the
time, z is the vertical coordinate, p is the in situ density given by the equation of
state (2?), p, is a reference density, p the pressure, f = 22 -k is the Coriolis accel-
eration (where €2 is the Earth’s angular velocity vector), and g is the gravitational
acceleration. DY, DT and D? are the parameterisations of small-scale physics for
momentum, temperature and salinity, and FU, FT and F* surface forcing terms.
Their nature and formulation are discussed in §?? and page §??.

Boundary Conditions

An ocean is bounded by complex coastlines, bottom topography at its base and an
air-sea or ice-sea interface at its top. These boundaries can be defined by two sur-
faces, z = —H(i,j) and z = (i, j, k, t), where H is the depth of the ocean bottom
and 7 is the height of the sea surface. Both H and 7 are usually referenced to a
given surface, z = 0, chosen as a mean sea surface (Fig. ??). Through these two
boundaries, the ocean can exchange fluxes of heat, fresh water, salt, and momen-
tum with the solid earth, the continental margins, the sea ice and the atmosphere.
However, some of these fluxes are so weak that even on climatic time scales of
thousands of years they can be neglected. In the following, we briefly review the
fluxes exchanged at the interfaces between the ocean and the other components of
the earth system.

Land - ocean interface: the major flux between continental margins and the ocean
is a mass exchange of fresh water through river runoff. Such an exchange
modifies the sea surface salinity especially in the vicinity of major river
mouths. It can be neglected for short range integrations but has to be taken
into account for long term integrations as it influences the characteristics of
water masses formed (especially at high latitudes). It is required in order to
close the water cycle of the climate system. It is usually specified as a fresh
water flux at the air-sea interface in the vicinity of river mouths.

Solid earth - ocean interface: heat and salt fluxes through the sea floor are small,
except in special areas of little extent. They are usually neglected in the
model . The boundary condition is thus set to no flux of heat and salt across

'In fact, it has been shown that the heat flux associated with the solid Earth cooling (i.e.the
geothermal heating) is not negligible for the thermohaline circulation of the world ocean (see ??).
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n(ij.t)

>

l,]

Figure 2.1: The ocean is bounded by two surfaces, 2 = —H (i, ) and z = (i, j, t),
where H is the depth of the sea floor and 7 the height of the sea surface. Both H and
7 are referenced to z = 0.

solid boundaries. For momentum, the situation is different. There is no flow
across solid boundaries, i.e. the velocity normal to the ocean bottom and
coastlines is zero (in other words, the bottom velocity is parallel to solid
boundaries). This kinematic boundary condition can be expressed as:

w = —Uh . Vh (H) (2.2)

In addition, the ocean exchanges momentum with the earth through frictional
processes. Such momentum transfer occurs at small scales in a boundary
layer. It must be parameterized in terms of turbulent fluxes using bottom
and/or lateral boundary conditions. Its specification depends on the nature
of the physical parameterisation used for DY in (2?). It is discussed in §2?,
page ??.

Atmosphere - ocean interface: the kinematic surface condition plus the mass flux
of fresh water PE (the precipitation minus evaporation budget) leads to:
In

w="T L Ul Va(n) + P E 23)
The dynamic boundary condition, neglecting the surface tension (which re-
moves capillary waves from the system) leads to the continuity of pressure
across the interface z = 7. The atmosphere and ocean also exchange hori-
zontal momentum (wind stress), and heat.

Sea ice - ocean interface: the ocean and sea ice exchange heat, salt, fresh water
and momentum. The sea surface temperature is constrained to be at the
freezing point at the interface. Sea ice salinity is very low (~ 4 — 6 psu)
compared to those of the ocean (~ 34 psu). The cycle of freezing/melting is
associated with fresh water and salt fluxes that cannot be neglected.
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The Horizontal Pressure Gradient

Pressure Formulation

The total pressure at a given depth z is composed of a surface pressure ps at a
reference geopotential surface (z = 0) and a hydrostatic pressure p;, such that:
p(i,7,k,t) = ps(i, 7,t) + pr(i, j, k, t). The latter is computed by integrating (??),
assuming that pressure in decibars can be approximated by depth in meters in (??).
The hydrostatic pressure is then given by:

s=0

Dh (i,j,z,t):/ gp(T,S,<) ds (2.4)
S

=z

Two strategies can be considered for the surface pressure term: (a) introduce of a
new variable 7, the free-surface elevation, for which a prognostic equation can be
established and solved; (b) assume that the ocean surface is a rigid lid, on which
the pressure (or its horizontal gradient) can be diagnosed. When the former strat-
egy is used, one solution of the free-surface elevation consists of the excitation
of external gravity waves. The flow is barotropic and the surface moves up and
down with gravity as the restoring force. The phase speed of such waves is high
(some hundreds of metres per second) so that the time step would have to be very
short if they were present in the model. The latter strategy filters out these waves
since the rigid lid approximation implies 7 = 0, 7.e. the sea surface is the surface
z = 0. This well known approximation increases the surface wave speed to infinity
and modifies certain other longwave dynamics (e.g. barotropic Rossby or planetary
waves). The rigid-lid hypothesis is an obsolescent feature in modern OGCMs. It
has been available until the release 3.1 of NEMO, and it has been removed in re-
lease 3.2 and followings. Only the free surface formulation is now described in the
this document (see the next sub-section).

Free Surface Formulation

In the free surface formulation, a variable 7, the sea-surface height, is introduced
which describes the shape of the air-sea interface. This variable is solution of a
prognostic equation which is established by forming the vertical average of the
kinematic surface condition (2?):
an —
a:—D+P—E where D =V - [(H +1n) Uy, | (2.5)
and using (??) the surface pressure is given by: ps = pgn.

Allowing the air-sea interface to move introduces the external gravity waves
(EGW5s) as a class of solution of the primitive equations. These waves are barotropic
because of hydrostatic assumption, and their phase speed is quite high. Their time
scale is short with respect to the other processes described by the primitive equa-
tions.
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Two choices can be made regarding the implementation of the free surface in
the model, depending on the physical processes of interest.

o If one is interested in EGWs, in particular the tides and their interaction with
the baroclinic structure of the ocean (internal waves) possibly in shallow seas, then
a non linear free surface is the most appropriate. This means that no approxima-
tion is made in (??) and that the variation of the ocean volume is fully taken into
account. Note that in order to study the fast time scales associated with EGWs it is
necessary to minimize time filtering effects (use an explicit time scheme with very
small time step, or a split-explicit scheme with reasonably small time step, see §??
or §??.

o If one is not interested in EGW but rather sees them as high frequency noise,
it is possible to apply an explicit filter to slow down the fastest waves while not al-
tering the slow barotropic Rossby waves. If further, an approximative conservation
of heat and salt contents is sufficient for the problem solved, then it is sufficient to
solve a linearized version of (??), which still allows to take into account freshwa-
ter fluxes applied at the ocean surface [?]. Nevertheless, with the linearization, an
exact conservation of heat and salt contents is lost.

The filtering of EGWs in models with a free surface is usually a matter of
discretisation of the temporal derivatives, using a split-explicit method [??] or the
implicit scheme [?] or the addition of a filtering force in the momentum equation
[?]. With the present release, NEMO offers the choice between an explicit free
surface (see §??) or a split-explicit scheme strongly inspired the one proposed by
? (see §2?).

Curvilinear z-coordinate System

Tensorial Formalism

In many ocean circulation problems, the flow field has regions of enhanced dynam-
ics (i.e. surface layers, western boundary currents, equatorial currents, or ocean
fronts). The representation of such dynamical processes can be improved by specif-
ically increasing the model resolution in these regions. As well, it may be con-
venient to use a lateral boundary-following coordinate system to better represent
coastal dynamics. Moreover, the common geographical coordinate system has a
singular point at the North Pole that cannot be easily treated in a global model
without filtering. A solution consists of introducing an appropriate coordinate
transformation that shifts the singular point onto land [??]. As a consequence,
it is important to solve the primitive equations in various curvilinear coordinate
systems. An efficient way of introducing an appropriate coordinate transform can
be found when using a tensorial formalism. This formalism is suited to any mul-
tidimensional curvilinear coordinate system. Ocean modellers mainly use three-
dimensional orthogonal grids on the sphere (spherical earth approximation), with
preservation of the local vertical. Here we give the simplified equations for this par-
ticular case. The general case is detailed by ? in their survey of the conservation
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A

S

Figure 2.2: the geographical coordinate system (, ¢, z) and the curvilinear coordi-
nate system (i,j,k).

laws of fluid dynamics.

Let (ij,k) be a set of orthogonal curvilinear coordinates on the sphere associ-
ated with the positively oriented orthogonal set of unit vectors (i,j,k) linked to the
earth such that k is the local upward vector and (i,j) are two vectors orthogonal to
k, i.e. along geopotential surfaces (Fig.??). Let (A, ¢, z) be the geographical co-
ordinate system in which a position is defined by the latitude ¢ (i, j), the longitude
A(%, j) and the distance from the centre of the earth a + z(k) where a is the earth’s
radius and z the altitude above a reference sea level (Fig.??). The local deforma-
tion of the curvilinear coordinate system is given by e1, es and e3, the three scale

factors:
- 11/2

O\ 2 (9p)?
e1 = (a+2) (&,cosgp> +(af)

- 11/2

2 2
ex = (a+ 2) (g;\ cos g0> + (Zf) 26

7\ ok

Since the ocean depth is far smaller than the earth’s radius, a + z, can be
replaced by a in (??) (thin-shell approximation). The resulting horizontal scale
factors eq, eg are independent of £ while the vertical scale factor is a single function
of k as k is parallel to z. The scalar and vector operators that appear in the primitive
equations (Egs. (??) to (??)) can be written in the tensorial form, invariant in any
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orthogonal horizontal curvilinear coordinate system transformation:

19q, 10, 13q

. 1 0 (62 al) 0 (61 ag) 1 &13
VA= - [ 5t 5 + = | o% (2.7b)
|1 Odas 1 Oas | . 1 daq 1 Oas| .
VXA_Lg@j egf)k] 1+|:€38k3 el 8@'}
(2.7¢)
1 8 (62&2) . (9 (elal) Kk
€1€2 01 83
Aq=V-(Vq) (2.7d)
AA=V(V-A) -V x(VxA) (2.7¢)

where ¢ is a scalar quantity and A = (aq, az, as) a vector in the (i, 7, k) coordinate
system.

Continuous Model Equations

In order to express the Primitive Equations in tensorial formalism, it is necessary
to compute the horizontal component of the non-linear and viscous terms of the
equation using (??)) to (2?). Let us set U = (u, v, w) = Uy + w k, the velocity in
the (4, j, k) coordinate system and define the relative vorticity ¢ and the divergence
of the horizontal velocity field y, by:

1 [9(e2v) I(e1w)
= ae [ o 0 ] 28
1 [0(eau)  O(e1w)
- €1€9 |: 01 + 8] :| (29)

Using the fact that the horizontal scale factors e; and ey are independent of k&
and that ej is a function of the single variable k, the nonlinear term of (??) can be
transformed as follows:

[(v x U) x U+ %v (UZ)L

d10u _ 1owl|, _ 1 9w’ +v*4w?

|:638k elai:|w Cv 41 a%

Cu— 1ow _ 1ov] 9 1 0(u?+v24w?)
e 3] es3 ok a aj
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Co 1 LM 1 w v wow _ 1 Jw
_ - - el o1 - Ok o e; 01 2e1 Ot
_<Cu )+2 1 9(w?+0?) +e <wg”> wow 1 dw?

e 0 3 ok ea 07 2eo 0j

The last term of the right hand side is obviously zero, and thus the nonlinear
term of (??) is written in the (i, j, k) coordinate system:

[(v x U) x U+ %v (UQ)] =(Ckx U+ %vh (U7) + L2904 10)
h €3 ok
This is the so-called vector invariant form of the momentum advection term.
For some purposes, it can be advantageous to write this term in the so-called flux
form, 7.e. to write it as the divergence of fluxes. For example, the first component
of (??) (the i-component) is transformed as follows:

A(u2+v?
[(VXU)xU+%V(U2)]i:—Cv+i%+egw g}i

(+62u81 +62v82) +% (w %)

_ 1 9d(ea v) d(e1 )
_6162< v 821 +v 81] >+6162

L {— ( 2862 + e v%@’) + (78(6(3);-”) e1 ug;’)

T e1 en

* (“@zz‘“) —u®G0) fepfi )+ L (250 - uly)

1 (o ) 4 o ) 1 O(wu)
_61€2< eQuu + eé;“’)_’_ed g]ku

1 (., (0ev)  der\ _, 0(e2u)\ 1 dw 1 2 dea.
+eleg< u( dj vTj U—g; a%u—i_elez —V"%5;

=V (Uu) = (V- U) u+ ;L (0252 4 uv )

€1e2

as V- U = 0 (incompressibility) it comes:

=V (Uu) + L (v %2 —u B ) (-v)

The flux form of the momentum advection term is therefore given by:

(V x U) x U+1V(U2)}
2 h

Uu 1 862 861
=V —|v—=—=——-—u— |k 2.11
v <U’U >+€1€2 (U 01 u83> XUh ( )

The flux form has two terms, the first one is expressed as the divergence of
momentum fluxes (hence the flux form name given to this formulation) and the
second one is due to the curvilinear nature of the coordinate system used. The
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latter is called the metric term and can be viewed as a modification of the Coriolis

parameter:
Fofe—t (0220 2.12)
e1 € 01 0j

Note that in the case of geographical coordinate, i.e. when (i,7) — (A, ¢)
and (e1,e2) — (a cosyp,a), we recover the commonly used modification of the
Coriolis parameter f — f + (u/a) tan ¢.

To sum up, the curvilinear z-coordinate equations solved by the ocean model
can be written in the following tensorial formalism:

e Vector invariant form of the momentum equations :

ou 1 0,49 o 1 Ou
Lo <p5+ph> +DY + FY
ey 01 Po
(2.13a)
Ov _ 19 ey 1,0
gr =GN g g () = Sy
1o (pﬁph) +DY + FY
ez 0j Po
o flux form of the momentum equations :
6u . 1 362 861
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19 <p5 +ph> +DY 1 FY  (2.140)
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(%__<f+61€2 (Ual _u8])>u
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where (, the relative vorticity, is given by (??) and p;, the surface pressure, is given
by:
Ps=pgn (2.15)
with 7 is solution of (2?)
The vertical velocity and the hydrostatic pressure are diagnosed from the fol-
lowing equations:

ow
Opn
ok —pPges (2.17)

where the divergence of the horizontal velocity, x is given by (??).

® tracer equations :

or 1 [0(exTu) 0O(eaTwv)] 10(Tw) T T

CE OB L pT L BT 21

9t~ eres [ oi 95 | e ok 7T 2.18)

S 1 [0(e2Su) O(e1Sv)] 1 09(Sw) S g

C R - DS+ FS @l

9~ eies [ 9 T T o) | e ak U7 @.19)
o= (T, 5, =(k) (2.20)

The expression of DV, DS and DT depends on the subgrid scale parameteri-
sation used. It will be defined in §??. The nature and formulation of FY, FT and
F3, the surface forcing terms, are discussed in Chapter ??.
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Curvilinear generalised vertical coordinate System

The ocean domain presents a huge diversity of situation in the vertical. First the
ocean surface is a time dependent surface (moving surface). Second the ocean
floor depends on the geographical position, varying from more than 6,000 meters
in abyssal trenches to zero at the coast. Last but not least, the ocean stratification
exerts a strong barrier to vertical motions and mixing. Therefore, in order to rep-
resent the ocean with respect to the first point a space and time dependent vertical
coordinate that follows the variation of the sea surface height e.g. an z*-coordinate;
for the second point, a space variation to fit the change of bottom topography e.g.
a terrain-following or o-coordinate; and for the third point, one will be tempted to
use a space and time dependent coordinate that follows the isopycnal surfaces, e.g.
an isopycnic coordinate.

In order to satisfy two or more constrains one can even be tempted to mixed
these coordinate systems, as in HYCOM (mixture of z-coordinate at the surface,
isopycnic coordinate in the ocean interior and o at the ocean bottom) [?] or OPA
(mixture of z-coordinate in vicinity the surface and steep topography areas and
o-coordinate elsewhere) [?] among others.

In fact one is totally free to choose any space and time vertical coordinate by
introducing an arbitrary vertical coordinate :

s =s(i,j,k,t) (2.21)

with the restriction that the above equation gives a single-valued monotonic re-
lationship between s and k, when ¢, j and ¢ are held fixed. (??) is a transfor-
mation from the (i, j, k, ) coordinate system with independent variables into the
(1,7, s,t) generalised coordinate system with s depending on the other three vari-
ables through (??). This so-called generalised vertical coordinate [?] is in fact an
Arbitrary Lagrangian—Eulerian (ALE) coordinate. Indeed, choosing an expression
for s is an arbitrary choice that determines which part of the vertical velocity (de-
fined from a fixed referential) will cross the levels (Eulerian part) and which part
will be used to move them (Lagrangian part). The coordinate is also sometime
referenced as an adaptive coordinate [?], since the coordinate system is adapted in
the course of the simulation. Its most often used implementation is via an ALE
algorithm, in which a pure lagrangian step is followed by regridding and remap-
ping steps, the later step implicitly embedding the vertical advection [???]. Here
we follow the [?] strategy : a regridding step (an update of the vertical coordinate)
followed by an eulerian step with an explicit computation of vertical advection
relative to the moving s-surfaces.

the generalized vertical coordinates used in ocean modelling are not orthogo-
nal, which contrasts with many other applications in mathematical physics. Hence,
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it is useful to keep in mind the following properties that may seem odd on initial
encounter.

The horizontal velocity in ocean models measures motions in the horizontal
plane, perpendicular to the local gravitational field. That is, horizontal velocity
is mathematically the same regardless the vertical coordinate, be it geopotential,
isopycnal, pressure, or terrain following. The key motivation for maintaining the
same horizontal velocity component is that the hydrostatic and geostrophic bal-
ances are dominant in the large-scale ocean. Use of an alternative quasi-horizontal
velocity, for example one oriented parallel to the generalized surface, would lead
to unacceptable numerical errors. Correspondingly, the vertical direction is anti-
parallel to the gravitational force in all of the coordinate systems. We do not choose
the alternative of a quasi-vertical direction oriented normal to the surface of a con-
stant generalized vertical coordinate.

It is the method used to measure transport across the generalized vertical co-
ordinate surfaces which differs between the vertical coordinate choices. That is,
computation of the dia-surface velocity component represents the fundamental dis-
tinction between the various coordinates. In some models, such as geopotential,
pressure, and terrain following, this transport is typically diagnosed from volume
or mass conservation. In other models, such as isopycnal layered models, this
transport is prescribed based on assumptions about the physical processes produc-
ing a flux across the layer interfaces.

In this section we first establish the PE in the generalised vertical s-coordinate,
then we discuss the particular cases available in NEMO, namely z, z*, s, and Z.

The s-coordinate Formulation

Starting from the set of equations established in §?? for the special case k = z and
thus e3 = 1, we introduce an arbitrary vertical coordinate s = s(i, j, k, t), which
includes z-, z*- and o—coordinates as special cases (s = z, s = z¥,and s = 0 =
z/H or = z/ (H + n), resp.). A formal derivation of the transformed equations is
given in Appendix ??. Let us define the vertical scale factor by e3 = 05z (e3 is
now a function of (4, j, k, t) ), and the slopes in the (i,j) directions between s— and
z—surfaces by :

1 0z 1 0z

o1 = — — , and o9 = — — (222)
er 0i|, es 0j|,

We also introduce w, a dia-surface velocity component, defined as the velocity
relative to the moving s-surfaces and normal to them:

w:w—eg—s—alu—agv (2.23)

ot

The equations solved by the ocean model (??) in s—coordinate can be written
as follows (see Appendix ??):
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e Vector invariant form of the momentum equation :

ou 1 0,49 o 1 Ou
—18,<p8+ph>+gp01+Dg—|—Ff (2.24)
ey 01 Po Do

ov 0,9 o 1 Ov
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e Vector invariant form of the momentum equation :
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where the relative vorticity, ¢, the surface pressure gradient, and the hydrostatic
pressure have the same expressions as in z-coordinates although they do not rep-
resent exactly the same quantities. w is provided by the continuity equation (see
Appendix ??):

Oes Ow . 1 0 (egezu)  O(ejezv)
ot +e3 x+ o5 0 with x = e1eaes { 9 + 2j (2.28)
e tracer equations:
19(esT) 1 8(6263uT)+8(6163vT)
€3 ot - €1€e9€3 o1 8]
_ 19w | pr ps (2.29)

€3 8]45
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10(e3s5) 1 8(6263uS)+8(ele3vS)
€3 ot - €1€e90€3 01 8]
_1905w)  ps + F* (2.30)
€3 ok

The equation of state has the same expression as in z-coordinate, and similar
expressions are used for mixing and forcing terms.

2.4.2 Curvilinear z*—coordinate System

In that case, the free surface equation is nonlinear, and the variations of volume
are fully taken into account. These coordinates systems is presented in a report [?]
available on the NEMO web site.

The z* coordinate approach is an unapproximated, non-linear free surface im-
plementation which allows one to deal with large amplitude free-surface variations
relative to the vertical resolution [?]. In the z* formulation, the variation of the
column thickness due to sea-surface undulations is not concentrated in the surface
level, as in the z-coordinate formulation, but is equally distributed over the full

SRS S
& 1 1

H I(a)l H ! -(b)- i ' -(c).

Figure 2.3: (a) z-coordinate in linear free-surface case ; (b) z—coordinate in non-
linear free surface case ; (c) re-scaled height coordinate (become popular as the z*-
coordinate [?] ).
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water column. Thus vertical levels naturally follow sea-surface variations, with a
linear attenuation with depth, as illustrated by figure fig.1c . Note that with a flat
bottom, such as in fig.1c, the bottom-following z coordinate and z* are equivalent.
The definition and modified oceanic equations for the rescaled vertical coordinate
z*, including the treatment of fresh-water flux at the surface, are detailed in Adcroft
and Campin (2004). The major points are summarized here. The position ( z*) and
vertical discretization (z*) are expressed as:

H+z%=(H+2z2)/r anddz*=dz/r withr = % (2.31)
Since the vertical displacement of the free surface is incorporated in the vertical
coordinate z*, the upper and lower boundaries are at fixed z* position, z* = 0 and
7% = —H respectively. Also the divergence of the flow field is no longer zero as
shown by the continuity equation:

or

azvz*-(rUh)(rw*)zo

To overcome problems with vanishing surface and/or bottom cells, we consider

the zstar coordinate
zZ—1
*=H 2.32
(H + 77) (232

This coordinate is closely related to the “eta” coordinate used in many atmo-
spheric models (see Black (1994) for a review of eta coordinate atmospheric mod-
els). It was originally used in ocean models by Stacey et al. (1995) for studies of
tides next to shelves, and it has been recently promoted by Adcroft and Campin
(2004) for global climate modelling.

The surfaces of constant z* are quasi-horizontal. Indeed, the z* coordinate re-
duces to z when 7 is zero. In general, when noting the large differences between
undulations of the bottom topography versus undulations in the surface height, it
is clear that surfaces constant z* are very similar to the depth surfaces. These
properties greatly reduce difficulties of computing the horizontal pressure gradient
relative to terrain following sigma models discussed in §??. Additionally, since
z* when 1 = 0, no flow is spontaneously generated in an unforced ocean starting
from rest, regardless the bottom topography. This behaviour is in contrast to the
case with ”’s”’-models, where pressure gradient errors in the presence of nontriv-
ial topographic variations can generate nontrivial spontaneous flow from a resting
state, depending on the sophistication of the pressure gradient solver. The quasi-
horizontal nature of the coordinate surfaces also facilitates the implementation of
neutral physics parameterizations in z* models using the same techniques as in z-
models (see Chapters 13-16 of ?) for a discussion of neutral physics in z-models,
as well as Section §?? in this document for treatment in NEMO).

The range over which z* varies is time independent —H < z* < (. Hence, all
cells remain nonvanishing, so long as the surface height maintains 7 >?H. This
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is a minor constraint relative to that encountered on the surface height when using
§=2zOrs=z—1.

Because z* has a time independent range, all grid cells have static increments
ds, and the sum of the ver tical increments yields the time independent ocean depth
The z* coordinate is therefore invisible to undulations of the free surface, since
it moves along with the free surface. This proper ty means that no spurious ver
tical transpor t is induced across surfaces of constant z* by the motion of external
gravity waves. Such spurious transpor t can be a problem in z-models, especially
those with tidal forcing. Quite generally, the time independent range for the z*
coordinate is a very convenient proper ty that allows for a nearly arbitrary ver tical
resolution even in the presence of large amplitude fluctuations of the surface height,
again so long asn > —H.
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Curvilinear Terrain-following s—coordinate
Introduction

Several important aspects of the ocean circulation are influenced by bottom topog-
raphy. Of course, the most important is that bottom topography determines deep
ocean sub-basins, barriers, sills and channels that strongly constrain the path of wa-
ter masses, but more subtle effects exist. For example, the topographic S-effect is
usually larger than the planetary one along continental slopes. Topographic Rossby
waves can be excited and can interact with the mean current. In the z—coordinate
system presented in the previous section (§??), z—surfaces are geopotential sur-
faces. The bottom topography is discretised by steps. This often leads to a mis-
representation of a gradually sloping bottom and to large localized depth gradients
associated with large localized vertical velocities. The response to such a velocity
field often leads to numerical dispersion effects. One solution to strongly reduce
this error is to use a partial step representation of bottom topography instead of
a full step one ?. Another solution is to introduce a terrain-following coordinate
system (hereafter s—coordinate)

The s-coordinate avoids the discretisation error in the depth field since the lay-
ers of computation are gradually adjusted with depth to the ocean bottom. Rel-
atively small topographic features as well as gentle, large-scale slopes of the sea
floor in the deep ocean, which would be ignored in typical z-model applications
with the largest grid spacing at greatest depths, can easily be represented (with
relatively low vertical resolution). A terrain-following model (hereafter s—model)
also facilitates the modelling of the boundary layer flows over a large depth range,
which in the framework of the z-model would require high vertical resolution over
the whole depth range. Moreover, with a s-coordinate it is possible, at least in prin-
ciple, to have the bottom and the sea surface as the only boundaries of the domain
(nomore lateral boundary condition to specify). Nevertheless, a s-coordinate also
has its drawbacks. Perfectly adapted to a homogeneous ocean, it has strong limita-
tions as soon as stratification is introduced. The main two problems come from the
truncation error in the horizontal pressure gradient and a possibly increased diapy-
cnal diffusion. The horizontal pressure force in s-coordinate consists of two terms
(see Appendix ??),

Ip
ds

The second term in (??) depends on the tilt of the coordinate surface and in-
troduces a truncation error that is not present in a z-model. In the special case of
a o—coordinate (i.e. a depth-normalised coordinate system o = z/H), ? and ?
have given estimates of the magnitude of this truncation error. It depends on topo-
graphic slope, stratification, horizontal and vertical resolution, the equation of state,
and the finite difference scheme. This error limits the possible topographic slopes
that a model can handle at a given horizontal and vertical resolution. This is a se-
vere restriction for large-scale applications using realistic bottom topography. The

Vp|, = Vp|, — = Vz| (2.33)

S
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large-scale slopes require high horizontal resolution, and the computational cost
becomes prohibitive. This problem can be at least partially overcome by mixing s-
coordinate and step-like representation of bottom topography [???]. However, the
definition of the model domain vertical coordinate becomes then a non-trivial thing
for a realistic bottom topography: a envelope topography is defined in s-coordinate
on which a full or partial step bottom topography is then applied in order to adjust
the model depth to the observed one (see §??.

For numerical reasons a minimum of diffusion is required along the coordi-
nate surfaces of any finite difference model. It causes spurious diapycnal mixing
when coordinate surfaces do not coincide with isoneutral surfaces. This is the case
for a z-model as well as for a s-model. However, density varies more strongly
on s—surfaces than on horizontal surfaces in regions of large topographic slopes,
implying larger diapycnal diffusion in a s-model than in a z-model. Whereas such
a diapycnal diffusion in a z-model tends to weaken horizontal density (pressure)
gradients and thus the horizontal circulation, it usually reinforces these gradients in
a s-model, creating spurious circulation. For example, imagine an isolated bump
of topography in an ocean at rest with a horizontally uniform stratification. Spuri-
ous diffusion along s-surfaces will induce a bump of isoneutral surfaces over the
topography, and thus will generate there a baroclinic eddy. In contrast, the ocean
will stay at rest in a z-model. As for the truncation error, the problem can be re-
duced by introducing the terrain-following coordinate below the strongly stratified
portion of the water column (i.e. the main thermocline) [?]. An alternate solu-
tion consists of rotating the lateral diffusive tensor to geopotential or to isoneutral
surfaces (see §??. Unfortunately, the slope of isoneutral surfaces relative to the
s-surfaces can very large, strongly exceeding the stability limit of such a operator
when it is discretized (see Chapter ??).

The s—coordinates introduced here [??] differ mainly in two aspects from
similar models: it allows a representation of bottom topography with mixed full or
partial step-like/terrain following topography ; It also offers a completely general
transformation, s = s(3, j, z) for the vertical coordinate.
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2.4.4 Curvilinear Z—coordinate

The Z-coordinate has been developed by ?. It is available in NEMO since the
version 3.4. Nevertheless, it is currently not robust enough to be used in all possible
configurations. Its use is therefore not recommended.
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Subgrid Scale Physics

The primitive equations describe the behaviour of a geophysical fluid at space and
time scales larger than a few kilometres in the horizontal, a few meters in the ver-
tical and a few minutes. They are usually solved at larger scales: the specified grid
spacing and time step of the numerical model. The effects of smaller scale motions
(coming from the advective terms in the Navier-Stokes equations) must be repre-
sented entirely in terms of large-scale patterns to close the equations. These effects
appear in the equations as the divergence of turbulent fluxes (:.e. fluxes associated
with the mean correlation of small scale perturbations). Assuming a turbulent clo-
sure hypothesis is equivalent to choose a formulation for these fluxes. It is usually
called the subgrid scale physics. It must be emphasized that this is the weakest part
of the primitive equations, but also one of the most important for long-term simu-
lations as small scale processes in fine balance the surface input of kinetic energy
and heat.

The control exerted by gravity on the flow induces a strong anisotropy between
the lateral and vertical motions. Therefore subgrid-scale physics DY, D and DT
in (??), (??) and (??) are divided into a lateral part DY, D' and D'T and a vertical
part D'V, DS and DT, The formulation of these terms and their underlying
physics are briefly discussed in the next two subsections.

Vertical Subgrid Scale Physics

The model resolution is always larger than the scale at which the major sources
of vertical turbulence occur (shear instability, internal wave breaking...). Turbu-
lent motions are thus never explicitly solved, even partially, but always parame-
terized. The vertical turbulent fluxes are assumed to depend linearly on the gra-
dients of large-scale quantities (for example, the turbulent heat flux is given by
T'w' = —A"T9,T, where AT is an eddy coefficient). This formulation is analo-
gous to that of molecular diffusion and dissipation. This is quite clearly a neces-
sary compromise: considering only the molecular viscosity acting on large scale
severely underestimates the role of turbulent diffusion and dissipation, while an ac-
curate consideration of the details of turbulent motions is simply impractical. The
resulting vertical momentum and tracer diffusive operators are of second order:

DvU 0 <Avm aUh)

K 0z (2.34)
DUT _ Q AvTaj DUS' _ 2 AvTais ‘
0z 0z )’ 0z 0z

where AV™ and A7 are the vertical eddy viscosity and diffusivity coefficients, re-
spectively. At the sea surface and at the bottom, turbulent fluxes of momentum,
heat and salt must be specified (see Chap. ?? and ?? and §??). All the verti-
cal physics is embedded in the specification of the eddy coefficients. They can
be assumed to be either constant, or function of the local fluid properties (e.g.



2.5.2

34 Model basics

Richardson number, Brunt-Vaisili frequency...), or computed from a turbulent clo-
sure model. The choices available in NEMO are discussed in §?7?).

Formulation of the Lateral Diffusive and Viscous Operators

Lateral turbulence can be roughly divided into a mesoscale turbulence associated
with eddies (which can be solved explicitly if the resolution is sufficient since their
underlying physics are included in the primitive equations), and a sub mesoscale
turbulence which is never explicitly solved even partially, but always parameter-
ized. The formulation of lateral eddy fluxes depends on whether the mesoscale is
below or above the grid-spacing (z.e. the model is eddy-resolving or not).

In non-eddy-resolving configurations, the closure is similar to that used for the
vertical physics. The lateral turbulent fluxes are assumed to depend linearly on
the lateral gradients of large-scale quantities. The resulting lateral diffusive and
dissipative operators are of second order. Observations show that lateral mixing
induced by mesoscale turbulence tends to be along isopycnal surfaces (or more
precisely neutral surfaces ?) rather than across them. As the slope of neutral sur-
faces is small in the ocean, a common approximation is to assume that the ‘lateral’
direction is the horizontal, 7.e. the lateral mixing is performed along geopotential
surfaces. This leads to a geopotential second order operator for lateral subgrid
scale physics. This assumption can be relaxed: the eddy-induced turbulent fluxes
can be better approached by assuming that they depend linearly on the gradients of
large-scale quantities computed along neutral surfaces. In such a case, the diffusive
operator is an isoneutral second order operator and it has components in the three
space directions. However, both horizontal and isoneutral operators have no ef-
fect on mean (¢.e. large scale) potential energy whereas potential energy is a main
source of turbulence (through baroclinic instabilities). ? have proposed a parame-
terisation of mesoscale eddy-induced turbulence which associates an eddy-induced
velocity to the isoneutral diffusion. Its mean effect is to reduce the mean potential
energy of the ocean. This leads to a formulation of lateral subgrid-scale physics
made up of an isoneutral second order operator and an eddy induced advective part.
In all these lateral diffusive formulations, the specification of the lateral eddy coef-
ficients remains the problematic point as there is no really satisfactory formulation
of these coefficients as a function of large-scale features.

In eddy-resolving configurations, a second order operator can be used, but usu-
ally the more scale selective biharmonic operator is preferred as the grid-spacing
is usually not small enough compared to the scale of the eddies. The role devoted
to the subgrid-scale physics is to dissipate the energy that cascades toward the grid
scale and thus to ensure the stability of the model while not interfering with the re-
solved mesoscale activity. Another approach is becoming more and more popular:
instead of specifying explicitly a sub-grid scale term in the momentum and tracer
time evolution equations, one uses a advective scheme which is diffusive enough
to maintain the model stability. It must be emphasised that then, all the sub-grid
scale physics is included in the formulation of the advection scheme.
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All these parameterisations of subgrid scale physics have advantages and draw-
backs. There are not all available in NEMO. For active tracers (temperature and
salinity) the main ones are: Laplacian and bilaplacian operators acting along geopo-
tential or iso-neutral surfaces, ? parameterisation, and various slightly diffusive
advection schemes. For momentum, the main ones are: Laplacian and bilaplacian
operators acting along geopotential surfaces, and UBS advection schemes when
flux form is chosen for the momentum advection.

Lateral Laplacian tracer diffusive operator

The lateral Laplacian tracer diffusive operator is defined by (see Appendix ??):

1 0 —T1
DT = v. (AZT R VT) with ®R=[o0 1 —n (2.35)
—r1y —To 7“% + r%

where r1 and r, are the slopes between the surface along which the diffusive oper-
ator acts and the model level (e.g. z- or s-surfaces). Note that the formulation (??)
is exact for the rotation between geopotential and s-surfaces, while it is only an
approximation for the rotation between isoneutral and z- or s-surfaces. Indeed, in
the latter case, two assumptions are made to simplify (??) [?]. First, the horizon-
tal contribution of the dianeutral mixing is neglected since the ratio between iso
and dia-neutral diffusive coefficients is known to be several orders of magnitude
smaller than unity. Second, the two isoneutral directions of diffusion are assumed
to be independent since the slopes are generally less than 10~2 in the ocean (see
Appendix ??).

For iso-level diffusion, ry and 79 are zero. R reduces to the identity in the
horizontal direction, no rotation is applied.

For geopotential diffusion, r; and ro are the slopes between the geopotential
and computational surfaces: they are equal to ¢ and o3, respectively (see (??) ).

For isoneutral diffusion r; and ro are the slopes between the isoneutral and
computational surfaces. Therefore, they are different quantities, but have similar
expressions in z- and s-coordinates. In z-coordinates:

-1 -1
es (Op\ (Op es (Op\ (Op
=32 (ZZ) ([ ZE === (= 2.36
e <8i> <6k5> i <aj ok (2-36)
while in s-coordinates % is replaced by %.

Eddy induced velocity

When the eddy induced velocity parametrisation (eiv) [?] is used, an additional
tracer advection is introduced in combination with the isoneutral diffusion of trac-
ers:

DT =v. <AZT RVT) + V- (UT) 2.37)



36 Model basics

where U* = (u*, v*, w*) is a non-divergent, eddy-induced transport velocity. This
velocity field is defined by:

* ig e

ut = —|—63 % [A 7“1]
* 1 8 el

U=t ok (A 7] (2.38)
* 1 8 et ~ a et =

w :—@ [az (A egr1)+a—j(A 617“2)

where A°" is the eddy induced velocity coefficient (or equivalently the isoneutral
thickness diffusivity coefficient), and 7; and 79 are the slopes between isoneutral
and geopotential surfaces. Their values are thus independent of the vertical coor-
dinate, but their expression depends on the coordinate:

where n = 1,2 (2.39)

B Tn in z-coordinate
Tn = ) .
Tn + 0, 10 z* and s-coordinates

The normal component of the eddy induced velocity is zero at all the bound-
aries. This can be achieved in a model by tapering either the eddy coefficient or
the slopes to zero in the vicinity of the boundaries. The latter strategy is used in
NEMO (cf. Chap. ??).

Lateral bilaplacian tracer diffusive operator

The lateral bilaplacian tracer diffusive operator is defined by:

DT = —A(AT)  where Ae=V (\/BZT R v.) (2.40)
It is the Laplacian operator given by (??) applied twice with the harmonic eddy
diffusion coefficient set to the square root of the biharmonic one.
Lateral Laplacian momentum diffusive operator

The Laplacian momentum diffusive operator along z- or s-surfaces is found by
applying (??) to the horizontal velocity vector (see Appendix ?7?):

DV - v, (Almx> S VA (Alm§k>
1oAY 1 04 eg0)

el ot eses 8] (2.41)
19(Amy) 1 9 (A™ es()

— - + -

e2 0j eres 01

Such a formulation ensures a complete separation between the vorticity and
horizontal divergence fields (see Appendix ??). Unfortunately, it is only avail-
able in iso-level direction. When a rotation is required (¢.e. geopotential diffusion
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in s—coordinates or isoneutral diffusion in both z- and s-coordinates), the « and
v—fields are considered as independent scalar fields, so that the diffusive operator
is given by:

DY = V. (4™ % Vu)
DY = . (4™ % Vo) 242

where R is given by (??). It is the same expression as those used for diffusive
operator on tracers. It must be emphasised that such a formulation is only exact in
a Cartesian coordinate system, ¢.e. on a f — or S—plane, not on the sphere. It is also
a very good approximation in vicinity of the Equator in a geographical coordinate
system [?].

lateral bilaplacian momentum diffusive operator

As for tracers, the bilaplacian order momentum diffusive operator is a re-entering
Laplacian operator with the harmonic eddy diffusion coefficient set to the square
root of the biharmonic one. Nevertheless it is currently not available in the iso-
neutral case.
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Having defined the continuous equations in Chap. ??, we need now to choose
a time discretization, a key feature of an ocean model as it exerts a strong influence
on the structure of the computer code (i.e. on its flowchart). In the present chap-
ter, we provide a general description of the NEMO time stepping strategy and the
consequences for the order in which the equations are solved.

Time stepping environment

The time stepping used in NEMO is a three level scheme that can be represented as
follows:
gl TR = g 7B 4 2 Af RHS! 24514 3.1)

where x stands for u, v, T or S; RHS is the Right-Hand-Side of the corresponding
time evolution equation; At is the time step; and the superscripts indicate the time
at which a quantity is evaluated. Each term of the RHS is evaluated at a specific
time step depending on the physics with which it is associated.

The choice of the time step used for this evaluation is discussed below as well
as the implications for starting or restarting a model simulation. Note that the time
stepping calculation is generally performed in a single operation. With such a com-
plex and nonlinear system of equations it would be dangerous to let a prognostic
variable evolve in time for each term separately.

The three level scheme requires three arrays for each prognostic variable. For
each variable z there is z; (before), x,, (now) and z,. The third array, although
referred to as x, (after) in the code, is usually not the variable at the after time
step; but rather it is used to store the time derivative (RHS in (??)) prior to time-
stepping the equation. Generally, the time stepping is performed once at each time
step in the tranxt. F90 and dynnxt. F90 modules, except when using implicit vertical
diffusion or calculating sea surface height in which case time-splitting options are
used.

Non-Diffusive Part — Leapfrog Scheme

The time stepping used for processes other than diffusion is the well-known leapfrog
scheme [?]. This scheme is widely used for advection processes in low-viscosity
fluids. It is a time centred scheme, i.e. the RHS in (2?) is evaluated at time step
t, the now time step. It may be used for momentum and tracer advection, pressure
gradient, and Coriolis terms, but not for diffusion terms. It is an efficient method
that achieves second-order accuracy with just one right hand side evaluation per
time step. Moreover, it does not artificially damp linear oscillatory motion nor



3.3

3.3. Diffusive Part — Forward or Backward Scheme 41

does it produce instability by amplifying the oscillations. These advantages are
somewhat diminished by the large phase-speed error of the leapfrog scheme, and
the unsuitability of leapfrog differencing for the representation of diffusion and
Rayleigh damping processes. However, the scheme allows the coexistence of a
numerical and a physical mode due to its leading third order dispersive error. In
other words a divergence of odd and even time steps may occur. To prevent it,
the leapfrog scheme is often used in association with a Robert-Asselin time filter
(hereafter the LF-RA scheme). This filter, first designed by ? and more compre-
hensively studied by ?, is a kind of laplacian diffusion in time that mixes odd and
even time steps:

o = o 4 [xﬁ;“ — gt 4 gtHA 3.2)

where the subscript F' denotes filtered values and + is the Asselin coefficient. v is
initialized as rn_atfp (namelist parameter). Its default value is n_atfp=10"3 (see
§ ??), causing only a weak dissipation of high frequency motions ([?]). The addi-
tion of a time filter degrades the accuracy of the calculation from second to first or-
der. However, the second order truncation error is proportional to 7y, which is small
compared to 1. Therefore, the LF-RA is a quasi second order accurate scheme.
The LF-RA scheme is preferred to other time differencing schemes such as predic-
tor corrector or trapezoidal schemes, because the user has an explicit and simple
control of the magnitude of the time diffusion of the scheme. When used with
the 2nd order space centred discretisation of the advection terms in the momentum
and tracer equations, LF-RA avoids implicit numerical diffusion: diffusion is set
explicitly by the user through the Robert-Asselin filter parameter and the viscosity
and diffusion coefficients.

Diffusive Part — Forward or Backward Scheme

The leapfrog differencing scheme is unsuitable for the representation of diffusion
and damping processes. For a tendancy D,, representing a diffusion term or a
restoring term to a tracer climatology (when present, see § ??), a forward time
differencing scheme is used :

al TR = g8 L 2 At D, (3.3)

This is diffusive in time and conditionally stable. The conditions for stability
of second and fourth order horizontal diffusion schemes are [?]:

2
¢ A laplacian diffusion
Al < {8 At (3.4)
61 Al bilaplacian diffusion

where e is the smallest grid size in the two horizontal directions and A" is the
mixing coefficient. The linear constraint (??) is a necessary condition, but not
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sufficient. If it is not satisfied, even mildly, then the model soon becomes wildly
unstable. The instability can be removed by either reducing the length of the time
steps or reducing the mixing coefficient.

For the vertical diffusion terms, a forward time differencing scheme can be
used, but usually the numerical stability condition imposes a strong constraint on
the time step. Two solutions are available in NEMO to overcome the stability
constraint: (a) a forward time differencing scheme using a time splitting tech-
nique (In_zdfexp = true) or (b) a backward (or implicit) time differencing scheme
(In_zdfexp = false). In (a), the master time step At is cut into N fractional time
steps so that the stability criterion is reduced by a factor of N. The computation is
performed as follows:

CL'i_At _ L t=At

=x
2A¢t 2A¢t
:ni_AHLT = xi_AH(L_l)T + —Qﬁt DF-AHE-D3E for [ = 1to N

plHAL = pt+At
(3.5)

with DF a vertical diffusion term. The number of fractional time steps, IV, is given
by setting nn_zdfexp, (namelist parameter). The scheme (b) is unconditionally sta-
ble but diffusive. It can be written as follows:

alTAE = g8 9 At RHSLHA (3.6)

This scheme is rather time consuming since it requires a matrix inversion, but
it becomes attractive since a value of 3 or more is needed for N in the forward
time differencing scheme. For example, the finite difference approximation of the
temperature equation is:

T(k:)t+l _ T(k)t_l AvT

= RHS + —5k

1
2 Al 2o % | g o2 [T G7

where RHS is the right hand side of the equation except for the vertical diffusion
term. We rewrite (??) as:

—c(k4+ 1) TN (k4 1) +d(k) T (k) — c(k) Tk —1) =b(k)  (3.8)
where
c(k) = Ay (k) / esw(k)
d(k) = e3i(k) / (2At) + ¢ + Cpa
b(k) = es(k) (T'7'(k) / (2At) + RHS)
(??) is a linear system of equations with an associated matrix which is tridiago-
nal. Moreover, c¢(k) and d(k) are positive and the diagonal term is greater than the

sum of the two extra-diagonal terms, therefore a special adaptation of the Gauss
elimination procedure is used to find the solution (see for example ?).
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Figure 3.1: Sketch of the leapfrog time stepping sequence in NEMO from ?. The
use of a semi-implicit computation of the hydrostatic pressure gradient requires the
tracer equation to be stepped forward prior to the momentum equation. The need for
knowledge of the vertical scale factor (here denoted as h) requires the sea surface
height and the continuity equation to be stepped forward prior to the computation of
the tracer equation. Note that the method for the evaluation of the surface pressure
gradient Vp; is not presented here (see § ??).

3.4 Surface Pressure Gradient

===;,¢¢ TO BE written.... :-)
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The Modified Leapfrog — Asselin Filter scheme

Significant changes have been introduced by ? in the LF-RA scheme in order to
ensure tracer conservation and to allow the use of a much smaller value of the
Asselin filter parameter. The modifications affect both the forcing and filtering
treatments in the LF-RA scheme.

In a classical LF-RA environment, the forcing term is centred in time, .e. it is
time-stepped over a 2At period: 2! = 2! + 2AtQ" where Q is the forcing applied
to x, and the time filter is given by (??) so that @ is redistributed over several
time step. In the modified LF-RA environment, these two formulations have been
replaced by:

pHHAL — t=A L Ay (Qt*At/2 + QHAt/?) (3.9

ot =t {x?At ot 4 mt—i—At} — 7 At [Qt+At/2 _ Qt—At/Q (3.10)

The change in the forcing formulation given by (??) (see Fig.??) has a significant
effect: the forcing term no longer excites the divergence of odd and even time
steps [?]. This property improves the LF-RA scheme in two respects. First, the
LF-RA can now ensure the local and global conservation of tracers. Indeed, time
filtering is no longer required on the forcing part. The influence of the Asselin
filter on the forcing is be removed by adding a new term in the filter (last term in
(??) compared to (??)). Since the filtering of the forcing was the source of non-
conservation in the classical LF-RA scheme, the modified formulation becomes
conservative [?]. Second, the LF-RA becomes a truly quasi-second order scheme.
Indeed, (??) used in combination with a careful treatment of static instability (§2?
and of the TKE physics (§??), the two other main sources of time step divergence,
allows a reduction by two orders of magnitude of the Asselin filter parameter.

Note that the forcing is now provided at the middle of a time step: Q*T24/2 is
the forcing applied over the [t,¢ + At] time interval. This and the change in the
time filter, (??), allows an exact evaluation of the contribution due to the forcing
term between any two time steps, even if separated by only At since the time filter
is no longer applied to the forcing term.

Start/Restart strategy

&namrun ! parameters of the run
|

nn_no job number (no more used...)

= !
cn_exp = "ORCA2 !  experience name
nn_it000 = 1 ! first time step
nn_itend = 5475 ' last time step (std 5475
nn_date0 = 010101 ! date at nit_0000 (format yyyymmdd) used if 1n_rstart=F or (ln_rstart=T and nn_rstctl=0 or 1)
nn_time0 = 0 ! initial time of day in hhmm
nn_leapy = 0 ! Leap year calendar (1) or not (0)
= !

ln_rstart .false. start from rest (F) or from a restart file (T

nn_euler = 1 ! =0 : start with forward time step if ln_rstart=T

nn_rstctl = 0 ! restart control ==> activated only if ln_rstart=T

! ! = 0 nn_date0 read in namelist ; nn_it000 : read in namelist

! ! = 1 nn_date0 read in namelist ; nn_it000 : check consistancy between namelist and rest
! =

2 nn_date0 read in restart ; nn_it000 : check consistancy between namelist and rest
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Figure 3.2: Illustration of forcing integration methods. (top) “Traditional” formu-
lation : the forcing is defined at the same time as the variable to which it is applied
(integer value of the time step index) and it is applied over a 2At period. (bottom)
modified formulation : the forcing is defined in the middle of the time (integer and
a half value of the time step index) and the mean of two successive forcing values
(n—1/2,n+ 1/2). is applied over a 2A¢ period.

cn_ocerst_in = "restart" ! suffix of ocean restart name (input)
cn_ocerst_indir = "." ! directory from which to read input ocean restarts
cn_ocerst_out = "restart" ! suffix of ocean restart name (output)

= !

cn_ocerst_outdir= "." directory in which to write output ocean restarts

cavity evolution forcing or coupling to ice sheet model

In_iscpl = .false. !

nn_istate = 0 ! output the initial state (1) or not (0)

In_rst_list = .false. ! output restarts at list of times using nn_stocklist (T) or at set frequency with nn_stock
nn_stock = 5475 ! frequency of creation of a restart file (modulo referenced to 1)

nn_stocklist = 0,0,0,0,0,0,0,0,0,0 ! List of timesteps when a restart file is to be written
nn_write 5475 ! frequency of write in the output file (modulo referenced to nn_it000)

(F)

In_mskland = .false. ! mask land points in NetCDF outputs (costly: + 715%)
In_cfmeta = .false. ! output additional data to netCDF files required for compliance with the CF metadata standard
1n_clobber = .true. ! clobber (overwrite) an existing file

= 1

nn_chunksz 0 chunksize (bytes) for NetCDF file (works only with iom_nf90 routines)

The first time step of this three level scheme when starting from initial condi-
tions is a forward step (Euler time integration):

z! = 2% + At RHSY (3.11)

This is done simply by keeping the leapfrog environment (.e. the (??) three level
time stepping) but setting all 2° (before) and 2! (now) fields equal at the first time
step and using half the value of At.

It is also possible to restart from a previous computation, by using a restart file.
The restart strategy is designed to ensure perfect restartability of the code: the user
should obtain the same results to machine precision either by running the model
for 2N time steps in one go, or by performing two consecutive experiments of [V
steps with a restart. This requires saving two time levels and many auxiliary data
in the restart files in machine precision.

Note that when a semi-implicit scheme is used to evaluate the hydrostatic
pressure gradient (see §??), an extra three-dimensional field has to be added to
the restart file to ensure an exact restartability. This is done optionally via the
nn_dynhpg_rst namelist parameter, so that the size of the restart file can be reduced
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when restartability is not a key issue (operational oceanography or in ensemble
simulations for seasonal forecasting).

Note the size of the time step used, At, is also saved in the restart file. When
restarting, if the the time step has been changed, a restart using an Euler time
stepping scheme is imposed. Options are defined through the namrun namelist
variables.
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Having defined the continuous equations in Chap. ?? and chosen a time dis-
cretization Chap. ??, we need to choose a discretization on a grid, and numerical
algorithms. In the present chapter, we provide a general description of the stag-
gered grid used in NEMO, and other information relevant to the main directory
routines as well as the DOM (DOMain) directory.

Fundamentals of the Discretisation

Arrangement of Variables

The numerical techniques used to solve the Primitive Equations in this model are
based on the traditional, centred second-order finite difference approximation. Spe-
cial attention has been given to the homogeneity of the solution in the three space
directions. The arrangement of variables is the same in all directions. It consists
of cells centred on scalar points (¢, S, p, p) with vector points (u, v, w) defined in
the centre of each face of the cells (Fig. ??). This is the generalisation to three di-
mensions of the well-known “C” grid in Arakawa’s classification [?]. The relative
and planetary vorticity, ¢ and f, are defined in the centre of each vertical edge and
the barotropic stream function v is defined at horizontal points overlying the ¢ and
f-points.

The ocean mesh (z.e. the position of all the scalar and vector points) is defined
by the transformation that gives (A ,i ,z) as a function of (¢, j, k). The grid-points
are located at integer or integer and a half value of (4, 7, k) as indicated on Table
??. In all the following, subscripts u, v, w, f, uw, vw or fw indicate the position
of the grid-point where the scale factors are defined. Each scale factor is defined
as the local analytical value provided by (??). As a result, the mesh on which par-
tial derivatives %, %, and % are evaluated is a uniform mesh with a grid size of
unity. Discrete partial derivatives are formulated by the traditional, centred second
order finite difference approximation while the scale factors are chosen equal to
their local analytical value. An important point here is that the partial derivative
of the scale factors must be evaluated by centred finite difference approximation,
not from their analytical expression. This preserves the symmetry of the discrete
set of equations and therefore satisfies many of the continuous properties (see Ap-
pendix ??). A similar, related remark can be made about the domain size: when
needed, an area, volume, or the total ocean depth must be evaluated as the sum of
the relevant scale factors (see (??)) in the next section).
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Figure 4.1: Arrangement of variables. ¢ indicates scalar points where temperature,
salinity, density, pressure and horizontal divergence are defined. (u,v,w) indicates
vector points, and f indicates vorticity points where both relative and planetary vor-
ticities are defined

4.1.2 Discrete Operators

Given the values of a variable ¢ at adjacent points, the differencing and averaging
operators at the midpoint between them are:

dilg] = q(i+1/2) —q(i —1/2) (4.1a)

7' =A{q(i+1/2)+q(i—=1/2)} /2 (4.1b)

Similar operators are defined with respecttoi+1/2, 7, j+1/2, k, and k+1/2.
Following (??) and (??), the gradient of a variable ¢ defined at a ¢-point has its three
components defined at u-, v- and w-points while its Laplacien is defined at ¢-point.

These operators have the following discrete forms in the curvilinear s-coordinate
system:

1 . 1 . 1
Vg = a5i+1/2[<ﬂ 1+ 55#1/2[(1] J+ &5“1/2[@] k 4.2)
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Table 4.1: Location of grid-points as a function of integer or integer and a half value
of the column, line or level. This indexing is only used for the writing of the semi-
discrete equation. In the code, the indexing uses integer values only and has a reverse
direction in the vertical (see §?7?)

T 5 ] 2
u i+1/2 j k
v 1 j+1/2 k
w i J k+1/2
f it+1/2 j+1/2 K
uw i+1/2 J k+1/2
vw 5 J+1/2 k+1/2
fw it+1/2 J+1/2 k+1/2
1 €2y €3u €1v €3v
Aq = P— <5z [ o 51‘—1—1/2[‘1]} +9; [e% 5j+1/2[‘1]] )

1 1
+ —0g |:63w Okt1/2 [Q]] (4.3)

€3t

Following (??) and (2?), a vector A = (aj, a9, a3) defined at vector points
(u,v,w) has its three curl components defined at vw-, uw, and f-points, and its
divergence defined at ¢-points:

VxA= e 231)1” (5j+1/2 [egw Cl,g] — 5k+1/2 [GQU ag]) i (4.4)
+ o (Opyrpplerwan] = 6ipappleswas]) j (4.5)
+ 61f162f (654172 le2v az] — 65112 [eruar])  k (4.6)
1 1
V-A=———d[eauesuar] + ey e3y ag]) + — 0 [as] 4.7
€1t €2t €3¢ €3t

The vertical average over the whole water column denoted by an overbar be-
comes for a quantity ¢ which is a masked field (i.e. equal to zero inside solid area):

1 [+ 1
:H/kb qe3qdk:quk:qegq (4.8)

]

where H, is the ocean depth, which is the masked sum of the vertical scale factors
at ¢ points, k® and k° are the bottom and surface k-indices, and the symbol k° refers
to a summation over all grid points of the same type in the direction indicated by
the subscript (here k).

In continuous form, the following properties are satisfied:

VxVg=0 (4.9)
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V- (VxA) =0 (4.10)

It is straightforward to demonstrate that these properties are verified locally in
discrete form as soon as the scalar ¢ is taken at ¢-points and the vector A has its
components defined at vector points (u, v, w).

Let a and b be two fields defined on the mesh, with value zero inside continental
area. Using integration by parts it can be shown that the differencing operators
(6;, 05 and dy,) are skew-symmetric linear operators, and further that the averaging
operators - ¢, =% and ~*) are symmetric linear operators, i.e.

Zai 51 [b] = _26i+1/2 [CL] bi+1/2 (411)
SNoab'= S a2, (4.12)

In other words, the adjoint of the differencing and averaging operators are
0; = 0j41/2 and (Ti)* = ~+1/2 respectively. These two properties will be used
extensively in the Appendix ?? to demonstrate integral conservative properties of
the discrete formulation chosen.

Numerical Indexing

The array representation used in the FORTRAN code requires an integer indexing
while the analytical definition of the mesh (see §??) is associated with the use of
integer values for ¢-points and both integer and integer and a half values for all the
other points. Therefore a specific integer indexing must be defined for points other
than ¢-points (¢.e. velocity and vorticity grid-points). Furthermore, the direction of
the vertical indexing has been changed so that the surface level is at k = 1.

Horizontal Indexing

The indexing in the horizontal plane has been chosen as shown in Fig.??. For
an increasing ¢ index (j index), the ¢-point and the eastward u-point (northward
v-point) have the same index (see the dashed area in Fig.??). A t-point and its
nearest northeast f-point have the same ¢-and j-indices.

Vertical Indexing

In the vertical, the chosen indexing requires special attention since the k-axis is
re-orientated downward in the FORTRAN code compared to the indexing used in
the semi-discrete equations and given in §??. The sea surface corresponds to the
w-level k& = 1 which is the same index as t-level just below (Fig.??). The last
w-level (k = jpk) either corresponds to the ocean floor or is inside the bathymetry
while the last t-level is always inside the bathymetry (Fig.??). Note that for an
increasing k index, a w-point and the ¢-point just below have the same k index, in
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Figure 4.2: Horizontal integer indexing used in the FORTRAN code. The dashed area
indicates the cell in which variables contained in arrays have the same ¢- and j-indices

opposition to what is done in the horizontal plane where it is the ¢-point and the
nearest velocity points in the direction of the horizontal axis that have the same ¢
or j index (compare the dashed area in Fig.?? and ??). Since the scale factors are
chosen to be strictly positive, a minus sign appears in the FORTRAN code before
all the vertical derivatives of the discrete equations given in this documentation.

Domain Size

The total size of the computational domain is set by the parameters jpiglo, jpjglo
and jpkglo in the 7, j and k directions respectively. Parameters jpi and jpj refer to
the size of each processor subdomain when the code is run in parallel using domain
decomposition (key_mpp_mpi defined, see §??).
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Figure 4.3: Vertical integer indexing used in the FORTRAN code. Note that the
k-axis is orientated downward. The dashed area indicates the cell in which variables

contained in arrays have the same k-index.
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4.2 Domain: Needed fields

The ocean mesh (z.e. the position of all the scalar and vector points) is defined by
the transformation that gives (A, ¢, z) as a function of (¢, j, k). The grid-points
are located at integer or integer and a half values of as indicated in Table ??. The
associated scale factors are defined using the analytical first derivative of the trans-
formation (??). Necessary fields for configuration definition are:
Geographic position :

longitude : glamt, glamu , glamv and glamf (at T, U, V and F point)

latitude : gphit, gphiu, gphiv and gphif (at T, U, V and F point)
Coriolis parameter (if domain not on the sphere):

ff_f and ff_t (at T and F point)
Scale factors :

elt, elu, elv and elf (on i direction),

e2t, e2u, e2v and e2f (on j direction)

and iele2u_v, ele2u, ele2v

ele2u, ele2v are u and v surfaces (if gridsize reduction in some straits)
iele2u_v is a flag to flag set u and v surfaces are neither read nor computed.

These fields can be read in an domain input file which name is setted in cn_domcfg
parameter specified in namcfg.

&namcfg ! parameters of the configuration ! (default: user defined GYRE)

| -
In_read_cfg = .false. ! (=T) read the domain configuration file
! ! (=F) user defined configuration ==>>> see usrdef(_...) modules
cn_domcfg = "domain_cfg" ! domain configuration filename
!
In_write_cfg= .false. ! (=T) create the domain configuration file
cn_domcfg_out = "domain_cfg_out" ! newly created domain configuration filename
!

In_use_jattr = .false. !' use (T) the file attribute: open_ocean_jstart, if present
! ! in netcdf input files, as the start j-row for reading

/

or they can be defined in an analytical way in MY_SRC directory of the config-
uration. For Reference Configurations of NEMO input domain files are supplied
by NEMO System Team. For analytical definition of input fields two routines are
supplied: userdef_hgrF90 and userdef_zgr.F90. They are an example of GYRE
configuration parameters, and they are available in NEMO/OPA_SRC/USR direc-
tory, they provide the horizontal and vertical mesh.

4.3 Domain: Horizontal Grid (mesh) (domhgr.F90 module)

4.3.1 Coordinates and scale factors

The ocean mesh (¢.e. the position of all the scalar and vector points) is defined by
the transformation that gives (A, ¢, z) as a function of (¢, j, k). The grid-points
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are located at integer or integer and a half values of as indicated in Table ??.
The associated scale factors are defined using the analytical first derivative of the
transformation (??). These definitions are done in two modules, domhgr. F90 and
domzgr.F90, which provide the horizontal and vertical meshes, respectively. This
section deals with the horizontal mesh parameters.

In a horizontal plane, the location of all the model grid points is defined from
the analytical expressions of the longitude A and latitude ¢ as a function of (i, 7).
The horizontal scale factors are calculated using (??). For example, when the lon-
gitude and latitude are function of a single value (¢ and j, respectively) (geograph-
ical configuration of the mesh), the horizontal mesh definition reduces to define
the wanted \(7), (), and their derivatives \'(z) ¢’(j) in the domhgr.F90 module.
The model computes the grid-point positions and scale factors in the horizontal
plane as follows:

At = glamt = \(4) ¢ = gphit = p(j)
Ay = glamu = A(3 4 1/2) oy = gphiu = p(j)
Ay = glamv = A(7) Yy = gphiv = ¢(j + 1/2)
Ar = glamf = A\(i 4 1/2) ¢ = gphif = p(j+1/2)

e1r = elt = ry| N (i) coso(j)] ear = €2t = 14| (j)]

e1y = elt = 14| N (i + 1/2) cos p(j)] eay = €2t = 74|’ (5)

e1y = elt = 14| N (i) cosp(j+1/2)] egy = €2t = 1,4]¢'(j + 1/2)|
( (

erf =elt=ry|N(i+1/2) cosp(j + 1/2)] ear = €2t = 14|’ (5 + 1/2)|

where the last letter of each computational name indicates the grid point considered
and r, is the earth radius (defined in phycst. F90 along with all universal constants).
Note that the horizontal position of and scale factors at w-points are exactly equal
to those of ¢-points, thus no specific arrays are defined at w-points.

Note that the definition of the scale factors (i.e. as the analytical first derivative
of the transformation that gives (A, ¢, z) as a function of (4, j, k)) is specific to
the NEMO model [?]. As an example, ey, is defined locally at a ¢-point, whereas
many other models on a C grid choose to define such a scale factor as the distance
between the U-points on each side of the ¢-point. Relying on an analytical trans-
formation has two advantages: firstly, there is no ambiguity in the scale factors
appearing in the discrete equations, since they are first introduced in the continu-
ous equations; secondly, analytical transformations encourage good practice by the
definition of smoothly varying grids (rather than allowing the user to set arbitrary
jumps in thickness between adjacent layers) [?]. An example of the effect of such
a choice is shown in Fig. ??.



4.3.2

4.3.3

56 Space Domain (DOM)

5 5

A = 10m 7L Wiz Fe32= Om Wese 1,7 F e = 875 m 2 >m
- LW, Zs12 = -10m W, T e =20m
k+112 ke 172
T, + e ,=3875m
Ag=40m | T, + k

Wi ip 1= ~S0m Wi —————  Gp=05m

Ay =100m T, + Ty ) T €-1=9875m
Wi s Z32=-150m Wiz er_3p=140m

(@) (b)

Figure 4.4: Comparison of (a) traditional definitions of grid-point position and grid-
size in the vertical, and (b) analytically derived grid-point position and scale factors.
For both grids here, the same w-point depth has been chosen but in (a) the ¢-points
are set half way between w-points while in (b) they are defined from an analytical
function: z(k) = 5(k — 1/2)% — 45 (k — 1/2)? + 140 (k — 1/2) — 150. Note the
resulting difference between the value of the grid-size Ay, and those of the scale factor
CL.

Choice of horizontal grid
Output Grid files

All the arrays relating to a particular ocean model configuration (grid-point posi-
tion, scale factors, masks) can be saved in files if nn_msh # 0 (namelist variable
in namdom). This can be particularly useful for plots and off-line diagnostics. In
some cases, the user may choose to make a local modification of a scale factor
in the code. This is the case in global configurations when restricting the width
of a specific strait (usually a one-grid-point strait that happens to be too wide due
to insufficient model resolution). An example is Gibraltar Strait in the ORCA2
configuration. When such modifications are done, the output grid written when
nn_msh # 0 is no more equal to the input grid.
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Figure 4.5: The ocean bottom as seen by the model: (a) z-coordinate with full step,
(b) z-coordinate with partial step, (c) s-coordinate: terrain following representation,
(d) hybrid s — z coordinate, (e) hybrid s — z coordinate with partial step, and (f) same
as (e) but in the non-linear free surface (In_linssh=false). Note that the non-linear free
surface can be used with any of the 5 coordinates (a) to (e).

Domain: Vertical Grid (domzgr.F90 module)

&namdom ! time and space domain
! — ————
In_linssh = .false. ! =T linear free surface ==>> model level are fixed in time
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
!
nn_msh = 0 ! create (>0) a mesh file or not (=0)
rn_isfhmin = 1.00 ! treshold (m) to discriminate grounding ice to floating ice
!
rn_rdt = 5760. ! time step for the dynamics and tracer
rn_atfp = 0.1 ! asselin time filter parameter
!
In_crs = .false. ! Logical switch for coarsening module (T => fill namcrs)

Variables are defined through the namzgr and namdom namelists. In the ver-
tical, the model mesh is determined by four things: (1) the bathymetry given in
meters ; (2) the number of levels of the model (jpk) ; (3) the analytical transforma-
tion z(4, 7, k) and the vertical scale factors (derivatives of the transformation) ; and
(4) the masking system, i.e. the number of wet model levels at each (i, j) column
of points.

The choice of a vertical coordinate, even if it is made through namzgr namelist
parameters, must be done once of all at the beginning of an experiment. It is
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not intended as an option which can be enabled or disabled in the middle of an
experiment. Three main choices are offered (Fig. ??a to ¢): z-coordinate with
full step bathymetry (/n_zco = true), z-coordinate with partial step bathymetry
(In_zps = true), or generalized, s-coordinate (In_sco = true). Hybridation of the
three main coordinates are available: s — z or s — zps coordinate (Fig. ??d and
??e). By default a non-linear free surface is used: the coordinate follow the
time-variation of the free surface so that the transformation is time dependent:
2(i, 7, k,t) (Fig. 2?f). When a linear free surface is assumed (In_linssh=true), the
vertical coordinate are fixed in time, but the seawater can move up and down across
the z=0 surface (in other words, the top of the ocean in not a rigid-lid). The last
choice in terms of vertical coordinate concerns the presence (or not) in the model
domain of ocean cavities beneath ice shelves. Setting In_isfcav to true allows to
manage ocean cavities, otherwise they are filled in. This option is currently only
available in z- or zps-coordinate, and partial step are also applied at the ocean/ice
shelf interface.

Contrary to the horizontal grid, the vertical grid is computed in the code and no
provision is made for reading it from a file. The only input file is the bathymetry (in
meters) (bathy_meternc ). '. If In_isfcav = true, an extra file input file describing
the ice shelf draft (in meters) (isf_draft_meter.nc ) is needed.

After reading the bathymetry, the algorithm for vertical grid definition differs
between the different options:

zco set a reference coordinate transformation zg(k), and set z(, j, k, t) = zo(k).

zps set a reference coordinate transformation zo(k), and calculate the thickness of
the deepest level at each (i, j) point using the bathymetry, to obtain the final
three-dimensional depth and scale factor arrays.

sco smooth the bathymetry to fulfil the hydrostatic consistency criteria and set the
three-dimensional transformation.

s-z and s-zps smooth the bathymetry to fulfil the hydrostatic consistency criteria
and set the three-dimensional transformation z(%, j, k), and possibly intro-
duce masking of extra land points to better fit the original bathymetry file

Unless a linear free surface is used (/n_linssh=false), the arrays describing the
grid point depths and vertical scale factors are three set of three dimensional arrays
(i,4, k) defined at before, now and after time step. The time at which they are
defined is indicated by a suffix:_b, _n, or _a, respectively. They are updated at
each model time step using a fixed reference coordinate system which computer
names have a _0 suffix. When the linear free surface option is used (In_linssh=true),
before, now and after arrays are simply set one for all to their reference counterpart.

'N.B. in full step z-coordinate, a bathy_level.nc file can replace the bathy_meternc file, so that
the computation of the number of wet ocean point in each water column is by-passed
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Meter Bathymetry

Three options are possible for defining the bathymetry, according to the namelist
variable nn_bathy (found in namdom namelist):

nn_bathy = 0 a flat-bottom domain is defined. The total depth z,,(jpk) is given by
the coordinate transformation. The domain can either be a closed basin or a
periodic channel depending on the parameter jperio.

nn_bathy = -1 a domain with a bump of topography one third of the domain width
at the central latitude. This is meant for the "EEL-RS5” configuration, a peri-
odic or open boundary channel with a seamount.

nn_bathy = 1 read a bathymetry and ice shelf draft (if needed). The bathy_meter.nc
file (Netcdf format) provides the ocean depth (positive, in meters) at each
grid point of the model grid. The bathymetry is usually built by interpo-
lating a standard bathymetry product (e.g. ETOPO2) onto the horizontal
ocean mesh. Defining the bathymetry also defines the coastline: where the
bathymetry is zero, no model levels are defined (all levels are masked).

The isfdraft_meter.nc file (Netcdf format) provides the ice shelf draft (posi-
tive, in meters) at each grid point of the model grid. This file is only needed
if In_isfcav = true. Defining the ice shelf draft will also define the ice shelf
edge and the grounding line position.

When a global ocean is coupled to an atmospheric model it is better to rep-
resent all large water bodies (e.g, great lakes, Caspian sea...) even if the model
resolution does not allow their communication with the rest of the ocean. This is
unnecessary when the ocean is forced by fixed atmospheric conditions, so these
seas can be removed from the ocean domain. The user has the option to set the
bathymetry in closed seas to zero (see §??), but the code has to be adapted to the
user’s configuration.

z-coordinate (/In_zco=true) and reference coordinate

The reference coordinate transformation zo (k) defines the arrays gdepty and gdepwy
for ¢- and w-points, respectively. As indicated on Fig.?? jpk is the number of w-
levels. gdepwy(1) is the ocean surface. There are at most jpk-1 ¢-points inside the
ocean, the additional ¢-point at jk = jpk is below the sea floor and is not used.
The vertical location of w- and t-levels is defined from the analytic expression of
the depth zo(k) whose analytical derivative with respect to k provides the verti-
cal scale factors. The user must provide the analytical expression of both zy and
its first derivative with respect to k. This is done in routine domzgr.F90 through
statement functions, using parameters provided in the namcfg namelist.

It is possible to define a simple regular vertical grid by giving zero stretching
(ppacr=0). In that case, the parameters jpk (number of w-levels) and pphmax (total
ocean depth in meters) fully define the grid.
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Figure 4.6: Default vertical mesh for ORCA2: 30 ocean levels (L30). Vertical level
functions for (a) T-point depth and (b) the associated scale factor as computed from
(??) using (??) in z-coordinate.

For climate-related studies it is often desirable to concentrate the vertical reso-
lution near the ocean surface. The following function is proposed as a standard for
a z-coordinate (with either full or partial steps):

20(k) = hsyr — ho k — hy log[cosh ((k — hy)/her) | @13)
e3(k) = |—ho — hy tanh ((k — hgp)/her)| '

where k£ = 1 to jpk for w-levels and k = 1 to k = 1 for T'—levels. Such an expres-
sion allows us to define a nearly uniform vertical location of levels at the ocean top
and bottom with a smooth hyperbolic tangent transition in between (Fig. ??).

If the ice shelf cavities are opened (/n_isfcav= true ), the definition of zg is the
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same. However, definition of eg at t- and w-points is respectively changed to:

e3 (k) = zw(k +1) — zw (k)

egv(k) =zr(k) — 2p0(k— 1) (4.14)

This formulation decrease the self-generated circulation into the ice shelf cavity
(which can, in extreme case, leads to blow up).

The most used vertical grid for ORCA?2 has 10 m (500 m) resolution in the
surface (bottom) layers and a depth which varies from O at the sea surface to a
minimum of —5000 m. This leads to the following conditions:

63(1 + 1/2

) =
es(jpk — 1/(?; = 500. @.15)
) =

z(jpk) = —5000.

With the choice of the stretching h., = 3 and the number of levels jpk=31, the
four coefficients Ay, ho, h1, and hy, in (??) have been determined such that (??) is
satisfied, through an optimisation procedure using a bisection method. For the first
standard ORCA?2 vertical grid this led to the following values: hg,, = 4762.96,
ho = 255.58, h; = 245.5813, and hy;, = 21.43336. The resulting depths and scale
factors as a function of the model levels are shown in Fig. ?? and given in Table
??. Those values correspond to the parameters ppsur, ppa0, ppal, ppkth in namcfg
namelist.

Rather than entering parameters hg,,, hg, and h; directly, it is possible to re-
calculate them. In that case the user sets ppsur=ppaO=ppal=999999., in namcfg
namelist, and specifies instead the four following parameters:

e ppacr=h,,: stretching factor (nondimensional). The larger ppacr, the smaller
the stretching. Values from 3 to 10 are usual.

o ppkth=hy,: is approximately the model level at which maximum stretching
occurs (nondimensional, usually of order 1/2 or 2/3 of jpk)

e ppdzmin: minimum thickness for the top layer (in meters)

e pphmax: total depth of the ocean (meters).
As an example, for the 45 layers used in the DRAKKAR configuration those pa-
rameters are: jpk=46, ppacr=9, ppkth=23.563, ppdzmin=6m, pphmax=5750m.

z-coordinate with partial step (In_zps=.true.)

&namdom ! time and space domain
!

In_linssh = .false. ! =T linear free surface ==>> model level are fixed in time
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Table 4.2: Default vertical mesh in z-coordinate for 30 layers ORCA2 configuration
as computed from (??) using the coefficients given in (??)

LEVEL || gdept_1d | gdepw_1d | e3t_1d | e3w_1d
1 5.00 0.00 | 10.00 10.00
2 15.00 10.00 | 10.00 10.00
3 25.00 20.00 | 10.00 10.00
4 35.01 30.00 | 10.01 10.00
5 45.01 40.01 | 10.01 10.01
6 55.03 50.02 | 10.02 10.02
7 65.06 60.04 | 10.04 10.03
8 75.13 70.09 | 10.09 10.06
9 85.25 80.18 | 10.17 10.12
10 95.49 90.35 | 10.33 10.24
11 105.97 100.69 | 10.65 10.47
12 116.90 111.36 | 11.27 10.91
13 128.70 122.65 | 12.47 11.77
14 142.20 135.16 | 14.78 13.43
15 158.96 150.03 | 19.23 16.65
16 181.96 169.42 | 27.66 22.78
17 216.65 197.37 | 43.26 34.30
18 272.48 241.13 | 70.88 55.21
19 364.30 312.74 | 116.11 90.99

20 511.53 429.72 | 181.55 | 14643
21 732.20 611.89 | 261.03 | 220.35
22 1033.22 872.87 | 339.39 | 301.42
23 1405.70 1211.59 | 402.26 | 373.31
24 1830.89 1612.98 | 444.87 | 426.00
25 2289.77 2057.13 | 470.55 | 459.47
26 2768.24 2527.22 | 484.95 | 478.83
27 3257.48 3011.90 | 492.70 | 489.44
28 3752.44 3504.46 | 496.78 | 495.07
29 4250.40 4001.16 | 498.90 | 498.02
30 4749.91 4500.02 | 500.00 | 499.54
31 5250.23 5000.00 | 500.56 | 500.33
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nn_closea = 0 ! remove (=0) or ke