
NEMO ocean engine

Gurvan Madec, and the NEMO team
gurvan.madec@locean-ipsl.umpc.fr

nemo st@locean-ipsl.umpc.fr

Decembre 2017
– version 4.0 alpha –

Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace No 27

ISSN No 1288-1619.

Contents

1 Introduction 5

2 Model basics 13
2.1 Primitive Equations . 14

2.1.1 Vector Invariant Formulation 14
2.1.2 Boundary Conditions . 15

2.2 The Horizontal Pressure Gradient 17
2.2.1 Pressure Formulation . 17
2.2.2 Free Surface Formulation 17

2.3 Curvilinear z-coordinate System 18
2.3.1 Tensorial Formalism . 18
2.3.2 Continuous Model Equations 20

2.4 Curvilinear generalised vertical coordinate System 24
2.4.1 The s-coordinate Formulation 25
2.4.2 Curvilinear z*–coordinate System 27
2.4.3 Curvilinear Terrain-following s–coordinate 30
2.4.4 Curvilinear z̃–coordinate 32

2.5 Subgrid Scale Physics . 33
2.5.1 Vertical Subgrid Scale Physics 33
2.5.2 Formulation of the Lateral Diffusive and Viscous Operators 34

3 Time Domain (STP) 39
3.1 Time stepping environment . 40
3.2 Non-Diffusive Part — Leapfrog Scheme 40

ii

3.3 Diffusive Part — Forward or Backward Scheme 41
3.4 Surface Pressure Gradient . 43
3.5 The Modified Leapfrog – Asselin Filter scheme 44
3.6 Start/Restart strategy . 44

4 Space Domain (DOM) 47
4.1 Fundamentals of the Discretisation 48

4.1.1 Arrangement of Variables 48
4.1.2 Discrete Operators . 49
4.1.3 Numerical Indexing . 51

4.2 Domain: Needed fields . 54
4.3 Domain: Horizontal Grid (mesh) (domhgr) 54

4.3.1 Coordinates and scale factors 54
4.3.2 Choice of horizontal grid 56
4.3.3 Output Grid files . 56

4.4 Domain: Vertical Grid (domzgr) 57
4.4.1 Meter Bathymetry . 59
4.4.2 z-coordinate (ln zco . 59
4.4.3 z-coordinate with partial step (ln zps) 61
4.4.4 s-coordinate (ln sco) . 63
4.4.5 z∗- or s∗-coordinate (ln linssh=false) 66
4.4.6 level bathymetry and mask 66

4.5 Domain: Initial State (istate and dtatsd) 67

5 Ocean Tracers (TRA) 69
5.1 Tracer Advection (traadv) . 71

5.1.1 Centred schemes (CEN) (ln traadv cen) 73
5.1.2 Flux Corrected Transport schemes (FCT) (ln traadv fct) . 74
5.1.3 MUSCL scheme (ln traadv mus) 75
5.1.4 Upstream-Biased Scheme (UBS) (ln traadv ubs) 76
5.1.5 QUICKEST scheme (QCK) (ln traadv qck) 77

5.2 Tracer Lateral Diffusion (traldf) 77
5.2.1 Type of operator (ln traldf NONE, ln traldf lap, ln traldf blp) 78
5.2.2 Direction of action (ln traldf lev, ln traldf hor, ln traldf iso,

ln traldf triad) . 79
5.2.3 Iso-level (bi-)laplacian operator (ln traldf iso) 79
5.2.4 Standard and triad rotated (bi-)laplacian operator (traldf iso.F90,

traldf triad.F90) . 80
5.3 Tracer Vertical Diffusion (trazdf) 81
5.4 External Forcing . 82

5.4.1 Surface boundary condition (trasbc) 82
5.4.2 Solar Radiation Penetration (traqsr) 83
5.4.3 Bottom Boundary Condition (trabbc) 85

5.5 Bottom Boundary Layer (trabbl.F90 - key trabbl) 87

iii

5.5.1 Diffusive Bottom Boundary layer (nn bbl ldf =1) 88
5.5.2 Advective Bottom Boundary Layer (nn bbl adv= 1 or 2) . 88

5.6 Tracer damping (tradmp) . 90
5.6.1 DMP TOOLS . 91

5.7 Tracer time evolution (tranxt) . 92
5.8 Equation of State (eosbn2) . 93

5.8.1 Equation Of Seawater (nn eos = -1, 0, or 1) 93
5.8.2 Brunt-Väisälä Frequency (nn eos = 0, 1 or 2) 95
5.8.3 Freezing Point of Seawater 96

5.9 Horizontal Derivative in zps-coordinate (zpshde) 96

6 Ocean Dynamics (DYN) 99
6.1 Sea surface height and diagnostic variables (η, ζ, χ, w) 101

6.1.1 Horizontal divergence and relative vorticity (divcur) . . . 101
6.1.2 Sea surface height evolution and vertical velocity (sshwzv) 101

6.2 Coriolis and Advection: vector invariant form 102
6.2.1 Vorticity term (dynvor) 102
6.2.2 Kinetic Energy Gradient term (dynkeg) 106
6.2.3 Vertical advection term (dynzad) 106

6.3 Coriolis and Advection: flux form 107
6.3.1 Coriolis plus curvature metric terms (dynvor) 107
6.3.2 Flux form Advection term (dynadv) 107

6.4 Hydrostatic pressure gradient (dynhpg) 109
6.4.1 z-coordinate with full step (ln dynhpg zco) 109
6.4.2 z-coordinate with partial step (ln dynhpg zps) 110
6.4.3 s- and z-s-coordinates 110
6.4.4 Ice shelf cavity . 111
6.4.5 Time-scheme (ln dynhpg imp) 111

6.5 Surface pressure gradient (dynspg) 112
6.5.1 Explicit free surface (key dynspg exp) 113
6.5.2 Split-Explicit free surface (key dynspg ts) 113
6.5.3 Filtered free surface (key dynspg flt) 116

6.6 Lateral diffusion term (dynldf) 116
6.6.1 Iso-level laplacian operator (ln dynldf lap) 117
6.6.2 Rotated laplacian operator (ln dynldf iso) 117
6.6.3 Iso-level bilaplacian operator (ln dynldf bilap) 118

6.7 Vertical diffusion term (dynzdf.F90) 118
6.8 External Forcings . 120
6.9 Time evolution term (dynnxt) . 120

7 Surface Boundary Condition (SBC, ISF, ICB) 123
7.1 Surface boundary condition for the ocean 127
7.2 Input Data generic interface . 127

7.2.1 Input Data specification (fldread.F90) 128

iv

7.2.2 Interpolation on-the-Fly 130
7.2.3 Standalone Surface Boundary Condition Scheme 133

7.3 Analytical formulation (sbcana) 134
7.4 Flux formulation (sbcflx) . 135
7.5 Bulk formulation (sbcblk core, sbcblk clio or sbcblk mfs) 135

7.5.1 CORE Bulk formulea (ln core=true) 135
7.5.2 CLIO Bulk formulea (ln clio=true) 136
7.5.3 MFS Bulk formulea (ln mfs=true) 137

7.6 Coupled formulation (sbccpl) 138
7.7 Atmospheric pressure (sbcapr) 139
7.8 Tidal Potential (sbctide) . 140
7.9 River runoffs (sbcrnf) . 141
7.10 Ice shelf melting (sbcisf) . 143
7.11 Ice sheet coupling . 145
7.12 Handling of icebergs (ICB) . 146
7.13 Miscellaneous options . 147

7.13.1 Diurnal cycle (sbcdcy) 147
7.13.2 Rotation of vector pairs onto the model grid directions . . 149
7.13.3 Surface restoring to observed SST and/or SSS (sbcssr) . . 150
7.13.4 Handling of ice-covered area (sbcice ...) 151
7.13.5 Interface to CICE (sbcice cice) 151
7.13.6 Freshwater budget control (sbcfwb) 152
7.13.7 Neutral drag coefficient from external wave model (sbcwave)152

8 Lateral Boundary Condition (LBC) 155
8.1 Boundary Condition at the Coast (rn shlat) 156
8.2 Model Domain Boundary Condition (jperio) 159

8.2.1 Closed, cyclic, south symmetric (jperio = 0, 1 or 2) 159
8.2.2 North-fold (jperio = 3 to 6) 160

8.3 Exchange with neighbouring processors (lbclnk, lib mpp) 160
8.4 Unstructured Open Boundary Conditions (BDY) 163

8.4.1 The namelists . 165
8.4.2 The Flow Relaxation Scheme 166
8.4.3 The Flather radiation scheme 167
8.4.4 Boundary geometry . 167
8.4.5 Input boundary data files 169
8.4.6 Volume correction . 169
8.4.7 Tidal harmonic forcing 170

9 Lateral Ocean Physics (LDF) 173
9.1 Direction of Lateral Mixing (ldfslp) 175

9.1.1 slopes for tracer geopotential mixing in the s-coordinate . 175
9.1.2 Slopes for tracer iso-neutral mixing 175
9.1.3 slopes for momentum iso-neutral mixing 178

v

9.2 Lateral Mixing Operators (ldftra, ldfdyn) 180
9.3 Lateral Mixing Coefficient (ldftra, ldfdyn) 180
9.4 Eddy Induced Velocity (traadv eiv, ldfeiv) 182

10 Vertical Ocean Physics (ZDF) 185
10.1 Vertical Mixing . 187

10.1.1 Constant (key zdfcst) 187
10.1.2 Richardson Number Dependent (key zdfric) 188
10.1.3 TKE Turbulent Closure Scheme (key zdftke) 189
10.1.4 TKE discretization considerations (key zdftke) 194
10.1.5 GLS Generic Length Scale (key zdfgls) 197
10.1.6 OSM OSMOSIS Boundary Layer scheme (key zdfosm) . 199

10.2 Convection . 199
10.2.1 Non-Penetrative Convective Adjustment (ln tranpc) . . . 200
10.2.2 Enhanced Vertical Diffusion (ln zdfevd) 202
10.2.3 Turbulent Closure Scheme (key zdftke, key zdfgls or key zdfosm)203

10.3 Double Diffusion Mixing (key zdfddm) 203
10.4 Bottom and Top Friction (zdfbfr) 205

10.4.1 Linear Bottom Friction (nn botfr = 0 or 1) 206
10.4.2 Non-Linear Bottom Friction (nn botfr = 2) 206
10.4.3 Log-layer Bottom Friction enhancement (nn botfr = 2, ln loglayer

= .true.) . 207
10.4.4 Bottom Friction stability considerations 207
10.4.5 Implicit Bottom Friction (ln bfrimp=T) 208
10.4.6 Bottom Friction with split-explicit time splitting (ln bfrimp=F)209

10.5 Tidal Mixing (key zdftmx) . 210
10.5.1 Bottom intensified tidal mixing 210
10.5.2 Indonesian area specific treatment (ln zdftmx itf) 211

10.6 Internal wave-driven mixing (key zdftmx new) 213

11 Output and Diagnostics (IOM, DIA, TRD, FLO) 215
11.1 Old Model Output (default) . 216
11.2 Standard model Output (IOM) 216

11.2.1 XIOS: the IO SERVER 218
11.2.2 Practical issues . 219
11.2.3 XML fundamentals . 220
11.2.4 Detailed functionalities 224
11.2.5 XML reference tables 226
11.2.6 CF metadata standard compliance 233

11.3 NetCDF4 Support (key netcdf4) 233
11.4 Tracer/Dynamics Trends (TRD) 236
11.5 On-line Floats trajectories (FLO) (key floats) 237
11.6 Harmonic analysis of tidal constituents (key diaharm) 238
11.7 Transports across sections (key diadct) 239

vi

11.8 Diagnosing the Steric effect in sea surface height 241
11.9 Other Diagnostics (key diahth, key diaar5) 244

11.9.1 Depth of various quantities (diahth.F90) 244
11.9.2 Poleward heat and salt transports (diaptr.F90) 245
11.9.3 CMIP specific diagnostics (diaar5.F90) 245
11.9.4 25 hour mean output for tidal models 245
11.9.5 Top Middle and Bed hourly output 246
11.9.6 Courant numbers . 246

12 Observation and model comparison (OBS) 247
12.1 Running the observation operator code example 248
12.2 Technical details . 249

12.2.1 Profile feedback type observation file header 250
12.2.2 Sea level anomaly feedback type observation file header . 252
12.2.3 Sea surface temperature feedback type observation file header254

12.3 Theoretical details . 255
12.3.1 Horizontal interpolation methods 255
12.3.2 Grid search . 257
12.3.3 Parallel aspects of horizontal interpolation 257
12.3.4 Vertical interpolation operator 260

12.4 Offline observation operator . 261
12.4.1 Concept . 261
12.4.2 Using the offline observation operator 261
12.4.3 Configuring the offline observation operator 262
12.4.4 Advanced usage . 266

12.5 Observation Utilities . 267
12.5.1 Obstools . 267
12.5.2 building the obstools . 270
12.5.3 Dataplot . 270

13 Apply assimilation increments (ASM) 273
13.1 Direct initialization . 274
13.2 Incremental Analysis Updates 274
13.3 Divergence damping initialisation 275
13.4 Implementation details . 275

14 Stochastic parametrization of EOS (STO) 277
14.1 Stochastic processes . 278
14.2 Implementation details . 279

15 Miscellaneous Topics 281
15.1 Representation of Unresolved Straits 282

15.1.1 Hand made geometry changes 282
15.2 Closed seas (closea.F90) . 284

vii

15.3 Sub-Domain Functionality . 284
15.3.1 Simple subsetting of input files via netCDF attributes . . . 284

15.4 Accuracy and Reproducibility (lib fortran.F90) 285
15.4.1 Issues with intrinsinc SIGN function (key nosignedzero) 285
15.4.2 MPP reproducibility . 286
15.4.3 MPP scalability . 286

15.5 Model Optimisation, Control Print and Benchmark 287

16 Configurations 289
16.1 Introduction . 290
16.2 Water column model: 1D model (C1D) (key c1d) 290
16.3 ORCA family: global ocean with tripolar grid 291

16.3.1 ORCA tripolar grid . 291
16.3.2 ORCA pre-defined resolution 294

16.4 GYRE family: double gyre basin 295
16.5 AMM: atlantic margin configuration 296

A Curvilinear s−Coordinate Equations 297
A.1 The chain rule for s−coordinates 298
A.2 Continuity Equation in s−coordinates 298
A.3 Momentum Equation in s−coordinate 300
A.4 Tracer Equation . 304

B Appendix B : Diffusive Operators 305
B.1 Horizontal/Vertical 2nd Order Tracer Diffusive Operators 306
B.2 Iso/diapycnal 2nd Order Tracer Diffusive Operators 308
B.3 Lateral/Vertical Momentum Diffusive Operators 310

C Discrete Invariants of the Equations 313
C.1 Introduction / Notations . 314
C.2 Continuous conservation . 315
C.3 Discrete total energy conservation : vector invariant form 318

C.3.1 Total energy conservation 318
C.3.2 Vorticity term (coriolis + vorticity part of the advection) . 318
C.3.3 Pressure Gradient Term 322

C.4 Discrete total energy conservation : flux form 324
C.4.1 Total energy conservation 324
C.4.2 Coriolis and advection terms: flux form 325

C.5 Discrete enstrophy conservation 326
C.6 Conservation Properties on Tracers 328

C.6.1 Advection Term . 328
C.7 Conservation Properties on Lateral Momentum Physics 329

C.7.1 Conservation of Potential Vorticity 329
C.7.2 Dissipation of Horizontal Kinetic Energy 330

viii

C.7.3 Dissipation of Enstrophy 331
C.7.4 Conservation of Horizontal Divergence 331
C.7.5 Dissipation of Horizontal Divergence Variance 331

C.8 Conservation Properties on Vertical Momentum Physics 332
C.9 Conservation Properties on Tracer Physics 335

C.9.1 Conservation of Tracers 335
C.9.2 Dissipation of Tracer Variance 336

D Iso-neutral diffusion and eddy advection using triads 337
D.1 Choice of namtra ldf namelist parameters 338
D.2 Triad formulation of iso-neutral diffusion 339

D.2.1 The iso-neutral diffusion operator 339
D.2.2 The standard discretization 340
D.2.3 Expression of the skew-flux in terms of triad slopes 341
D.2.4 The full triad fluxes . 343
D.2.5 Ensuring the scheme does not increase tracer variance . . 344
D.2.6 Triad volumes in Griffes’s scheme and in NEMO 345
D.2.7 Summary of the scheme 346
D.2.8 Treatment of the triads at the boundaries 347
D.2.9 Limiting of the slopes within the interior 349
D.2.10 Tapering within the surface mixed layer 349

D.3 Eddy induced advection formulated as a skew flux 352
D.3.1 The continuous skew flux formulation 352
D.3.2 The discrete skew flux formulation 354
D.3.3 Treatment of the triads at the boundaries 355
D.3.4 Limiting of the slopes within the interior 356
D.3.5 Tapering within the surface mixed layer 356
D.3.6 Streamfunction diagnostics 356

E Coding Rules 359
E.1 The program structure . 360
E.2 Coding conventions . 360
E.3 Naming Conventions . 362
E.4 The program structure . 363

Index 363

Index 364

Bibliography 373

Abstract / Résumé

The ocean engine of NEMO (Nucleus for European Modelling of the Ocean) is a primitive
equation model adapted to regional and global ocean circulation problems. It is intended to
be a flexible tool for studying the ocean and its interactions with the others components of
the earth climate system over a wide range of space and time scales. Prognostic variables
are the three-dimensional velocity field, a non-linear sea surface height, the Conservative
Temperature and the Absolute Salinity. In the horizontal direction, the model uses a curvi-
linear orthogonal grid and in the vertical direction, a full or partial step z-coordinate, or
s-coordinate, or a mixture of the two. The distribution of variables is a three-dimensional
Arakawa C-type grid. Various physical choices are available to describe ocean physics,
including TKE, and GLS vertical physics. Within NEMO, the ocean is interfaced with a
sea-ice model (LIM or CICE), passive tracer and biogeochemical models (TOP) and, via
the OASIS coupler, with several atmospheric general circulation models. It also support
two-way grid embedding via the AGRIF software.

Disclaimer

Like all components of NEMO, the ocean component is developed under the CE-
CILL license, which is a French adaptation of the GNU GPL (General Public Li-
cense). Anyone may use it freely for research purposes, and is encouraged to
communicate back to the NEMO team its own developments and improvements.
The model and the present document have been made available as a service to the
community. We cannot certify that the code and its manual are free of errors. Bugs
are inevitable and some have undoubtedly survived the testing phase. Users are
encouraged to bring them to our attention. The author assumes no responsibility
for problems, errors, or incorrect usage of NEMO.

NEMO reference in papers and other publications is as follows:

Madec, G., and the NEMO team, 2008: NEMO ocean engine. Note du Pôle
de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No
1288-1619.

Additional information can be found on nemo-ocean.eu website.

http://www.nemo-ocean.eu/

1 Introduction

The Nucleus for European Modelling of the Ocean (NEMO) is a framework of
ocean related engines, namely OPA1 for the ocean dynamics and thermodynamics,
LIM2 for the sea-ice dynamics and thermodynamics, TOP3 for the biogeochem-
istry (both transport (TRP) and sources minus sinks (LOBSTER, PISCES)4. It is
intended to be a flexible tool for studying the ocean and its interactions with the
other components of the earth climate system (atmosphere, sea-ice, biogeochemi-
cal tracers, ...) over a wide range of space and time scales. This documentation pro-
vides information about the physics represented by the ocean component of NEMO
and the rationale for the choice of numerical schemes and the model design. More
specific information about running the model on different computers, or how to set
up a configuration, are found on the NEMO web site (www.nemo-ocean.eu).

The ocean component of NEMO has been developed from the OPA model,
release 8.2, described in Madec et al. [1998]. This model has been used for a wide
range of applications, both regional or global, as a forced ocean model and as a
model coupled with the sea-ice and/or the atmosphere.

This manual is organised in as follows. Chapter 2 presents the model basics,
i.e. the equations and their assumptions, the vertical coordinates used, and the
subgrid scale physics. This part deals with the continuous equations of the model
(primitive equations, with temperature, salinity and an equation of seawater). The
equations are written in a curvilinear coordinate system, with a choice of vertical
coordinates (z, s, z*, s*, z̃, s̃, and a mixture of them). Momentum equations
are formulated in vector invariant or flux form. Dimensional units in the meter,
kilogram, second (MKS) international system are used throughout.

1OPA = Océan PArallélisé
2LIM= Louvain)la-neuve Ice Model
3TOP = Tracer in the Ocean Paradigm
4Both LOBSTER and PISCES are not acronyms just name

6 Introduction

The following chapters deal with the discrete equations. Chapter 3 presents
the time domain. The model time stepping environment is a three level scheme in
which the tendency terms of the equations are evaluated either centered in time, or
forward, or backward depending of the nature of the term. Chapter 4 presents the
space domain. The model is discretised on a staggered grid (Arakawa C grid) with
masking of land areas. Vertical discretisation used depends on both how the bottom
topography is represented and whether the free surface is linear or not. Full step
or partial step z-coordinate or s- (terrain-following) coordinate is used with linear
free surface (level position are then fixed in time). In non-linear free surface, the
corresponding rescaled height coordinate formulation (z* or s*) is used (the level
position then vary in time as a function of the sea surface heigh). The following
two chapters (5 and 6) describe the discretisation of the prognostic equations for the
active tracers and the momentum. Explicit, split-explicit and filtered free surface
formulations are implemented. A number of numerical schemes are available for
momentum advection, for the computation of the pressure gradients, as well as
for the advection of tracers (second or higher order advection schemes, including
positive ones).

Surface boundary conditions (chapter 7) can be implemented as prescribed
fluxes, or bulk formulations for the surface fluxes (wind stress, heat, freshwater).
The model allows penetration of solar radiation There is an optional geothermal
heating at the ocean bottom. Within the NEMO system the ocean model is in-
teractively coupled with a sea ice model (LIM) and with biogeochemistry models
(PISCES, LOBSTER). Interactive coupling to Atmospheric models is possible via
the OASIS coupler [Valcke 2006]. Two-way nesting is also available through an
interface to the AGRIF package (Adaptative Grid Refinement in FORTRAN) [De-
breu et al. 2008]. The interface code for coupling to an alternative sea ice model
(CICE, Hunke and Lipscomb [2008]) has now been upgraded so that it works for
both global and regional domains, although AGRIF is still not available.

Other model characteristics are the lateral boundary conditions (chapter 8).
Global configurations of the model make use of the ORCA tripolar grid, with spe-
cial north fold boundary condition. Free-slip or no-slip boundary conditions are
allowed at land boundaries. Closed basin geometries as well as periodic domains
and open boundary conditions are possible.

Physical parameterisations are described in chapters 9 and 10. The model in-
cludes an implicit treatment of vertical viscosity and diffusivity. The lateral Lapla-
cian and biharmonic viscosity and diffusion can be rotated following a geopo-
tential or neutral direction. There is an optional eddy induced velocity [Gent
and Mcwilliams 1990] with a space and time variable coefficient Tréguier et al.
[1997]. The model has vertical harmonic viscosity and diffusion with a space
and time variable coefficient, with options to compute the coefficients with Blanke
and Delecluse [1993], Pacanowski and Philander [1981], or Umlauf and Burchard
[2003] mixing schemes.

7

CPP keys and namelists are used for inputs to the code.

CPP keys
Some CPP keys are implemented in the FORTRAN code to allow code selection at
compiling step. This selection of code at compilation time reduces the reliability of
the whole platform since it changes the code from one set of CPP keys to the other.
It is used only when the addition/suppression of the part of code highly changes
the amount of memory at run time. Usual coding looks like :

#if defined key_option1
This part of the FORTRAN code will be active
only if key_option1 is activated at compiling step

#endif

Namelists
The namelist allows to input variables (character, logical, real and integer) into

the code. There is one namelist file for each component of NEMO (dynamics,
sea-ice, biogeochemistry...) containing all the FOTRAN namelists needed. The
implementation in NEMO uses a two step process. For each FORTRAN namelist,
two files are read:

1. A reference namelist (in CONFIG/SHARED/namelist ref) is read first. This
file contains all the namelist variables which are initialised to default values

2. A configuration namelist (in CONFIG/CFG NAME/EXP00/namelist cfg)
is read aferwards. This file contains only the namelist variables which are
changed from default values, and overwrites those.

A template can be found in NEMO/OPA SRC/module.example The effective namelist,
taken in account during the run, is stored at execution time in an output namelist dyn
(or ice or top) file.

Model outputs management and specific online diagnostics are described in
chapters 11. The diagnostics includes the output of all the tendencies of the mo-
mentum and tracers equations, the output of tracers tendencies averaged over the
time evolving mixed layer, the output of the tendencies of the barotropic vortic-
ity equation, the computation of on-line floats trajectories... Chapter 12 describes
a tool which reads in observation files (profile temperature and salinity, sea sur-
face temperature, sea level anomaly and sea ice concentration) and calculates an
interpolated model equivalent value at the observation location and nearest model
timestep. Originally developed of data assimilation, it is a fantastic tool for model
and data comparison. Chapter 13 describes how increments produced by data as-
similation may be applied to the model equations. Finally, Chapter 16 provides a
brief introduction to the pre-defined model configurations (water column model,
ORCA and GYRE families of configurations).

8 Introduction

Table 1.1: Organization of Chapters mimicking the one of the model directories.

Chapter 3 - model time STePping environment
Chapter 4 DOM model DOMain
Chapter 5 TRA TRAcer equations (potential temperature and salinity)
Chapter 6 DYN DYNamic equations (momentum)
Chapter 7 SBC Surface Boundary Conditions
Chapter 8 LBC Lateral Boundary Conditions (also OBC and BDY)
Chapter 9 LDF Lateral DiFfusion (parameterisations)
Chapter 10 ZDF vertical (Z) DiFfusion (parameterisations)
Chapter 11 DIA I/O and DIAgnostics (also IOM, FLO and TRD)
Chapter 12 OBS OBServation and model comparison
Chapter 13 ASM ASsiMilation increment
Chapter 15 SOL Miscellaneous topics (including solvers)
Chapter 16 - predefined configurations (including C1D)

The model is implemented in FORTRAN 90, with preprocessing (C-pre-processor).
It runs under UNIX. It is optimized for vector computers and parallelised by do-
main decomposition with MPI. All input and output is done in NetCDF (Network
Common Data Format) with a optional direct access format for output. To ensure
the clarity and readability of the code it is necessary to follow coding rules. The
coding rules for OPA include conventions for naming variables, with different start-
ing letters for different types of variables (real, integer, parameter. . .). Those rules
are briefly presented in Appendix E and a more complete document is available on
the NEMO web site.

The model is organized with a high internal modularity based on physics. For
example, each trend (i.e., a term in the RHS of the prognostic equation) for mo-
mentum and tracers is computed in a dedicated module. To make it easier for the
user to find his way around the code, the module names follow a three-letter rule.
For example, traldf.F90 is a module related to the TRAcers equation, computing
the Lateral DiFfussion. Furthermore, modules are organized in a few directories
that correspond to their category, as indicated by the first three letters of their name
(Tab. 1.1).

The manual mirrors the organization of the model. After the presentation of
the continuous equations (Chapter 2), the following chapters refer to specific terms
of the equations each associated with a group of modules (Tab. 1.1).

Changes between releases

NEMO/OPA, like all research tools, is in perpetual evolution. The present docu-
ment describes the OPA version include in the release 3.4 of NEMO. This release
differs significantly from version 8, documented in Madec et al. [1998].

9

• The main modifications from OPA v8 and NEMO/OPA v3.2 are :

1. transition to full native FORTRAN 90, deep code restructuring and drastic
reduction of CPP keys;

2. introduction of partial step representation of bottom topography [Barnier
et al. 2006, Le Sommer et al. 2009, Penduff et al. 2007];

3. partial reactivation of a terrain-following vertical coordinate (s- and hybrid
s-z) with the addition of several options for pressure gradient computation
5;

4. more choices for the treatment of the free surface: full explicit, split-explicit
or filtered schemes, and suppression of the rigid-lid option;

5. non linear free surface associated with the rescaled height coordinate z* or
s;

6. additional schemes for vector and flux forms of the momentum advection;

7. additional advection schemes for tracers;

8. implementation of the AGRIF package (Adaptative Grid Refinement in FOR-
TRAN) [Debreu et al. 2008];

9. online diagnostics : tracers trend in the mixed layer and vorticity balance;

10. rewriting of the I/O management with the use of an I/O server;

11. generalized ocean-ice-atmosphere-CO2 coupling interface, interfaced with
OASIS 3 coupler ;

12. surface module (SBC) that simplify the way the ocean is forced and include
two bulk formulea (CLIO and CORE) and which includes an on-the-fly in-
terpolation of input forcing fields ;

13. RGB light penetration and optional use of ocean color

14. major changes in the TKE schemes: it now includes a Langmuir cell pa-
rameterization [Axell 2002], the Mellor and Blumberg [2004] surface wave
breaking parameterization, and has a time discretization which is energeti-
cally consistent with the ocean model equations [Burchard 2002, Marsaleix
et al. 2008];

5Partial support of s-coordinate: there is presently no support for neutral physics in s- coordinate
and for the new options for horizontal pressure gradient computation with a non-linear equation of
state.

10 Introduction

15. tidal mixing parametrisation (bottom intensification) + Indonesian specific
tidal mixing [Koch-Larrouy et al. 2007];

16. introduction of LIM-3, the new Louvain-la-Neuve sea-ice model (C-grid rhe-
ology and new thermodynamics including bulk ice salinity) [Vancoppenolle
et al. 2009b;a]

• The main modifications from NEMO/OPA v3.2 and v3.3 are :

1. introduction of a modified leapfrog-Asselin filter time stepping scheme [Leclair
and Madec 2009];

2. additional scheme for iso-neutral mixing [Griffies et al. 1998], although it is
still a ”work in progress”;

3. a rewriting of the bottom boundary layer scheme, following Campin and
Goosse [1999];

4. addition of a Generic Length Scale vertical mixing scheme, following Um-
lauf and Burchard [2003];

5. addition of the atmospheric pressure as an external forcing on both ocean
and sea-ice dynamics;

6. addition of a diurnal cycle on solar radiation [Bernie et al. 2007];

7. river runoffs added through a non-zero depth, and having its own temperature
and salinity;

8. CORE II normal year forcing set as the default forcing of ORCA2-LIM con-
figuration ;

9. generalisation of the use of fldread.F90 for all input fields (ocean climatol-
ogy, sea-ice damping...) ;

10. addition of an on-line observation and model comparison (thanks to NEMOVAR
project);

11. optional application of an assimilation increment (thanks to NEMOVAR
project);

12. coupling interface adjusted for WRF atmospheric model;

13. C-grid ice rheology now available fro both LIM-2 and LIM-3 [Bouillon et al.
2009];

14. LIM-3 ice-ocean momentum coupling applied to LIM-2 ;

11

15. a deep re-writting and simplification of the off-line tracer component (OFF SRC)
;

16. the merge of passive and active advection and diffusion modules ;

17. Use of the Flexible Configuration Manager (FCM) to build configurations,
generate the Makefile and produce the executable ;

18. Linear-tangent and Adjoint component (TAM) added, phased with v3.0

In addition, several minor modifications in the coding have been introduced with
the constant concern of improving the model performance.

• The main modifications from NEMO/OPA v3.3 and v3.4 are :

1. finalisation of above iso-neutral mixing [Griffies et al. 1998]”;

2. ”Neptune effect” parametrisation;

3. horizontal pressure gradient suitable for s-coordinate;

4. semi-implicit bottom friction;

5. finalisation of the merge of passive and active tracers advection-diffusion
modules;

6. a new bulk formulae (so-called MFS);

7. use fldread for the off-line tracer component (OFF SRC) ;

8. use MPI point to point communications for north fold;

9. diagnostic of transport ;

• The main modifications from NEMO/OPA v3.4 and v3.6 are :

1. ... ;

• The main modifications from NEMO/OPA v3.6 and v4.0 are :

12 Introduction

1. new definition of configurations ;

2. bulk formulation ;

3. ... ;

2 Model basics

Contents
2.1 Primitive Equations . 14

2.1.1 Vector Invariant Formulation 14
2.1.2 Boundary Conditions 15

2.2 The Horizontal Pressure Gradient 17
2.2.1 Pressure Formulation 17
2.2.2 Free Surface Formulation 17

2.3 Curvilinear z-coordinate System 18
2.3.1 Tensorial Formalism 18
2.3.2 Continuous Model Equations 20

2.4 Curvilinear generalised vertical coordinate System 24
2.4.1 The s-coordinate Formulation 25
2.4.2 Curvilinear z*–coordinate System 27
2.4.3 Curvilinear Terrain-following s–coordinate 30
2.4.4 Curvilinear z̃–coordinate 32

2.5 Subgrid Scale Physics . 33
2.5.1 Vertical Subgrid Scale Physics 33
2.5.2 Formulation of the Lateral Diffusive and Viscous Op-

erators . 34

14 Model basics

2.1 Primitive Equations

2.1.1 Vector Invariant Formulation

The ocean is a fluid that can be described to a good approximation by the primitive
equations, i.e. the Navier-Stokes equations along with a nonlinear equation of state
which couples the two active tracers (temperature and salinity) to the fluid velocity,
plus the following additional assumptions made from scale considerations:

(1) spherical earth approximation: the geopotential surfaces are assumed to be
spheres so that gravity (local vertical) is parallel to the earth’s radius

(2) thin-shell approximation: the ocean depth is neglected compared to the
earth’s radius

(3) turbulent closure hypothesis: the turbulent fluxes (which represent the ef-
fect of small scale processes on the large-scale) are expressed in terms of large-
scale features

(4) Boussinesq hypothesis: density variations are neglected except in their con-
tribution to the buoyancy force

(5) Hydrostatic hypothesis: the vertical momentum equation is reduced to a
balance between the vertical pressure gradient and the buoyancy force (this re-
moves convective processes from the initial Navier-Stokes equations and so con-
vective processes must be parameterized instead)

(6) Incompressibility hypothesis: the three dimensional divergence of the ve-
locity vector is assumed to be zero.

Because the gravitational force is so dominant in the equations of large-scale
motions, it is useful to choose an orthogonal set of unit vectors (i,j,k) linked to the
earth such that k is the local upward vector and (i,j) are two vectors orthogonal to
k, i.e. tangent to the geopotential surfaces. Let us define the following variables:
U the vector velocity, U = Uh + w k (the subscript h denotes the local horizontal
vector, i.e. over the (i,j) plane), T the potential temperature, S the salinity, ρ the
in situ density. The vector invariant form of the primitive equations in the (i,j,k)
vector system provides the following six equations (namely the momentum bal-
ance, the hydrostatic equilibrium, the incompressibility equation, the heat and salt
conservation equations and an equation of state):

∂Uh

∂t
= −

[
(∇×U)×U +

1

2
∇
(
U2
)]
h

− f k×Uh −
1

ρo
∇hp+ DU + FU

(2.1a)

∂p

∂z
= −ρ g (2.1b)

∇ ·U = 0 (2.1c)

2.1. Primitive Equations 15

∂T

∂t
= −∇ · (T U) +DT + F T (2.1d)

∂S

∂t
= −∇ · (S U) +DS + FS (2.1e)

ρ = ρ (T, S, p) (2.1f)

where ∇ is the generalised derivative vector operator in (i, j,k) directions, t is the
time, z is the vertical coordinate, ρ is the in situ density given by the equation of
state (2.1f), ρo is a reference density, p the pressure, f = 2Ω·k is the Coriolis accel-
eration (where Ω is the Earth’s angular velocity vector), and g is the gravitational
acceleration. DU, DT and DS are the parameterisations of small-scale physics for
momentum, temperature and salinity, and FU, F T and FS surface forcing terms.
Their nature and formulation are discussed in §2.5 and page §2.1.2.

.

2.1.2 Boundary Conditions

An ocean is bounded by complex coastlines, bottom topography at its base and
an air-sea or ice-sea interface at its top. These boundaries can be defined by two
surfaces, z = −H(i, j) and z = η(i, j, k, t), where H is the depth of the ocean
bottom and η is the height of the sea surface. Both H and η are usually referenced
to a given surface, z = 0, chosen as a mean sea surface (Fig. 2.1). Through
these two boundaries, the ocean can exchange fluxes of heat, fresh water, salt,
and momentum with the solid earth, the continental margins, the sea ice and the
atmosphere. However, some of these fluxes are so weak that even on climatic
time scales of thousands of years they can be neglected. In the following, we
briefly review the fluxes exchanged at the interfaces between the ocean and the
other components of the earth system.

Land - ocean interface: the major flux between continental margins and the ocean
is a mass exchange of fresh water through river runoff. Such an exchange
modifies the sea surface salinity especially in the vicinity of major river
mouths. It can be neglected for short range integrations but has to be taken
into account for long term integrations as it influences the characteristics of
water masses formed (especially at high latitudes). It is required in order to
close the water cycle of the climate system. It is usually specified as a fresh
water flux at the air-sea interface in the vicinity of river mouths.

Solid earth - ocean interface: heat and salt fluxes through the sea floor are small,
except in special areas of little extent. They are usually neglected in the
model 1. The boundary condition is thus set to no flux of heat and salt across

1In fact, it has been shown that the heat flux associated with the solid Earth cooling (i.e.the
geothermal heating) is not negligible for the thermohaline circulation of the world ocean (see 5.4.3).

16 Model basics

η(i,j,t)

0

z

i, j

—H(i,j)

Figure 2.1: The ocean is bounded by two surfaces, z = −H(i, j) and z = η(i, j, t),
where H is the depth of the sea floor and η the height of the sea surface. Both H and
η are referenced to z = 0.

solid boundaries. For momentum, the situation is different. There is no flow
across solid boundaries, i.e. the velocity normal to the ocean bottom and
coastlines is zero (in other words, the bottom velocity is parallel to solid
boundaries). This kinematic boundary condition can be expressed as:

w = −Uh · ∇h (H) (2.2)

In addition, the ocean exchanges momentum with the earth through frictional
processes. Such momentum transfer occurs at small scales in a boundary
layer. It must be parameterized in terms of turbulent fluxes using bottom
and/or lateral boundary conditions. Its specification depends on the nature
of the physical parameterisation used for DU in (2.1a). It is discussed in
§2.5.1, page 33.

Atmosphere - ocean interface: the kinematic surface condition plus the mass flux
of fresh water PE (the precipitation minus evaporation budget) leads to:

w =
∂η

∂t
+ Uh|z=η · ∇h (η) + P − E (2.3)

The dynamic boundary condition, neglecting the surface tension (which re-
moves capillary waves from the system) leads to the continuity of pressure
across the interface z = η. The atmosphere and ocean also exchange hori-
zontal momentum (wind stress), and heat.

Sea ice - ocean interface: the ocean and sea ice exchange heat, salt, fresh water
and momentum. The sea surface temperature is constrained to be at the
freezing point at the interface. Sea ice salinity is very low (∼ 4 − 6 psu)
compared to those of the ocean (∼ 34 psu). The cycle of freezing/melting is
associated with fresh water and salt fluxes that cannot be neglected.

2.2. The Horizontal Pressure Gradient 17

2.2 The Horizontal Pressure Gradient

2.2.1 Pressure Formulation

The total pressure at a given depth z is composed of a surface pressure ps at a
reference geopotential surface (z = 0) and a hydrostatic pressure ph such that:
p(i, j, k, t) = ps(i, j, t) + ph(i, j, k, t). The latter is computed by integrating
(2.1b), assuming that pressure in decibars can be approximated by depth in me-
ters in (2.1f). The hydrostatic pressure is then given by:

ph (i, j, z, t) =

∫ ς=0

ς=z
g ρ (T, S, ς) dς (2.4)

Two strategies can be considered for the surface pressure term: (a) introduce of a
new variable η, the free-surface elevation, for which a prognostic equation can be
established and solved; (b) assume that the ocean surface is a rigid lid, on which
the pressure (or its horizontal gradient) can be diagnosed. When the former strat-
egy is used, one solution of the free-surface elevation consists of the excitation
of external gravity waves. The flow is barotropic and the surface moves up and
down with gravity as the restoring force. The phase speed of such waves is high
(some hundreds of metres per second) so that the time step would have to be very
short if they were present in the model. The latter strategy filters out these waves
since the rigid lid approximation implies η = 0, i.e. the sea surface is the surface
z = 0. This well known approximation increases the surface wave speed to infinity
and modifies certain other longwave dynamics (e.g. barotropic Rossby or planetary
waves). The rigid-lid hypothesis is an obsolescent feature in modern OGCMs. It
has been available until the release 3.1 of NEMO, and it has been removed in re-
lease 3.2 and followings. Only the free surface formulation is now described in the
this document (see the next sub-section).

2.2.2 Free Surface Formulation

In the free surface formulation, a variable η, the sea-surface height, is introduced
which describes the shape of the air-sea interface. This variable is solution of a
prognostic equation which is established by forming the vertical average of the
kinematic surface condition (2.2):

∂η

∂t
= −D + P − E where D = ∇ ·

[
(H + η) Uh

]
(2.5)

and using (2.1b) the surface pressure is given by: ps = ρ g η.
Allowing the air-sea interface to move introduces the external gravity waves

(EGWs) as a class of solution of the primitive equations. These waves are barotropic
because of hydrostatic assumption, and their phase speed is quite high. Their time
scale is short with respect to the other processes described by the primitive equa-
tions.

18 Model basics

Two choices can be made regarding the implementation of the free surface in
the model, depending on the physical processes of interest.
• If one is interested in EGWs, in particular the tides and their interaction with

the baroclinic structure of the ocean (internal waves) possibly in shallow seas, then
a non linear free surface is the most appropriate. This means that no approxima-
tion is made in (2.5) and that the variation of the ocean volume is fully taken into
account. Note that in order to study the fast time scales associated with EGWs it
is necessary to minimize time filtering effects (use an explicit time scheme with
very small time step, or a split-explicit scheme with reasonably small time step,
see §6.5.1 or §6.5.2.
• If one is not interested in EGW but rather sees them as high frequency noise,

it is possible to apply an explicit filter to slow down the fastest waves while not al-
tering the slow barotropic Rossby waves. If further, an approximative conservation
of heat and salt contents is sufficient for the problem solved, then it is sufficient
to solve a linearized version of (2.5), which still allows to take into account fresh-
water fluxes applied at the ocean surface [Roullet and Madec 2000]. Nevertheless,
with the linearization, an exact conservation of heat and salt contents is lost.

The filtering of EGWs in models with a free surface is usually a matter of
discretisation of the temporal derivatives, using a split-explicit method [Killworth
et al. 1991, Zhang and Endoh 1992] or the implicit scheme [Dukowicz and Smith
1994] or the addition of a filtering force in the momentum equation [Roullet and
Madec 2000]. With the present release, NEMO offers the choice between an ex-
plicit free surface (see §6.5.1) or a split-explicit scheme strongly inspired the one
proposed by Shchepetkin and McWilliams [2005] (see §6.5.2).

2.3 Curvilinear z-coordinate System

2.3.1 Tensorial Formalism

In many ocean circulation problems, the flow field has regions of enhanced dynam-
ics (i.e. surface layers, western boundary currents, equatorial currents, or ocean
fronts). The representation of such dynamical processes can be improved by specif-
ically increasing the model resolution in these regions. As well, it may be con-
venient to use a lateral boundary-following coordinate system to better represent
coastal dynamics. Moreover, the common geographical coordinate system has a
singular point at the North Pole that cannot be easily treated in a global model with-
out filtering. A solution consists of introducing an appropriate coordinate transfor-
mation that shifts the singular point onto land [Madec and Imbard 1996, Murray
1996]. As a consequence, it is important to solve the primitive equations in various
curvilinear coordinate systems. An efficient way of introducing an appropriate co-
ordinate transform can be found when using a tensorial formalism. This formalism
is suited to any multidimensional curvilinear coordinate system. Ocean modellers
mainly use three-dimensional orthogonal grids on the sphere (spherical earth ap-
proximation), with preservation of the local vertical. Here we give the simplified

2.3. Curvilinear z-coordinate System 19

k
z

i

λ

j
ϕ

Figure 2.2: the geographical coordinate system (λ, ϕ, z) and the curvilinear coordi-
nate system (i,j,k).

equations for this particular case. The general case is detailed by Eiseman and
Stone [1980] in their survey of the conservation laws of fluid dynamics.

Let (i,j,k) be a set of orthogonal curvilinear coordinates on the sphere associ-
ated with the positively oriented orthogonal set of unit vectors (i,j,k) linked to the
earth such that k is the local upward vector and (i,j) are two vectors orthogonal to
k, i.e. along geopotential surfaces (Fig.2.2). Let (λ, ϕ, z) be the geographical co-
ordinate system in which a position is defined by the latitude ϕ(i, j), the longitude
λ(i, j) and the distance from the centre of the earth a+ z(k) where a is the earth’s
radius and z the altitude above a reference sea level (Fig.2.2). The local deforma-
tion of the curvilinear coordinate system is given by e1, e2 and e3, the three scale
factors:

e1 = (a+ z)

[(
∂λ

∂i
cosϕ

)2

+

(
∂ϕ

∂i

)2
]1/2

e2 = (a+ z)

[(
∂λ

∂j
cosϕ

)2

+

(
∂ϕ

∂j

)2
]1/2

e3 =

(
∂z

∂k

)
(2.6)

Since the ocean depth is far smaller than the earth’s radius, a + z, can be
replaced by a in (2.6) (thin-shell approximation). The resulting horizontal scale
factors e1, e2 are independent of k while the vertical scale factor is a single function
of k as k is parallel to z. The scalar and vector operators that appear in the primitive

20 Model basics

equations (Eqs. (2.1a) to (2.1f)) can be written in the tensorial form, invariant in
any orthogonal horizontal curvilinear coordinate system transformation:

∇q =
1

e1

∂q

∂i
i +

1

e2

∂q

∂j
j +

1

e3

∂q

∂k
k (2.7a)

∇ ·A =
1

e1 e2

[
∂ (e2 a1)

∂i
+
∂ (e1 a2)

∂j

]
+

1

e3

[
∂a3

∂k

]
(2.7b)

∇×A =

[
1

e2

∂a3

∂j
− 1

e3

∂a2

∂k

]
i +

[
1

e3

∂a1

∂k
− 1

e1

∂a3

∂i

]
j

+
1

e1e2

[
∂ (e2a2)

∂i
− ∂ (e1a1)

∂j

]
k

(2.7c)

∆q = ∇ · (∇q) (2.7d)

∆A = ∇ (∇ ·A)−∇× (∇×A) (2.7e)

where q is a scalar quantity and A = (a1, a2, a3) a vector in the (i, j, k) coordinate
system.

2.3.2 Continuous Model Equations

In order to express the Primitive Equations in tensorial formalism, it is necessary
to compute the horizontal component of the non-linear and viscous terms of the
equation using (2.7a)) to (2.7e). Let us set U = (u, v, w) = Uh + w k, the
velocity in the (i, j, k) coordinate system and define the relative vorticity ζ and the
divergence of the horizontal velocity field χ, by:

ζ =
1

e1e2

[
∂ (e2 v)

∂i
− ∂ (e1 u)

∂j

]
(2.8)

χ =
1

e1e2

[
∂ (e2 u)

∂i
+
∂ (e1 v)

∂j

]
(2.9)

Using the fact that the horizontal scale factors e1 and e2 are independent of k
and that e3 is a function of the single variable k, the nonlinear term of (2.1a) can
be transformed as follows:[

(∇×U)×U +
1

2
∇
(
U2
)]
h

=

 [
1
e3
∂u
∂k −

1
e1
∂w
∂i

]
w − ζ v

ζ u−
[

1
e2
∂w
∂j −

1
e3
∂v
∂k

]
w

+
1

2

 1
e1

∂(u2+v2+w2)
∂i

1
e2

∂(u2+v2+w2)
∂j

2.3. Curvilinear z-coordinate System 21

=

(
−ζ v
ζ u

)
+

1

2

 1
e1

∂(u2+v2)
∂i

1
e2

∂(u2+v2)
∂j

+
1

e3

(
w ∂u

∂k

w ∂v
∂k

)
−

(
w
e1
∂w
∂i −

1
2e1

∂w2

∂i
w
e2
∂w
∂j −

1
2e2

∂w2

∂j

)

The last term of the right hand side is obviously zero, and thus the nonlinear
term of (2.1a) is written in the (i, j, k) coordinate system:[

(∇×U)×U +
1

2
∇
(
U2
)]
h

= ζ k×Uh +
1

2
∇h
(
U2
h

)
+

1

e3
w
∂Uh

∂k
(2.10)

This is the so-called vector invariant form of the momentum advection term.
For some purposes, it can be advantageous to write this term in the so-called flux
form, i.e. to write it as the divergence of fluxes. For example, the first component
of (2.10) (the i-component) is transformed as follows:[

(∇×U)×U + 1
2∇
(
U2
)]
i

= −ζ v + 1
2 e1

∂(u2+v2)
∂i + 1

e3
w ∂u

∂k

= 1
e1 e2

(
−v ∂(e2 v)

∂i + v ∂(e1 u)
∂j

)
+ 1

e1e2

(
+e2 u

∂u
∂i + e2 v

∂v
∂i

)
+ 1

e3

(
w ∂u

∂k

)
= 1

e1 e2

{
−
(
v2 ∂e2

∂i + e2 v
∂v
∂i

)
+
(
∂(e1 u v)

∂j − e1 u
∂v
∂j

)
+
(
∂(e2uu)

∂i − u∂(e2u)
∂i

)
+ e2v

∂v
∂i

}
+ 1

e3

(
∂(wu)
∂k − u∂w∂k

)

= 1
e1 e2

(
∂(e2 uu)

∂i + ∂(e1 u v)
∂j

)
+ 1

e3

∂(wu)
∂k

+ 1
e1e2

(
−u
(
∂(e1v)
∂j − v ∂e1∂j

)
− u∂(e2u)

∂i

)
− 1

e3
∂w
∂k u+ 1

e1e2

(
−v2 ∂e2

∂i

)

= ∇ · (Uu)− (∇ ·U) u+ 1
e1e2

(
−v2 ∂e2

∂i + uv ∂e1∂j

)
as∇ ·U = 0 (incompressibility) it comes:

= ∇ · (Uu) + 1
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
(−v)

The flux form of the momentum advection term is therefore given by:[
(∇×U)×U +

1

2
∇
(
U2
)]
h

= ∇ ·
(

Uu
U v

)
+

1

e1e2

(
v
∂e2

∂i
− u∂e1

∂j

)
k×Uh (2.11)

The flux form has two terms, the first one is expressed as the divergence of
momentum fluxes (hence the flux form name given to this formulation) and the
second one is due to the curvilinear nature of the coordinate system used. The

22 Model basics

latter is called the metric term and can be viewed as a modification of the Coriolis
parameter:

f → f +
1

e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

)
(2.12)

Note that in the case of geographical coordinate, i.e. when (i, j) → (λ, ϕ)
and (e1, e2) → (a cosϕ, a), we recover the commonly used modification of the
Coriolis parameter f → f + (u/a) tanϕ.

To sum up, the curvilinear z-coordinate equations solved by the ocean model
can be written in the following tensorial formalism:

• Vector invariant form of the momentum equations :

∂u

∂t
= + (ζ + f) v − 1

2 e1

∂

∂i

(
u2 + v2

)
− 1

e3
w
∂u

∂k

− 1

e1

∂

∂i

(
ps + ph
ρo

)
+DU

u + FU
u

∂v

∂t
= − (ζ + f) u− 1

2 e2

∂

∂j

(
u2 + v2

)
− 1

e3
w
∂v

∂k

− 1

e2

∂

∂j

(
ps + ph
ρo

)
+DU

v + FU
v

(2.13a)

• flux form of the momentum equations :

∂u

∂t
= +

(
f +

1

e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

))
v

− 1

e1 e2

(
∂ (e2 uu)

∂i
+
∂ (e1 v u)

∂j

)
− 1

e3

∂ (w u)

∂k

− 1

e1

∂

∂i

(
ps + ph
ρo

)
+DU

u + FU
u (2.14a)

∂v

∂t
= −

(
f +

1

e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

))
u

1

e1 e2

(
∂ (e2 u v)

∂i
+
∂ (e1 v v)

∂j

)
− 1

e3

∂ (w v)

∂k

− 1

e2

∂

∂j

(
ps + ph
ρo

)
+DU

v + FU
v (2.14b)

2.3. Curvilinear z-coordinate System 23

where ζ, the relative vorticity, is given by (2.8) and ps, the surface pressure, is
given by:

ps = ρ g η (2.15)

with η is solution of (2.5)
The vertical velocity and the hydrostatic pressure are diagnosed from the fol-

lowing equations:
∂w

∂k
= −χ e3 (2.16)

∂ph
∂k

= −ρ g e3 (2.17)

where the divergence of the horizontal velocity, χ is given by (2.9).

• tracer equations :

∂T

∂t
= − 1

e1e2

[
∂ (e2T u)

∂i
+
∂ (e1T v)

∂j

]
− 1

e3

∂ (T w)

∂k
+DT + F T (2.18)

∂S

∂t
= − 1

e1e2

[
∂ (e2S u)

∂i
+
∂ (e1S v)

∂j

]
− 1

e3

∂ (S w)

∂k
+DS + FS (2.19)

ρ = ρ (T, S, z(k)) (2.20)

The expression of DU , DS and DT depends on the subgrid scale parameterisa-
tion used. It will be defined in §2.5.1. The nature and formulation of FU, F T and
FS , the surface forcing terms, are discussed in Chapter 7.

24 Model basics

2.4 Curvilinear generalised vertical coordinate System

The ocean domain presents a huge diversity of situation in the vertical. First the
ocean surface is a time dependent surface (moving surface). Second the ocean
floor depends on the geographical position, varying from more than 6,000 meters
in abyssal trenches to zero at the coast. Last but not least, the ocean stratification
exerts a strong barrier to vertical motions and mixing. Therefore, in order to rep-
resent the ocean with respect to the first point a space and time dependent vertical
coordinate that follows the variation of the sea surface height e.g. an z*-coordinate;
for the second point, a space variation to fit the change of bottom topography e.g.
a terrain-following or σ-coordinate; and for the third point, one will be tempted to
use a space and time dependent coordinate that follows the isopycnal surfaces, e.g.
an isopycnic coordinate.

In order to satisfy two or more constrains one can even be tempted to mixed
these coordinate systems, as in HYCOM (mixture of z-coordinate at the surface,
isopycnic coordinate in the ocean interior and σ at the ocean bottom) [Chassignet
et al. 2003] or OPA (mixture of z-coordinate in vicinity the surface and steep to-
pography areas and σ-coordinate elsewhere) [Madec et al. 1996] among others.

In fact one is totally free to choose any space and time vertical coordinate by
introducing an arbitrary vertical coordinate :

s = s(i, j, k, t) (2.21)

with the restriction that the above equation gives a single-valued monotonic re-
lationship between s and k, when i, j and t are held fixed. (2.21) is a trans-
formation from the (i, j, k, t) coordinate system with independent variables into
the (i, j, s, t) generalised coordinate system with s depending on the other three
variables through (2.21). This so-called generalised vertical coordinate [Kasa-
hara 1974] is in fact an Arbitrary Lagrangian–Eulerian (ALE) coordinate. Indeed,
choosing an expression for s is an arbitrary choice that determines which part of
the vertical velocity (defined from a fixed referential) will cross the levels (Eulerian
part) and which part will be used to move them (Lagrangian part). The coordinate
is also sometime referenced as an adaptive coordinate [Hofmeister et al. 2009],
since the coordinate system is adapted in the course of the simulation. Its most of-
ten used implementation is via an ALE algorithm, in which a pure lagrangian step
is followed by regridding and remapping steps, the later step implicitly embedding
the vertical advection [Hirt et al. 1974, Chassignet et al. 2003, White et al. 2009].
Here we follow the [Kasahara 1974] strategy : a regridding step (an update of the
vertical coordinate) followed by an eulerian step with an explicit computation of
vertical advection relative to the moving s-surfaces.

2.4. Curvilinear generalised vertical coordinate System 25

the generalized vertical coordinates used in ocean modelling are not orthogo-
nal, which contrasts with many other applications in mathematical physics. Hence,
it is useful to keep in mind the following properties that may seem odd on initial
encounter.

The horizontal velocity in ocean models measures motions in the horizontal
plane, perpendicular to the local gravitational field. That is, horizontal velocity
is mathematically the same regardless the vertical coordinate, be it geopotential,
isopycnal, pressure, or terrain following. The key motivation for maintaining the
same horizontal velocity component is that the hydrostatic and geostrophic bal-
ances are dominant in the large-scale ocean. Use of an alternative quasi-horizontal
velocity, for example one oriented parallel to the generalized surface, would lead
to unacceptable numerical errors. Correspondingly, the vertical direction is anti-
parallel to the gravitational force in all of the coordinate systems. We do not choose
the alternative of a quasi-vertical direction oriented normal to the surface of a con-
stant generalized vertical coordinate.

It is the method used to measure transport across the generalized vertical co-
ordinate surfaces which differs between the vertical coordinate choices. That is,
computation of the dia-surface velocity component represents the fundamental dis-
tinction between the various coordinates. In some models, such as geopotential,
pressure, and terrain following, this transport is typically diagnosed from volume
or mass conservation. In other models, such as isopycnal layered models, this
transport is prescribed based on assumptions about the physical processes produc-
ing a flux across the layer interfaces.

In this section we first establish the PE in the generalised vertical s-coordinate,
then we discuss the particular cases available in NEMO, namely z, z*, s, and z̃.

2.4.1 The s-coordinate Formulation

Starting from the set of equations established in §2.3 for the special case k = z and
thus e3 = 1, we introduce an arbitrary vertical coordinate s = s(i, j, k, t), which
includes z-, z*- and σ−coordinates as special cases (s = z, s = z*, and s = σ =
z/H or = z/ (H + η), resp.). A formal derivation of the transformed equations
is given in Appendix A. Let us define the vertical scale factor by e3 = ∂sz (e3 is
now a function of (i, j, k, t)), and the slopes in the (i,j) directions between s− and
z−surfaces by :

σ1 =
1

e1

∂z

∂i

∣∣∣∣
s

, and σ2 =
1

e2

∂z

∂j

∣∣∣∣
s

(2.22)

We also introduce ω, a dia-surface velocity component, defined as the velocity
relative to the moving s-surfaces and normal to them:

ω = w − e3
∂s

∂t
− σ1 u− σ2 v (2.23)

The equations solved by the ocean model (2.1) in s−coordinate can be written
as follows (see Appendix A.3):

26 Model basics

• Vector invariant form of the momentum equation :

∂u

∂t
= + (ζ + f) v − 1

2 e1

∂

∂i

(
u2 + v2

)
− 1

e3
ω
∂u

∂k

− 1

e1

∂

∂i

(
ps + ph
ρo

)
+ g

ρ

ρo
σ1 +DU

u + FU
u (2.24)

∂v

∂t
= − (ζ + f) u− 1

2 e2

∂

∂j

(
u2 + v2

)
− 1

e3
ω
∂v

∂k

− 1

e2

∂

∂j

(
ps + ph
ρo

)
+ g

ρ

ρo
σ2 +DU

v + FU
v (2.25)

• Vector invariant form of the momentum equation :

1

e3

∂ (e3 u)

∂t
= +

(
f +

1

e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

))
v

− 1

e1 e2 e3

(
∂ (e2 e3 uu)

∂i
+
∂ (e1 e3 v u)

∂j

)
− 1

e3

∂ (ω u)

∂k

− 1

e1

∂

∂i

(
ps + ph
ρo

)
+ g

ρ

ρo
σ1 +DU

u + FU
u (2.26)

1

e3

∂ (e3 v)

∂t
= −

(
f +

1

e1 e2

(
v
∂e2

∂i
− u∂e1

∂j

))
u

− 1

e1 e2 e3

(
∂ (e2 e3 u v)

∂i
+
∂ (e1 e3 v v)

∂j

)
− 1

e3

∂ (ω v)

∂k

− 1

e2

∂

∂j

(
ps + ph
ρo

)
+ g

ρ

ρo
σ2 +DU

v + FU
v (2.27)

where the relative vorticity, ζ, the surface pressure gradient, and the hydrostatic
pressure have the same expressions as in z-coordinates although they do not rep-
resent exactly the same quantities. ω is provided by the continuity equation (see
Appendix A):

∂e3

∂t
+ e3 χ+

∂ω

∂s
= 0 with χ =

1

e1e2e3

[
∂ (e2e3 u)

∂i
+
∂ (e1e3 v)

∂j

]
(2.28)

• tracer equations:

1

e3

∂ (e3 T)

∂t
= − 1

e1e2e3

[
∂ (e2e3 uT)

∂i
+
∂ (e1e3 v T)

∂j

]
− 1

e3

∂ (T ω)

∂k
+DT + FS (2.29)

2.4. Curvilinear generalised vertical coordinate System 27

1

e3

∂ (e3 S)

∂t
= − 1

e1e2e3

[
∂ (e2e3 uS)

∂i
+
∂ (e1e3 v S)

∂j

]
− 1

e3

∂ (S ω)

∂k
+DS + FS (2.30)

The equation of state has the same expression as in z-coordinate, and similar
expressions are used for mixing and forcing terms.

2.4.2 Curvilinear z*–coordinate System

In that case, the free surface equation is nonlinear, and the variations of volume are
fully taken into account. These coordinates systems is presented in a report [Levier
et al. 2007] available on the NEMO web site.

The z* coordinate approach is an unapproximated, non-linear free surface im-
plementation which allows one to deal with large amplitude free-surface variations
relative to the vertical resolution [Adcroft and Campin 2004]. In the z* formula-
tion, the variation of the column thickness due to sea-surface undulations is not
concentrated in the surface level, as in the z-coordinate formulation, but is equally

(a) (b) (c)

Figure 2.3: (a) z-coordinate in linear free-surface case ; (b) z−coordinate in non-
linear free surface case ; (c) re-scaled height coordinate (become popular as the z*-
coordinate [Adcroft and Campin 2004]).

28 Model basics

distributed over the full water column. Thus vertical levels naturally follow sea-
surface variations, with a linear attenuation with depth, as illustrated by figure
fig.1c . Note that with a flat bottom, such as in fig.1c, the bottom-following z
coordinate and z* are equivalent. The definition and modified oceanic equations
for the rescaled vertical coordinate z*, including the treatment of fresh-water flux
at the surface, are detailed in Adcroft and Campin (2004). The major points are
summarized here. The position (z*) and vertical discretization (z*) are expressed
as:

H + z* = (H + z)/r and δz* = δz/r with r =
H + η

H
(2.31)

Since the vertical displacement of the free surface is incorporated in the vertical
coordinate z*, the upper and lower boundaries are at fixed z* position, z* = 0 and
z* = −H respectively. Also the divergence of the flow field is no longer zero as
shown by the continuity equation:

∂r

∂t
= ∇z* · (r Uh) (r w*) = 0

To overcome problems with vanishing surface and/or bottom cells, we consider
the zstar coordinate

z? = H

(
z − η
H + η

)
(2.32)

This coordinate is closely related to the ”eta” coordinate used in many atmo-
spheric models (see Black (1994) for a review of eta coordinate atmospheric mod-
els). It was originally used in ocean models by Stacey et al. (1995) for studies of
tides next to shelves, and it has been recently promoted by Adcroft and Campin
(2004) for global climate modelling.

The surfaces of constant z? are quasi-horizontal. Indeed, the z? coordinate re-
duces to z when η is zero. In general, when noting the large differences between
undulations of the bottom topography versus undulations in the surface height, it
is clear that surfaces constant z? are very similar to the depth surfaces. These
properties greatly reduce difficulties of computing the horizontal pressure gradient
relative to terrain following sigma models discussed in §2.4.3. Additionally, since
z? when η = 0, no flow is spontaneously generated in an unforced ocean starting
from rest, regardless the bottom topography. This behaviour is in contrast to the
case with ”s”-models, where pressure gradient errors in the presence of nontriv-
ial topographic variations can generate nontrivial spontaneous flow from a resting
state, depending on the sophistication of the pressure gradient solver. The quasi-
horizontal nature of the coordinate surfaces also facilitates the implementation of
neutral physics parameterizations in z? models using the same techniques as in z-
models (see Chapters 13-16 of Griffies [2004]) for a discussion of neutral physics
in z-models, as well as Section §9.1 in this document for treatment in NEMO).

The range over which z? varies is time independent −H ≤ z? ≤ 0. Hence, all
cells remain nonvanishing, so long as the surface height maintains η >?H . This

2.4. Curvilinear generalised vertical coordinate System 29

is a minor constraint relative to that encountered on the surface height when using
s = z or s = z − η.

Because z? has a time independent range, all grid cells have static increments
ds, and the sum of the ver tical increments yields the time independent ocean depth
The z? coordinate is therefore invisible to undulations of the free surface, since
it moves along with the free surface. This proper ty means that no spurious ver
tical transpor t is induced across surfaces of constant z? by the motion of external
gravity waves. Such spurious transpor t can be a problem in z-models, especially
those with tidal forcing. Quite generally, the time independent range for the z?

coordinate is a very convenient proper ty that allows for a nearly arbitrary ver tical
resolution even in the presence of large amplitude fluctuations of the surface height,
again so long as η > −H .

30 Model basics

2.4.3 Curvilinear Terrain-following s–coordinate

Introduction

Several important aspects of the ocean circulation are influenced by bottom topog-
raphy. Of course, the most important is that bottom topography determines deep
ocean sub-basins, barriers, sills and channels that strongly constrain the path of wa-
ter masses, but more subtle effects exist. For example, the topographic β-effect is
usually larger than the planetary one along continental slopes. Topographic Rossby
waves can be excited and can interact with the mean current. In the z−coordinate
system presented in the previous section (§2.3), z−surfaces are geopotential sur-
faces. The bottom topography is discretised by steps. This often leads to a mis-
representation of a gradually sloping bottom and to large localized depth gradients
associated with large localized vertical velocities. The response to such a velocity
field often leads to numerical dispersion effects. One solution to strongly reduce
this error is to use a partial step representation of bottom topography instead of a
full step one Pacanowski and Gnanadesikan [1998]. Another solution is to intro-
duce a terrain-following coordinate system (hereafter s−coordinate)

The s-coordinate avoids the discretisation error in the depth field since the lay-
ers of computation are gradually adjusted with depth to the ocean bottom. Rel-
atively small topographic features as well as gentle, large-scale slopes of the sea
floor in the deep ocean, which would be ignored in typical z-model applications
with the largest grid spacing at greatest depths, can easily be represented (with
relatively low vertical resolution). A terrain-following model (hereafter s−model)
also facilitates the modelling of the boundary layer flows over a large depth range,
which in the framework of the z-model would require high vertical resolution over
the whole depth range. Moreover, with a s-coordinate it is possible, at least in prin-
ciple, to have the bottom and the sea surface as the only boundaries of the domain
(nomore lateral boundary condition to specify). Nevertheless, a s-coordinate also
has its drawbacks. Perfectly adapted to a homogeneous ocean, it has strong limita-
tions as soon as stratification is introduced. The main two problems come from the
truncation error in the horizontal pressure gradient and a possibly increased diapy-
cnal diffusion. The horizontal pressure force in s-coordinate consists of two terms
(see Appendix A),

∇p|z = ∇p|s −
∂p

∂s
∇z|s (2.33)

The second term in (2.33) depends on the tilt of the coordinate surface and
introduces a truncation error that is not present in a z-model. In the special case
of a σ−coordinate (i.e. a depth-normalised coordinate system σ = z/H), Haney
[1991] and Beckmann and Haidvogel [1993] have given estimates of the magnitude
of this truncation error. It depends on topographic slope, stratification, horizontal
and vertical resolution, the equation of state, and the finite difference scheme. This
error limits the possible topographic slopes that a model can handle at a given
horizontal and vertical resolution. This is a severe restriction for large-scale appli-

2.4. Curvilinear generalised vertical coordinate System 31

cations using realistic bottom topography. The large-scale slopes require high hor-
izontal resolution, and the computational cost becomes prohibitive. This problem
can be at least partially overcome by mixing s-coordinate and step-like represen-
tation of bottom topography [Gerdes 1993a;b, Madec et al. 1996]. However, the
definition of the model domain vertical coordinate becomes then a non-trivial thing
for a realistic bottom topography: a envelope topography is defined in s-coordinate
on which a full or partial step bottom topography is then applied in order to adjust
the model depth to the observed one (see §4.4.

For numerical reasons a minimum of diffusion is required along the coordi-
nate surfaces of any finite difference model. It causes spurious diapycnal mixing
when coordinate surfaces do not coincide with isoneutral surfaces. This is the case
for a z-model as well as for a s-model. However, density varies more strongly
on s−surfaces than on horizontal surfaces in regions of large topographic slopes,
implying larger diapycnal diffusion in a s-model than in a z-model. Whereas such
a diapycnal diffusion in a z-model tends to weaken horizontal density (pressure)
gradients and thus the horizontal circulation, it usually reinforces these gradients in
a s-model, creating spurious circulation. For example, imagine an isolated bump
of topography in an ocean at rest with a horizontally uniform stratification. Spuri-
ous diffusion along s-surfaces will induce a bump of isoneutral surfaces over the
topography, and thus will generate there a baroclinic eddy. In contrast, the ocean
will stay at rest in a z-model. As for the truncation error, the problem can be re-
duced by introducing the terrain-following coordinate below the strongly stratified
portion of the water column (i.e. the main thermocline) [Madec et al. 1996]. An
alternate solution consists of rotating the lateral diffusive tensor to geopotential or
to isoneutral surfaces (see §2.5.2. Unfortunately, the slope of isoneutral surfaces
relative to the s-surfaces can very large, strongly exceeding the stability limit of
such a operator when it is discretized (see Chapter 9).

The s−coordinates introduced here [Lott et al. 1990, Madec et al. 1996] differ
mainly in two aspects from similar models: it allows a representation of bottom to-
pography with mixed full or partial step-like/terrain following topography ; It also
offers a completely general transformation, s = s(i, j, z) for the vertical coordi-
nate.

32 Model basics

2.4.4 Curvilinear z̃–coordinate

The z̃-coordinate has been developed by Leclair and Madec [2011]. It is available
in NEMO since the version 3.4. Nevertheless, it is currently not robust enough to
be used in all possible configurations. Its use is therefore not recommended.

2.5. Subgrid Scale Physics 33

2.5 Subgrid Scale Physics

The primitive equations describe the behaviour of a geophysical fluid at space and
time scales larger than a few kilometres in the horizontal, a few meters in the ver-
tical and a few minutes. They are usually solved at larger scales: the specified grid
spacing and time step of the numerical model. The effects of smaller scale motions
(coming from the advective terms in the Navier-Stokes equations) must be repre-
sented entirely in terms of large-scale patterns to close the equations. These effects
appear in the equations as the divergence of turbulent fluxes (i.e. fluxes associated
with the mean correlation of small scale perturbations). Assuming a turbulent clo-
sure hypothesis is equivalent to choose a formulation for these fluxes. It is usually
called the subgrid scale physics. It must be emphasized that this is the weakest part
of the primitive equations, but also one of the most important for long-term simu-
lations as small scale processes in fine balance the surface input of kinetic energy
and heat.

The control exerted by gravity on the flow induces a strong anisotropy between
the lateral and vertical motions. Therefore subgrid-scale physics DU, DS and DT

in (2.1a), (2.1d) and (2.1e) are divided into a lateral part DlU, DlS and DlT and a
vertical part DvU , DvS and DvT . The formulation of these terms and their under-
lying physics are briefly discussed in the next two subsections.

2.5.1 Vertical Subgrid Scale Physics

The model resolution is always larger than the scale at which the major sources
of vertical turbulence occur (shear instability, internal wave breaking...). Turbu-
lent motions are thus never explicitly solved, even partially, but always parame-
terized. The vertical turbulent fluxes are assumed to depend linearly on the gra-
dients of large-scale quantities (for example, the turbulent heat flux is given by
T ′w′ = −AvT∂zT , where AvT is an eddy coefficient). This formulation is analo-
gous to that of molecular diffusion and dissipation. This is quite clearly a neces-
sary compromise: considering only the molecular viscosity acting on large scale
severely underestimates the role of turbulent diffusion and dissipation, while an ac-
curate consideration of the details of turbulent motions is simply impractical. The
resulting vertical momentum and tracer diffusive operators are of second order:

DvU =
∂

∂z

(
Avm

∂Uh

∂z

)
,

DvT =
∂

∂z

(
AvT

∂T

∂z

)
, DvS =

∂

∂z

(
AvT

∂S

∂z

) (2.34)

where Avm and AvT are the vertical eddy viscosity and diffusivity coefficients,
respectively. At the sea surface and at the bottom, turbulent fluxes of momen-
tum, heat and salt must be specified (see Chap. 7 and 10 and §5.5). All the ver-
tical physics is embedded in the specification of the eddy coefficients. They can
be assumed to be either constant, or function of the local fluid properties (e.g.

34 Model basics

Richardson number, Brunt-Vaisälä frequency...), or computed from a turbulent clo-
sure model. The choices available in NEMO are discussed in §10).

2.5.2 Formulation of the Lateral Diffusive and Viscous Operators

Lateral turbulence can be roughly divided into a mesoscale turbulence associated
with eddies (which can be solved explicitly if the resolution is sufficient since their
underlying physics are included in the primitive equations), and a sub mesoscale
turbulence which is never explicitly solved even partially, but always parameter-
ized. The formulation of lateral eddy fluxes depends on whether the mesoscale is
below or above the grid-spacing (i.e. the model is eddy-resolving or not).

In non-eddy-resolving configurations, the closure is similar to that used for
the vertical physics. The lateral turbulent fluxes are assumed to depend linearly
on the lateral gradients of large-scale quantities. The resulting lateral diffusive
and dissipative operators are of second order. Observations show that lateral mix-
ing induced by mesoscale turbulence tends to be along isopycnal surfaces (or more
precisely neutral surfaces McDougall [1987]) rather than across them. As the slope
of neutral surfaces is small in the ocean, a common approximation is to assume that
the ‘lateral’ direction is the horizontal, i.e. the lateral mixing is performed along
geopotential surfaces. This leads to a geopotential second order operator for lateral
subgrid scale physics. This assumption can be relaxed: the eddy-induced turbulent
fluxes can be better approached by assuming that they depend linearly on the gra-
dients of large-scale quantities computed along neutral surfaces. In such a case, the
diffusive operator is an isoneutral second order operator and it has components in
the three space directions. However, both horizontal and isoneutral operators have
no effect on mean (i.e. large scale) potential energy whereas potential energy is a
main source of turbulence (through baroclinic instabilities). Gent and Mcwilliams
[1990] have proposed a parameterisation of mesoscale eddy-induced turbulence
which associates an eddy-induced velocity to the isoneutral diffusion. Its mean ef-
fect is to reduce the mean potential energy of the ocean. This leads to a formulation
of lateral subgrid-scale physics made up of an isoneutral second order operator and
an eddy induced advective part. In all these lateral diffusive formulations, the spec-
ification of the lateral eddy coefficients remains the problematic point as there is
no really satisfactory formulation of these coefficients as a function of large-scale
features.

In eddy-resolving configurations, a second order operator can be used, but usu-
ally the more scale selective biharmonic operator is preferred as the grid-spacing
is usually not small enough compared to the scale of the eddies. The role devoted
to the subgrid-scale physics is to dissipate the energy that cascades toward the grid
scale and thus to ensure the stability of the model while not interfering with the re-
solved mesoscale activity. Another approach is becoming more and more popular:
instead of specifying explicitly a sub-grid scale term in the momentum and tracer
time evolution equations, one uses a advective scheme which is diffusive enough
to maintain the model stability. It must be emphasised that then, all the sub-grid

2.5. Subgrid Scale Physics 35

scale physics is included in the formulation of the advection scheme.
All these parameterisations of subgrid scale physics have advantages and draw-

backs. There are not all available in NEMO. For active tracers (temperature and
salinity) the main ones are: Laplacian and bilaplacian operators acting along geopo-
tential or iso-neutral surfaces, Gent and Mcwilliams [1990] parameterisation, and
various slightly diffusive advection schemes. For momentum, the main ones are:
Laplacian and bilaplacian operators acting along geopotential surfaces, and UBS
advection schemes when flux form is chosen for the momentum advection.

Lateral Laplacian tracer diffusive operator

The lateral Laplacian tracer diffusive operator is defined by (see Appendix B):

DlT = ∇.
(
AlT < ∇T

)
with < =

 1 0 −r1

0 1 −r2

−r1 −r2 r2
1 + r2

2

 (2.35)

where r1 and r2 are the slopes between the surface along which the diffusive
operator acts and the model level (e.g. z- or s-surfaces). Note that the formulation
(2.35) is exact for the rotation between geopotential and s-surfaces, while it is only
an approximation for the rotation between isoneutral and z- or s-surfaces. Indeed,
in the latter case, two assumptions are made to simplify (2.35) [Cox 1987]. First,
the horizontal contribution of the dianeutral mixing is neglected since the ratio
between iso and dia-neutral diffusive coefficients is known to be several orders of
magnitude smaller than unity. Second, the two isoneutral directions of diffusion
are assumed to be independent since the slopes are generally less than 10−2 in the
ocean (see Appendix B).

For iso-level diffusion, r1 and r2 are zero. < reduces to the identity in the
horizontal direction, no rotation is applied.

For geopotential diffusion, r1 and r2 are the slopes between the geopotential
and computational surfaces: they are equal to σ1 and σ2, respectively (see (2.22)).

For isoneutral diffusion r1 and r2 are the slopes between the isoneutral and
computational surfaces. Therefore, they are different quantities, but have similar
expressions in z- and s-coordinates. In z-coordinates:

r1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

r2 =
e3

e2

(
∂ρ

∂j

)(
∂ρ

∂k

)−1

(2.36)

while in s-coordinates ∂
∂k is replaced by ∂

∂s .

Eddy induced velocity

When the eddy induced velocity parametrisation (eiv) [Gent and Mcwilliams 1990]
is used, an additional tracer advection is introduced in combination with the isoneu-
tral diffusion of tracers:

DlT = ∇ ·
(
AlT < ∇T

)
+∇ · (U∗ T) (2.37)

36 Model basics

where U∗ = (u∗, v∗, w∗) is a non-divergent, eddy-induced transport velocity. This
velocity field is defined by:

u∗ = +
1

e3

∂

∂k

[
Aeiv r̃1

]
v∗ = +

1

e3

∂

∂k

[
Aeiv r̃2

]
w∗ = − 1

e1e2

[
∂

∂i

(
Aeiv e2 r̃1

)
+

∂

∂j

(
Aeiv e1 r̃2

)] (2.38)

where Aeiv is the eddy induced velocity coefficient (or equivalently the isoneutral
thickness diffusivity coefficient), and r̃1 and r̃2 are the slopes between isoneutral
and geopotential surfaces. Their values are thus independent of the vertical coor-
dinate, but their expression depends on the coordinate:

r̃n =

{
rn in z-coordinate
rn + σn in z* and s-coordinates

where n = 1, 2 (2.39)

The normal component of the eddy induced velocity is zero at all the bound-
aries. This can be achieved in a model by tapering either the eddy coefficient or
the slopes to zero in the vicinity of the boundaries. The latter strategy is used in
NEMO (cf. Chap. 9).

Lateral bilaplacian tracer diffusive operator

The lateral bilaplacian tracer diffusive operator is defined by:

DlT = −∆ (∆T) where ∆• = ∇
(√

BlT < ∇•
)

(2.40)

It is the Laplacian operator given by (2.35) applied twice with the harmonic eddy
diffusion coefficient set to the square root of the biharmonic one.

Lateral Laplacian momentum diffusive operator

The Laplacian momentum diffusive operator along z- or s-surfaces is found by
applying (2.7e) to the horizontal velocity vector (see Appendix B):

DlU = ∇h
(
Almχ

)
− ∇h ×

(
Alm ζ k

)

=

1

e1

∂
(
Almχ

)
∂i

− 1

e2e3

∂
(
Alm e3ζ

)
∂j

1

e2

∂
(
Almχ

)
∂j

+
1

e1e3

∂
(
Alm e3ζ

)
∂i

 (2.41)

Such a formulation ensures a complete separation between the vorticity and
horizontal divergence fields (see Appendix C). Unfortunately, it is only available

2.5. Subgrid Scale Physics 37

in iso-level direction. When a rotation is required (i.e. geopotential diffusion in
s−coordinates or isoneutral diffusion in both z- and s-coordinates), the u and
v−fields are considered as independent scalar fields, so that the diffusive opera-
tor is given by:

DlU
u = ∇.

(
Alm < ∇u

)
DlU
v = ∇.

(
Alm < ∇v

) (2.42)

where < is given by (2.35). It is the same expression as those used for diffusive
operator on tracers. It must be emphasised that such a formulation is only exact in a
Cartesian coordinate system, i.e. on a f− or β−plane, not on the sphere. It is also
a very good approximation in vicinity of the Equator in a geographical coordinate
system [Lengaigne et al. 2003].

lateral bilaplacian momentum diffusive operator

As for tracers, the bilaplacian order momentum diffusive operator is a re-entering
Laplacian operator with the harmonic eddy diffusion coefficient set to the square
root of the biharmonic one. Nevertheless it is currently not available in the iso-
neutral case.

3 Time Domain (STP)

Contents
3.1 Time stepping environment 40
3.2 Non-Diffusive Part — Leapfrog Scheme 40
3.3 Diffusive Part — Forward or Backward Scheme 41
3.4 Surface Pressure Gradient 43
3.5 The Modified Leapfrog – Asselin Filter scheme 44
3.6 Start/Restart strategy . 44

40 Time Domain (STP)

Having defined the continuous equations in Chap. 2, we need now to choose a
time discretization, a key feature of an ocean model as it exerts a strong influence
on the structure of the computer code (i.e. on its flowchart). In the present chap-
ter, we provide a general description of the NEMO time stepping strategy and the
consequences for the order in which the equations are solved.

3.1 Time stepping environment

The time stepping used in NEMO is a three level scheme that can be represented as
follows:

xt+∆t = xt−∆t + 2 ∆t RHSt−∆t, t, t+∆t
x (3.1)

where x stands for u, v, T or S; RHS is the Right-Hand-Side of the corresponding
time evolution equation; ∆t is the time step; and the superscripts indicate the time
at which a quantity is evaluated. Each term of the RHS is evaluated at a specific
time step depending on the physics with which it is associated.

The choice of the time step used for this evaluation is discussed below as well
as the implications for starting or restarting a model simulation. Note that the time
stepping calculation is generally performed in a single operation. With such a com-
plex and nonlinear system of equations it would be dangerous to let a prognostic
variable evolve in time for each term separately.

The three level scheme requires three arrays for each prognostic variable. For
each variable x there is xb (before), xn (now) and xa. The third array, although
referred to as xa (after) in the code, is usually not the variable at the after time
step; but rather it is used to store the time derivative (RHS in (3.1)) prior to time-
stepping the equation. Generally, the time stepping is performed once at each time
step in the tranxt.F90 and dynnxt.F90 modules, except when using implicit vertical
diffusion or calculating sea surface height in which case time-splitting options are
used.

3.2 Non-Diffusive Part — Leapfrog Scheme

The time stepping used for processes other than diffusion is the well-known leapfrog
scheme [Mesinger and Arakawa 1976]. This scheme is widely used for advection
processes in low-viscosity fluids. It is a time centred scheme, i.e. the RHS in
(3.1) is evaluated at time step t, the now time step. It may be used for momentum
and tracer advection, pressure gradient, and Coriolis terms, but not for diffusion
terms. It is an efficient method that achieves second-order accuracy with just one
right hand side evaluation per time step. Moreover, it does not artificially damp

3.3. Diffusive Part — Forward or Backward Scheme 41

linear oscillatory motion nor does it produce instability by amplifying the oscilla-
tions. These advantages are somewhat diminished by the large phase-speed error
of the leapfrog scheme, and the unsuitability of leapfrog differencing for the rep-
resentation of diffusion and Rayleigh damping processes. However, the scheme
allows the coexistence of a numerical and a physical mode due to its leading third
order dispersive error. In other words a divergence of odd and even time steps
may occur. To prevent it, the leapfrog scheme is often used in association with a
Robert-Asselin time filter (hereafter the LF-RA scheme). This filter, first designed
by Robert [1966] and more comprehensively studied by Asselin [1972], is a kind
of laplacian diffusion in time that mixes odd and even time steps:

xtF = xt + γ
[
xt−∆t
F − 2xt + xt+∆t

]
(3.2)

where the subscript F denotes filtered values and γ is the Asselin coefficient. γ is
initialized as rn atfp (namelist parameter). Its default value is rn atfp=10−3 (see
§ 3.5), causing only a weak dissipation of high frequency motions ([Farge 1987]).
The addition of a time filter degrades the accuracy of the calculation from sec-
ond to first order. However, the second order truncation error is proportional to γ,
which is small compared to 1. Therefore, the LF-RA is a quasi second order accu-
rate scheme. The LF-RA scheme is preferred to other time differencing schemes
such as predictor corrector or trapezoidal schemes, because the user has an explicit
and simple control of the magnitude of the time diffusion of the scheme. When
used with the 2nd order space centred discretisation of the advection terms in the
momentum and tracer equations, LF-RA avoids implicit numerical diffusion: dif-
fusion is set explicitly by the user through the Robert-Asselin filter parameter and
the viscosity and diffusion coefficients.

3.3 Diffusive Part — Forward or Backward Scheme

The leapfrog differencing scheme is unsuitable for the representation of diffusion
and damping processes. For a tendancy Dx, representing a diffusion term or a
restoring term to a tracer climatology (when present, see § 5.6), a forward time
differencing scheme is used :

xt+∆t = xt−∆t + 2 ∆t Dx
t−∆t (3.3)

This is diffusive in time and conditionally stable. The conditions for stability
of second and fourth order horizontal diffusion schemes are [Griffies 2004]:

Ah <

e2

8 ∆t
laplacian diffusion

e4

64 ∆t
bilaplacian diffusion

(3.4)

where e is the smallest grid size in the two horizontal directions and Ah is the
mixing coefficient. The linear constraint (3.4) is a necessary condition, but not

42 Time Domain (STP)

sufficient. If it is not satisfied, even mildly, then the model soon becomes wildly
unstable. The instability can be removed by either reducing the length of the time
steps or reducing the mixing coefficient.

For the vertical diffusion terms, a forward time differencing scheme can be
used, but usually the numerical stability condition imposes a strong constraint on
the time step. Two solutions are available in NEMO to overcome the stability
constraint: (a) a forward time differencing scheme using a time splitting tech-
nique (ln zdfexp = true) or (b) a backward (or implicit) time differencing scheme
(ln zdfexp = false). In (a), the master time step ∆t is cut into N fractional time
steps so that the stability criterion is reduced by a factor of N . The computation is
performed as follows:

xt−∆t
∗ = xt−∆t

x
t−∆t+L 2∆t

N
∗ = x

t−∆t+(L−1) 2∆t
N

∗ +
2∆t

N
DFt−∆t+(L−1) 2∆t

N for L = 1 to N

xt+∆t = xt+∆t
∗

(3.5)

with DF a vertical diffusion term. The number of fractional time steps, N , is given
by setting nn zdfexp, (namelist parameter). The scheme (b) is unconditionally sta-
ble but diffusive. It can be written as follows:

xt+∆t = xt−∆t + 2 ∆t RHSt+∆t
x (3.6)

This scheme is rather time consuming since it requires a matrix inversion, but
it becomes attractive since a value of 3 or more is needed for N in the forward
time differencing scheme. For example, the finite difference approximation of the
temperature equation is:

T (k)t+1 − T (k)t−1

2 ∆t
≡ RHS +

1

e3t
δk

[
AvTw
e3w

δk+1/2

[
T t+1

]]
(3.7)

where RHS is the right hand side of the equation except for the vertical diffusion
term. We rewrite (3.6) as:

−c(k + 1) T t+1(k + 1) + d(k) T t+1(k)− c(k) T t+1(k − 1) ≡ b(k) (3.8)

where

c(k) = AvTw (k) / e3w(k)

d(k) = e3t(k) / (2∆t) + ck + ck+1

b(k) = e3t(k)
(
T t−1(k) / (2∆t) + RHS

)
(3.8) is a linear system of equations with an associated matrix which is tridi-

agonal. Moreover, c(k) and d(k) are positive and the diagonal term is greater than
the sum of the two extra-diagonal terms, therefore a special adaptation of the Gauss
elimination procedure is used to find the solution (see for example Richtmyer and
Morton [1967]).

3.4. Surface Pressure Gradient 43

Update vertical coordinate

model operations

model time step

continuity equation

semi implicit hydrostatic pressure gradient

time filter

ssh equation

tracer equation

momentum equation

T T

T

T T

T

TT

T

T

TTT

T

Figure 3.1: Sketch of the leapfrog time stepping sequence in NEMO from Leclair
and Madec [2009]. The use of a semi-implicit computation of the hydrostatic pressure
gradient requires the tracer equation to be stepped forward prior to the momentum
equation. The need for knowledge of the vertical scale factor (here denoted as h)
requires the sea surface height and the continuity equation to be stepped forward prior
to the computation of the tracer equation. Note that the method for the evaluation of
the surface pressure gradient∇ps is not presented here (see § 6.5).

3.4 Surface Pressure Gradient

===¿¿¿¿ TO BE written.... :-)

44 Time Domain (STP)

3.5 The Modified Leapfrog – Asselin Filter scheme

Significant changes have been introduced by Leclair and Madec [2009] in the LF-
RA scheme in order to ensure tracer conservation and to allow the use of a much
smaller value of the Asselin filter parameter. The modifications affect both the
forcing and filtering treatments in the LF-RA scheme.

In a classical LF-RA environment, the forcing term is centred in time, i.e. it is
time-stepped over a 2∆t period: xt = xt + 2∆tQt where Q is the forcing applied
to x, and the time filter is given by (3.2) so that Q is redistributed over several
time step. In the modified LF-RA environment, these two formulations have been
replaced by:

xt+∆t = xt−∆t + ∆t
(
Qt−∆t/2 +Qt+∆t/2

)
(3.9)

xtF = xt + γ
[
xt−∆t
F − 2xt + xt+∆t

]
− γ∆t

[
Qt+∆t/2 −Qt−∆t/2

]
(3.10)

The change in the forcing formulation given by (3.9) (see Fig.3.2) has a signifi-
cant effect: the forcing term no longer excites the divergence of odd and even time
steps [Leclair and Madec 2009]. This property improves the LF-RA scheme in two
respects. First, the LF-RA can now ensure the local and global conservation of trac-
ers. Indeed, time filtering is no longer required on the forcing part. The influence
of the Asselin filter on the forcing is be removed by adding a new term in the filter
(last term in (3.10) compared to (3.2)). Since the filtering of the forcing was the
source of non-conservation in the classical LF-RA scheme, the modified formula-
tion becomes conservative [Leclair and Madec 2009]. Second, the LF-RA becomes
a truly quasi-second order scheme. Indeed, (3.9) used in combination with a care-
ful treatment of static instability (§10.2.2) and of the TKE physics (§10.1.4), the
two other main sources of time step divergence, allows a reduction by two orders
of magnitude of the Asselin filter parameter.

Note that the forcing is now provided at the middle of a time step: Qt+∆t/2 is
the forcing applied over the [t, t + ∆t] time interval. This and the change in the
time filter, (3.10), allows an exact evaluation of the contribution due to the forcing
term between any two time steps, even if separated by only ∆t since the time filter
is no longer applied to the forcing term.

3.6 Start/Restart strategy
!---
&namrun ! parameters of the run
!---

nn_no = 0 ! job number (no more used...)
cn_exp = "ORCA2" ! experience name
nn_it000 = 1 ! first time step
nn_itend = 5475 ! last time step (std 5475)
nn_date0 = 010101 ! date at nit_0000 (format yyyymmdd) used if ln_rstart=F or (ln_rstart=T and nn_rstctl=0 or 1)
nn_time0 = 0 ! initial time of day in hhmm
nn_leapy = 0 ! Leap year calendar (1) or not (0)
ln_rstart = .false. ! start from rest (F) or from a restart file (T)

nn_euler = 1 ! = 0 : start with forward time step if ln_rstart=T
nn_rstctl = 0 ! restart control ==> activated only if ln_rstart=T
! ! = 0 nn_date0 read in namelist ; nn_it000 : read in namelist

3.6. Start/Restart strategy 45

0
time step

2 Q2 2 Q4

2 Q3

1 2 3 4 5

2 Q5Q1

time step

Q1/2 Q3/2 + Q5/2 Q7/2 + Q9/2

Q1/2 + Q3/2 Q5/2 + Q7/2

0 1 2 3 4 5

Figure 3.2: Illustration of forcing integration methods. (top) ”Traditional” formu-
lation : the forcing is defined at the same time as the variable to which it is applied
(integer value of the time step index) and it is applied over a 2∆t period. (bottom)
modified formulation : the forcing is defined in the middle of the time (integer and
a half value of the time step index) and the mean of two successive forcing values
(n− 1/2, n+ 1/2). is applied over a 2∆t period.

! ! = 1 nn_date0 read in namelist ; nn_it000 : check consistancy between namelist and restart
! ! = 2 nn_date0 read in restart ; nn_it000 : check consistancy between namelist and restart
cn_ocerst_in = "restart" ! suffix of ocean restart name (input)
cn_ocerst_indir = "." ! directory from which to read input ocean restarts
cn_ocerst_out = "restart" ! suffix of ocean restart name (output)
cn_ocerst_outdir= "." ! directory in which to write output ocean restarts

ln_iscpl = .false. ! cavity evolution forcing or coupling to ice sheet model
nn_istate = 0 ! output the initial state (1) or not (0)
ln_rst_list = .false. ! output restarts at list of times using nn_stocklist (T) or at set frequency with nn_stock (F)
nn_stock = 5475 ! frequency of creation of a restart file (modulo referenced to 1)
nn_stocklist = 0,0,0,0,0,0,0,0,0,0 ! List of timesteps when a restart file is to be written
nn_write = 5475 ! frequency of write in the output file (modulo referenced to nn_it000)
ln_mskland = .false. ! mask land points in NetCDF outputs (costly: + ˜15%)
ln_cfmeta = .false. ! output additional data to netCDF files required for compliance with the CF metadata standard
ln_clobber = .true. ! clobber (overwrite) an existing file
nn_chunksz = 0 ! chunksize (bytes) for NetCDF file (works only with iom_nf90 routines)

/

The first time step of this three level scheme when starting from initial condi-
tions is a forward step (Euler time integration):

x1 = x0 + ∆t RHS0 (3.11)

This is done simply by keeping the leapfrog environment (i.e. the (3.1) three level
time stepping) but setting all x0 (before) and x1 (now) fields equal at the first time
step and using half the value of ∆t.

It is also possible to restart from a previous computation, by using a restart file.
The restart strategy is designed to ensure perfect restartability of the code: the user
should obtain the same results to machine precision either by running the model
for 2N time steps in one go, or by performing two consecutive experiments of N
steps with a restart. This requires saving two time levels and many auxiliary data
in the restart files in machine precision.

Note that when a semi-implicit scheme is used to evaluate the hydrostatic pres-
sure gradient (see §6.4.5), an extra three-dimensional field has to be added to
the restart file to ensure an exact restartability. This is done optionally via the

46 Time Domain (STP)

nn dynhpg rst namelist parameter, so that the size of the restart file can be reduced
when restartability is not a key issue (operational oceanography or in ensemble
simulations for seasonal forecasting).

Note the size of the time step used, ∆t, is also saved in the restart file. When
restarting, if the the time step has been changed, a restart using an Euler time
stepping scheme is imposed. Options are defined through the namrun namelist
variables.

4 Space Domain (DOM)

Contents
4.1 Fundamentals of the Discretisation 48

4.1.1 Arrangement of Variables 48
4.1.2 Discrete Operators 49
4.1.3 Numerical Indexing 51

4.2 Domain: Needed fields . 54
4.3 Domain: Horizontal Grid (mesh) (domhgr) 54

4.3.1 Coordinates and scale factors 54
4.3.2 Choice of horizontal grid 56
4.3.3 Output Grid files . 56

4.4 Domain: Vertical Grid (domzgr) 57
4.4.1 Meter Bathymetry 59
4.4.2 z-coordinate (ln zco 59
4.4.3 z-coordinate with partial step (ln zps) 61
4.4.4 s-coordinate (ln sco) 63
4.4.5 z∗- or s∗-coordinate (ln linssh=false) 66
4.4.6 level bathymetry and mask 66

4.5 Domain: Initial State (istate and dtatsd) 67

48 Space Domain (DOM)

Having defined the continuous equations in Chap. 2 and chosen a time dis-
cretization Chap. 3, we need to choose a discretization on a grid, and numerical
algorithms. In the present chapter, we provide a general description of the stag-
gered grid used in NEMO, and other information relevant to the main directory
routines as well as the DOM (DOMain) directory.

4.1 Fundamentals of the Discretisation

4.1.1 Arrangement of Variables

The numerical techniques used to solve the Primitive Equations in this model are
based on the traditional, centred second-order finite difference approximation. Spe-
cial attention has been given to the homogeneity of the solution in the three space
directions. The arrangement of variables is the same in all directions. It consists
of cells centred on scalar points (t, S, p, ρ) with vector points (u, v, w) defined in
the centre of each face of the cells (Fig. 4.1). This is the generalisation to three
dimensions of the well-known “C” grid in Arakawa’s classification [Mesinger and
Arakawa 1976]. The relative and planetary vorticity, ζ and f , are defined in the
centre of each vertical edge and the barotropic stream function ψ is defined at hor-
izontal points overlying the ζ and f -points.

The ocean mesh (i.e. the position of all the scalar and vector points) is defined
by the transformation that gives (λ ,ϕ ,z) as a function of (i, j, k). The grid-points
are located at integer or integer and a half value of (i, j, k) as indicated on Table
4.1. In all the following, subscripts u, v, w, f , uw, vw or fw indicate the position
of the grid-point where the scale factors are defined. Each scale factor is defined
as the local analytical value provided by (2.6). As a result, the mesh on which par-
tial derivatives ∂

∂λ ,
∂
∂ϕ , and ∂

∂z are evaluated is a uniform mesh with a grid size of
unity. Discrete partial derivatives are formulated by the traditional, centred second
order finite difference approximation while the scale factors are chosen equal to
their local analytical value. An important point here is that the partial derivative
of the scale factors must be evaluated by centred finite difference approximation,
not from their analytical expression. This preserves the symmetry of the discrete
set of equations and therefore satisfies many of the continuous properties (see Ap-
pendix C). A similar, related remark can be made about the domain size: when
needed, an area, volume, or the total ocean depth must be evaluated as the sum of
the relevant scale factors (see (4.8)) in the next section).

4.1. Fundamentals of the Discretisation 49

u

w

w

v
u

vf

f

f

f

T

Figure 4.1: Arrangement of variables. t indicates scalar points where temperature,
salinity, density, pressure and horizontal divergence are defined. (u,v,w) indicates
vector points, and f indicates vorticity points where both relative and planetary vor-
ticities are defined

4.1.2 Discrete Operators

Given the values of a variable q at adjacent points, the differencing and averaging
operators at the midpoint between them are:

δi[q] = q(i+ 1/2)− q(i− 1/2) (4.1a)

q i = {q(i+ 1/2) + q(i− 1/2)} / 2 (4.1b)

Similar operators are defined with respect to i+1/2, j, j+1/2, k, and k+1/2.
Following (2.7a) and (2.7d), the gradient of a variable q defined at a t-point has its
three components defined at u-, v- and w-points while its Laplacien is defined at
t-point. These operators have the following discrete forms in the curvilinear s-
coordinate system:

∇q ≡ 1

e1u
δi+1/2[q] i +

1

e2v
δj+1/2[q] j +

1

e3w
δk+1/2[q] k (4.2)

50 Space Domain (DOM)

Table 4.1: Location of grid-points as a function of integer or integer and a half value
of the column, line or level. This indexing is only used for the writing of the semi-
discrete equation. In the code, the indexing uses integer values only and has a reverse
direction in the vertical (see §4.1.3)

T i j k

u i+ 1/2 j k

v i j + 1/2 k

w i j k + 1/2

f i+ 1/2 j + 1/2 k

uw i+ 1/2 j k + 1/2

vw i j + 1/2 k + 1/2

fw i+ 1/2 j + 1/2 k + 1/2

∆q ≡ 1

e1t e2t e3t

(
δi

[
e2u e3u

e1u
δi+1/2[q]

]
+ δj

[
e1v e3v

e2v
δj+1/2[q]

])
+

1

e3t
δk

[
1

e3w
δk+1/2[q]

]
(4.3)

Following (2.7c) and (2.7b), a vector A = (a1, a2, a3) defined at vector points
(u, v, w) has its three curl components defined at vw-, uw, and f -points, and its
divergence defined at t-points:

∇×A ≡ 1
e2v e3vw

(
δj+1/2 [e3w a3]− δk+1/2 [e2v a2]

)
i (4.4)

+ 1
e2u e3uw

(
δk+1/2 [e1u a1]− δi+1/2 [e3w a3]

)
j (4.5)

+ 1
e1f e2f

(
δi+1/2 [e2v a2]− δj+1/2 [e1u a1]

)
k (4.6)

∇ ·A ≡ 1

e1t e2t e3t
(δi [e2u e3u a1] + δj [e1v e3v a2]) +

1

e3t
δk [a3] (4.7)

The vertical average over the whole water column denoted by an overbar be-
comes for a quantity q which is a masked field (i.e. equal to zero inside solid area):

q̄ =
1

H

∫ ko

kb
q e3q dk ≡

1

Hq

∑
k

q e3q (4.8)

where Hq is the ocean depth, which is the masked sum of the vertical scale factors
at q points, kb and ko are the bottom and surface k-indices, and the symbol ko refers
to a summation over all grid points of the same type in the direction indicated by
the subscript (here k).

In continuous form, the following properties are satisfied:

∇×∇q = 0 (4.9)

4.1. Fundamentals of the Discretisation 51

∇ · (∇×A) = 0 (4.10)

It is straightforward to demonstrate that these properties are verified locally in
discrete form as soon as the scalar q is taken at t-points and the vector A has its
components defined at vector points (u, v, w).

Let a and b be two fields defined on the mesh, with value zero inside continental
area. Using integration by parts it can be shown that the differencing operators
(δi, δj and δk) are skew-symmetric linear operators, and further that the averaging
operators · i, · k and · k) are symmetric linear operators, i.e.∑

i

ai δi [b] ≡ −
∑
i

δi+1/2 [a] bi+1/2 (4.11)∑
i

ai b
i ≡

∑
i

a i+1/2 bi+1/2 (4.12)

In other words, the adjoint of the differencing and averaging operators are
δ∗i = δi+1/2 and (· i)∗ = · i+1/2, respectively. These two properties will be used
extensively in the Appendix C to demonstrate integral conservative properties of
the discrete formulation chosen.

4.1.3 Numerical Indexing

The array representation used in the FORTRAN code requires an integer indexing
while the analytical definition of the mesh (see §4.1.1) is associated with the use of
integer values for t-points and both integer and integer and a half values for all the
other points. Therefore a specific integer indexing must be defined for points other
than t-points (i.e. velocity and vorticity grid-points). Furthermore, the direction of
the vertical indexing has been changed so that the surface level is at k = 1.

Horizontal Indexing

The indexing in the horizontal plane has been chosen as shown in Fig.4.2. For
an increasing i index (j index), the t-point and the eastward u-point (northward
v-point) have the same index (see the dashed area in Fig.4.2). A t-point and its
nearest northeast f -point have the same i-and j-indices.

Vertical Indexing

In the vertical, the chosen indexing requires special attention since the k-axis is
re-orientated downward in the FORTRAN code compared to the indexing used in
the semi-discrete equations and given in §4.1.1. The sea surface corresponds to the
w-level k = 1 which is the same index as t-level just below (Fig.4.3). The last
w-level (k = jpk) either corresponds to the ocean floor or is inside the bathymetry
while the last t-level is always inside the bathymetry (Fig.4.3). Note that for an
increasing k index, a w-point and the t-point just below have the same k index, in

52 Space Domain (DOM)

i-1
i-1

i
i
i+1

i+1

j+1

j-1

j-1

j

j

j+1

u

v

T

f

Figure 4.2: Horizontal integer indexing used in the FORTRAN code. The dashed area
indicates the cell in which variables contained in arrays have the same i- and j-indices

opposition to what is done in the horizontal plane where it is the t-point and the
nearest velocity points in the direction of the horizontal axis that have the same i
or j index (compare the dashed area in Fig.4.2 and 4.3). Since the scale factors are
chosen to be strictly positive, a minus sign appears in the FORTRAN code before
all the vertical derivatives of the discrete equations given in this documentation.

Domain Size

The total size of the computational domain is set by the parameters jpiglo, jpjglo
and jpkglo in the i, j and k directions respectively. Parameters jpi and jpj refer to
the size of each processor subdomain when the code is run in parallel using domain
decomposition (key mpp mpi defined, see §8.3).

4.1. Fundamentals of the Discretisation 53

w

w
T

1
1

k

2

jpk

jpk-1
jpk-1

jpk-2
jpk-2

jpk

LEVELS

k
k+1 w

T

w
T

w
T

T

w

w

w
T

w
T

w
T

w
T

T

w

Figure 4.3: Vertical integer indexing used in the FORTRAN code. Note that the
k-axis is orientated downward. The dashed area indicates the cell in which variables
contained in arrays have the same k-index.

54 Space Domain (DOM)

4.2 Domain: Needed fields

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by
the transformation that gives (λ, ϕ, z) as a function of (i, j, k). The grid-points
are located at integer or integer and a half values of as indicated in Table 4.1.
The associated scale factors are defined using the analytical first derivative of the
transformation (2.6). Necessary fields for configuration definition are:
Geographic position :

longitude : glamt , glamu , glamv and glamf (at T, U, V and F point)
latitude : gphit , gphiu , gphiv and gphif (at T, U, V and F point)

Coriolis parameter (if domain not on the sphere):
ff f and ff t (at T and F point)

Scale factors :
e1t, e1u, e1v and e1f (on i direction),
e2t, e2u, e2v and e2f (on j direction)
and ie1e2u v, e1e2u , e1e2v
e1e2u , e1e2v are u and v surfaces (if gridsize reduction in some straits)

ie1e2u v is a flag to flag set u and v surfaces are neither read nor computed.

These fields can be read in an domain input file which name is setted in cn domcfg
parameter specified in namcfg.
!---
&namcfg ! parameters of the configuration ! (default: user defined GYRE)
!---

ln_read_cfg = .false. ! (=T) read the domain configuration file
! ! (=F) user defined configuration ==>>> see usrdef(_...) modules
cn_domcfg = "domain_cfg" ! domain configuration filename
!

ln_write_cfg= .true. ! (=T) create the domain configuration file
cn_domcfg_out = "domain_cfg_out" ! newly created domain configuration filename
!

ln_use_jattr = .false. ! use (T) the file attribute: open_ocean_jstart, if present
! ! in netcdf input files, as the start j-row for reading

/

or they can be defined in an analytical way in MY SRC directory of the config-
uration. For Reference Configurations of NEMO input domain files are supplied
by NEMO System Team. For analytical definition of input fields two routines are
supplied: userdef hgr.F90 and userdef zgr.F90. They are an example of GYRE
configuration parameters, and they are available in NEMO/OPA SRC/USR direc-
tory, they provide the horizontal and vertical mesh.

4.3 Domain: Horizontal Grid (mesh) (domhgr.F90 module)

4.3.1 Coordinates and scale factors

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by
the transformation that gives (λ, ϕ, z) as a function of (i, j, k). The grid-points

4.3. Domain: Horizontal Grid (mesh) (domhgr) 55

are located at integer or integer and a half values of as indicated in Table 4.1.
The associated scale factors are defined using the analytical first derivative of the
transformation (2.6). These definitions are done in two modules, domhgr.F90 and
domzgr.F90, which provide the horizontal and vertical meshes, respectively. This
section deals with the horizontal mesh parameters.

In a horizontal plane, the location of all the model grid points is defined from
the analytical expressions of the longitude λ and latitude ϕ as a function of (i, j).
The horizontal scale factors are calculated using (2.6). For example, when the lon-
gitude and latitude are function of a single value (i and j, respectively) (geograph-
ical configuration of the mesh), the horizontal mesh definition reduces to define
the wanted λ(i), ϕ(j), and their derivatives λ′(i) ϕ′(j) in the domhgr.F90 module.
The model computes the grid-point positions and scale factors in the horizontal
plane as follows:

λt ≡ glamt = λ(i) ϕt ≡ gphit = ϕ(j)

λu ≡ glamu = λ(i+ 1/2) ϕu ≡ gphiu = ϕ(j)

λv ≡ glamv = λ(i) ϕv ≡ gphiv = ϕ(j + 1/2)

λf ≡ glamf = λ(i+ 1/2) ϕf ≡ gphif = ϕ(j + 1/2)

e1t ≡ e1t = ra|λ′(i) cosϕ(j)| e2t ≡ e2t = ra|ϕ′(j)|
e1u ≡ e1t = ra|λ′(i+ 1/2) cosϕ(j)| e2u ≡ e2t = ra|ϕ′(j)|
e1v ≡ e1t = ra|λ′(i) cosϕ(j + 1/2)| e2v ≡ e2t = ra|ϕ′(j + 1/2)|
e1f ≡ e1t = ra|λ′(i+ 1/2) cosϕ(j + 1/2)| e2f ≡ e2t = ra|ϕ′(j + 1/2)|

where the last letter of each computational name indicates the grid point considered
and ra is the earth radius (defined in phycst.F90 along with all universal constants).
Note that the horizontal position of and scale factors at w-points are exactly equal
to those of t-points, thus no specific arrays are defined at w-points.

Note that the definition of the scale factors (i.e. as the analytical first derivative
of the transformation that gives (λ, ϕ, z) as a function of (i, j, k)) is specific to
the NEMO model [Marti et al. 1992]. As an example, e1t is defined locally at
a t-point, whereas many other models on a C grid choose to define such a scale
factor as the distance between the U -points on each side of the t-point. Relying on
an analytical transformation has two advantages: firstly, there is no ambiguity in
the scale factors appearing in the discrete equations, since they are first introduced
in the continuous equations; secondly, analytical transformations encourage good
practice by the definition of smoothly varying grids (rather than allowing the user
to set arbitrary jumps in thickness between adjacent layers) [Tréguier et al. 1996].
An example of the effect of such a choice is shown in Fig. 4.4.

56 Space Domain (DOM)

Tk+1

Tk

Tk-1∆k-1 = 100 m

∆k-1 = 40 m

∆k-1 = 10 m
Wk+1/2

Wk-1/2

Wk-3/2

Wk+3/2
zk+1/2 = -10 m

zk-1/2= -50 m

zk-3/2= -150 m

zk+3/2 = 0 m

z

Tk+1

Tk

Tk-1 ek-1 = 98.75 m

ek-1 = 38.75 m

ek-1 = 8.75 m
Wk+1/2

Wk-1/2

Wk-3/2

Wk+3/2
ek+1/2 = 20 m

ek-1/2= 65 m

ek-3/2= 140 m

ek+3/2 = 5 m

z

(a) (b)

Figure 4.4: Comparison of (a) traditional definitions of grid-point position and grid-
size in the vertical, and (b) analytically derived grid-point position and scale factors.
For both grids here, the same w-point depth has been chosen but in (a) the t-points
are set half way between w-points while in (b) they are defined from an analytical
function: z(k) = 5 (k − 1/2)3 − 45 (k − 1/2)2 + 140 (k − 1/2) − 150. Note the
resulting difference between the value of the grid-size ∆k and those of the scale factor
ek.

4.3.2 Choice of horizontal grid

4.3.3 Output Grid files

All the arrays relating to a particular ocean model configuration (grid-point posi-
tion, scale factors, masks) can be saved in files if nn msh 6= 0 (namelist variable
in namdom). This can be particularly useful for plots and off-line diagnostics. In
some cases, the user may choose to make a local modification of a scale factor
in the code. This is the case in global configurations when restricting the width
of a specific strait (usually a one-grid-point strait that happens to be too wide due
to insufficient model resolution). An example is Gibraltar Strait in the ORCA2
configuration. When such modifications are done, the output grid written when
nn msh 6= 0 is no more equal to the input grid.

4.4. Domain: Vertical Grid (domzgr) 57

(d)

(f)

(e)

(c)

(b)

(a)

Figure 4.5: The ocean bottom as seen by the model: (a) z-coordinate with full step,
(b) z-coordinate with partial step, (c) s-coordinate: terrain following representation,
(d) hybrid s− z coordinate, (e) hybrid s− z coordinate with partial step, and (f) same
as (e) but in the non-linear free surface (ln linssh=false). Note that the non-linear free
surface can be used with any of the 5 coordinates (a) to (e).

4.4 Domain: Vertical Grid (domzgr.F90 module)

!---
&namdom ! time and space domain
!---

ln_linssh = .false. ! =T linear free surface ==>> model level are fixed in time
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
!
nn_msh = 0 ! create (>0) a mesh file or not (=0)
rn_isfhmin = 1.00 ! treshold (m) to discriminate grounding ice to floating ice
!
rn_rdt = 5760. ! time step for the dynamics and tracer
rn_atfp = 0.1 ! asselin time filter parameter
!
ln_crs = .false. ! Logical switch for coarsening module (T => fill namcrs)

/

Variables are defined through the namzgr and namdom namelists. In the ver-
tical, the model mesh is determined by four things: (1) the bathymetry given in
meters ; (2) the number of levels of the model (jpk) ; (3) the analytical transforma-
tion z(i, j, k) and the vertical scale factors (derivatives of the transformation) ; and
(4) the masking system, i.e. the number of wet model levels at each (i, j) column
of points.

The choice of a vertical coordinate, even if it is made through namzgr namelist
parameters, must be done once of all at the beginning of an experiment. It is

58 Space Domain (DOM)

not intended as an option which can be enabled or disabled in the middle of an
experiment. Three main choices are offered (Fig. 4.5a to c): z-coordinate with
full step bathymetry (ln zco = true), z-coordinate with partial step bathymetry
(ln zps = true), or generalized, s-coordinate (ln sco = true). Hybridation of the
three main coordinates are available: s − z or s − zps coordinate (Fig. 4.5d and
4.5e). By default a non-linear free surface is used: the coordinate follow the
time-variation of the free surface so that the transformation is time dependent:
z(i, j, k, t) (Fig. 4.5f). When a linear free surface is assumed (ln linssh=true), the
vertical coordinate are fixed in time, but the seawater can move up and down across
the z=0 surface (in other words, the top of the ocean in not a rigid-lid). The last
choice in terms of vertical coordinate concerns the presence (or not) in the model
domain of ocean cavities beneath ice shelves. Setting ln isfcav to true allows to
manage ocean cavities, otherwise they are filled in. This option is currently only
available in z- or zps-coordinate, and partial step are also applied at the ocean/ice
shelf interface.

Contrary to the horizontal grid, the vertical grid is computed in the code and no
provision is made for reading it from a file. The only input file is the bathymetry (in
meters) (bathy meter.nc). 1. If ln isfcav = true, an extra file input file describing
the ice shelf draft (in meters) (isf draft meter.nc) is needed.

After reading the bathymetry, the algorithm for vertical grid definition differs
between the different options:

zco set a reference coordinate transformation z0(k), and set z(i, j, k, t) = z0(k).

zps set a reference coordinate transformation z0(k), and calculate the thickness of
the deepest level at each (i, j) point using the bathymetry, to obtain the final
three-dimensional depth and scale factor arrays.

sco smooth the bathymetry to fulfil the hydrostatic consistency criteria and set the
three-dimensional transformation.

s-z and s-zps smooth the bathymetry to fulfil the hydrostatic consistency criteria
and set the three-dimensional transformation z(i, j, k), and possibly intro-
duce masking of extra land points to better fit the original bathymetry file

Unless a linear free surface is used (ln linssh=false), the arrays describing the
grid point depths and vertical scale factors are three set of three dimensional arrays
(i, j, k) defined at before, now and after time step. The time at which they are
defined is indicated by a suffix: b, n, or a, respectively. They are updated at
each model time step using a fixed reference coordinate system which computer
names have a 0 suffix. When the linear free surface option is used (ln linssh=true),
before, now and after arrays are simply set one for all to their reference counterpart.

1N.B. in full step z-coordinate, a bathy level.nc file can replace the bathy meter.nc file, so that
the computation of the number of wet ocean point in each water column is by-passed

4.4. Domain: Vertical Grid (domzgr) 59

4.4.1 Meter Bathymetry

Three options are possible for defining the bathymetry, according to the namelist
variable nn bathy (found in namdom namelist):

nn bathy = 0 a flat-bottom domain is defined. The total depth zw(jpk) is given by
the coordinate transformation. The domain can either be a closed basin or a
periodic channel depending on the parameter jperio.

nn bathy = -1 a domain with a bump of topography one third of the domain width
at the central latitude. This is meant for the ”EEL-R5” configuration, a peri-
odic or open boundary channel with a seamount.

nn bathy = 1 read a bathymetry and ice shelf draft (if needed). The bathy meter.nc
file (Netcdf format) provides the ocean depth (positive, in meters) at each
grid point of the model grid. The bathymetry is usually built by interpo-
lating a standard bathymetry product (e.g. ETOPO2) onto the horizontal
ocean mesh. Defining the bathymetry also defines the coastline: where the
bathymetry is zero, no model levels are defined (all levels are masked).

The isfdraft meter.nc file (Netcdf format) provides the ice shelf draft (posi-
tive, in meters) at each grid point of the model grid. This file is only needed
if ln isfcav = true. Defining the ice shelf draft will also define the ice shelf
edge and the grounding line position.

When a global ocean is coupled to an atmospheric model it is better to represent
all large water bodies (e.g, great lakes, Caspian sea...) even if the model resolution
does not allow their communication with the rest of the ocean. This is unnecessary
when the ocean is forced by fixed atmospheric conditions, so these seas can be
removed from the ocean domain. The user has the option to set the bathymetry
in closed seas to zero (see §15.2), but the code has to be adapted to the user’s
configuration.

4.4.2 z-coordinate (ln zco=true) and reference coordinate

The reference coordinate transformation z0(k) defines the arrays gdept0 and gdepw0

for t- and w-points, respectively. As indicated on Fig.4.3 jpk is the number of w-
levels. gdepw0(1) is the ocean surface. There are at most jpk-1 t-points inside the
ocean, the additional t-point at jk = jpk is below the sea floor and is not used.
The vertical location of w- and t-levels is defined from the analytic expression of
the depth z0(k) whose analytical derivative with respect to k provides the verti-
cal scale factors. The user must provide the analytical expression of both z0 and
its first derivative with respect to k. This is done in routine domzgr.F90 through
statement functions, using parameters provided in the namcfg namelist.

It is possible to define a simple regular vertical grid by giving zero stretching
(ppacr=0). In that case, the parameters jpk (number ofw-levels) and pphmax (total
ocean depth in meters) fully define the grid.

60 Space Domain (DOM)

depth
(meters)

scale factor
(meters)

vertical index
1 10 20 30

500

400

600

300

200

100

0

1000

0

2000

3000

4000

5000

Figure 4.6: Default vertical mesh for ORCA2: 30 ocean levels (L30). Vertical level
functions for (a) T-point depth and (b) the associated scale factor as computed from
(4.14) using (4.15) in z-coordinate.

For climate-related studies it is often desirable to concentrate the vertical reso-
lution near the ocean surface. The following function is proposed as a standard for
a z-coordinate (with either full or partial steps):

z0(k) = hsur − h0 k − h1 log [cosh ((k − hth)/hcr)]

e0
3(k) = |−h0 − h1 tanh ((k − hth)/hcr)|

(4.13)

where k = 1 to jpk for w-levels and k = 1 to k = 1 for T−levels. Such an expres-
sion allows us to define a nearly uniform vertical location of levels at the ocean top
and bottom with a smooth hyperbolic tangent transition in between (Fig. 4.6).

If the ice shelf cavities are opened (ln isfcav= true), the definition of z0 is the

4.4. Domain: Vertical Grid (domzgr) 61

same. However, definition of e0
3 at t- and w-points is respectively changed to:

eT3 (k) = zW (k + 1)− zW (k)

eW3 (k) = zT (k)− zT (k − 1)
(4.14)

This formulation decrease the self-generated circulation into the ice shelf cavity
(which can, in extreme case, leads to blow up).

The most used vertical grid for ORCA2 has 10 m (500 m) resolution in the
surface (bottom) layers and a depth which varies from 0 at the sea surface to a
minimum of −5000 m. This leads to the following conditions:

e3(1 + 1/2) = 10.

e3(jpk − 1/2) = 500.

z(1) = 0.

z(jpk) = −5000.

(4.15)

With the choice of the stretching hcr = 3 and the number of levels jpk=31, the
four coefficients hsur, h0, h1, and hth in (4.14) have been determined such that
(4.15) is satisfied, through an optimisation procedure using a bisection method.
For the first standard ORCA2 vertical grid this led to the following values: hsur =
4762.96, h0 = 255.58, h1 = 245.5813, and hth = 21.43336. The resulting depths
and scale factors as a function of the model levels are shown in Fig. 4.6 and given
in Table 4.2. Those values correspond to the parameters ppsur, ppa0, ppa1, ppkth
in namcfg namelist.

Rather than entering parameters hsur, h0, and h1 directly, it is possible to re-
calculate them. In that case the user sets ppsur=ppa0=ppa1=999999., in namcfg
namelist, and specifies instead the four following parameters:

• ppacr=hcr: stretching factor (nondimensional). The larger ppacr, the smaller
the stretching. Values from 3 to 10 are usual.

• ppkth=hth: is approximately the model level at which maximum stretching
occurs (nondimensional, usually of order 1/2 or 2/3 of jpk)

• ppdzmin: minimum thickness for the top layer (in meters)

• pphmax: total depth of the ocean (meters).

As an example, for the 45 layers used in the DRAKKAR configuration those pa-
rameters are: jpk=46, ppacr=9, ppkth=23.563, ppdzmin=6m, pphmax=5750m.

4.4.3 z-coordinate with partial step (ln zps=.true.)
!---
&namdom ! time and space domain
!---

ln_linssh = .false. ! =T linear free surface ==>> model level are fixed in time

62 Space Domain (DOM)

Table 4.2: Default vertical mesh in z-coordinate for 30 layers ORCA2 configuration
as computed from (4.14) using the coefficients given in (4.15)

LEVEL gdept 1d gdepw 1d e3t 1d e3w 1d
1 5.00 0.00 10.00 10.00
2 15.00 10.00 10.00 10.00
3 25.00 20.00 10.00 10.00
4 35.01 30.00 10.01 10.00
5 45.01 40.01 10.01 10.01
6 55.03 50.02 10.02 10.02
7 65.06 60.04 10.04 10.03
8 75.13 70.09 10.09 10.06
9 85.25 80.18 10.17 10.12
10 95.49 90.35 10.33 10.24
11 105.97 100.69 10.65 10.47
12 116.90 111.36 11.27 10.91
13 128.70 122.65 12.47 11.77
14 142.20 135.16 14.78 13.43
15 158.96 150.03 19.23 16.65
16 181.96 169.42 27.66 22.78
17 216.65 197.37 43.26 34.30
18 272.48 241.13 70.88 55.21
19 364.30 312.74 116.11 90.99
20 511.53 429.72 181.55 146.43
21 732.20 611.89 261.03 220.35
22 1033.22 872.87 339.39 301.42
23 1405.70 1211.59 402.26 373.31
24 1830.89 1612.98 444.87 426.00
25 2289.77 2057.13 470.55 459.47
26 2768.24 2527.22 484.95 478.83
27 3257.48 3011.90 492.70 489.44
28 3752.44 3504.46 496.78 495.07
29 4250.40 4001.16 498.90 498.02
30 4749.91 4500.02 500.00 499.54
31 5250.23 5000.00 500.56 500.33

4.4. Domain: Vertical Grid (domzgr) 63

nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
!
nn_msh = 0 ! create (>0) a mesh file or not (=0)
rn_isfhmin = 1.00 ! treshold (m) to discriminate grounding ice to floating ice
!
rn_rdt = 5760. ! time step for the dynamics and tracer
rn_atfp = 0.1 ! asselin time filter parameter
!
ln_crs = .false. ! Logical switch for coarsening module (T => fill namcrs)

/

In z-coordinate partial step, the depths of the model levels are defined by the
reference analytical function z0(k) as described in the previous section, except in
the bottom layer. The thickness of the bottom layer is allowed to vary as a function
of geographical location (λ, ϕ) to allow a better representation of the bathymetry,
especially in the case of small slopes (where the bathymetry varies by less than one
level thickness from one grid point to the next). The reference layer thicknesses e0

3t

have been defined in the absence of bathymetry. With partial steps, layers from 1
to jpk-2 can have a thickness smaller than e3t(jk). The model deepest layer (jpk-1)
is allowed to have either a smaller or larger thickness than e3t(jpk): the maximum
thickness allowed is 2 ∗ e3t(jpk− 1). This has to be kept in mind when specifying
values in namdom namelist, as the maximum depth pphmax in partial steps: for
example, with pphmax= 5750 m for the DRAKKAR 45 layer grid, the maximum
ocean depth allowed is actually 6000 m (the default thickness e3t(jpk − 1) being
250 m). Two variables in the namdom namelist are used to define the partial step
vertical grid. The mimimum water thickness (in meters) allowed for a cell partially
filled with bathymetry at level jk is the minimum of rn e3zps min (thickness in
meters, usually 20 m) or e3t(jk) ∗ rn e3zps rat (a fraction, usually 10%, of the
default thickness e3t(jk)).

4.4.4 s-coordinate (ln sco=true)

Options are defined in namzgr sco. In s-coordinate (ln sco = true), the depth and
thickness of the model levels are defined from the product of a depth field and
either a stretching function or its derivative, respectively:

z(k) = h(i, j) z0(k)

e3(k) = h(i, j) z′0(k)
(4.16)

where h is the depth of the last w-level (z0(k)) defined at the t-point location
in the horizontal and z0(k) is a function which varies from 0 at the sea surface to
1 at the ocean bottom. The depth field h is not necessary the ocean depth, since a
mixed step-like and bottom-following representation of the topography can be used
(Fig. 4.5d-e) or an envelop bathymetry can be defined (Fig. 4.5f). The namelist
parameter rn rmax determines the slope at which the terrain-following coordinate
intersects the sea bed and becomes a pseudo z-coordinate. The coordinate can also
be hybridised by specifying rn sbot min and rn sbot max as the minimum and
maximum depths at which the terrain-following vertical coordinate is calculated.

64 Space Domain (DOM)

Options for stretching the coordinate are provided as examples, but care must
be taken to ensure that the vertical stretch used is appropriate for the application.

The original default NEMO s-coordinate stretching is available if neither of the
other options are specified as true (ln s SH94 = false and ln s SF12 = false). This
uses a depth independent tanh function for the stretching [Madec et al. 1996]:

z = smin + C (s) (H − smin) (4.17)

where smin is the depth at which the s-coordinate stretching starts and allows
a z-coordinate to placed on top of the stretched coordinate, and z is the depth
(negative down from the asea surface).

s = − k

n− 1
and 0 ≤ k ≤ n− 1 (4.18)

C(s) =
[tanh (θ (s+ b))− tanh (θ b)]

2 sinh (θ)
(4.19)

A stretching function, modified from the commonly used Song and Haidvogel
[1994] stretching (ln s SH94 = true), is also available and is more commonly used
for shelf seas modelling:

C (s) = (1− b) sinh (θs)

sinh (θ)
+ b

tanh
[
θ
(
s+ 1

2

)]
− tanh

(
θ
2

)
2 tanh

(
θ
2

) (4.20)

Figure 4.7: Examples of the stretching function applied to a seamount; from left to
right: surface, surface and bottom, and bottom intensified resolutions

where Hc is the critical depth (rn hc) at which the coordinate transitions from
pure σ to the stretched coordinate, and θ (rn theta) and b (rn bb) are the surface
and bottom control parameters such that 0 6 θ 6 20, and 0 6 b 6 1. b has
been designed to allow surface and/or bottom increase of the vertical resolution
(Fig. 4.7).

4.4. Domain: Vertical Grid (domzgr) 65

Another example has been provided at version 3.5 (ln s SF12) that allows a
fixed surface resolution in an analytical terrain-following stretching Siddorn and
Furner [2012]. In this case the a stretching function γ is defined such that:

z = −γh with 0 ≤ γ ≤ 1 (4.21)

The function is defined with respect to σ, the unstretched terrain-following
coordinate:

γ = A

(
σ − 1

2

(
σ2 + f (σ)

))
+B

(
σ3 − f (σ)

)
+ f (σ) (4.22)

Where:

f (σ) = (α+ 2)σα+1 − (α+ 1)σα+2 and σ =
k

n− 1
(4.23)

This gives an analytical stretching of σ that is solvable inA andB as a function
of the user prescribed stretching parameter α (rn alpha) that stretches towards the
surface (α > 1.0) or the bottom (α < 1.0) and user prescribed surface (rn zs) and
bottom depths. The bottom cell depth in this example is given as a function of
water depth:

Zb = ha+ b (4.24)

where the namelist parameters rn zb a and rn zb b are a and b respectively.

0 50 100 150 200 250 300 350

0

20

40

60

80

100

d
e
p
th
 (
m
)

Figure 4.8: A comparison of the Song and Haidvogel [1994] S-coordinate (solid
lines), a 50 levelZ-coordinate (contoured surfaces) and the Siddorn and Furner [2012]
S-coordinate (dashed lines) in the surface 100m for a idealised bathymetry that goes
from 50m to 5500m depth. For clarity every third coordinate surface is shown.

66 Space Domain (DOM)

This gives a smooth analytical stretching in computational space that is con-
strained to given specified surface and bottom grid cell thicknesses in real space.
This is not to be confused with the hybrid schemes that superimpose geopotential
coordinates on terrain following coordinates thus creating a non-analytical vertical
coordinate that therefore may suffer from large gradients in the vertical resolutions.
This stretching is less straightforward to implement than the Song and Haidvogel
[1994] stretching, but has the advantage of resolving diurnal processes in deep
water and has generally flatter slopes.

As with the Song and Haidvogel [1994] stretching the stretch is only applied at
depths greater than the critical depth hc. In this example two options are available
in depths shallower than hc, with pure sigma being applied if the ln sigcrit is true
and pure z-coordinates if it is false (the z-coordinate being equal to the depths of
the stretched coordinate at hc.

Minimising the horizontal slope of the vertical coordinate is important in terrain-
following systems as large slopes lead to hydrostatic consistency. A hydrostatic
consistency parameter diagnostic following Haney [1991] has been implemented,
and is output as part of the model mesh file at the start of the run.

4.4.5 z∗- or s∗-coordinate (ln linssh=false)

This option is described in the Report by Levier et al. (2007), available on the
NEMO web site.

4.4.6 level bathymetry and mask

Whatever the vertical coordinate used, the model offers the possibility of represent-
ing the bottom topography with steps that follow the face of the model cells (step
like topography) [Madec et al. 1996]. The distribution of the steps in the horizontal
is defined in a 2D integer array, mbathy, which gives the number of ocean levels
(i.e. those that are not masked) at each t-point. mbathy is computed from the meter
bathymetry using the definiton of gdept as the number of t-points which gdept ≤
bathy.

Modifications of the model bathymetry are performed in the bat ctl routine
(see domzgr.F90 module) after mbathy is computed. Isolated grid points that do
not communicate with another ocean point at the same level are eliminated.

As for the representation of bathymetry, a 2D integer array, misfdep, is created.
misfdep defines the level of the first wet t-point. All the cells between k = 1 and
misfdep(i, j)−1 are masked. By default, misfdep(:,:)=1 and no cells are masked.

In case of ice shelf cavities, modifications of the model bathymetry and ice
shelf draft into the cavities are performed in the zgr isf routine. The compatibility
between ice shelf draft and bathymetry is checked. All the locations where the isf
cavity is thinnest than rn isfhmin meters are grounded (i.e. masked). If only one
cell on the water column is opened at t-, u- or v-points, the bathymetry or the ice
shelf draft is dug to fit this constrain. If the incompatibility is too strong (need to

4.5. Domain: Initial State (istate and dtatsd) 67

dig more than 1 cell), the cell is masked.

From the mbathy and misfdep array, the mask fields are defined as follows:

tmask(i, j, k) =

0 if k < misfdep(i, j)

1 if misfdep(i, j) ≤ k ≤ mbathy(i, j)

0 if k > mbathy(i, j)

umask(i, j, k) = tmask(i, j, k) ∗ tmask(i+ 1, j, k)

vmask(i, j, k) = tmask(i, j, k) ∗ tmask(i, j + 1, k)

fmask(i, j, k) = tmask(i, j, k) ∗ tmask(i+ 1, j, k)

∗ tmask(i, j, k) ∗ tmask(i+ 1, j, k)

wmask(i, j, k) = tmask(i, j, k) ∗ tmask(i, j, k − 1) with wmask(i, j, 1) = tmask(i, j, 1)

Note that, without ice shelves cavities, masks at t− and w−points are identical
with the numerical indexing used (§ 4.1.3). Nevertheless,wmask are required with
oceean cavities to deal with the top boundary (ice shelf/ocean interface) exactly in
the same way as for the bottom boundary.

The specification of closed lateral boundaries requires that at least the first and
last rows and columns of the mbathy array are set to zero. In the particular case
of an east-west cyclical boundary condition, mbathy has its last column equal to
the second one and its first column equal to the last but one (and so too the mask
arrays) (see § 8.2).

4.5 Domain: Initial State (istate.F90 and dtatsd.F90 modules)

!---
&namtsd ! data : Temperature & Salinity
!---
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_tem = ’data_1m_potential_temperature_nomask’, -1 ,’votemper’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_sal = ’data_1m_salinity_nomask’ , -1 ,’vosaline’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
!
cn_dir = ’./’ ! root directory for the location of the runoff files
ln_tsd_init = .true. ! Initialisation of ocean T & S with T & S input data (T) or not (F)
ln_tsd_tradmp = .true. ! damping of ocean T & S toward T & S input data (T) or not (F)

/

Options are defined in namtsd. By default, the ocean start from rest (the ve-
locity field is set to zero) and the initialization of temperature and salinity fields is
controlled through the ln tsd ini namelist parameter.

ln tsd init = .true. use a T and S input files that can be given on the model grid
itself or on their native input data grid. In the latter case, the data will be
interpolated on-the-fly both in the horizontal and the vertical to the model
grid (see § 7.2.2). The information relative to the input files are given in
the sn tem and sn sal structures. The computation is done in the dtatsd.F90
module.

68 Space Domain (DOM)

ln tsd init = .false. use constant salinity value of 35.5 psu and an analytical profile
of temperature (typical of the tropical ocean), see istate t s subroutine called
from istate.F90 module.

5 Ocean Tracers (TRA)

Contents
5.1 Tracer Advection (traadv) 71

5.1.1 Centred schemes (CEN) (ln traadv cen) 73

5.1.2 Flux Corrected Transport schemes (FCT) (ln traadv fct) 74

5.1.3 MUSCL scheme (ln traadv mus) 75

5.1.4 Upstream-Biased Scheme (UBS) (ln traadv ubs) . . . 76

5.1.5 QUICKEST scheme (QCK) (ln traadv qck) 77

5.2 Tracer Lateral Diffusion (traldf) 77
5.2.1 Type of operator (ln traldf NONE, ln traldf lap, ln traldf blp) 78

5.2.2 Direction of action (ln traldf lev, ln traldf hor, ln traldf iso,
ln traldf triad) . 79

5.2.3 Iso-level (bi-)laplacian operator (ln traldf iso) 79

5.2.4 Standard and triad rotated (bi-)laplacian operator (traldf iso.F90,
traldf triad.F90) . 80

5.3 Tracer Vertical Diffusion (trazdf) 81
5.4 External Forcing . 82

5.4.1 Surface boundary condition (trasbc) 82

5.4.2 Solar Radiation Penetration (traqsr) 83

5.4.3 Bottom Boundary Condition (trabbc) 85

5.5 Bottom Boundary Layer (trabbl.F90 - key trabbl) 87
5.5.1 Diffusive Bottom Boundary layer (nn bbl ldf =1) . . . 88

5.5.2 Advective Bottom Boundary Layer (nn bbl adv= 1 or 2) 88

5.6 Tracer damping (tradmp) 90
5.6.1 DMP TOOLS . 91

70 Ocean Tracers (TRA)

5.7 Tracer time evolution (tranxt) 92
5.8 Equation of State (eosbn2) 93

5.8.1 Equation Of Seawater (nn eos = -1, 0, or 1) 93

5.8.2 Brunt-Väisälä Frequency (nn eos = 0, 1 or 2) 95

5.8.3 Freezing Point of Seawater 96

5.9 Horizontal Derivative in zps-coordinate (zpshde) 96

Using the representation described in Chap. 4, several semi-discrete space
forms of the tracer equations are available depending on the vertical coordinate
used and on the physics used. In all the equations presented here, the masking has
been omitted for simplicity. One must be aware that all the quantities are masked
fields and that each time a mean or difference operator is used, the resulting field
is multiplied by a mask.

The two active tracers are potential temperature and salinity. Their prognostic
equations can be summarized as follows:

NXT = ADV + LDF + ZDF + SBC (+QSR) (+BBC) (+BBL) (+DMP)

NXT stands for next, referring to the time-stepping. From left to right, the
terms on the rhs of the tracer equations are the advection (ADV), the lateral diffu-
sion (LDF), the vertical diffusion (ZDF), the contributions from the external forc-
ings (SBC: Surface Boundary Condition, QSR: penetrative Solar Radiation, and
BBC: Bottom Boundary Condition), the contribution from the bottom boundary
Layer (BBL) parametrisation, and an internal damping (DMP) term. The terms
QSR, BBC, BBL and DMP are optional. The external forcings and parameterisa-
tions require complex inputs and complex calculations (e.g. bulk formulae, estima-
tion of mixing coefficients) that are carried out in the SBC, LDF and ZDF modules
and described in chapters §7, §9 and §10, respectively. Note that tranpc.F90, the
non-penetrative convection module, although located in the NEMO/OPA/TRA di-
rectory as it directly modifies the tracer fields, is described with the model vertical
physics (ZDF) together with other available parameterization of convection.

In the present chapter we also describe the diagnostic equations used to com-
pute the sea-water properties (density, Brunt-Väisälä frequency, specific heat and
freezing point with associated modules eosbn2.F90 and phycst.F90).

The different options available to the user are managed by namelist logicals or
CPP keys. For each equation term TTT, the namelist logicals are ln traTTT xxx,
where xxx is a 3 or 4 letter acronym corresponding to each optional scheme. The
CPP key (when it exists) is key traTTT. The equivalent code can be found in the
traTTT or traTTT xxx module, in the NEMO/OPA/TRA directory.

5.1. Tracer Advection (traadv) 71

The user has the option of extracting each tendency term on the RHS of the
tracer equation for output (ln tra trd or ln tra mxl = true), as described in Chap. 11.

5.1 Tracer Advection (traadv.F90)
!---
&namtra_adv ! advection scheme for tracer (default: NO selection)
!---

ln_traadv_NONE= .false. ! No tracer advection
ln_traadv_cen = .false. ! 2nd order centered scheme

nn_cen_h = 4 ! =2/4, horizontal 2nd order CEN / 4th order CEN
nn_cen_v = 4 ! =2/4, vertical 2nd order CEN / 4th order COMPACT

ln_traadv_fct = .false. ! FCT scheme
nn_fct_h = 2 ! =2/4, horizontal 2nd / 4th order
nn_fct_v = 2 ! =2/4, vertical 2nd / COMPACT 4th order

ln_traadv_mus = .false. ! MUSCL scheme
ln_mus_ups = .false. ! use upstream scheme near river mouths

ln_traadv_ubs = .false. ! UBS scheme
nn_ubs_v = 2 ! =2 , vertical 2nd order FCT / COMPACT 4th order

ln_traadv_qck = .false. ! QUICKEST scheme
/

When considered (i.e. when ln traadv NONE is not set to true), the advection
tendency of a tracer is expressed in flux form, i.e. as the divergence of the advective
fluxes. Its discrete expression is given by :

ADVτ = − 1

bt
(δi [e2u e3u u τu] + δj [e1v e3v v τv])− 1

e3t
δk [w τw] (5.1)

where τ is either T or S, and bt = e1t e2t e3t is the volume of T -cells. The flux
form in (5.1) implicitly requires the use of the continuity equation. Indeed, it is
obtained by using the following equality : ∇· (UT) = U ·∇T which results from
the use of the continuity equation, ∂te3+e3 ∇·U = 0 (which reduces to∇·U = 0
in linear free surface, i.e. ln linssh=true). Therefore it is of paramount importance
to design the discrete analogue of the advection tendency so that it is consistent
with the continuity equation in order to enforce the conservation properties of the
continuous equations. In other words, by setting τ = 1 in (5.1) we recover the
discrete form of the continuity equation which is used to calculate the vertical
velocity.

The key difference between the advection schemes available in NEMO is the
choice made in space and time interpolation to define the value of the tracer at the
velocity points (Fig. 5.1).

Along solid lateral and bottom boundaries a zero tracer flux is automatically
specified, since the normal velocity is zero there. At the sea surface the boundary
condition depends on the type of sea surface chosen:

linear free surface: (ln linssh=true) the first level thickness is constant in time:
the vertical boundary condition is applied at the fixed surface z = 0 rather
than on the moving surface z = η. There is a non-zero advective flux which
is set for all advection schemes as τw|k=1/2 = Tk=1, i.e. the product of
surface velocity (at z = 0) by the first level tracer value.

72 Ocean Tracers (TRA)

T

ii-1/2

Ti

Ui ∆t

Ui+1/2

Ti+1

Ti+1+Ti
2 ppm

ups

cen2 muscl

Ti-1

i-1 i+1/2 i+1

Figure 5.1: Schematic representation of some ways used to evaluate the tracer value
at u-point and the amount of tracer exchanged between two neighbouring grid points.
Upsteam biased scheme (ups): the upstream value is used and the black area is ex-
changed. Piecewise parabolic method (ppm): a parabolic interpolation is used and
the black and dark grey areas are exchanged. Monotonic upstream scheme for con-
servative laws (muscl): a parabolic interpolation is used and black, dark grey and grey
areas are exchanged. Second order scheme (cen2): the mean value is used and black,
dark grey, grey and light grey areas are exchanged. Note that this illustration does not
include the flux limiter used in ppm and muscl schemes.

non-linear free surface: (ln linssh=false) convergence/divergence in the first ocean
level moves the free surface up/down. There is no tracer advection through
it so that the advective fluxes through the surface are also zero

In all cases, this boundary condition retains local conservation of tracer. Global
conservation is obtained in non-linear free surface case, but not in the linear free
surface case. Nevertheless, in the latter case, it is achieved to a good approxima-
tion since the non-conservative term is the product of the time derivative of the
tracer and the free surface height, two quantities that are not correlated [Roullet
and Madec 2000, Griffies et al. 2001, Campin et al. 2004].

The velocity field that appears in (5.1) and (??) is the centred (now) effec-
tive ocean velocity, i.e. the eulerian velocity (see Chap. 6) plus the eddy induced
velocity (eiv) and/or the mixed layer eddy induced velocity (eiv) when those pa-
rameterisations are used (see Chap. 9).

Several tracer advection scheme are proposed, namely a 2nd or 4th order cen-
tred schemes (CEN), a 2nd or 4th order Flux Corrected Transport scheme (FCT),

5.1. Tracer Advection (traadv) 73

a Monotone Upstream Scheme for Conservative Laws scheme (MUSCL), a 3rd

Upstream Biased Scheme (UBS, also often called UP3), and a Quadratic Upstream
Interpolation for Convective Kinematics with Estimated Streaming Terms scheme
(QUICKEST). The choice is made in the namtra adv namelist, by setting to true
one of the logicals ln traadv xxx. The corresponding code can be found in the
traadv xxx.F90 module, where xxx is a 3 or 4 letter acronym corresponding to each
scheme. By default (i.e. in the reference namelist, namelist ref), all the logicals
are set to false. If the user does not select an advection scheme in the configuration
namelist (namelist cfg), the tracers will not be advected !

Details of the advection schemes are given below. The choosing an advection
scheme is a complex matter which depends on the model physics, model resolu-
tion, type of tracer, as well as the issue of numerical cost. In particular, we note
that (1) CEN and FCT schemes require an explicit diffusion operator while the
other schemes are diffusive enough so that they do not necessarily need additional
diffusion ; (2) CEN and UBS are not positive schemes 1 , implying that false ex-
trema are permitted. Their use is not recommended on passive tracers ; (3) It is
recommended that the same advection-diffusion scheme is used on both active and
passive tracers. Indeed, if a source or sink of a passive tracer depends on an active
one, the difference of treatment of active and passive tracers can create very nice-
looking frontal structures that are pure numerical artefacts. Nevertheless, most of
our users set a different treatment on passive and active tracers, that’s the reason
why this possibility is offered. We strongly suggest them to perform a sensitivity
experiment using a same treatment to assess the robustness of their results.

5.1.1 Centred schemes (CEN) (ln traadv cen=true)

The centred advection scheme (CEN) is used when ln traadv cen = true. Its order
(2nd or 4th) can be chosen independently on horizontal (iso-level) and vertical
direction by setting nn cen h and nn cen v to 2 or 4. CEN implementation can be
found in the traadv cen.F90 module.

In the 2nd order centred formulation (CEN2), the tracer at velocity points is
evaluated as the mean of the two neighbouring T -point values. For example, in the
i-direction :

τ cen2
u = T

i+1/2 (5.2)

CEN2 is non diffusive (i.e. it conserves the tracer variance, τ2) but dispersive
(i.e. it may create false extrema). It is therefore notoriously noisy and must be used
in conjunction with an explicit diffusion operator to produce a sensible solution.
The associated time-stepping is performed using a leapfrog scheme in conjunction
with an Asselin time-filter, so T in (5.2) is the now tracer value.

Note that using the CEN2, the overall tracer advection is of second order accu-
racy since both (5.1) and (5.2) have this order of accuracy.

1negative values can appear in an initially strictly positive tracer field which is advected

74 Ocean Tracers (TRA)

In the 4th order formulation (CEN4), tracer values are evaluated at u- and v-
points as a 4th order interpolation, and thus depend on the four neighbouring T -
points. For example, in the i-direction:

τ cen4
u = T − 1

6
δi
[
δi+1/2[T]

] i+1/2

(5.3)

In the vertical direction (nn cen v=4), a 4th COMPACT interpolation has been
prefered [Demange 2014]. In the COMPACT scheme, both the field and its deriva-
tive are interpolated, which leads, after a matrix inversion, spectral characteristics
similar to schemes of higher order [Lele 1992].

Strictly speaking, the CEN4 scheme is not a 4th order advection scheme but a
4th order evaluation of advective fluxes, since the divergence of advective fluxes
(5.1) is kept at 2nd order. The expression 4th order scheme used in oceanographic
literature is usually associated with the scheme presented here. Introducing a true
4th order advection scheme is feasible but, for consistency reasons, it requires
changes in the discretisation of the tracer advection together with changes in the
continuity equation, and the momentum advection and pressure terms.

A direct consequence of the pseudo-fourth order nature of the scheme is that
it is not non-diffusive, i.e. the global variance of a tracer is not preserved using
CEN4. Furthermore, it must be used in conjunction with an explicit diffusion
operator to produce a sensible solution. As in CEN2 case, the time-stepping is
performed using a leapfrog scheme in conjunction with an Asselin time-filter, so T
in (5.3) is the now tracer.

At a T -grid cell adjacent to a boundary (coastline, bottom and surface), an
additional hypothesis must be made to evaluate τ cen4

u . This hypothesis usually
reduces the order of the scheme. Here we choose to set the gradient of T across
the boundary to zero. Alternative conditions can be specified, such as a reduction
to a second order scheme for these near boundary grid points.

5.1.2 Flux Corrected Transport schemes (FCT) (ln traadv fct=true)

The Flux Corrected Transport schemes (FCT) is used when ln traadv fct = true.
Its order (2nd or 4th) can be chosen independently on horizontal (iso-level) and
vertical direction by setting nn fct h and nn fct v to 2 or 4. FCT implementation
can be found in the traadv fct.F90 module.

In FCT formulation, the tracer at velocity points is evaluated using a combina-
tion of an upstream and a centred scheme. For example, in the i-direction :

τupsu =

{
Ti+1 if ui+1/2 < 0

Ti if ui+1/2 ≥ 0

τ fctu = τupsu + cu (τ cenu − τupsu)

(5.4)

5.1. Tracer Advection (traadv) 75

where cu is a flux limiter function taking values between 0 and 1. The FCT order
is the one of the centred scheme used (i.e. it depends on the setting of nn fct h and
nn fct v. There exist many ways to define cu, each corresponding to a different
FCT scheme. The one chosen in NEMO is described in Zalesak [1979]. cu only
departs from 1 when the advective term produces a local extremum in the tracer
field. The resulting scheme is quite expensive but positive. It can be used on both
active and passive tracers. A comparison of FCT-2 with MUSCL and a MPDATA
scheme can be found in Lévy et al. [2001].

An additional option has been added controlled by nn fct zts. By setting this
integer to a value larger than zero, a 2nd order FCT scheme is used on both hori-
zontal and vertical direction, but on the latter, a split-explicit time stepping is used,
with a number of sub-timestep equals to nn fct zts. This option can be useful when
the size of the timestep is limited by vertical advection [Lemarié et al. 2015]. Note
that in this case, a similar split-explicit time stepping should be used on vertical
advection of momentum to insure a better stability (see §6.2.3).

For stability reasons (see §3), τ cenu is evaluated in (5.4) using the now tracer
while τupsu is evaluated using the before tracer. In other words, the advective part
of the scheme is time stepped with a leap-frog scheme while a forward scheme is
used for the diffusive part.

5.1.3 Monotone Upstream Scheme for Conservative Laws (MUSCL) (ln traadv mus=T)

The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when
ln traadv mus = true. MUSCL implementation can be found in the traadv mus.F90
module.

MUSCL has been first implemented in NEMO by Lévy et al. [2001]. In its for-
mulation, the tracer at velocity points is evaluated assuming a linear tracer variation
between two T -points (Fig.5.1). For example, in the i-direction :

τmusu =

τi +

1

2

(
1−

ui+1/2 ∆t

e1u

)
∂̃iτ if ui+1/2 > 0

τi+1/2 +
1

2

(
1 +

ui+1/2 ∆t

e1u

)
∂̃i+1/2τ if ui+1/2 < 0

(5.5)

where ∂̃iτ is the slope of the tracer on which a limitation is imposed to ensure the
positive character of the scheme.

The time stepping is performed using a forward scheme, that is the before tracer
field is used to evaluate τmusu .

For an ocean grid point adjacent to land and where the ocean velocity is di-
rected toward land, an upstream flux is used. This choice ensure the positive char-
acter of the scheme. In addition, fluxes round a grid-point where a runoff is applied
can optionally be computed using upstream fluxes (ln mus ups = true).

76 Ocean Tracers (TRA)

5.1.4 Upstream-Biased Scheme (UBS) (ln traadv ubs=true)

The Upstream-Biased Scheme (UBS) is used when ln traadv ubs = true. UBS
implementation can be found in the traadv mus.F90 module.

The UBS scheme, often called UP3, is also known as the Cell Averaged QUICK
scheme (Quadratic Upstream Interpolation for Convective Kinematics). It is an
upstream-biased third order scheme based on an upstream-biased parabolic inter-
polation. For example, in the i-direction :

τubsu = T
i+1/2 − 1

6

{
τ”i if ui+1/2 > 0

τ”i+1 if ui+1/2 < 0
(5.6)

where τ”i = δi
[
δi+1/2 [τ]

]
.

This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error
[Shchepetkin and McWilliams 2005]. The overall performance of the advection
scheme is similar to that reported in Farrow and Stevens [1995]. It is a relatively
good compromise between accuracy and smoothness. Nevertheless the scheme is
not positive, meaning that false extrema are permitted, but the amplitude of such
are significantly reduced over the centred second or fourth order method. therefore
it is not recommended that it should be applied to a passive tracer that requires
positivity.

The intrinsic diffusion of UBS makes its use risky in the vertical direction
where the control of artificial diapycnal fluxes is of paramount importance [Shchep-
etkin and McWilliams 2005, Demange 2014]. Therefore the vertical flux is eval-
uated using either a 2nd order FCT scheme or a 4th order COMPACT scheme
(nn cen v=2 or 4).

For stability reasons (see §3), the first term in (5.6) (which corresponds to a
second order centred scheme) is evaluated using the now tracer (centred in time)
while the second term (which is the diffusive part of the scheme), is evaluated using
the before tracer (forward in time). This choice is discussed by Webb et al. [1998]
in the context of the QUICK advection scheme. UBS and QUICK schemes only
differ by one coefficient. Replacing 1/6 with 1/8 in (5.6) leads to the QUICK ad-
vection scheme [Webb et al. 1998]. This option is not available through a namelist
parameter, since the 1/6 coefficient is hard coded. Nevertheless it is quite easy to
make the substitution in the traadv ubs.F90 module and obtain a QUICK scheme.

Note that it is straightforward to rewrite (5.6) as follows:

τubsu = τ cen4
u +

1

12

{
+ τ”i if ui+1/2 > 0

− τ”i+1 if ui+1/2 < 0
(5.7)

or equivalently

ui+1/2 τ
ubs
u = ui+1/2 T −

1

6
δi
[
δi+1/2[T]

] i+1/2

−1

2
|u|i+1/2

1

6
δi+1/2[τ”i] (5.8)

5.2. Tracer Lateral Diffusion (traldf) 77

(5.7) has several advantages. Firstly, it clearly reveals that the UBS scheme is
based on the fourth order scheme to which an upstream-biased diffusion term is
added. Secondly, this emphasises that the 4th order part (as well as the 2nd order
part as stated above) has to be evaluated at the now time step using (5.6). Thirdly,
the diffusion term is in fact a biharmonic operator with an eddy coefficient which
is simply proportional to the velocity: Almu = 1

12 e1u
3 |u|. Note the current version

of NEMO uses the computationally more efficient formulation (5.6).

5.1.5 QUICKEST scheme (QCK) (ln traadv qck=true)

The Quadratic Upstream Interpolation for Convective Kinematics with Estimated
Streaming Terms (QUICKEST) scheme proposed by Leonard [1979] is used when
ln traadv qck = true. QUICKEST implementation can be found in the traadv qck.F90
module.

QUICKEST is the third order Godunov scheme which is associated with the
ULTIMATE QUICKEST limiter [Leonard 1991]. It has been implemented in
NEMO by G. Reffray (MERCATOR-ocean) and can be found in the traadv qck.F90
module. The resulting scheme is quite expensive but positive. It can be used on
both active and passive tracers. However, the intrinsic diffusion of QCK makes its
use risky in the vertical direction where the control of artificial diapycnal fluxes is
of paramount importance. Therefore the vertical flux is evaluated using the CEN2
scheme. This no longer guarantees the positivity of the scheme. The use of FCT in
the vertical direction (as for the UBS case) should be implemented to restore this
property.

5.2 Tracer Lateral Diffusion (traldf.F90)
!---
&namtra_ldf ! lateral diffusion scheme for tracers (default: NO selection)
!---

! ! Operator type:
ln_traldf_NONE = .false. ! No explicit diffusion
ln_traldf_lap = .false. ! laplacian operator
ln_traldf_blp = .false. ! bilaplacian operator
!
! ! Direction of action:
ln_traldf_lev = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential)
ln_traldf_iso = .false. ! iso-neutral (standard operator)
ln_traldf_triad = .false. ! iso-neutral (triad operator)
!
! ! iso-neutral options:
ln_traldf_msc = .false. ! Method of Stabilizing Correction (both operators)
rn_slpmax = 0.01 ! slope limit (both operators)
ln_triad_iso = .false. ! pure horizontal mixing in ML (triad only)
rn_sw_triad = 1 ! =1 switching triad ; =0 all 4 triads used (triad only)
ln_botmix_triad = .false. ! lateral mixing on bottom (triad only)
!
! ! Coefficients:
nn_aht_ijk_t = 0 ! space/time variation of eddy coef
! ! =-20 (=-30) read in eddy_diffusivity_2D.nc (..._3D.nc) file
! ! = 0 constant
! ! = 10 F(k) =ldf_c1d
! ! = 20 F(i,j) =ldf_c2d
! ! = 21 F(i,j,t) =Treguier et al. JPO 1997 formulation
! ! = 30 F(i,j,k) =ldf_c2d * ldf_c1d
! ! = 31 F(i,j,k,t)=F(local velocity and grid-spacing)
rn_aht_0 = 2000. ! lateral eddy diffusivity (lap. operator) [m2/s]
rn_bht_0 = 1.e+12 ! lateral eddy diffusivity (bilap. operator) [m4/s]

78 Ocean Tracers (TRA)

/

Options are defined through the namtra ldf namelist variables. They are re-
grouped in four items, allowing to specify (i) the type of operator used (none,
laplacian, bilaplacian), (ii) the direction along which the operator acts (iso-level,
horizontal, iso-neutral), (iii) some specific options related to the rotated operators
(i.e. non-iso-level operator), and (iv) the specification of eddy diffusivity coeffi-
cient (either constant or variable in space and time). Item (iv) will be described in
Chap.9 . The direction along which the operators act is defined through the slope
between this direction and the iso-level surfaces. The slope is computed in the
ldfslp.F90 module and will also be described in Chap. 9.

The lateral diffusion of tracers is evaluated using a forward scheme, i.e. the
tracers appearing in its expression are the before tracers in time, except for the
pure vertical component that appears when a rotation tensor is used. This latter
component is solved implicitly together with the vertical diffusion term (see §3).
When ln traldf msc = true, a Method of Stabilizing Correction is used in which the
pure vertical component is split into an explicit and an implicit part [Lemarié et al.
2012].

5.2.1 Type of operator (ln traldf NONE, ln traldf lap, or ln traldf blp = true)

Three operator options are proposed and, one and only one of them must be se-
lected:

ln traldf NONE = true : no operator selected, the lateral diffusive tendency will
not be applied to the tracer equation. This option can be used when the se-
lected advection scheme is diffusive enough (MUSCL scheme for example).

ln traldf lap = true : a laplacian operator is selected. This harmonic operator
takes the following expression: L(T) = ∇ · Aht ∇T , where the gradient
operates along the selected direction (see §5.2.2), and Aht is the eddy diffu-
sivity coefficient expressed in m2/s (see Chap. 9).

ln traldf blp = true : a bilaplacian operator is selected. This biharmonic operator
takes the following expression: B = −L (L(T)) = −∇ · b∇ (∇ · b∇T)
where the gradient operats along the selected direction, and b2 = Bht is the
eddy diffusivity coefficient expressed in m4/s (see Chap. 9). In the code,
the bilaplacian operator is obtained by calling the laplacian twice.

Both laplacian and bilaplacian operators ensure the total tracer variance de-
crease. Their primary role is to provide strong dissipation at the smallest scale
supported by the grid while minimizing the impact on the larger scale features.
The main difference between the two operators is the scale selectiveness. The bi-
laplacian damping time (i.e. its spin down time) scales like λ−4 for disturbances of
wavelength λ (so that short waves damped more rapidelly than long ones), whereas
the laplacian damping time scales only like λ−2.

5.2. Tracer Lateral Diffusion (traldf) 79

5.2.2 Direction of action (ln traldf lev, ... hor, ... iso, or ... triad = true)

The choice of a direction of action determines the form of operator used. The oper-
ator is a simple (re-entrant) laplacian acting in the (i,j) plane when iso-level option
is used (ln traldf lev = true) or when a horizontal (i.e. geopotential) operator is
demanded in z-coordinate (ln traldf hor and ln zco equal true). The associated
code can be found in the traldf lap blp.F90 module. The operator is a rotated (re-
entrant) laplacian when the direction along which it acts does not coincide with
the iso-level surfaces, that is when standard or triad iso-neutral option is used
(ln traldf iso or ln traldf triad equals true, see traldf iso.F90 or traldf triad.F90
module, resp.), or when a horizontal (i.e. geopotential) operator is demanded in s-
coordinate (ln traldf hor and ln sco equal true) 2. In that case, a rotation is applied
to the gradient(s) that appears in the operator so that diffusive fluxes acts on the
three spatial direction.

The resulting discret form of the three operators (one iso-level and two rotated
one) is given in the next two sub-sections.

5.2.3 Iso-level (bi-)laplacian operator (ln traldf iso)

The laplacian diffusion operator acting along the model (i,j)-surfaces is given by:

DlT
t =

1

bt

(
δi

[
AlTu

e2u e3u

e1u
δi+1/2[T]

]
+ δj

[
AlTv

e1v e3v

e2v
δj+1/2[T]

])
(5.9)

where bt=e1t e2t e3t is the volume of T -cells and where zero diffusive fluxes is
assumed across solid boundaries, first (and third in bilaplacian case) horizontal
tracer derivative are masked. It is implemented in the traldf lap subroutine found
in the traldf lap.F90 module. The module also contains traldf blp, the subroutine
calling twice traldf lap in order to compute the iso-level bilaplacian operator.

It is a horizontal operator (i.e. acting along geopotential surfaces) in the z-
coordinate with or without partial steps, but is simply an iso-level operator in the s-
coordinate. It is thus used when, in addition to ln traldf lap or ln traldf blp = true,
we have ln traldf lev = true or ln traldf hor = ln zco = true. In both cases, it
significantly contributes to diapycnal mixing. It is therefore never recommended,
even when using it in the bilaplacian case.

Note that in the partial step z-coordinate (ln zps=true), tracers in horizontally
adjacent cells are located at different depths in the vicinity of the bottom. In this
case, horizontal derivatives in (5.9) at the bottom level require a specific treatment.
They are calculated in the zpshde.F90 module, described in §5.9.

2In this case, the standard iso-neutral operator will be automatically selected

80 Ocean Tracers (TRA)

5.2.4 Standard and triad (bi-)laplacian operator (traldf iso.F90, traldf triad.F90))

Standard rotated (bi-)laplacian operator (traldf iso.F90)

The general form of the second order lateral tracer subgrid scale physics (2.34)
takes the following semi-discrete space form in z- and s-coordinates:

DlT
T =

1

bt

{
δi

[
AlTu

(
e2u e3u

e1u
δi+1/2[T]− e2u r1u δk+1/2[T]

i+1/2,k
)]

+ δj

[
AlTv

(
e1v e3v

e2v
δj+1/2[T]− e1v r2v δk+1/2[T]

j+1/2,k
)]

+ δk

[
AlTw

(
− e2w r1w δi+1/2[T]

i,k+1/2

− e1w r2w δj+1/2[T]
j,k+1/2

+
e1w e2w

e3w

(
r2

1w + r2
2w

)
δk+1/2[T]

)] }
(5.10)

where bt=e1t e2t e3t is the volume of T -cells, r1 and r2 are the slopes between the
surface of computation (z- or s-surfaces) and the surface along which the diffusion
operator acts (i.e. horizontal or iso-neutral surfaces). It is thus used when, in ad-
dition to ln traldf lap= true, we have ln traldf iso=true, or both ln traldf hor=true
and ln zco=true. The way these slopes are evaluated is given in §9.1. At the sur-
face, bottom and lateral boundaries, the turbulent fluxes of heat and salt are set to
zero using the mask technique (see §8.1).

The operator in (5.10) involves both lateral and vertical derivatives. For numer-
ical stability, the vertical second derivative must be solved using the same implicit
time scheme as that used in the vertical physics (see §5.3). For computer effi-
ciency reasons, this term is not computed in the traldf iso.F90 module, but in the
trazdf.F90 module where, if iso-neutral mixing is used, the vertical mixing coeffi-
cient is simply increased by e1w e2w

e3w

(
r2

1w + r2
2w

)
.

This formulation conserves the tracer but does not ensure the decrease of the
tracer variance. Nevertheless the treatment performed on the slopes (see §9) allows
the model to run safely without any additional background horizontal diffusion
[Guilyardi et al. 2001].

Note that in the partial step z-coordinate (ln zps=true), the horizontal deriva-
tives at the bottom level in (5.10) require a specific treatment. They are calculated
in module zpshde, described in §5.9.

Triad rotated (bi-)laplacian operator (ln traldf triad)

If the Griffies triad scheme is employed (ln traldf triad=true ; see App.D)
An alternative scheme developed by Griffies et al. [1998] which ensures tracer

variance decreases is also available in NEMO (ln traldf grif =true). A complete
description of the algorithm is given in App.D.

5.3. Tracer Vertical Diffusion (trazdf) 81

The lateral fourth order bilaplacian operator on tracers is obtained by applying
(5.9) twice. The operator requires an additional assumption on boundary condi-
tions: both first and third derivative terms normal to the coast are set to zero.

The lateral fourth order operator formulation on tracers is obtained by applying
(5.10) twice. It requires an additional assumption on boundary conditions: first and
third derivative terms normal to the coast, normal to the bottom and normal to the
surface are set to zero.

Option for the rotated operators

ln traldf msc = Method of Stabilizing Correction (both operators)
rn slpmax = slope limit (both operators)
ln triad iso = pure horizontal mixing in ML (triad only)
rn sw triad =1 switching triad ; =0 all 4 triads used (triad only)
ln botmix triad = lateral mixing on bottom (triad only)

5.3 Tracer Vertical Diffusion (trazdf.F90)
!---
&namzdf ! vertical physics (default: NO selection)
!---

! ! type of vertical closure (required)
ln_zdfcst = .false. ! constant mixing
ln_zdfric = .false. ! local Richardson dependent formulation (T => fill namzdf_ric)
ln_zdftke = .false. ! Turbulent Kinetic Energy closure (T => fill namzdf_tke)
ln_zdfgls = .false. ! Generic Length Scale closure (T => fill namzdf_gls)
ln_zdfosm = .false. ! OSMOSIS BL closure (T => fill namzdf_osm)
!
! ! convection
ln_zdfevd = .false. ! enhanced vertical diffusion

nn_evdm = 0 ! apply on tracer (=0) or on tracer and momentum (=1)
rn_evd = 100. ! mixing coefficient [m2/s]

ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency

!
ln_zdfddm = .false. ! double diffusive mixing

rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio

!
! ! gravity wave-driven vertical mixing
ln_zdfiwm = .false. ! internal wave-induced mixing (T => fill namzdf_iwm)
ln_zdfswm = .false. ! surface wave-induced mixing (T => ln_wave=ln_sdw=T)
!
! ! coefficients
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if ln_zdfcst=F)
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if ln_zdfcst=F)
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)

/

Options are defined through the namzdf namelist variables. The formulation of
the vertical subgrid scale tracer physics is the same for all the vertical coordinates,
and is based on a laplacian operator. The vertical diffusion operator given by (2.34)
takes the following semi-discrete space form:

DvT
T =

1

e3t
δk

[
AvTw
e3w

δk+1/2[T]

]
DvS
T =

1

e3t
δk

[
AvSw
e3w

δk+1/2[S]

] (5.11)

82 Ocean Tracers (TRA)

where AvTw and AvSw are the vertical eddy diffusivity coefficients on temperature
and salinity, respectively. Generally, AvTw = AvSw except when double diffusive
mixing is parameterised (i.e. key zdfddm is defined). The way these coefficients
are evaluated is given in §10 (ZDF). Furthermore, when iso-neutral mixing is used,
both mixing coefficients are increased by e1w e2w

e3w

(
r2

1w + r2
2w

)
to account for the

vertical second derivative of (5.10).
At the surface and bottom boundaries, the turbulent fluxes of heat and salt must

be specified. At the surface they are prescribed from the surface forcing and added
in a dedicated routine (see §5.4.1), whilst at the bottom they are set to zero for
heat and salt unless a geothermal flux forcing is prescribed as a bottom boundary
condition (see §5.4.3).

The large eddy coefficient found in the mixed layer together with high vertical
resolution implies that in the case of explicit time stepping (ln zdfexp=true) there
would be too restrictive a constraint on the time step. Therefore, the default im-
plicit time stepping is preferred for the vertical diffusion since it overcomes the
stability constraint. A forward time differencing scheme (ln zdfexp=true) using a
time splitting technique (nn zdfexp > 1) is provided as an alternative. Namelist
variables ln zdfexp and nn zdfexp apply to both tracers and dynamics.

5.4 External Forcing

5.4.1 Surface boundary condition (trasbc.F90)

The surface boundary condition for tracers is implemented in a separate module
(trasbc.F90) instead of entering as a boundary condition on the vertical diffusion
operator (as in the case of momentum). This has been found to enhance readability
of the code. The two formulations are completely equivalent; the forcing terms in
trasbc are the surface fluxes divided by the thickness of the top model layer.

Due to interactions and mass exchange of water (Fmass) with other Earth sys-
tem components (i.e. atmosphere, sea-ice, land), the change in the heat and salt
content of the surface layer of the ocean is due both to the heat and salt fluxes
crossing the sea surface (not linked with Fmass) and to the heat and salt content of
the mass exchange. They are both included directly in Qns, the surface heat flux,
and Fsalt, the surface salt flux (see §7 for further details). By doing this, the forcing
formulation is the same for any tracer (including temperature and salinity).

The surface module (sbcmod.F90, see §7) provides the following forcing fields
(used on tracers):
•Qns, the non-solar part of the net surface heat flux that crosses the sea surface

(i.e. the difference between the total surface heat flux and the fraction of the short
wave flux that penetrates into the water column, see §5.4.2) plus the heat content
associated with of the mass exchange with the atmosphere and lands.
• sfx, the salt flux resulting from ice-ocean mass exchange (freezing, melting,

ridging...)

5.4. External Forcing 83

• emp, the mass flux exchanged with the atmosphere (evaporation minus pre-
cipitation) and possibly with the sea-ice and ice-shelves.
• rnf, the mass flux associated with runoff (see §7.9 for further detail of how it

acts on temperature and salinity tendencies)
• fwfisf, the mass flux associated with ice shelf melt, (see §7.10 for further

details on how the ice shelf melt is computed and applied).
The surface boundary condition on temperature and salinity is applied as fol-

lows:

F T =
1

ρo Cp e3t|k=1

Qns
t

FS =
1

ρo e3t|k=1

sfxt
(5.12)

where xt means that x is averaged over two consecutive time steps (t−∆t/2 and
t+ ∆t/2). Such time averaging prevents the divergence of odd and even time step
(see §3).

In the linear free surface case (ln linssh = true), an additional term has to be
added on both temperature and salinity. On temperature, this term remove the heat
content associated with mass exchange that has been added to Qns. On salinity,
this term mimics the concentration/dilution effect that would have resulted from a
change in the volume of the first level. The resulting surface boundary condition is
applied as follows:

F T =
1

ρo Cp e3t|k=1

(Qns − emp Cp T |k=1)
t

FS =
1

ρo e3t|k=1

(sfx− emp S|k=1)
t

(5.13)

Note that an exact conservation of heat and salt content is only achieved with non-
linear free surface. In the linear free surface case, there is a small imbalance.
The imbalance is larger than the imbalance associated with the Asselin time filter
[Leclair and Madec 2009]. This is the reason why the modified filter is not applied
in the linear free surface case (see §3).

5.4.2 Solar Radiation Penetration (traqsr.F90)
!---
&namtra_qsr ! penetrative solar radiation (ln_traqsr =T)
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_chl =’chlorophyll’, -1 , ’CHLA’ , .true. , .true. , ’yearly’ , ’’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the runoff files
ln_qsr_rgb = .true. ! RGB (Red-Green-Blue) light penetration
ln_qsr_2bd = .false. ! 2 bands light penetration
ln_qsr_bio = .false. ! bio-model light penetration
nn_chldta = 1 ! RGB : Chl data (=1) or cst value (=0)
rn_abs = 0.58 ! RGB & 2 bands: fraction of light (rn_si1)
rn_si0 = 0.35 ! RGB & 2 bands: shortess depth of extinction
rn_si1 = 23.0 ! 2 bands: longest depth of extinction

/

84 Ocean Tracers (TRA)

Options are defined through the namtra qsr namelist variables. When the pen-
etrative solar radiation option is used (ln flxqsr=true), the solar radiation penetrates
the top few tens of meters of the ocean. If it is not used (ln flxqsr=false) all the heat
flux is absorbed in the first ocean level. Thus, in the former case a term is added
to the time evolution equation of temperature (2.1d) and the surface boundary con-
dition is modified to take into account only the non-penetrative part of the surface
heat flux:

∂T

∂t
= . . .+

1

ρoCp e3

∂I

∂k

Qns = QTotal −Qsr
(5.14)

where Qsr is the penetrative part of the surface heat flux (i.e. the shortwave radi-
ation) and I is the downward irradiance (I|z=η = Qsr). The additional term in
(5.14) is discretized as follows:

1

ρoCp e3

∂I

∂k
≡ 1

ρoCp e3t
δk [Iw] (5.15)

The shortwave radiation,Qsr, consists of energy distributed across a wide spec-
tral range. The ocean is strongly absorbing for wavelengths longer than 700 nm
and these wavelengths contribute to heating the upper few tens of centimetres.
The fraction of Qsr that resides in these almost non-penetrative wavebands, R, is
∼ 58% (specified through namelist parameter rn abs). It is assumed to penetrate
the ocean with a decreasing exponential profile, with an e-folding depth scale, ξ0,
of a few tens of centimetres (typically ξ0 = 0.35 m set as rn si0 in the namtra qsr
namelist). For shorter wavelengths (400-700 nm), the ocean is more transparent,
and solar energy propagates to larger depths where it contributes to local heating.
The way this second part of the solar energy penetrates into the ocean depends on
which formulation is chosen. In the simple 2-waveband light penetration scheme
(ln qsr 2bd=true) a chlorophyll-independent monochromatic formulation is cho-
sen for the shorter wavelengths, leading to the following expression [Paulson and
Simpson 1977]:

I(z) = Qsr

[
Re−z/ξ0 + (1−R) e−z/ξ1

]
(5.16)

where ξ1 is the second extinction length scale associated with the shorter wave-
lengths. It is usually chosen to be 23 m by setting the rn si0 namelist parameter.
The set of default values (ξ0, ξ1,R) corresponds to a Type I water in Jerlov’s (1968)
classification (oligotrophic waters).

Such assumptions have been shown to provide a very crude and simplistic rep-
resentation of observed light penetration profiles (Morel [1988], see also Fig.5.2).
Light absorption in the ocean depends on particle concentration and is spectrally
selective. Morel [1988] has shown that an accurate representation of light pen-
etration can be provided by a 61 waveband formulation. Unfortunately, such a

5.4. External Forcing 85

model is very computationally expensive. Thus, Lengaigne et al. [2007] have con-
structed a simplified version of this formulation in which visible light is split into
three wavebands: blue (400-500 nm), green (500-600 nm) and red (600-700nm).
For each wave-band, the chlorophyll-dependent attenuation coefficient is fitted to
the coefficients computed from the full spectral model of Morel [1988] (as modi-
fied by Morel and Maritorena [2001]), assuming the same power-law relationship.
As shown in Fig.5.2, this formulation, called RGB (Red-Green-Blue), reproduces
quite closely the light penetration profiles predicted by the full spectal model, but
with much greater computational efficiency. The 2-bands formulation does not
reproduce the full model very well.

The RGB formulation is used when ln qsr rgb=true. The RGB attenuation
coefficients (i.e. the inverses of the extinction length scales) are tabulated over 61
nonuniform chlorophyll classes ranging from 0.01 to 10 g.Chl/L (see the routine
trc oce rgb in trc oce.F90 module). Four types of chlorophyll can be chosen in the
RGB formulation:

nn chdta=0 a constant 0.05 g.Chl/L value everywhere ;

nn chdta=1 an observed time varying chlorophyll deduced from satellite surface
ocean color measurement spread uniformly in the vertical direction ;

nn chdta=2 same as previous case except that a vertical profile of chlorophyl is
used. Following Morel and Berthon [1989], the profile is computed from the
local surface chlorophyll value ;

ln qsr bio=true simulated time varying chlorophyll by TOP biogeochemical model.
In this case, the RGB formulation is used to calculate both the phytoplankton
light limitation in PISCES or LOBSTER and the oceanic heating rate.

The trend in (5.15) associated with the penetration of the solar radiation is added to
the temperature trend, and the surface heat flux is modified in routine traqsr.F90.

When the z-coordinate is preferred to the s-coordinate, the depth of w−levels
does not significantly vary with location. The level at which the light has been
totally absorbed (i.e. it is less than the computer precision) is computed once, and
the trend associated with the penetration of the solar radiation is only added down
to that level. Finally, note that when the ocean is shallow (< 200 m), part of the
solar radiation can reach the ocean floor. In this case, we have chosen that all
remaining radiation is absorbed in the last ocean level (i.e. I is masked).

5.4.3 Bottom Boundary Condition (trabbc.F90)
!---
&nambbc ! bottom temperature boundary condition (default: NO)
!---
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_qgh =’geothermal_heating.nc’, -12. , ’heatflow’, .false. , .true. , ’yearly’ , ’’ , ’’ , ’’
!
ln_trabbc = .false. ! Apply a geothermal heating at the ocean bottom
nn_geoflx = 2 ! geothermal heat flux: = 0 no flux

! = 1 constant flux

86 Ocean Tracers (TRA)

0

40

80

120

)
m(htpe

D

20 180100 260
I(z) (W/m2)

20 180100 260
I(z)(W/m 2)

(a)Chl=0.05 mg.m-3 Chl=0.5 mg.m-3 (b)

Figure 5.2: Penetration profile of the downward solar irradiance calculated by four
models. Two waveband chlorophyll-independent formulation (blue), a chlorophyll-
dependent monochromatic formulation (green), 4 waveband RGB formulation (red),
61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of (a)
Chl=0.05 mg/m3 and (b) Chl=0.5 mg/m3. From Lengaigne et al. [2007].

100E 160W 60W
L ongitude

50S

0

50N

L
at

it
u

d
e

40.00 80.00 120.00 160.00 200.00 240.00 280.00 320.00 360.00 400.00

Geothermal Heat flux (mW/m2)

Figure 5.3: Geothermal Heat flux (in mW.m−2) used by Emile-Geay and Madec
[2009]. It is inferred from the age of the sea floor and the formulae of Stein and Stein
[1992].

! = 2 variable flux (read in geothermal_heating.nc in mW/m2)
rn_geoflx_cst = 86.4e-3 ! Constant value of geothermal heat flux [W/m2]
cn_dir = ’./’ ! root directory for the location of the runoff files

/

Usually it is assumed that there is no exchange of heat or salt through the

5.5. Bottom Boundary Layer (trabbl.F90 - key trabbl) 87

ocean bottom, i.e. a no flux boundary condition is applied on active tracers at
the bottom. This is the default option in NEMO, and it is implemented using the
masking technique. However, there is a non-zero heat flux across the seafloor
that is associated with solid earth cooling. This flux is weak compared to surface
fluxes (a mean global value of ∼ 0.1 W/m2 [Stein and Stein 1992]), but it warms
systematically the ocean and acts on the densest water masses. Taking this flux into
account in a global ocean model increases the deepest overturning cell (i.e. the one
associated with the Antarctic Bottom Water) by a few Sverdrups [Emile-Geay and
Madec 2009].

Options are defined through the namtra bbc namelist variables. The presence
of geothermal heating is controlled by setting the namelist parameter ln trabbc
to true. Then, when nn geoflx is set to 1, a constant geothermal heating is intro-
duced whose value is given by the nn geoflx cst, which is also a namelist parameter.
When nn geoflx is set to 2, a spatially varying geothermal heat flux is introduced
which is provided in the geothermal heating.nc NetCDF file (Fig.5.3) [Emile-Geay
and Madec 2009].

5.5 Bottom Boundary Layer (trabbl.F90 - key trabbl)
!---
&nambbl ! bottom boundary layer scheme (default: NO)
!---

ln_trabbl = .false. ! Bottom Boundary Layer parameterisation flag
nn_bbl_ldf = 1 ! diffusive bbl (=1) or not (=0)
nn_bbl_adv = 0 ! advective bbl (=1/2) or not (=0)
rn_ahtbbl = 1000. ! lateral mixing coefficient in the bbl [m2/s]
rn_gambbl = 10. ! advective bbl coefficient [s]

/

Options are defined through the nambbl namelist variables. In a z-coordinate
configuration, the bottom topography is represented by a series of discrete steps.
This is not adequate to represent gravity driven downslope flows. Such flows arise
either downstream of sills such as the Strait of Gibraltar or Denmark Strait, where
dense water formed in marginal seas flows into a basin filled with less dense water,
or along the continental slope when dense water masses are formed on a continental
shelf. The amount of entrainment that occurs in these gravity plumes is critical in
determining the density and volume flux of the densest waters of the ocean, such
as Antarctic Bottom Water, or North Atlantic Deep Water. z-coordinate models
tend to overestimate the entrainment, because the gravity flow is mixed vertically
by convection as it goes ”downstairs” following the step topography, sometimes
over a thickness much larger than the thickness of the observed gravity plume. A
similar problem occurs in the s-coordinate when the thickness of the bottom level
varies rapidly downstream of a sill [Willebrand et al. 2001], and the thickness of
the plume is not resolved.

The idea of the bottom boundary layer (BBL) parameterisation, first introduced
by Beckmann and Döscher [1997], is to allow a direct communication between
two adjacent bottom cells at different levels, whenever the densest water is located
above the less dense water. The communication can be by a diffusive flux (diffusive
BBL), an advective flux (advective BBL), or both. In the current implementation

88 Ocean Tracers (TRA)

of the BBL, only the tracers are modified, not the velocities. Furthermore, it only
connects ocean bottom cells, and therefore does not include all the improvements
introduced by Campin and Goosse [1999].

5.5.1 Diffusive Bottom Boundary layer (nn bbl ldf=1)

When applying sigma-diffusion (key trabbl defined and nn bbl ldf set to 1), the
diffusive flux between two adjacent cells at the ocean floor is given by

Fσ = Aσl ∇σT (5.17)

with ∇σ the lateral gradient operator taken between bottom cells, and Aσl the lat-
eral diffusivity in the BBL. Following Beckmann and Döscher [1997], the latter is
prescribed with a spatial dependence, i.e. in the conditional form

Aσl (i, j, t) =

Abbl if ∇σρ · ∇H < 0

0 otherwise
(5.18)

where Abbl is the BBL diffusivity coefficient, given by the namelist parameter
rn ahtbbl and usually set to a value much larger than the one used for lateral mix-
ing in the open ocean. The constraint in (5.18) implies that sigma-like diffusion
only occurs when the density above the sea floor, at the top of the slope, is larger
than in the deeper ocean (see green arrow in Fig.5.4). In practice, this constraint
is applied separately in the two horizontal directions, and the density gradient in
(5.18) is evaluated with the log gradient formulation:

∇σρ/ρ = α∇σT + β∇σS (5.19)

where ρ, α and β are functions of T σ, Sσ and Hσ, the along bottom mean temper-
ature, salinity and depth, respectively.

5.5.2 Advective Bottom Boundary Layer (nn bbl adv= 1 or 2)

When applying an advective BBL (nn bbl adv = 1 or 2), an overturning circula-
tion is added which connects two adjacent bottom grid-points only if dense water
overlies less dense water on the slope. The density difference causes dense water
to move down the slope.

nn bbl adv = 1 : the downslope velocity is chosen to be the Eulerian ocean
velocity just above the topographic step (see black arrow in Fig.5.4) [Beckmann
and Döscher 1997]. It is a conditional advection, that is, advection is allowed only
if dense water overlies less dense water on the slope (i.e. ∇σρ · ∇H < 0) and if
the velocity is directed towards greater depth (i.e. U · ∇H > 0).

nn bbl adv = 2 : the downslope velocity is chosen to be proportional to ∆ρ,
the density difference between the higher cell and lower cell densities [Campin and
Goosse 1999]. The advection is allowed only if dense water overlies less dense

5.5. Bottom Boundary Layer (trabbl.F90 - key trabbl) 89

Τ i
kup

Τ i+1
kdwn

e3u
i
kup

i+1
kdwn

hT
i

hT
i+1

partial cell

i i+1i+1/2

e3u

Figure 5.4: Advective/diffusive Bottom Boundary Layer. The BBL parameterisation
is activated when ρikup is larger than ρi+1

kdnw. Red arrows indicate the additional over-
turning circulation due to the advective BBL. The transport of the downslope flow is
defined either as the transport of the bottom ocean cell (black arrow), or as a function
of the along slope density gradient. The green arrow indicates the diffusive BBL flux
directly connecting kup and kdwn ocean bottom cells. connection

water on the slope (i.e.∇σρ ·∇H < 0). For example, the resulting transport of the
downslope flow, here in the i-direction (Fig.5.4), is simply given by the following
expression:

utrbbl = γ g
∆ρ

ρo
e1u min

(
e3ukup, e3ukdwn

)
(5.20)

where γ, expressed in seconds, is the coefficient of proportionality provided as
rn gambbl, a namelist parameter, and kup and kdwn are the vertical index of the
higher and lower cells, respectively. The parameter γ should take a different value
for each bathymetric step, but for simplicity, and because no direct estimation of
this parameter is available, a uniform value has been assumed. The possible values
for γ range between 1 and 10 s [Campin and Goosse 1999].

Scalar properties are advected by this additional transport (utrbbl, v
tr
bbl) using the

90 Ocean Tracers (TRA)

upwind scheme. Such a diffusive advective scheme has been chosen to mimic the
entrainment between the downslope plume and the surrounding water at interme-
diate depths. The entrainment is replaced by the vertical mixing implicit in the
advection scheme. Let us consider as an example the case displayed in Fig.5.4
where the density at level (i, kup) is larger than the one at level (i, kdwn). The
advective BBL scheme modifies the tracer time tendency of the ocean cells near
the topographic step by the downslope flow (5.21), the horizontal (5.22) and the
upward (5.23) return flows as follows:

∂tT
do
kdw ≡ ∂tT dokdw +

utrbbl
bt
do
kdw

(
T shkup − T dokdw

)
(5.21)

∂tT
sh
kup ≡ ∂tT shkup +

utrbbl
bt
sh
kup

(
T dokup − T shkup

)
(5.22)

and for k = kdw − 1, ..., kup :

∂tT
do
k ≡ ∂tSdok +

utrbbl
bt
do
k

(
T dok+1 − T shk

)
(5.23)

where bt is the T -cell volume.
Note that the BBL transport, (utrbbl, v

tr
bbl), is available in the model outputs. It

has to be used to compute the effective velocity as well as the effective overturning
circulation.

5.6 Tracer damping (tradmp.F90)
!---
&namtra_dmp ! tracer: T & S newtonian damping (default: NO)
!---

ln_tradmp = .true. ! add a damping term
nn_zdmp = 0 ! vertical shape =0 damping throughout the water column
! ! =1 no damping in the mixing layer (kz criteria)
! ! =2 no damping in the mixed layer (rho crieria)
cn_resto =’resto.nc’ ! Name of file containing restoration coeff. field (use dmp_tools to create this)

/

In some applications it can be useful to add a Newtonian damping term into the
temperature and salinity equations:

∂T

∂t
= · · · − γ (T − To)

∂S

∂t
= · · · − γ (S − So)

(5.24)

where γ is the inverse of a time scale, and To and So are given temperature and
salinity fields (usually a climatology). Options are defined through the namtra dmp
namelist variables. The restoring term is added when the namelist parameter ln tradmp
is set to true. It also requires that both ln tsd init and ln tsd tradmp are set to
true in namtsd namelist as well as sn tem and sn sal structures are correctly set
(i.e. that To and So are provided in input files and read using fldread.F90, see

5.6. Tracer damping (tradmp) 91

§7.2.1). The restoring coefficient γ is a three-dimensional array read in during the
tra dmp init routine. The file name is specified by the namelist variable cn resto.
The DMP TOOLS tool is provided to allow users to generate the netcdf file.

The two main cases in which (5.24) is used are (a) the specification of the
boundary conditions along artificial walls of a limited domain basin and (b) the
computation of the velocity field associated with a given T -S field (for example
to build the initial state of a prognostic simulation, or to use the resulting velocity
field for a passive tracer study). The first case applies to regional models that have
artificial walls instead of open boundaries. In the vicinity of these walls, γ takes
large values (equivalent to a time scale of a few days) whereas it is zero in the
interior of the model domain. The second case corresponds to the use of the robust
diagnostic method [Sarmiento and Bryan 1982]. It allows us to find the velocity
field consistent with the model dynamics whilst having a T , S field close to a given
climatological field (To, So).

The robust diagnostic method is very efficient in preventing temperature drift
in intermediate waters but it produces artificial sources of heat and salt within the
ocean. It also has undesirable effects on the ocean convection. It tends to prevent
deep convection and subsequent deep-water formation, by stabilising the water
column too much.

The namelist parameter nn zdmp sets whether the damping should be applied in
the whole water column or only below the mixed layer (defined either on a density
or So criterion). It is common to set the damping to zero in the mixed layer as the
adjustment time scale is short here [Madec et al. 1996].

5.6.1 Generating resto.nc using DMP TOOLS

DMP TOOLS can be used to generate a netcdf file containing the restoration co-
efficient γ. Note that in order to maintain bit comparison with previous NEMO
versions DMP TOOLS must be compiled and run on the same machine as the
NEMO model. A mesh mask.nc file for the model configuration is required as an
input. This can be generated by carrying out a short model run with the namelist
parameter nn msh set to 1. The namelist parameter ln tradmp will also need to be
set to .false. for this to work. The nam dmp create namelist in the DMP TOOLS
directory is used to specify options for the restoration coefficient.

cp cfg, cp cpz, jp cfg and jperio specify the model configuration being used
and should be the same as specified in namcfg. The variable lzoom is used to
specify that the damping is being used as in case a above to provide boundary
conditions to a zoom configuration. In the case of the arctic or antarctic zoom
configurations this includes some specific treatment. Otherwise damping is applied
to the 6 grid points along the ocean boundaries. The open boundaries are specified
by the variables lzoom n, lzoom e, lzoom s, lzoom w in the nam zoom dmp name
list.

92 Ocean Tracers (TRA)

The remaining switch namelist variables determine the spatial variation of the
restoration coefficient in non-zoom configurations. ln full field specifies that new-
tonian damping should be applied to the whole model domain. ln med red seas
specifies grid specific restoration coefficients in the Mediterranean Sea for the
ORCA4, ORCA2 and ORCA05 configurations. If ln old 31 lev code is set then
the depth variation of the coeffients will be specified as a function of the model
number. This option is included to allow backwards compatability of the ORCA2
reference configurations with previous model versions. ln coast specifies that the
restoration coefficient should be reduced near to coastlines. This option only has
an effect if ln full field is true. ln zero top layer specifies that the restoration co-
efficient should be zero in the surface layer. Finally ln custom specifies that the
custom module will be called. This module is contained in the file custom.F90 and
can be edited by users. For example damping could be applied in a specific region.

The restoration coefficient can be set to zero in equatorial regions by specifying
a positive value of nn hdmp. Equatorward of this latitude the restoration coefficient
will be zero with a smooth transition to the full values of a 10◦latitud band. This
is often used because of the short adjustment time scale in the equatorial region
[Reverdin et al. 1991, Fujio and Imasato 1991, Marti 1992]. The time scale associ-
ated with the damping depends on the depth as a hyperbolic tangent, with rn surf
as surface value, rn bot as bottom value and a transition depth of rn dep.

5.7 Tracer time evolution (tranxt.F90)
!---
&namdom ! time and space domain
!---

ln_linssh = .false. ! =T linear free surface ==>> model level are fixed in time
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
!
nn_msh = 0 ! create (>0) a mesh file or not (=0)
rn_isfhmin = 1.00 ! treshold (m) to discriminate grounding ice to floating ice
!
rn_rdt = 5760. ! time step for the dynamics and tracer
rn_atfp = 0.1 ! asselin time filter parameter
!
ln_crs = .false. ! Logical switch for coarsening module (T => fill namcrs)

/

Options are defined through the namdom namelist variables. The general frame-
work for tracer time stepping is a modified leap-frog scheme [Leclair and Madec
2009], i.e. a three level centred time scheme associated with a Asselin time filter
(cf. §3.5):

(e3tT)t+∆t = (e3tT)t−∆t
f +2 ∆t et3t RHSt

(e3tT)tf = (e3tT)t +γ
[
(e3tT)t−∆t

f − 2(e3tT)t + (e3tT)t+∆t
]

−γ∆t
[
Qt+∆t/2 −Qt−∆t/2

] (5.25)

where RHS is the right hand side of the temperature equation, the subscript f
denotes filtered values, γ is the Asselin coefficient, and S is the total forcing ap-
plied on T (i.e. fluxes plus content in mass exchanges). γ is initialized as rn atfp

5.8. Equation of State (eosbn2) 93

(namelist parameter). Its default value is rn atfp=10−3. Note that the forcing
correction term in the filter is not applied in linear free surface (lk vvl=false) (see
§5.4.1. Not also that in constant volume case, the time stepping is performed on T ,
not on its content, e3tT .

When the vertical mixing is solved implicitly, the update of the next tracer
fields is done in module trazdf.F90. In this case only the swapping of arrays and
the Asselin filtering is done in the tranxt.F90 module.

In order to prepare for the computation of the next time step, a swap of tracer
arrays is performed: T t−∆t = T t and T t = Tf .

5.8 Equation of State (eosbn2.F90)
!---
&nameos ! ocean Equation Of Seawater (default: NO)
!---

ln_teos10 = .false. ! = Use TEOS-10
ln_eos80 = .false. ! = Use EOS80
ln_seos = .false. ! = Use S-EOS (simplified Eq.)

!
! ! S-EOS coefficients (ln_seos=T):
! ! rd(T,S,Z)*rau0 = -a0*(1+.5*lambda*dT+mu*Z+nu*dS)*dT+b0*dS
rn_a0 = 1.6550e-1 ! thermal expension coefficient
rn_b0 = 7.6554e-1 ! saline expension coefficient
rn_lambda1 = 5.9520e-2 ! cabbeling coeff in Tˆ2 (=0 for linear eos)
rn_lambda2 = 7.4914e-4 ! cabbeling coeff in Sˆ2 (=0 for linear eos)
rn_mu1 = 1.4970e-4 ! thermobaric coeff. in T (=0 for linear eos)
rn_mu2 = 1.1090e-5 ! thermobaric coeff. in S (=0 for linear eos)
rn_nu = 2.4341e-3 ! cabbeling coeff in T*S (=0 for linear eos)

/

5.8.1 Equation Of Seawater (nn eos = -1, 0, or 1)

The Equation Of Seawater (EOS) is an empirical nonlinear thermodynamic rela-
tionship linking seawater density, ρ, to a number of state variables, most typically
temperature, salinity and pressure. Because density gradients control the pressure
gradient force through the hydrostatic balance, the equation of state provides a
fundamental bridge between the distribution of active tracers and the fluid dynam-
ics. Nonlinearities of the EOS are of major importance, in particular influencing
the circulation through determination of the static stability below the mixed layer,
thus controlling rates of exchange between the atmosphere and the ocean interior
[Roquet et al. 2015a]. Therefore an accurate EOS based on either the 1980 equa-
tion of state (EOS-80, UNESCO [1983]) or TEOS-10 [IOC et al. 2010] standards
should be used anytime a simulation of the real ocean circulation is attempted
[Roquet et al. 2015a]. The use of TEOS-10 is highly recommended because (i) it is
the new official EOS, (ii) it is more accurate, being based on an updated database of
laboratory measurements, and (iii) it uses Conservative Temperature and Absolute
Salinity (instead of potential temperature and practical salinity for EOS-980, both
variables being more suitable for use as model variables [IOC et al. 2010, Graham
and McDougall 2013]. EOS-80 is an obsolescent feature of the NEMO system,
kept only for backward compatibility. For process studies, it is often convenient
to use an approximation of the EOS. To that purposed, a simplified EOS (S-EOS)
inspired by Vallis [2006] is also available.

94 Ocean Tracers (TRA)

In the computer code, a density anomaly, da = ρ/ρo − 1, is computed, with
ρo a reference density. Called rau0 in the code, ρo is set in phycst.F90 to a value
of 1, 026 Kg/m3. This is a sensible choice for the reference density used in a
Boussinesq ocean climate model, as, with the exception of only a small percentage
of the ocean, density in the World Ocean varies by no more than 2% from that
value [Gill 1982].

Options are defined through the nameos namelist variables, and in particular
nn eos which controls the EOS used (=-1 for TEOS10 ; =0 for EOS-80 ; =1 for
S-EOS).

nn eos= −1 the polyTEOS10-bsq equation of seawater [Roquet et al. 2015b] is
used. The accuracy of this approximation is comparable to the TEOS-10
rational function approximation, but it is optimized for a boussinesq fluid
and the polynomial expressions have simpler and more computationally effi-
cient expressions for their derived quantities which make them more adapted
for use in ocean models. Note that a slightly higher precision polynomial
form is now used replacement of the TEOS-10 rational function approxi-
mation for hydrographic data analysis [IOC et al. 2010]. A key point is
that conservative state variables are used: Absolute Salinity (unit: g/kg, no-
tation: SA) and Conservative Temperature (unit: ◦C, notation: Θ). The
pressure in decibars is approximated by the depth in meters. With TEOS10,
the specific heat capacity of sea water, Cp, is a constant. It is set to Cp =
3991.86795711963 J Kg−1 ◦K−1, according to IOC et al. [2010].

Choosing polyTEOS10-bsq implies that the state variables used by the model
are Θ and SA. In particular, the initial state deined by the user have to
be given as Conservative Temperature and Absolute Salinity. In addition,
setting ln useCT to true convert the Conservative SST to potential SST prior
to either computing the air-sea and ice-sea fluxes (forced mode) or sending
the SST field to the atmosphere (coupled mode).

nn eos= 0 the polyEOS80-bsq equation of seawater is used. It takes the same
polynomial form as the polyTEOS10, but the coefficients have been opti-
mized to accurately fit EOS80 (Roquet, personal comm.). The state vari-
ables used in both the EOS80 and the ocean model are: the Practical Salinity
((unit: psu, notation: Sp)) and Potential Temperature (unit: ◦C, notation: θ).
The pressure in decibars is approximated by the depth in meters. With thsi
EOS, the specific heat capacity of sea water, Cp, is a function of temperature,
salinity and pressure [UNESCO 1983]. Nevertheless, a severe assumption
is made in order to have a heat content (CpTp) which is conserved by the
model: Cp is set to a constant value, the TEOS10 value.

nn eos= 1 a simplified EOS (S-EOS) inspired by Vallis [2006] is chosen, the coef-
ficients of which has been optimized to fit the behavior of TEOS10 (Roquet,
personal comm.) (see also Roquet et al. [2015a]). It provides a simplistic
linear representation of both cabbeling and thermobaricity effects which is

5.8. Equation of State (eosbn2) 95

Table 5.1: Standard value of S-EOS coefficients.

coeff. computer name S-EOS description
a0 rn a0 1.6550 10−1 linear thermal expansion coeff.
b0 rn b0 7.6554 10−1 linear haline expansion coeff.
λ1 rn lambda1 5.9520 10−2 cabbeling coeff. in T 2

λ2 rn lambda2 5.4914 10−4 cabbeling coeff. in S2

ν rn nu 2.4341 10−3 cabbeling coeff. in T S
µ1 rn mu1 1.4970 10−4 thermobaric coeff. in T
µ2 rn mu2 1.1090 10−5 thermobaric coeff. in S

enough for a proper treatment of the EOS in theoretical studies [Roquet et al.
2015a]. With such an equation of state there is no longer a distinction be-
tween conservative and potential temperature, as well as between absolute
and practical salinity. S-EOS takes the following expression:

da(T, S, z) = (− a0 (1 + 0.5 λ1 Ta + µ1 z) ∗ Ta
+ b0 (1− 0.5 λ2 Sa − µ2 z) ∗ Sa
− ν Ta Sa) / ρo

with Ta = T − 10 ; Sa = S − 35 ; ρo = 1026 Kg/m3

(5.26)

where the computer name of the coefficients as well as their standard value
are given in 5.1. In fact, when choosing S-EOS, various approximation of
EOS can be specified simply by changing the associated coefficients. Set-
ting to zero the two thermobaric coefficients (µ1, µ2) remove thermobaric
effect from S-EOS. setting to zero the three cabbeling coefficients (λ1, λ2,
ν) remove cabbeling effect from S-EOS. Keeping non-zero value to a0 and
b0 provide a linear EOS function of T and S.

5.8.2 Brunt-Väisälä Frequency (nn eos = 0, 1 or 2)

An accurate computation of the ocean stability (i.e. of N , the brunt-Väisälä fre-
quency) is of paramount importance as determine the ocean stratification and is
used in several ocean parameterisations (namely TKE, GLS, Richardson number
dependent vertical diffusion, enhanced vertical diffusion, non-penetrative convec-
tion, tidal mixing parameterisation, iso-neutral diffusion). In particular, N2 has to
be computed at the local pressure (pressure in decibar being approximated by the
depth in meters). The expression for N2 is given by:

N2 =
g

e3w

(
β δk+1/2[S]− α δk+1/2[T]

)
(5.27)

where (T, S) = (Θ, SA) for TEOS10, = (θ, Sp) for TEOS-80, or = (T, S) for
S-EOS, and, α and β are the thermal and haline expansion coefficients. The coef-

96 Ocean Tracers (TRA)

ficients are a polynomial function of temperature, salinity and depth which expres-
sion depends on the chosen EOS. They are computed through eos rab, a FORTRAN

function that can be found in eosbn2.F90.

5.8.3 Freezing Point of Seawater

The freezing point of seawater is a function of salinity and pressure [UNESCO
1983]:

Tf (S, p) =
(
−0.0575 + 1.710523 10−3

√
S − 2.154996 10−4 S

)
S

−7.53 10−3 p
(5.28)

(5.28) is only used to compute the potential freezing point of sea water (i.e.
referenced to the surface p = 0), thus the pressure dependent terms in (5.28) (last
term) have been dropped. The freezing point is computed through eos fzp, a FOR-
TRAN function that can be found in eosbn2.F90.

5.9 Horizontal Derivative in zps-coordinate (zpshde.F90)

With partial cells (ln zps=true) at bottom and top (ln isfcav=true), in general, trac-
ers in horizontally adjacent cells live at different depths. Horizontal gradients of
tracers are needed for horizontal diffusion (traldf.F90 module) and the hydrostatic
pressure gradient calculations (dynhpg.F90 module). The partial cell properties at
the top (ln isfcav=true) are computed in the same way as for the bottom. So, only
the bottom interpolation is explained below.

Before taking horizontal gradients between the tracers next to the bottom, a
linear interpolation in the vertical is used to approximate the deeper tracer as if it
actually lived at the depth of the shallower tracer point (Fig. 5.5). For example, for
temperature in the i-direction the needed interpolated temperature, T̃ , is:

T̃ =

T i+1 −
(
ei+1

3w − ei3w
)

ei+1
3w

δkT
i+1 if ei+1

3w ≥ e
i
3w

T i +

(
ei+1

3w − ei3w
)

ei3w
δkT

i+1 if ei+1
3w < ei3w

and the resulting forms for the horizontal difference and the horizontal average

5.9. Horizontal Derivative in zps-coordinate (zpshde) 97

∼

Τ i
k-1

Τ i
k

Τ i+1
k-1

Τ i+1
k

Τ i+1
k

e3w i
k

e3w i+1
k

ZT
i
k ZT

i+1
k

partial cell

i i+1i+1/2

Figure 5.5: Discretisation of the horizontal difference and average of tracers in the
z-partial step coordinate (ln zps=true) in the case (e3wi+1

k − e3wi
k) > 0. A linear

interpolation is used to estimate T̃ i+1
k , the tracer value at the depth of the shallower

tracer point of the two adjacent bottom T -points. The horizontal difference is then
given by: δi+1/2Tk = T̃ i+1

k − T i
k and the average by: T

i+1/2

k = (T̃
i+1/2
k − T i

k)/2.

98 Ocean Tracers (TRA)

value of T at a U -point are:

δi+1/2T =

T̃ − T i if ei+1

3w ≥ ei3w

T i+1 − T̃ if ei+1
3w < ei3w

T
i+1/2

=

(T̃ − T i)/2 if ei+1

3w ≥ ei3w

(T i+1 − T̃)/2 if ei+1
3w < ei3w

(5.29)

The computation of horizontal derivative of tracers as well as of density is per-
formed once for all at each time step in zpshde.F90 module and stored in shared
arrays to be used when needed. It has to be emphasized that the procedure used
to compute the interpolated density, ρ̃, is not the same as that used for T and S.
Instead of forming a linear approximation of density, we compute ρ̃ from the inter-
polated values of T and S, and the pressure at a u-point (in the equation of state
pressure is approximated by depth, see §5.8.1) :

ρ̃ = ρ(T̃ , S̃, zu) where zu = min
(
zi+1
T , ziT

)
(5.30)

This is a much better approximation as the variation of ρ with depth (and thus
pressure) is highly non-linear with a true equation of state and thus is badly approx-
imated with a linear interpolation. This approximation is used to compute both the
horizontal pressure gradient (§6.4) and the slopes of neutral surfaces (§9.1)

Note that in almost all the advection schemes presented in this Chapter, both
averaging and differencing operators appear. Yet (5.29) has not been used in these
schemes: in contrast to diffusion and pressure gradient computations, no correc-
tion for partial steps is applied for advection. The main motivation is to preserve
the domain averaged mean variance of the advected field when using the 2nd order
centred scheme. Sensitivity of the advection schemes to the way horizontal aver-
ages are performed in the vicinity of partial cells should be further investigated in
the near future.

6 Ocean Dynamics (DYN)

Contents
6.1 Sea surface height and diagnostic variables (η, ζ, χ, w) . . . 101

6.1.1 Horizontal divergence and relative vorticity (divcur) . 101

6.1.2 Sea surface height evolution and vertical velocity (ssh-
wzv) . 101

6.2 Coriolis and Advection: vector invariant form 102
6.2.1 Vorticity term (dynvor) 102

6.2.2 Kinetic Energy Gradient term (dynkeg) 106

6.2.3 Vertical advection term (dynzad) 106

6.3 Coriolis and Advection: flux form 107
6.3.1 Coriolis plus curvature metric terms (dynvor) 107

6.3.2 Flux form Advection term (dynadv) 107

6.4 Hydrostatic pressure gradient (dynhpg) 109
6.4.1 z-coordinate with full step (ln dynhpg zco) 109

6.4.2 z-coordinate with partial step (ln dynhpg zps) 110

6.4.3 s- and z-s-coordinates 110

6.4.4 Ice shelf cavity . 111

6.4.5 Time-scheme (ln dynhpg imp) 111

6.5 Surface pressure gradient (dynspg) 112
6.5.1 Explicit free surface (key dynspg exp) 113

6.5.2 Split-Explicit free surface (key dynspg ts) 113

6.5.3 Filtered free surface (key dynspg flt) 116

6.6 Lateral diffusion term (dynldf) 116
6.6.1 Iso-level laplacian operator (ln dynldf lap) 117

100 Ocean Dynamics (DYN)

6.6.2 Rotated laplacian operator (ln dynldf iso) 117
6.6.3 Iso-level bilaplacian operator (ln dynldf bilap) 118

6.7 Vertical diffusion term (dynzdf.F90) 118
6.8 External Forcings . 120
6.9 Time evolution term (dynnxt) 120

Using the representation described in Chapter 4, several semi-discrete space
forms of the dynamical equations are available depending on the vertical coordinate
used and on the conservation properties of the vorticity term. In all the equations
presented here, the masking has been omitted for simplicity. One must be aware
that all the quantities are masked fields and that each time an average or difference
operator is used, the resulting field is multiplied by a mask.

The prognostic ocean dynamics equation can be summarized as follows:

NXT =

(
VOR + KEG + ZAD

COR + ADV

)
+ HPG + SPG + LDF + ZDF

NXT stands for next, referring to the time-stepping. The first group of terms on
the rhs of this equation corresponds to the Coriolis and advection terms that are
decomposed into either a vorticity part (VOR), a kinetic energy part (KEG) and a
vertical advection part (ZAD) in the vector invariant formulation, or a Coriolis and
advection part (COR+ADV) in the flux formulation. The terms following these
are the pressure gradient contributions (HPG, Hydrostatic Pressure Gradient, and
SPG, Surface Pressure Gradient); and contributions from lateral diffusion (LDF)
and vertical diffusion (ZDF), which are added to the rhs in the dynldf.F90 and
dynzdf.F90 modules. The vertical diffusion term includes the surface and bottom
stresses. The external forcings and parameterisations require complex inputs (sur-
face wind stress calculation using bulk formulae, estimation of mixing coefficients)
that are carried out in modules SBC, LDF and ZDF and are described in Chapters
7, 9 and 10, respectively.

In the present chapter we also describe the diagnostic equations used to com-
pute the horizontal divergence, curl of the velocities (divcur module) and the ver-
tical velocity (wzvmod module).

The different options available to the user are managed by namelist variables.
For term ttt in the momentum equations, the logical namelist variables are ln dynttt xxx,
where xxx is a 3 or 4 letter acronym corresponding to each optional scheme. If a
CPP key is used for this term its name is key ttt. The corresponding code can be
found in the dynttt xxx module in the DYN directory, and it is usually computed in
the dyn ttt xxx subroutine.

The user has the option of extracting and outputting each tendency term from
the 3D momentum equations (key trddyn defined), as described in Chap.15. Fur-
thermore, the tendency terms associated with the 2D barotropic vorticity balance
(when key trdvor is defined) can be derived from the 3D terms.

6.1. Sea surface height and diagnostic variables (η, ζ, χ, w) 101

6.1 Sea surface height and diagnostic variables (η, ζ , χ, w)

6.1.1 Horizontal divergence and relative vorticity (divcur.F90)

The vorticity is defined at an f -point (i.e. corner point) as follows:

ζ =
1

e1f e2f

(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
(6.1)

The horizontal divergence is defined at a T -point. It is given by:

χ =
1

e1t e2t e3t
(δi [e2u e3u u] + δj [e1v e3v v]) (6.2)

Note that although the vorticity has the same discrete expression in z- and
s-coordinates, its physical meaning is not identical. ζ is a pseudo vorticity along s-
surfaces (only pseudo because (u, v) are still defined along geopotential surfaces,
but are not necessarily defined at the same depth).

The vorticity and divergence at the before step are used in the computation of
the horizontal diffusion of momentum. Note that because they have been calcu-
lated prior to the Asselin filtering of the before velocities, the before vorticity and
divergence arrays must be included in the restart file to ensure perfect restartability.
The vorticity and divergence at the now time step are used for the computation of
the nonlinear advection and of the vertical velocity respectively.

6.1.2 Horizontal divergence and relative vorticity (sshwzv.F90)

The sea surface height is given by :

∂η

∂t
≡ 1

e1te2t

∑
k

{δi [e2u e3u u] + δj [e1v e3v v]} − emp
ρw

≡
∑
k

χ e3t −
emp
ρw

(6.3)

where emp is the surface freshwater budget (evaporation minus precipitation), ex-
pressed in Kg/m2/s (which is equal to mm/s), and ρw=1,035 Kg/m3 is the reference
density of sea water (Boussinesq approximation). If river runoff is expressed as a
surface freshwater flux (see §7) then emp can be written as the evaporation mi-
nus precipitation, minus the river runoff. The sea-surface height is evaluated using
exactly the same time stepping scheme as the tracer equation (5.25): a leapfrog
scheme in combination with an Asselin time filter, i.e. the velocity appearing in
(6.3) is centred in time (now velocity). This is of paramount importance. Replac-
ing T by the number 1 in the tracer equation and summing over the water column

102 Ocean Dynamics (DYN)

must lead to the sea surface height equation otherwise tracer content will not be
conserved [Griffies et al. 2001, Leclair and Madec 2009].

The vertical velocity is computed by an upward integration of the horizontal
divergence starting at the bottom, taking into account the change of the thickness
of the levels :

w|kb−1/2 = 0 where kb is the level just above the sea floor

w|k+1/2 = w|k−1/2 + e3t|k χ|k −
1

2∆t

(
et+1

3t

∣∣
k
− et−1

3t

∣∣
k

) (6.4)

In the case of a non-linear free surface (key vvl), the top vertical velocity is
−emp/ρw, as changes in the divergence of the barotropic transport are absorbed
into the change of the level thicknesses, re-orientated downward. In the case of
a linear free surface, the time derivative in (6.4) disappears. The upper boundary
condition applies at a fixed level z = 0. The top vertical velocity is thus equal to
the divergence of the barotropic transport (i.e. the first term in the right-hand-side
of (6.3)).

Note also that whereas the vertical velocity has the same discrete expression in
z- and s-coordinates, its physical meaning is not the same: in the second case, w is
the velocity normal to the s-surfaces. Note also that the k-axis is re-orientated
downwards in the FORTRAN code compared to the indexing used in the semi-
discrete equations such as (6.4) (see §4.1.3).

6.2 Coriolis and Advection: vector invariant form
!---
&namdyn_adv ! formulation of the momentum advection (default: NO selection)
!---

ln_dynadv_NONE= .false. ! linear dynamics (no momentum advection)
ln_dynadv_vec = .false. ! vector form - 2nd centered scheme

nn_dynkeg = 0 ! grad(KE) scheme: =0 C2 ; =1 Hollingsworth correction
ln_dynadv_cen2= .false. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme

/

The vector invariant form of the momentum equations is the one most often
used in applications of the NEMO ocean model. The flux form option (see next
section) has been present since version 2. Options are defined through the nam-
dyn adv namelist variables Coriolis and momentum advection terms are evaluated
using a leapfrog scheme, i.e. the velocity appearing in these expressions is centred
in time (now velocity). At the lateral boundaries either free slip, no slip or partial
slip boundary conditions are applied following Chap.8.

6.2.1 Vorticity term (dynvor.F90)
!---
&namdyn_vor ! Vorticity / Coriolis scheme (default: NO)
!---

ln_dynvor_ene = .false. ! enstrophy conserving scheme
ln_dynvor_ens = .false. ! energy conserving scheme
ln_dynvor_mix = .false. ! mixed scheme
ln_dynvor_een = .false. ! energy & enstrophy scheme

nn_een_e3f = 1 ! e3f = masked averaging of e3t divided by 4 (=0) or by the sum of mask (=1)
ln_dynvor_msk = .false. ! vorticity multiplied by fmask (=T) or not (=F) (all vorticity schemes) ! PLEASE DO NOT ACTIVATE

/

6.2. Coriolis and Advection: vector invariant form 103

Options are defined through the namdyn vor namelist variables. Four dis-
cretisations of the vorticity term (ln dynvor xxx=true) are available: conserving
potential enstrophy of horizontally non-divergent flow (ENS scheme) ; conserv-
ing horizontal kinetic energy (ENE scheme) ; conserving potential enstrophy for
the relative vorticity term and horizontal kinetic energy for the planetary vortic-
ity term (MIX scheme) ; or conserving both the potential enstrophy of horizon-
tally non-divergent flow and horizontal kinetic energy (EEN scheme) (see Ap-
pendix C.5). In the case of ENS, ENE or MIX schemes the land sea mask may
be slightly modified to ensure the consistency of vorticity term with analytical
equations (ln dynvor con=true). The vorticity terms are all computed in dedicated
routines that can be found in the dynvor.F90 module.

Enstrophy conserving scheme (ln dynvor ens=true)

In the enstrophy conserving case (ENS scheme), the discrete formulation of the
vorticity term provides a global conservation of the enstrophy ([(ζ+f)/e3f]2 in s-
coordinates) for a horizontally non-divergent flow (i.e. χ=0), but does not conserve
the total kinetic energy. It is given by:

+

1

e1u

(
ζ + f

e3f

) i

(e1v e3v v)
i,j+1/2

− 1

e2v

(
ζ + f

e3f

) j

(e2u e3u u)
i+1/2,j

(6.5)

Energy conserving scheme (ln dynvor ene=true)

The kinetic energy conserving scheme (ENE scheme) conserves the global kinetic
energy but not the global enstrophy. It is given by:

+

1

e1u

(
ζ + f

e3f

)
(e1v e3v v)

i+1/2
j

− 1

e2v

(
ζ + f

e3f

)
(e2u e3u u)

j+1/2
i

(6.6)

Mixed energy/enstrophy conserving scheme (ln dynvor mix=true)

For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of
the two previous schemes is used. It consists of the ENS scheme (C.13) for the rel-
ative vorticity term, and of the ENE scheme (6.6) applied to the planetary vorticity

104 Ocean Dynamics (DYN)

term.
+

1

e1u

(
ζ

e3f

) i

(e1v e3v v)
i,j+1/2

− 1

e1u

(
f

e3f

)
(e1v e3v v)

i+1/2
j

− 1

e2v

(
ζ

e3f

)j
(e2u e3u u)

i+1/2,j
+

1

e2v

(
f

e3f

)
(e2u e3u u)

j+1/2
i

(6.7)

Energy and enstrophy conserving scheme (ln dynvor een=true)

In both the ENS and ENE schemes, it is apparent that the combination of i and j
averages of the velocity allows for the presence of grid point oscillation structures
that will be invisible to the operator. These structures are computational modes
that will be at least partly damped by the momentum diffusion operator (i.e. the
subgrid-scale advection), but not by the resolved advection term. The ENS and
ENE schemes therefore do not contribute to dump any grid point noise in the hori-
zontal velocity field. Such noise would result in more noise in the vertical velocity
field, an undesirable feature. This is a well-known characteristic of C-grid dis-
cretization where u and v are located at different grid points, a price worth paying
to avoid a double averaging in the pressure gradient term as in the B-grid.

A very nice solution to the problem of double averaging was proposed by
Arakawa and Hsu [1990]. The idea is to get rid of the double averaging by consid-
ering triad combinations of vorticity. It is noteworthy that this solution is conceptu-
ally quite similar to the one proposed by [Griffies et al. 1998] for the discretization
of the iso-neutral diffusion operator (see App.C).

The Arakawa and Hsu [1990] vorticity advection scheme for a single layer
is modified for spherical coordinates as described by Arakawa and Lamb [1981]
to obtain the EEN scheme. First consider the discrete expression of the potential
vorticity, q, defined at an f -point:

q =
ζ + f

e3f
(6.8)

where the relative vorticity is defined by (6.1), the Coriolis parameter is given by
f = 2 Ω sinϕf and the layer thickness at f -points is:

e3f = e3t
i+1/2,j+1/2 (6.9)

A key point in (6.9) is how the averaging in the i- and j- directions is made.
It uses the sum of masked t-point vertical scale factor divided either by the sum
of the four t-point masks (nn een e3f = 1), or just by 4 (nn een e3f = true). The
latter case preserves the continuity of e3f when one or more of the neighbouring
e3t tends to zero and extends by continuity the value of e3f into the land areas.
This case introduces a sub-grid-scale topography at f-points (with a systematic re-
duction of e3f when a model level intercept the bathymetry) that tends to reinforce

6.2. Coriolis and Advection: vector invariant form 105

T
F
V

i i+1

j

j+1

j-1

i i+1

j

j+1

i-1

Figure 6.1: Triads used in the energy and enstrophy conserving scheme (een) for
u-component (upper panel) and v-component (lower panel).

the topostrophy of the flow (i.e. the tendency of the flow to follow the isobaths)
[Penduff et al. 2007].

Next, the vorticity triads, ijQ
ip
jp

can be defined at a T -point as the following triad
combinations of the neighbouring potential vorticities defined at f-points (Fig. 6.1):

j
iQ

ip
jp

=
1

12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(6.10)

where the indices ip and kp take the values: ip = −1/2 or 1/2 and jp = −1/2 or
1/2.

106 Ocean Dynamics (DYN)

Finally, the vorticity terms are represented as:
+q e3 v ≡ +

1

e1u

∑
ip, kp

i+1/2−ip
j Qip

jp
(e1v e3v v)

i+1/2−ip
j+jp

−q e3 u ≡ −
1

e2v

∑
ip, kp

i
j+1/2−jpQ

ip
jp

(e2u e3u u)
i+ip
j+1/2−jp

(6.11)

This EEN scheme in fact combines the conservation properties of the ENS
and ENE schemes. It conserves both total energy and potential enstrophy in the
limit of horizontally nondivergent flow (i.e. χ=0) (see Appendix C.5). Applied
to a realistic ocean configuration, it has been shown that it leads to a significant
reduction of the noise in the vertical velocity field [Le Sommer et al. 2009]. Fur-
thermore, used in combination with a partial steps representation of bottom topog-
raphy, it improves the interaction between current and topography, leading to a
larger topostrophy of the flow [Barnier et al. 2006, Penduff et al. 2007].

6.2.2 Kinetic Energy Gradient term (dynkeg.F90)

As demonstrated in Appendix C, there is a single discrete formulation of the kinetic
energy gradient term that, together with the formulation chosen for the vertical
advection (see below), conserves the total kinetic energy:

− 1

2 e1u
δi+1/2

[
u2

i
+ v2

j
]

− 1

2 e2v
δj+1/2

[
u2

i
+ v2

j
] (6.12)

6.2.3 Vertical advection term (dynzad.F90)

The discrete formulation of the vertical advection, together with the formulation
chosen for the gradient of kinetic energy (KE) term, conserves the total kinetic
energy. Indeed, the change of KE due to the vertical advection is exactly balanced
by the change of KE due to the gradient of KE (see Appendix C).

− 1

e1u e2u e3u
e1t e2t w i+1/2 δk+1/2 [u]

k

− 1

e1v e2v e3v
e1t e2t w j+1/2 δk+1/2 [u]

k
(6.13)

When ln dynzad zts = true, a split-explicit time stepping with 5 sub-timesteps is
used on the vertical advection term. This option can be useful when the value of
the timestep is limited by vertical advection [Lemarié et al. 2015]. Note that in this
case, a similar split-explicit time stepping should be used on vertical advection of
tracer to ensure a better stability, an option which is only available with a TVD
scheme (see ln traadv tvd zts in §5.1.2).

6.3. Coriolis and Advection: flux form 107

6.3 Coriolis and Advection: flux form
!---
&namdyn_adv ! formulation of the momentum advection (default: NO selection)
!---

ln_dynadv_NONE= .false. ! linear dynamics (no momentum advection)
ln_dynadv_vec = .false. ! vector form - 2nd centered scheme

nn_dynkeg = 0 ! grad(KE) scheme: =0 C2 ; =1 Hollingsworth correction
ln_dynadv_cen2= .false. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme

/

Options are defined through the namdyn adv namelist variables. In the flux
form (as in the vector invariant form), the Coriolis and momentum advection terms
are evaluated using a leapfrog scheme, i.e. the velocity appearing in their expres-
sions is centred in time (now velocity). At the lateral boundaries either free slip, no
slip or partial slip boundary conditions are applied following Chap.8.

6.3.1 Coriolis plus curvature metric terms (dynvor.F90)

In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis
parameter has been modified to account for the ”metric” term. This altered Coriolis
parameter is thus discretised at f -points. It is given by:

f +
1

e1e2

(
v
∂e2

∂i
− u∂e1

∂j

)
≡ f +

1

e1fe2f

(
vi+1/2δi+1/2 [e2u]− uj+1/2δj+1/2 [e1u]

)
(6.14)

Any of the (C.13), (6.6) and (C.15) schemes can be used to compute the prod-
uct of the Coriolis parameter and the vorticity. However, the energy-conserving
scheme (C.15) has exclusively been used to date. This term is evaluated using a
leapfrog scheme, i.e. the velocity is centred in time (now velocity).

6.3.2 Flux form Advection term (dynadv.F90)

The discrete expression of the advection term is given by :

1

e1u e2u e3u

(
δi+1/2

[
e2u e3u u

i ut
]

+ δj

[
e1u e3u v

i+1/2 uf

]
+δk

[
e1w e2w w

i+1/2 uuw

])
1

e1v e2v e3v

(
δi

[
e2u e3u u

j+1/2 vf

]
+ δj+1/2

[
e1u e3u v

i vt
]

+δk

[
e1w e2w w

j+1/2 vvw

])
(6.15)

Two advection schemes are available: a 2nd order centered finite difference
scheme, CEN2, or a 3rd order upstream biased scheme, UBS. The latter is de-
scribed in Shchepetkin and McWilliams [2005]. The schemes are selected using

108 Ocean Dynamics (DYN)

the namelist logicals ln dynadv cen2 and ln dynadv ubs. In flux form, the schemes
differ by the choice of a space and time interpolation to define the value of u and v
at the centre of each face of u- and v-cells, i.e. at the T -, f -, and uw-points for u
and at the f -, T - and vw-points for v.

2nd order centred scheme (cen2) (ln dynadv cen2=true)

In the centered 2nd order formulation, the velocity is evaluated as the mean of the
two neighbouring points :{

ucen2
T = ui ucen2

F = uj+1/2 ucen2
uw = uk+1/2

vcen2
F = vi+1/2 vcen2

F = vj vcen2
vw = vk+1/2

(6.16)

The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive
(i.e. it may create false extrema). It is therefore notoriously noisy and must be used
in conjunction with an explicit diffusion operator to produce a sensible solution.
The associated time-stepping is performed using a leapfrog scheme in conjunction
with an Asselin time-filter, so u and v are the now velocities.

Upstream Biased Scheme (UBS) (ln dynadv ubs=true)

The UBS advection scheme is an upstream biased third order scheme based on
an upstream-biased parabolic interpolation. For example, the evaluation of uubsT is
done as follows:

uubsT = ui − 1

6

{
u”i−1/2 if e2u e3u u

i > 0

u”i+1/2 if e2u e3u u
i < 0

(6.17)

where u”i+1/2 = δi+1/2 [δi [u]]. This results in a dissipatively dominant (i.e.
hyper-diffusive) truncation error [Shchepetkin and McWilliams 2005]. The over-
all performance of the advection scheme is similar to that reported in Farrow
and Stevens [1995]. It is a relatively good compromise between accuracy and
smoothness. It is not a positive scheme, meaning that false extrema are permit-
ted. But the amplitudes of the false extrema are significantly reduced over those
in the centred second order method. As the scheme already includes a diffusion
component, it can be used without explicit lateral diffusion on momentum (i.e.
ln dynldf lap=ln dynldf bilap=false), and it is recommended to do so.

The UBS scheme is not used in all directions. In the vertical, the centred 2nd

order evaluation of the advection is preferred, i.e. uubsuw and uubsvw in (6.16) are used.
UBS is diffusive and is associated with vertical mixing of momentum.

For stability reasons, the first term in (6.17), which corresponds to a second
order centred scheme, is evaluated using the now velocity (centred in time), while
the second term, which is the diffusion part of the scheme, is evaluated using the
before velocity (forward in time). This is discussed by Webb et al. [1998] in the
context of the Quick advection scheme.

6.4. Hydrostatic pressure gradient (dynhpg) 109

Note that the UBS and QUICK (Quadratic Upstream Interpolation for Convec-
tive Kinematics) schemes only differ by one coefficient. Replacing 1/6 by 1/8 in
(6.17) leads to the QUICK advection scheme [Webb et al. 1998]. This option is
not available through a namelist parameter, since the 1/6 coefficient is hard coded.
Nevertheless it is quite easy to make the substitution in the dynadv ubs.F90 module
and obtain a QUICK scheme.

Note also that in the current version of dynadv ubs.F90, there is also the pos-
sibility of using a 4th order evaluation of the advective velocity as in ROMS. This
is an error and should be suppressed soon.

6.4 Hydrostatic pressure gradient (dynhpg.F90)
!---
&namdyn_hpg ! Hydrostatic pressure gradient option (default: NO selection)
!---

ln_hpg_zco = .false. ! z-coordinate - full steps
ln_hpg_zps = .false. ! z-coordinate - partial steps (interpolation)
ln_hpg_sco = .false. ! s-coordinate (standard jacobian formulation)
ln_hpg_isf = .false. ! s-coordinate (sco) adapted to isf
ln_hpg_djc = .false. ! s-coordinate (Density Jacobian with Cubic polynomial)
ln_hpg_prj = .false. ! s-coordinate (Pressure Jacobian scheme)

/

Options are defined through the namdyn hpg namelist variables. The key dis-
tinction between the different algorithms used for the hydrostatic pressure gradient
is the vertical coordinate used, since HPG is a horizontal pressure gradient, i.e.
computed along geopotential surfaces. As a result, any tilt of the surface of the
computational levels will require a specific treatment to compute the hydrostatic
pressure gradient.

The hydrostatic pressure gradient term is evaluated either using a leapfrog
scheme, i.e. the density appearing in its expression is centred in time (now ρ), or
a semi-implcit scheme. At the lateral boundaries either free slip, no slip or partial
slip boundary conditions are applied.

6.4.1 z-coordinate with full step (ln dynhpg zco=true)

The hydrostatic pressure can be obtained by integrating the hydrostatic equation
vertically from the surface. However, the pressure is large at great depth while
its horizontal gradient is several orders of magnitude smaller. This may lead to
large truncation errors in the pressure gradient terms. Thus, the two horizontal
components of the hydrostatic pressure gradient are computed directly as follows:

for k = km (surface layer, jk = 1 in the code)

δi+1/2

[
ph
]∣∣∣
k=km

=
1

2
g δi+1/2 [e3w ρ]

∣∣
k=km

δj+1/2

[
ph
]∣∣∣
k=km

=
1

2
g δj+1/2 [e3w ρ]

∣∣
k=km

(6.18)

110 Ocean Dynamics (DYN)

for 1 < k < km (interior layer)
δi+1/2

[
ph
]∣∣∣
k

= δi+1/2

[
ph
]∣∣∣
k−1

+
1

2
g δi+1/2

[
e3w ρ

k+1/2
]∣∣∣
k

δj+1/2

[
ph
]∣∣∣
k

= δj+1/2

[
ph
]∣∣∣
k−1

+
1

2
g δj+1/2

[
e3w ρ

k+1/2
]∣∣∣
k

(6.19)

Note that the 1/2 factor in (6.18) is adequate because of the definition of e3w as
the vertical derivative of the scale factor at the surface level (z = 0). Note also that
in case of variable volume level (key vvl defined), the surface pressure gradient is
included in (6.18) and (6.19) through the space and time variations of the vertical
scale factor e3w.

6.4.2 z-coordinate with partial step (ln dynhpg zps=true)

With partial bottom cells, tracers in horizontally adjacent cells generally live at
different depths. Before taking horizontal gradients between these tracer points, a
linear interpolation is used to approximate the deeper tracer as if it actually lived at
the depth of the shallower tracer point.

Apart from this modification, the horizontal hydrostatic pressure gradient eval-
uated in the z-coordinate with partial step is exactly as in the pure z-coordinate
case. As explained in detail in section §5.9, the nonlinearity of pressure effects in
the equation of state is such that it is better to interpolate temperature and salinity
vertically before computing the density. Horizontal gradients of temperature and
salinity are needed for the TRA modules, which is the reason why the horizontal
gradients of density at the deepest model level are computed in module zpsdhe.F90
located in the TRA directory and described in §5.9.

6.4.3 s- and z-s-coordinates

Pressure gradient formulations in an s-coordinate have been the subject of a vast
number of papers (e.g., Song [1998], Shchepetkin and McWilliams [2005]). A
number of different pressure gradient options are coded but the ROMS-like, density
Jacobian with cubic polynomial method is currently disabled whilst known bugs
are under investigation.
• Traditional coding (see for example Madec et al. [1996]: (ln dynhpg sco=true)

− 1

ρo e1u
δi+1/2

[
ph
]

+
g ρi+1/2

ρo e1u
δi+1/2 [zt]

− 1

ρo e2v
δj+1/2

[
ph
]

+
g ρj+1/2

ρo e2v
δj+1/2 [zt]

(6.20)

Where the first term is the pressure gradient along coordinates, computed as in
(6.18) - (6.19), and zT is the depth of the T -point evaluated from the sum of the
vertical scale factors at the w-point (e3w).

6.4. Hydrostatic pressure gradient (dynhpg) 111

• Traditional coding with adaptation for ice shelf cavities (ln dynhpg isf =true).
This scheme need the activation of ice shelf cavities (ln isfcav=true).
• Pressure Jacobian scheme (prj) (a research paper in preparation) (ln dynhpg prj=true)
• Density Jacobian with cubic polynomial scheme (DJC) [Shchepetkin and

McWilliams 2005] (ln dynhpg djc=true) (currently disabled; under development)
Note that expression (6.20) is commonly used when the variable volume for-

mulation is activated (key vvl) because in that case, even with a flat bottom, the co-
ordinate surfaces are not horizontal but follow the free surface [Levier et al. 2007].
The pressure jacobian scheme (ln dynhpg prj=true) is available as an improved op-
tion to ln dynhpg sco=true when key vvl is active. The pressure Jacobian scheme
uses a constrained cubic spline to reconstruct the density profile across the water
column. This method maintains the monotonicity between the density nodes The
pressure can be calculated by analytical integration of the density profile and a
pressure Jacobian method is used to solve the horizontal pressure gradient. This
method can provide a more accurate calculation of the horizontal pressure gradient
than the standard scheme.

6.4.4 Ice shelf cavity

Beneath an ice shelf, the total pressure gradient is the sum of the pressure gradient
due to the ice shelf load and the pressure gradient due to the ocean load. If cavity
opened (ln isfcav = true) these 2 terms can be calculated by setting ln dynhpg isf = true.
No other scheme are working with the ice shelf.

• The main hypothesis to compute the ice shelf load is that the ice shelf is in
an isostatic equilibrium. The top pressure is computed integrating from surface to
the base of the ice shelf a reference density profile (prescribed as density of a water
at 34.4 PSU and -1.9◦C) and corresponds to the water replaced by the ice shelf.
This top pressure is constant over time. A detailed description of this method is
described in Losch [2008].

• The ocean load is computed using the expression (6.20) described in 6.4.3.

6.4.5 Time-scheme (ln dynhpg imp= true/false)

The default time differencing scheme used for the horizontal pressure gradient is
a leapfrog scheme and therefore the density used in all discrete expressions given
above is the now density, computed from the now temperature and salinity. In some
specific cases (usually high resolution simulations over an ocean domain which in-
cludes weakly stratified regions) the physical phenomenon that controls the time-
step is internal gravity waves (IGWs). A semi-implicit scheme for doubling the
stability limit associated with IGWs can be used [Brown and Campana 1978, Mal-
trud et al. 1998]. It involves the evaluation of the hydrostatic pressure gradient as
an average over the three time levels t−∆t, t, and t+∆t (i.e. before, now and after

112 Ocean Dynamics (DYN)

time-steps), rather than at the central time level t only, as in the standard leapfrog
scheme.
• leapfrog scheme (ln dynhpg imp=true):

ut+∆t − ut−∆t

2∆t
= · · · − 1

ρo e1u
δi+1/2

[
pth
]

(6.21)

• semi-implicit scheme (ln dynhpg imp=true):

ut+∆t − ut−∆t

2∆t
= · · · − 1

4 ρo e1u
δi+1/2

[
pt+∆t
h + 2 pth + pt−∆t

h

]
(6.22)

The semi-implicit time scheme (6.22) is made possible without significant ad-
ditional computation since the density can be updated to time level t + ∆t before
computing the horizontal hydrostatic pressure gradient. It can be easily shown
that the stability limit associated with the hydrostatic pressure gradient doubles us-
ing (6.22) compared to that using the standard leapfrog scheme (6.21). Note that
(6.22) is equivalent to applying a time filter to the pressure gradient to eliminate
high frequency IGWs. Obviously, when using (6.22), the doubling of the time-step
is achievable only if no other factors control the time-step, such as the stability
limits associated with advection or diffusion.

In practice, the semi-implicit scheme is used when ln dynhpg imp=true. In
this case, we choose to apply the time filter to temperature and salinity used in
the equation of state, instead of applying it to the hydrostatic pressure or to the
density, so that no additional storage array has to be defined. The density used to
compute the hydrostatic pressure gradient (whatever the formulation) is evaluated
as follows:

ρt = ρ(T̃ , S̃, zt) with X̃ = 1/4
(
Xt+∆t + 2Xt +Xt−∆t

)
(6.23)

Note that in the semi-implicit case, it is necessary to save the filtered density,
an extra three-dimensional field, in the restart file to restart the model with exact
reproducibility. This option is controlled by nn dynhpg rst, a namelist parameter.

6.5 Surface pressure gradient (dynspg.F90)
!---
&namdyn_spg ! surface pressure gradient (default: NO)
!---

ln_dynspg_exp = .false. ! explicit free surface
ln_dynspg_ts = .false. ! split-explicit free surface

ln_bt_fw = .true. ! Forward integration of barotropic Eqs.
ln_bt_av = .true. ! Time filtering of barotropic variables

nn_bt_flt = 1 ! Time filter choice = 0 None
! ! = 1 Boxcar over nn_baro sub-steps
! ! = 2 Boxcar over 2*nn_baro " "

ln_bt_auto = .true. ! Number of sub-step defined from:
rn_bt_cmax = 0.8 ! =T : the Maximum Courant Number allowed
nn_baro = 30 ! =F : the number of sub-step in rn_rdt seconds

rn_bt_alpha = 0. ! Temporal diffusion parameter (if ln_bt_av=F)
/

6.5. Surface pressure gradient (dynspg) 113

Options are defined through the namdyn spg namelist variables. The surface
pressure gradient term is related to the representation of the free surface (§2.2).
The main distinction is between the fixed volume case (linear free surface) and the
variable volume case (nonlinear free surface, key vvl is defined). In the linear free
surface case (§2.2.2) the vertical scale factors e3 are fixed in time, while they are
time-dependent in the nonlinear case (§2.2.2). With both linear and nonlinear free
surface, external gravity waves are allowed in the equations, which imposes a very
small time step when an explicit time stepping is used. Two methods are proposed
to allow a longer time step for the three-dimensional equations: the filtered free
surface, which is a modification of the continuous equations (see (??)), and the
split-explicit free surface described below. The extra term introduced in the filtered
method is calculated implicitly, so that the update of the next velocities is done in
module dynspg flt.F90 and not in dynnxt.F90.

The form of the surface pressure gradient term depends on how the user wants
to handle the fast external gravity waves that are a solution of the analytical equa-
tion (§2.2). Three formulations are available, all controlled by a CPP key (ln dynspg xxx):
an explicit formulation which requires a small time step ; a filtered free surface
formulation which allows a larger time step by adding a filtering term into the mo-
mentum equation ; and a split-explicit free surface formulation, described below,
which also allows a larger time step.

The extra term introduced in the filtered method is calculated implicitly, so that
a solver is used to compute it. As a consequence the update of the next velocities
is done in module dynspg flt.F90 and not in dynnxt.F90.

6.5.1 Explicit free surface (key dynspg exp)

In the explicit free surface formulation (key dynspg exp defined), the model time
step is chosen to be small enough to resolve the external gravity waves (typically
a few tens of seconds). The surface pressure gradient, evaluated using a leap-frog
scheme (i.e. centered in time), is thus simply given by :

− 1

e1u ρo
δi+1/2 [ρ η]

− 1

e2v ρo
δj+1/2 [ρ η]

(6.24)

Note that in the non-linear free surface case (i.e. key vvl defined), the surface
pressure gradient is already included in the momentum tendency through the level
thickness variation allowed in the computation of the hydrostatic pressure gradient.
Thus, nothing is done in the dynspg exp.F90 module.

6.5.2 Split-Explicit free surface (key dynspg ts)

114 Ocean Dynamics (DYN)

The split-explicit free surface formulation used in NEMO (key dynspg ts de-
fined), also called the time-splitting formulation, follows the one proposed by
Shchepetkin and McWilliams [2005]. The general idea is to solve the free sur-
face equation and the associated barotropic velocity equations with a smaller time
step than ∆t, the time step used for the three dimensional prognostic variables
(Fig. 6.2). The size of the small time step, ∆te (the external mode or barotropic
time step) is provided through the nn baro namelist parameter as: ∆te = ∆t/nn baro.
This parameter can be optionally defined automatically (ln bt nn auto=true) con-
sidering that the stability of the barotropic system is essentially controled by ex-
ternal waves propagation. Maximum Courant number is in that case time inde-
pendent, and easily computed online from the input bathymetry. Therefore, ∆te is
adjusted so that the Maximum allowed Courant number is smaller than rn bt cmax.

The barotropic mode solves the following equations:

∂Uh

∂t
= −f k×Uh − g∇hη −

cU
b

H + η
Uh + G (6.25a)

∂η

∂t
= −∇ ·

[
(H + η) Uh

]
+ P − E (6.25b)

where G is a forcing term held constant, containing coupling term between modes,
surface atmospheric forcing as well as slowly varying barotropic terms not explic-
itly computed to gain efficiency. The third term on the right hand side of (6.25a)
represents the bottom stress (see section §10.4), explicitly accounted for at each
barotropic iteration. Temporal discretization of the system above follows a three-
time step Generalized Forward Backward algorithm detailed in Shchepetkin and
McWilliams [2005]. AB3-AM4 coefficients used in NEMO follow the second-
order accurate, ”multi-purpose” stability compromise as defined in Shchepetkin
and McWilliams [2008] (see their figure 12, lower left).

In the default case (ln bt fw=true), the external mode is integrated between
now and after baroclinic time-steps (Fig. 6.2a). To avoid aliasing of fast barotropic
motions into three dimensional equations, time filtering is eventually applied on
barotropic quantities (ln bt av=true). In that case, the integration is extended slightly
beyond after time step to provide time filtered quantities. These are used for the
subsequent initialization of the barotropic mode in the following baroclinic step.
Since external mode equations written at baroclinic time steps finally follow a for-
ward time stepping scheme, asselin filtering is not applied to barotropic quantities.
Alternatively, one can choose to integrate barotropic equations starting from before
time step (ln bt fw=false). Although more computationaly expensive (nn baro ad-
ditional iterations are indeed necessary), the baroclinic to barotropic forcing term
given at now time step become centred in the middle of the integration window.
It can easily be shown that this property removes part of splitting errors between
modes, which increases the overall numerical robustness.

As far as tracer conservation is concerned, barotropic velocities used to ad-
vect tracers must also be updated at now time step. This implies to change the

6.5. Surface pressure gradient (dynspg) 115

≪ ℎ∗u∗ ≫
𝑡+∆𝑡2 < 𝑢� >𝑡+∆𝑡

< 𝜂 >𝑡+∆𝑡

k=nn baro k=0 k=icycle

t t+Δt t-Δt

�̅�𝑡

𝑢�𝑡 =
1

2(𝐻 +< 𝜂 >𝑡) �≪ ℎ∗𝑢�∗ ≫
𝑡−∆𝑡2 +≪ ℎ∗𝑢�∗ ≫

𝑡+∆𝑡2 �

𝑎𝑘

𝑏𝑘

a)

≪ ℎ∗u∗ ≫𝑡 < 𝑢� >𝑡+∆𝑡

< 𝜂 >𝑡+∆𝑡

k=2 nn_baro k=0 k=icycle

t t+Δt t-Δt

�̅�𝑡

𝑢�𝑡 =
1

(𝐻 +< 𝜂 >𝑡) ≪ ℎ∗𝑢�∗ ≫𝑡

b)

𝑢�𝑘=0 =< 𝑢� >𝑡

𝜂𝑘=0 =< 𝜂 >𝑡

𝑢�𝑘=0 =< 𝑢� >𝐹
𝑡−∆𝑡

𝜂𝑘=0 =< 𝜂 >𝐹
𝑡−∆𝑡

≪ ℎ∗u∗ ≫
𝑡+∆𝑡2 < 𝑢� >𝑛+1= 𝑢�𝑘=𝑛𝑛_𝑏𝑏𝑏𝑏

< 𝜂 >𝑛+1= 𝜂𝑘=𝑛𝑛_𝑏𝑏𝑏𝑏

k=nn_baro=icycle k=0

t t+Δt t-Δt

�̅�𝑡

c)

𝑢�𝑡+∆𝑡 =< 𝑢� >𝑡+∆𝑡

𝜂𝑡+∆𝑡 =< 𝜂 >𝑡+∆𝑡

𝑢�𝑡+∆𝑡 =< 𝑢� >𝑡+∆𝑡

𝜂𝑡+∆𝑡 =< 𝜂 >𝑡+∆𝑡

𝑢�𝑡+∆𝑡 =< 𝑢� >𝑡+∆𝑡

𝜂𝑡+∆𝑡 =< 𝜂 >𝑡+∆𝑡

Δte

𝑢�𝑡 =
1

2(𝐻 +< 𝜂 >𝑡) �≪ ℎ∗𝑢�∗ ≫
𝑡−∆𝑡2 +≪ ℎ∗𝑢�∗ ≫

𝑡+∆𝑡2 �

Figure 6.2: Schematic of the split-explicit time stepping scheme for the external
and internal modes. Time increases to the right. In this particular exemple, a box-
car averaging window over nn baro barotropic time steps is used (nn bt flt = 1)
and nn baro = 5. Internal mode time steps (which are also the model time steps)
are denoted by t − ∆t, t and t + ∆t. Variables with k superscript refer to instanta-
neous barotropic variables, <> and <<>> operator refer to time filtered variables
using respectively primary (red vertical bars) and secondary weights (blue vertical
bars). The former are used to obtain time filtered quantities at t+ ∆t while the latter
are used to obtain time averaged transports to advect tracers. a) Forward time in-
tegration: ln bt fw=true, ln bt av=true. b) Centred time integration: ln bt fw=false,
ln bt av=true. c) Forward time integration with no time filtering (POM-like scheme):
ln bt fw=true, ln bt av=false.

116 Ocean Dynamics (DYN)

traditional order of computations in NEMO: most of momentum trends (including
the barotropic mode calculation) updated first, tracers’ after. This de facto makes
semi-implicit hydrostatic pressure gradient (see section §6.4.5) and time splitting
not compatible. Advective barotropic velocities are obtained by using a secondary
set of filtering weights, uniquely defined from the filter coefficients used for the
time averaging (Shchepetkin and McWilliams [2005]). Consistency between the
time averaged continuity equation and the time stepping of tracers is here the key
to obtain exact conservation.

One can eventually choose to feedback instantaneous values by not using any
time filter (ln bt av=false). In that case, external mode equations are continuous
in time, ie they are not re-initialized when starting a new sub-stepping sequence.
This is the method used so far in the POM model, the stability being maintained
by refreshing at (almost) each barotropic time step advection and horizontal dif-
fusion terms. Since the latter terms have not been added in NEMO for computa-
tional efficiency, removing time filtering is not recommended except for debugging
purposes. This may be used for instance to appreciate the damping effect of the
standard formulation on external gravity waves in idealized or weakly non-linear
cases. Although the damping is lower than for the filtered free surface, it is still
significant as shown by Levier et al. [2007] in the case of an analytical barotropic
Kelvin wave.

6.5.3 Filtered free surface (key dynspg flt)

The filtered formulation follows the Roullet and Madec [2000] implementation.
The extra term introduced in the equations (see §2.2.2) is solved implicitly. The
elliptic solvers available in the code are documented in §15.

Note that in the linear free surface formulation (key vvl not defined), the ocean
depth is time-independent and so is the matrix to be inverted. It is computed once
and for all and applies to all ocean time steps.

6.6 Lateral diffusion term (dynldf.F90)
!---
&namdyn_ldf ! lateral diffusion on momentum (default: NO selection)
!---

! ! Type of the operator :
ln_dynldf_NONE= .false. ! No operator (i.e. no explicit diffusion)
ln_dynldf_lap = .false. ! laplacian operator
ln_dynldf_blp = .false. ! bilaplacian operator
! ! Direction of action :
ln_dynldf_lev = .false. ! iso-level
ln_dynldf_hor = .false. ! horizontal (geopotential)
ln_dynldf_iso = .false. ! iso-neutral
! ! Coefficient
nn_ahm_ijk_t = 0 ! space/time variation of eddy coef
! ! =-30 read in eddy_viscosity_3D.nc file
! ! =-20 read in eddy_viscosity_2D.nc file
! ! = 0 constant
! ! = 10 F(k)=c1d
! ! = 20 F(i,j)=F(grid spacing)=c2d
! ! = 30 F(i,j,k)=c2d*c1d
! ! = 31 F(i,j,k)=F(grid spacing and local velocity)
! ! = 32 F(i,j,k)=F(local gridscale and deformation rate)
! Caution in 20 and 30 cases the coefficient have to be given for a 1 degree grid (˜111km)
rn_ahm_0 = 40000. ! horizontal laplacian eddy viscosity [m2/s]

6.6. Lateral diffusion term (dynldf) 117

rn_ahm_b = 0. ! background eddy viscosity for ldf_iso [m2/s]
rn_bhm_0 = 1.e+12 ! horizontal bilaplacian eddy viscosity [m4/s]
! ! Smagorinsky settings (nn_ahm_ijk_t = 32) :
rn_csmc = 3.5 ! Smagorinsky constant of proportionality
rn_minfac = 1.0 ! multiplier of theorectical lower limit
rn_maxfac = 1.0 ! multiplier of theorectical upper limit

/

Options are defined through the namdyn ldf namelist variables. The options
available for lateral diffusion are to use either laplacian (rotated or not) or bihar-
monic operators. The coefficients may be constant or spatially variable; the de-
scription of the coefficients is found in the chapter on lateral physics (Chap.9). The
lateral diffusion of momentum is evaluated using a forward scheme, i.e. the veloc-
ity appearing in its expression is the before velocity in time, except for the pure
vertical component that appears when a tensor of rotation is used. This latter term
is solved implicitly together with the vertical diffusion term (see §3)

At the lateral boundaries either free slip, no slip or partial slip boundary condi-
tions are applied according to the user’s choice (see Chap.8).

6.6.1 Iso-level laplacian operator (ln dynldf lap=true)

For lateral iso-level diffusion, the discrete operator is:

DlU
u =

1

e1u
δi+1/2

[
AlmT χ

]
− 1

e2ue3u
δj

[
Almf e3fζ

]

DlU
v =

1

e2v
δj+1/2

[
AlmT χ

]
+

1

e1v e3v
δi

[
Almf e3fζ

] (6.26)

As explained in §2.5.2, this formulation (as the gradient of a divergence and
curl of the vorticity) preserves symmetry and ensures a complete separation be-
tween the vorticity and divergence parts of the momentum diffusion.

6.6.2 Rotated laplacian operator (ln dynldf iso=true)

A rotation of the lateral momentum diffusion operator is needed in several cases:
for iso-neutral diffusion in the z-coordinate (ln dynldf iso=true) and for either iso-
neutral (ln dynldf iso=true) or geopotential (ln dynldf hor=true) diffusion in the s-
coordinate. In the partial step case, coordinates are horizontal except at the deepest
level and no rotation is performed when ln dynldf hor=true. The diffusion opera-
tor is defined simply as the divergence of down gradient momentum fluxes on each
momentum component. It must be emphasized that this formulation ignores con-
straints on the stress tensor such as symmetry. The resulting discrete representation

118 Ocean Dynamics (DYN)

is:

DlU
u =

1

e1u e2u e3u{
δi+1/2

[
AlmT

(
e2t e3t

e1t
δi[u]− e2t r1t δk+1/2[u]

i, k
)]

+ δj

[
Almf

(
e1f e3f

e2f
δj+1/2[u]− e1f r2f δk+1/2[u]

j+1/2, k
)]

+ δk

[
Almuw

(
−e2u r1uw δi+1/2[u]

i+1/2, k+1/2

− e1u r2uw δj+1/2[u]
j, k+1/2

+
e1u e2u

e3uw

(
r2

1uw + r2
2uw

)
δk+1/2[u]

)] }

DlV
v =

1

e1v e2v e3v{
δi+1/2

[
Almf

(
e2f e3f

e1f
δi+1/2[v]− e2f r1f δk+1/2[v]

i+1/2, k
)]

+ δj

[
AlmT

(
e1t e3t

e2t
δj [v]− e1t r2t δk+1/2[v]

j, k
)]

+ δk

[
Almvw

(
−e2v r1vw δi+1/2[v]

i+1/2, k+1/2

− e1v r2vw δj+1/2[v]
j+1/2, k+1/2

+
e1v e2v

e3vw

(
r2

1vw + r2
2vw

)
δk+1/2[v]

)] }

(6.27)

where r1 and r2 are the slopes between the surface along which the diffusion op-
erator acts and the surface of computation (z- or s-surfaces). The way these slopes
are evaluated is given in the lateral physics chapter (Chap.9).

6.6.3 Iso-level bilaplacian operator (ln dynldf bilap=true)

The lateral fourth order operator formulation on momentum is obtained by apply-
ing (6.26) twice. It requires an additional assumption on boundary conditions:
the first derivative term normal to the coast depends on the free or no-slip lateral
boundary conditions chosen, while the third derivative terms normal to the coast
are set to zero (see Chap.8).

6.7 Vertical diffusion term (dynzdf.F90)
!---
&namzdf ! vertical physics (default: NO selection)

6.7. Vertical diffusion term (dynzdf.F90) 119

!---
! ! type of vertical closure (required)
ln_zdfcst = .false. ! constant mixing
ln_zdfric = .false. ! local Richardson dependent formulation (T => fill namzdf_ric)
ln_zdftke = .false. ! Turbulent Kinetic Energy closure (T => fill namzdf_tke)
ln_zdfgls = .false. ! Generic Length Scale closure (T => fill namzdf_gls)
ln_zdfosm = .false. ! OSMOSIS BL closure (T => fill namzdf_osm)
!
! ! convection
ln_zdfevd = .false. ! enhanced vertical diffusion

nn_evdm = 0 ! apply on tracer (=0) or on tracer and momentum (=1)
rn_evd = 100. ! mixing coefficient [m2/s]

ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency

!
ln_zdfddm = .false. ! double diffusive mixing

rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio

!
! ! gravity wave-driven vertical mixing
ln_zdfiwm = .false. ! internal wave-induced mixing (T => fill namzdf_iwm)
ln_zdfswm = .false. ! surface wave-induced mixing (T => ln_wave=ln_sdw=T)
!
! ! coefficients
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if ln_zdfcst=F)
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if ln_zdfcst=F)
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)

/

Options are defined through the namzdf namelist variables. The large verti-
cal diffusion coefficient found in the surface mixed layer together with high ver-
tical resolution implies that in the case of explicit time stepping there would be
too restrictive a constraint on the time step. Two time stepping schemes can be
used for the vertical diffusion term : (a) a forward time differencing scheme
(ln zdfexp=true) using a time splitting technique (nn zdfexp > 1) or (b) a back-
ward (or implicit) time differencing scheme (ln zdfexp=false) (see §3). Note that
namelist variables ln zdfexp and nn zdfexp apply to both tracers and dynamics.

The formulation of the vertical subgrid scale physics is the same whatever the
vertical coordinate is. The vertical diffusion operators given by (2.34) take the
following semi-discrete space form:

Dvm
u ≡ 1

e3u
δk

[
Avmuw
e3uw

δk+1/2[u]

]

Dvm
v ≡ 1

e3v
δk

[
Avmvw
e3vw

δk+1/2[v]

] (6.28)

where Avmuw and Avmvw are the vertical eddy viscosity and diffusivity coefficients.
The way these coefficients are evaluated depends on the vertical physics used (see
§10).

The surface boundary condition on momentum is the stress exerted by the wind.
At the surface, the momentum fluxes are prescribed as the boundary condition on
the vertical turbulent momentum fluxes,(

Avm

e3

∂Uh

∂k

)∣∣∣∣
z=1

=
1

ρo

(
τu
τv

)
(6.29)

where (τu, τv) are the two components of the wind stress vector in the (i,j) coor-
dinate system. The high mixing coefficients in the surface mixed layer ensure that

120 Ocean Dynamics (DYN)

the surface wind stress is distributed in the vertical over the mixed layer depth. If
the vertical mixing coefficient is small (when no mixed layer scheme is used) the
surface stress enters only the top model level, as a body force. The surface wind
stress is calculated in the surface module routines (SBC, see Chap.7)

The turbulent flux of momentum at the bottom of the ocean is specified through
a bottom friction parameterisation (see §10.4)

6.8 External Forcings

Besides the surface and bottom stresses (see the above section) which are intro-
duced as boundary conditions on the vertical mixing, three other forcings may
enter the dynamical equations by affecting the surface pressure gradient.

(1) When ln apr dyn = true (see §7.7), the atmospheric pressure is taken into
account when computing the surface pressure gradient.

(2) When ln tide pot = true and ln tide = true (see §7.8), the tidal potential is
taken into account when computing the surface pressure gradient.

(3) When nn ice embd = 2 and LIM or CICE is used (i.e. when the sea-ice is
embedded in the ocean), the snow-ice mass is taken into account when computing
the surface pressure gradient.

6.9 Time evolution term (dynnxt.F90)
!---
&namdom ! time and space domain
!---

ln_linssh = .false. ! =T linear free surface ==>> model level are fixed in time
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
!
nn_msh = 0 ! create (>0) a mesh file or not (=0)
rn_isfhmin = 1.00 ! treshold (m) to discriminate grounding ice to floating ice
!
rn_rdt = 5760. ! time step for the dynamics and tracer
rn_atfp = 0.1 ! asselin time filter parameter
!
ln_crs = .false. ! Logical switch for coarsening module (T => fill namcrs)

/

Options are defined through the namdom namelist variables. The general frame-
work for dynamics time stepping is a leap-frog scheme, i.e. a three level centred
time scheme associated with an Asselin time filter (cf. Chap.3). The scheme is
applied to the velocity, except when using the flux form of momentum advection
(cf. §6.3) in the variable volume case (key vvl defined), where it has to be applied
to the thickness weighted velocity (see §A.3)
• vector invariant form or linear free surface (ln dynhpg vec=true ; key vvl not

defined): u
t+∆t = ut−∆t

f + 2∆t RHStu

utf = ut + γ
[
ut−∆t
f − 2ut + ut+∆t

] (6.30)

• flux form and nonlinear free surface (ln dynhpg vec=false ; key vvl defined):

6.9. Time evolution term (dynnxt) 121

 (e3u u)t+∆t = (e3u u)t−∆t
f + 2∆t e3u RHStu

(e3u u)tf = (e3u u)t + γ
[
(e3u u)t−∆t

f − 2 (e3u u)t + (e3u u)t+∆t
] (6.31)

where RHS is the right hand side of the momentum equation, the subscript f de-
notes filtered values and γ is the Asselin coefficient. γ is initialized as nn atfp
(namelist parameter). Its default value is nn atfp = 10−3. In both cases, the mod-
ified Asselin filter is not applied since perfect conservation is not an issue for the
momentum equations.

Note that with the filtered free surface, the update of the after velocities is done
in the dynsp flt.F90 module, and only array swapping and Asselin filtering is done
in dynnxt.F90.

7 Surface Boundary Condition (SBC, ISF, ICB)

Contents
7.1 Surface boundary condition for the ocean 127
7.2 Input Data generic interface 127

7.2.1 Input Data specification (fldread.F90) 128

7.2.2 Interpolation on-the-Fly 130

7.2.3 Standalone Surface Boundary Condition Scheme . . . 133

7.3 Analytical formulation (sbcana) 134
7.4 Flux formulation (sbcflx) 135
7.5 Bulk formulation (sbcblk core, sbcblk clio or sbcblk mfs) . 135

7.5.1 CORE Bulk formulea (ln core=true) 135

7.5.2 CLIO Bulk formulea (ln clio=true) 136

7.5.3 MFS Bulk formulea (ln mfs=true) 137

7.6 Coupled formulation (sbccpl) 138
7.7 Atmospheric pressure (sbcapr) 139
7.8 Tidal Potential (sbctide) . 140
7.9 River runoffs (sbcrnf) . 141
7.10 Ice shelf melting (sbcisf) . 143
7.11 Ice sheet coupling . 145
7.12 Handling of icebergs (ICB) 146
7.13 Miscellaneous options . 147

7.13.1 Diurnal cycle (sbcdcy) 147

7.13.2 Rotation of vector pairs onto the model grid directions 149

7.13.3 Surface restoring to observed SST and/or SSS (sbcssr) 150

7.13.4 Handling of ice-covered area (sbcice ...) 151

124 Surface Boundary Condition (SBC, ISF, ICB)

7.13.5 Interface to CICE (sbcice cice) 151
7.13.6 Freshwater budget control (sbcfwb) 152
7.13.7 Neutral drag coefficient from external wave model (sbcwave)152

125

!---
&namsbc ! Surface Boundary Condition (surface module)
!---

nn_fsbc = 5 ! frequency of surface boundary condition computation
! (also = the frequency of sea-ice & iceberg model call)

! Type of air-sea fluxes
ln_usr = .false. ! user defined formulation (T => check usrdef_sbc)
ln_flx = .false. ! flux formulation (T => fill namsbc_flx)
ln_blk = .false. ! Bulk formulation (T => fill namsbc_blk)

! Type of coupling (Ocean/Ice/Atmosphere) :
ln_cpl = .false. ! atmosphere coupled formulation (requires key_oasis3)
ln_mixcpl = .false. ! forced-coupled mixed formulation (requires key_oasis3)
nn_components = 0 ! configuration of the opa-sas OASIS coupling

! =0 no opa-sas OASIS coupling: default single executable config.
! =1 opa-sas OASIS coupling: multi executable config., OPA component
! =2 opa-sas OASIS coupling: multi executable config., SAS component

! Sea-ice :
nn_ice = 2 ! =0 no ice boundary condition ,

! =1 use observed ice-cover ,
! =2 or 3 automatically for LIM3 or CICE ("key_lim3" or "key_cice")
! except in AGRIF zoom where it has to be specified

ln_ice_embd = .false. ! =T embedded sea-ice (pressure + mass and salt exchanges)
! =F levitating ice (no pressure, mass and salt exchanges)

! Misc. options of sbc :
ln_traqsr = .true. ! Light penetration in the ocean (T => fill namtra_qsr)
ln_dm2dc = .false. ! daily mean to diurnal cycle on short wave
ln_rnf = .true. ! runoffs (T => fill namsbc_rnf)
ln_ssr = .true. ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr)
nn_fwb = 2 ! FreshWater Budget: =0 unchecked

! =1 global mean of e-p-r set to zero at each time step
! =2 annual global mean of e-p-r set to zero

ln_apr_dyn = .false. ! Patm gradient added in ocean & ice Eqs. (T => fill namsbc_apr)
ln_isf = .false. ! ice shelf (T => fill namsbc_isf)
ln_wave = .false. ! Activate coupling with wave (T => fill namsbc_wave)
ln_cdgw = .false. ! Neutral drag coefficient read from wave model (T => ln_wave=.true. & fill namsbc_wave)
ln_sdw = .false. ! Read 2D Surf Stokes Drift & Computation of 3D stokes drift (T => ln_wave=.true. & fill namsbc_wave)
nn_sdrift = 0 ! Parameterization for the calculation of 3D-Stokes drift from the surface Stokes drift

! = 0 Breivik 2015 parameterization: v_z=v_0*[exp(2*k*z)/(1-8*k*z)]
! = 1 Phillips: v_z=v_o*[exp(2*k*z)-beta*sqrt(-2*k*pi*z)*erfc(sqrt(-2*k*z))]
! = 2 Phillips as (1) but using the wave frequency from a wave model

ln_tauwoc = .false. ! Activate ocean stress modified by external wave induced stress (T => ln_wave=.true. & fill namsbc_wave)
ln_tauw = .false. ! Activate ocean stress components from wave model
ln_stcor = .false. ! Activate Stokes Coriolis term (T => ln_wave=.true. & ln_sdw=.true. & fill namsbc_wave)
nn_lsm = 0 ! =0 land/sea mask for input fields is not applied (keep empty land/sea mask filename field) ,

! =1:n number of iterations of land/sea mask application for input fields (fill land/sea mask filename field)
/

The ocean needs six fields as surface boundary condition:

• the two components of the surface ocean stress (τu , τv)

• the incoming solar and non solar heat fluxes (Qns , Qsr)

• the surface freshwater budget (emp)

• the surface salt flux associated with freezing/melting of seawater (sfx)

plus an optional field:

• the atmospheric pressure at the ocean surface (pa)

Five different ways to provide the first six fields to the ocean are available
which are controlled by namelist namsbc variables: an analytical formulation (ln ana = true),
a flux formulation (ln flx = true), a bulk formulae formulation (CORE (ln blk core = true),

126 Surface Boundary Condition (SBC, ISF, ICB)

CLIO (ln blk clio = true) or MFS 1 (ln blk mfs = true) bulk formulae) and a cou-
pled or mixed forced/coupled formulation (exchanges with a atmospheric model
via the OASIS coupler) (ln cpl or ln mixcpl = true). When used (i.e. ln apr dyn = true),
the atmospheric pressure forces both ocean and ice dynamics.

The frequency at which the forcing fields have to be updated is given by the
nn fsbc namelist parameter. When the fields are supplied from data files (flux and
bulk formulations), the input fields need not be supplied on the model grid. Instead
a file of coordinates and weights can be supplied which maps the data from the
supplied grid to the model points (so called ”Interpolation on the Fly”, see §7.2.2).
If the Interpolation on the Fly option is used, input data belonging to land points
(in the native grid), can be masked to avoid spurious results in proximity of the
coasts as large sea-land gradients characterize most of the atmospheric variables.

In addition, the resulting fields can be further modified using several namelist
options. These options control

• the rotation of vector components supplied relative to an east-north coordi-
nate system onto the local grid directions in the model ;

• the addition of a surface restoring term to observed SST and/or SSS (ln ssr = true)
;

• the modification of fluxes below ice-covered areas (using observed ice-cover
or a sea-ice model) (nn ice = 0,1, 2 or 3) ;

• the addition of river runoffs as surface freshwater fluxes or lateral inflow
(ln rnf = true) ;

• the addition of isf melting as lateral inflow (parameterisation) or as fluxes
applied at the land-ice ocean interface (ln isf) ;

• the addition of a freshwater flux adjustment in order to avoid a mean sea-
level drift (nn fwb = 0, 1 or 2) ;

• the transformation of the solar radiation (if provided as daily mean) into a
diurnal cycle (ln dm2dc = true) ; and a neutral drag coefficient can be read
from an external wave model (ln cdgw = true).

The latter option is possible only in case core or mfs bulk formulas are selected.
In this chapter, we first discuss where the surface boundary condition appears

in the model equations. Then we present the five ways of providing the surface
boundary condition, followed by the description of the atmospheric pressure and
the river runoff. Next the scheme for interpolation on the fly is described. Finally,
the different options that further modify the fluxes applied to the ocean are dis-
cussed. One of these is modification by icebergs (see §7.12), which act as drifting
sources of fresh water. Another example of modification is that due to the ice shelf
melting/freezing (see §7.10), which provides additional sources of fresh water.

1 Note that MFS bulk formulae compute fluxes only for the ocean component

7.1. Surface boundary condition for the ocean 127

Table 7.1: Ocean variables provided by the ocean to the surface module (SBC). The
variable are averaged over nn fsbc time step, i.e. the frequency of computation of
surface fluxes.

Variable description Model variable Units point
i-component of the surface current ssu m m.s−1 U
j-component of the surface current ssv m m.s−1 V
Sea surface temperature sst m ˚K T
Sea surface salinty sss m psu T

7.1 Surface boundary condition for the ocean

The surface ocean stress is the stress exerted by the wind and the sea-ice on the
ocean. It is applied in dynzdf.F90 module as a surface boundary condition of the
computation of the momentum vertical mixing trend (see (6.29) in §6.7). As such,
it has to be provided as a 2D vector interpolated onto the horizontal velocity ocean
mesh, i.e. resolved onto the model (i,j) direction at u- and v-points.

The surface heat flux is decomposed into two parts, a non solar and a solar heat
flux, Qns and Qsr, respectively. The former is the non penetrative part of the heat
flux (i.e. the sum of sensible, latent and long wave heat fluxes plus the heat content
of the mass exchange with the atmosphere and sea-ice). It is applied in trasbc.F90
module as a surface boundary condition trend of the first level temperature time
evolution equation (see (5.12) and (5.13) in §5.4.1). The latter is the penetrative
part of the heat flux. It is applied as a 3D trends of the temperature equation
(traqsr.F90 module) when ln traqsr=true. The way the light penetrates inside the
water column is generally a sum of decreasing exponentials (see §5.4.2).

The surface freshwater budget is provided by the emp field. It represents the
mass flux exchanged with the atmosphere (evaporation minus precipitation) and
possibly with the sea-ice and ice shelves (freezing minus melting of ice). It affects
both the ocean in two different ways: (i) it changes the volume of the ocean and
therefore appears in the sea surface height equation as a volume flux, and (ii) it
changes the surface temperature and salinity through the heat and salt contents of
the mass exchanged with the atmosphere, the sea-ice and the ice shelves.

The ocean model provides, at each time step, to the surface module (sbc-
mod.F90) the surface currents, temperature and salinity. These variables are av-
eraged over nn fsbc time-step (7.1), and it is these averaged fields which are used
to computes the surface fluxes at a frequency of nn fsbc time-step.

7.2 Input Data generic interface

A generic interface has been introduced to manage the way input data (2D or 3D
fields, like surface forcing or ocean T and S) are specify in NEMO. This task is

128 Surface Boundary Condition (SBC, ISF, ICB)

archieved by fldread.F90. The module was design with four main objectives in
mind:

1. optionally provide a time interpolation of the input data at model time-step,
whatever their input frequency is, and according to the different calendars
available in the model.

2. optionally provide an on-the-fly space interpolation from the native input
data grid to the model grid.

3. make the run duration independent from the period cover by the input files.

4. provide a simple user interface and a rather simple developer interface by
limiting the number of prerequisite information.

As a results the user have only to fill in for each variable a structure in the
namelist file to defined the input data file and variable names, the frequency of
the data (in hours or months), whether its is climatological data or not, the period
covered by the input file (one year, month, week or day), and three additional
parameters for on-the-fly interpolation. When adding a new input variable, the
developer has to add the associated structure in the namelist, read this information
by mirroring the namelist read in sbc blk init for example, and simply call fld read
to obtain the desired input field at the model time-step and grid points.

The only constraints are that the input file is a NetCDF file, the file name fol-
lows a nomenclature (see §7.2.1), the period it cover is one year, month, week or
day, and, if on-the-fly interpolation is used, a file of weights must be supplied (see
§7.2.2).

Note that when an input data is archived on a disc which is accessible directly
from the workspace where the code is executed, then the use can set the cn dir to
the pathway leading to the data. By default, the data are assumed to have been
copied so that cn dir=’./’.

7.2.1 Input Data specification (fldread.F90)

The structure associated with an input variable contains the following information:

! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

where

File name : the stem name of the NetCDF file to be open. This stem will be
completed automatically by the model, with the addition of a ’.nc’ at its end
and by date information and possibly a prefix (when using AGRIF). Tab.7.2
provides the resulting file name in all possible cases according to whether it
is a climatological file or not, and to the open/close frequency (see below for
definition).

7.2. Input Data generic interface 129

Table 7.2: naming nomenclature for climatological or interannual input file, as a
function of the Open/close frequency. The stem name is assumed to be ’fn’. For
weekly files, the ’LLL’ corresponds to the first three letters of the first day of the week
(i.e. ’sun’,’sat’,’fri’,’thu’,’wed’,’tue’,’mon’). The ’YYYY’, ’MM’ and ’DD’ should
be replaced by the actual year/month/day, always coded with 4 or 2 digits. Note that
(1) in mpp, if the file is split over each subdomain, the suffix ’.nc’ is replaced by
’ PPPP.nc’, where ’PPPP’ is the process number coded with 4 digits; (2) when using
AGRIF, the prefix ’ N’ is added to files, where ’N’ is the child grid number.

daily or weekLLL monthly yearly
clim = false fn yYYYYmMMdDD fn yYYYYmMM fn yYYYY
clim = true not possible fn m??.nc fn

Record frequency : the frequency of the records contained in the input file. Its
unit is in hours if it is positive (for example 24 for daily forcing) or in months
if negative (for example -1 for monthly forcing or -12 for annual forcing).
Note that this frequency must really be an integer and not a real. On some
computers, seting it to ’24.’ can be interpreted as 240!

Variable name : the name of the variable to be read in the input NetCDF file.

Time interpolation : a logical to activate, or not, the time interpolation. If set to
’false’, the forcing will have a steplike shape remaining constant during each
forcing period. For example, when using a daily forcing without time inter-
polation, the forcing remaining constant from 00h00’00” to 23h59’59”. If
set to ’true’, the forcing will have a broken line shape. Records are assumed
to be dated the middle of the forcing period. For example, when using a
daily forcing with time interpolation, linear interpolation will be performed
between mid-day of two consecutive days.

Climatological forcing : a logical to specify if a input file contains climatological
forcing which can be cycle in time, or an interannual forcing which will
requires additional files if the period covered by the simulation exceed the
one of the file. See the above the file naming strategy which impacts the
expected name of the file to be opened.

Open/close frequency : the frequency at which forcing files must be opened/closed.
Four cases are coded: ’daily’, ’weekLLL’ (with ’LLL’ the first 3 letters of
the first day of the week), ’monthly’ and ’yearly’ which means the forcing
files will contain data for one day, one week, one month or one year. Files
are assumed to contain data from the beginning of the open/close period. For
example, the first record of a yearly file containing daily data is Jan 1st even
if the experiment is not starting at the beginning of the year.

Others : ’weights filename’, ’pairing rotation’ and ’land/sea mask’ are associted
with on-the-fly interpolation which is described in §7.2.2.

130 Surface Boundary Condition (SBC, ISF, ICB)

Additional remarks:
(1) The time interpolation is a simple linear interpolation between two consecutive
records of the input data. The only tricky point is therefore to specify the date
at which we need to do the interpolation and the date of the records read in the
input files. Following Leclair and Madec [2009], the date of a time step is set at
the middle of the time step. For example, for an experiment starting at 0h00’00”
with a one hour time-step, a time interpolation will be performed at the following
time: 0h30’00”, 1h30’00”, 2h30’00”, etc. However, for forcing data related to
the surface module, values are not needed at every time-step but at every nn fsbc
time-step. For example with nn fsbc = 3, the surface module will be called at time-
steps 1, 4, 7, etc. The date used for the time interpolation is thus redefined to be
at the middle of nn fsbc time-step period. In the previous example, this leads to:
1h30’00”, 4h30’00”, 7h30’00”, etc.
(2) For code readablility and maintenance issues, we don’t take into account the
NetCDF input file calendar. The calendar associated with the forcing field is
build according to the information provided by user in the record frequency, the
open/close frequency and the type of temporal interpolation. For example, the first
record of a yearly file containing daily data that will be interpolated in time is as-
sumed to be start Jan 1st at 12h00’00” and end Dec 31st at 12h00’00”.
(3) If a time interpolation is requested, the code will pick up the needed data in
the previous (next) file when interpolating data with the first (last) record of the
open/close period. For example, if the input file specifications are ”yearly, con-
taining daily data to be interpolated in time”, the values given by the code between
00h00’00” and 11h59’59” on Jan 1st will be interpolated values between Dec 31st
12h00’00” and Jan 1st 12h00’00”. If the forcing is climatological, Dec and Jan
will be keep-up from the same year. However, if the forcing is not climatological,
at the end of the open/close period the code will automatically close the current
file and open the next one. Note that, if the experiment is starting (ending) at the
beginning (end) of an open/close period we do accept that the previous (next) file
is not existing. In this case, the time interpolation will be performed between two
identical values. For example, when starting an experiment on Jan 1st of year Y
with yearly files and daily data to be interpolated, we do accept that the file related
to year Y-1 is not existing. The value of Jan 1st will be used as the missing one for
Dec 31st of year Y-1. If the file of year Y-1 exists, the code will read its last record.
Therefore, this file can contain only one record corresponding to Dec 31st, a useful
feature for user considering that it is too heavy to manipulate the complete file for
year Y-1.

7.2.2 Interpolation on-the-Fly

Interpolation on the Fly allows the user to supply input files required for the surface
forcing on grids other than the model grid. To do this he or she must supply, in
addition to the source data file, a file of weights to be used to interpolate from
the data grid to the model grid. The original development of this code used the

7.2. Input Data generic interface 131

SCRIP package (freely available here under a copyright agreement). In principle,
any package can be used to generate the weights, but the variables in the input
weights file must have the same names and meanings as assumed by the model.
Two methods are currently available: bilinear and bicubic interpolation. Prior to
the interpolation, providing a land/sea mask file, the user can decide to remove
land points from the input file and substitute the corresponding values with the
average of the 8 neighbouring points in the native external grid. Only ”sea points”
are considered for the averaging. The land/sea mask file must be provided in the
structure associated with the input variable. The netcdf land/sea mask variable
name must be ’LSM’ it must have the same horizontal and vertical dimensions of
the associated variable and should be equal to 1 over land and 0 elsewhere. The
procedure can be recursively applied setting nn lsm ¿ 1 in namsbc namelist. Note
that nn lsm=0 forces the code to not apply the procedure even if a file for land/sea
mask is supplied.

Bilinear Interpolation

The input weights file in this case has two sets of variables: src01, src02, src03,
src04 and wgt01, wgt02, wgt03, wgt04. The ”src” variables correspond to the point
in the input grid to which the weight ”wgt” is to be applied. Each src value is an
integer corresponding to the index of a point in the input grid when written as a
one dimensional array. For example, for an input grid of size 5x10, point (3,2) is
referenced as point 8, since (2-1)*5+3=8. There are four of each variable because
bilinear interpolation uses the four points defining the grid box containing the point
to be interpolated. All of these arrays are on the model grid, so that values src01(i,j)
and wgt01(i,j) are used to generate a value for point (i,j) in the model.

Symbolically, the algorithm used is:

fm(i, j) = fm(i, j) +
4∑

k=1

wgt(k)f(idx(src(k))) (7.1)

where function idx() transforms a one dimensional index src(k) into a two dimen-
sional index, and wgt(1) corresponds to variable ”wgt01” for example.

Bicubic Interpolation

Again there are two sets of variables: ”src” and ”wgt”. But in this case there are
16 of each. The symbolic algorithm used to calculate values on the model grid is
now:

http://climate.lanl.gov/Software/SCRIP

132 Surface Boundary Condition (SBC, ISF, ICB)

fm(i, j) = fm(i, j)+
4∑

k=1

wgt(k)f(idx(src(k))) +
8∑

k=5

wgt(k)
∂f

∂i

∣∣∣∣
idx(src(k))

+
12∑
k=9

wgt(k)
∂f

∂j

∣∣∣∣
idx(src(k))

+
16∑

k=13

wgt(k)
∂2f

∂i∂j

∣∣∣∣
idx(src(k))

The gradients here are taken with respect to the horizontal indices and not distances
since the spatial dependency has been absorbed into the weights.

Implementation

To activate this option, a non-empty string should be supplied in the weights file-
name column of the relevant namelist; if this is left as an empty string no action is
taken. In the model, weights files are read in and stored in a structured type (WGT)
in the fldread module, as and when they are first required. This initialisation pro-
cedure determines whether the input data grid should be treated as cyclical or not
by inspecting a global attribute stored in the weights input file. This attribute must
be called ”ew wrap” and be of integer type. If it is negative, the input non-model
grid is assumed not to be cyclic. If zero or greater, then the value represents the
number of columns that overlap. E.g. if the input grid has columns at longitudes
0, 1, 2, , 359, then ew wrap should be set to 0; if longitudes are 0.5, 2.5,
, 358.5, 360.5, 362.5, ew wrap should be 2. If the model does not find attribute
ew wrap, then a value of -999 is assumed. In this case the fld read routine defaults
ew wrap to value 0 and therefore the grid is assumed to be cyclic with no overlap-
ping columns. (In fact this only matters when bicubic interpolation is required.)
Note that no testing is done to check the validity in the model, since there is no
way of knowing the name used for the longitude variable, so it is up to the user to
make sure his or her data is correctly represented.

Next the routine reads in the weights. Bicubic interpolation is assumed if it
finds a variable with name ”src05”, otherwise bilinear interpolation is used. The
WGT structure includes dynamic arrays both for the storage of the weights (on the
model grid), and when required, for reading in the variable to be interpolated (on
the input data grid). The size of the input data array is determined by examining
the values in the ”src” arrays to find the minimum and maximum i and j values
required. Since bicubic interpolation requires the calculation of gradients at each
point on the grid, the corresponding arrays are dimensioned with a halo of width
one grid point all the way around. When the array of points from the data file is
adjacent to an edge of the data grid, the halo is either a copy of the row/column
next to it (non-cyclical case), or is a copy of one from the first few columns on the
opposite side of the grid (cyclical case).

7.2. Input Data generic interface 133

Limitations

1. The case where input data grids are not logically rectangular has not been
tested.

2. This code is not guaranteed to produce positive definite answers from posi-
tive definite inputs when a bicubic interpolation method is used.

3. The cyclic condition is only applied on left and right columns, and not to top
and bottom rows.

4. The gradients across the ends of a cyclical grid assume that the grid spacing
between the two columns involved are consistent with the weights used.

5. Neither interpolation scheme is conservative. (There is a conservative scheme
available in SCRIP, but this has not been implemented.)

Utilities

A set of utilities to create a weights file for a rectilinear input grid is available (see
the directory NEMOGCM/TOOLS/WEIGHTS).

7.2.3 Standalone Surface Boundary Condition Scheme
!---
&namsbc_sas ! Stand-Alone Surface boundary condition
!---
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_usp = ’sas_grid_U’, 120 , ’uos’ , .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_vsp = ’sas_grid_V’, 120 , ’vos’ , .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_tem = ’sas_grid_T’, 120 , ’sosstsst’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_sal = ’sas_grid_T’, 120 , ’sosaline’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_ssh = ’sas_grid_T’, 120 , ’sossheig’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_e3t = ’sas_grid_T’, 120 , ’e3t_m’ , .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_frq = ’sas_grid_T’, 120 , ’frq_m’ , .true. , .true. , ’yearly’ , ’’ , ’’ , ’’

l_sasread = .true. ! =T Read the above fields in a file, =F initialize to 0. in sbcssm.F90
ln_3d_uve = .false. ! specify whether we are supplying a 3D u,v and e3 field
ln_read_frq = .false. ! specify whether we must read frq or not
cn_dir = ’./’ ! root directory for the location of the bulk files are

/

In some circumstances it may be useful to avoid calculating the 3D tempera-
ture, salinity and velocity fields and simply read them in from a previous run or
receive them from OASIS. For example:

• Multiple runs of the model are required in code development to see the effect
of different algorithms in the bulk formulae.

• The effect of different parameter sets in the ice model is to be examined.

• Development of sea-ice algorithms or parameterizations.

• spinup of the iceberg floats

• ocean/sea-ice simulation with both media running in parallel (ln mixcpl = true)

134 Surface Boundary Condition (SBC, ISF, ICB)

The StandAlone Surface scheme provides this utility. Its options are defined
through the namsbc sas namelist variables. A new copy of the model has to be
compiled with a configuration based on ORCA2 SAS LIM. However no namelist
parameters need be changed from the settings of the previous run (except perhaps
nn date0) In this configuration, a few routines in the standard model are overriden
by new versions. Routines replaced are:

• nemogcm.F90 : This routine initialises the rest of the model and repeatedly
calls the stp time stepping routine (step.F90) Since the ocean state is not
calculated all associated initialisations have been removed.

• step.F90 : The main time stepping routine now only needs to call the sbc
routine (and a few utility functions).

• sbcmod.F90 : This has been cut down and now only calculates surface forc-
ing and the ice model required. New surface modules that can function when
only the surface level of the ocean state is defined can also be added (e.g. ice-
bergs).

• daymod.F90 : No ocean restarts are read or written (though the ice model
restarts are retained), so calls to restart functions have been removed. This
also means that the calendar cannot be controlled by time in a restart file, so
the user must make sure that nn date0 in the model namelist is correct for
his or her purposes.

• stpctl.F90 : Since there is no free surface solver, references to it have been
removed from stp ctl module.

• diawri.F90 : All 3D data have been removed from the output. The surface
temperature, salinity and velocity components (which have been read in) are
written along with relevant forcing and ice data.

One new routine has been added:

• sbcsas.F90 : This module initialises the input files needed for reading tem-
perature, salinity and velocity arrays at the surface. These filenames are
supplied in namelist namsbc sas. Unfortunately because of limitations with
the iom.F90 module, the full 3D fields from the mean files have to be read in
and interpolated in time, before using just the top level. Since fldread is used
to read in the data, Interpolation on the Fly may be used to change input data
resolution.

7.3 Analytical formulation (sbcana.F90 module)

7.4. Flux formulation (sbcflx) 135

The analytical formulation of the surface boundary condition is the default
scheme. In this case, all the six fluxes needed by the ocean are assumed to be
uniform in space. They take constant values given in the namelist namsbc ana by
the variables rn utau0, rn vtau0, rn qns0, rn qsr0, and rn emp0 (emp = empS).
The runoff is set to zero. In addition, the wind is allowed to reach its nominal value
within a given number of time steps (nn tau000).

If a user wants to apply a different analytical forcing, the sbcana.F90 module
can be modified to use another scheme. As an example, the sbc ana gyre.F90
routine provides the analytical forcing for the GYRE configuration (see GYRE
configuration manual, in preparation).

7.4 Flux formulation (sbcflx.F90 module)
!---
&namsbc_flx ! surface boundary condition : flux formulation
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_utau = ’utau’ , 24 , ’utau’ , .false. , .false., ’yearly’ , ’’ , ’’ , ’’
sn_vtau = ’vtau’ , 24 , ’vtau’ , .false. , .false., ’yearly’ , ’’ , ’’ , ’’
sn_qtot = ’qtot’ , 24 , ’qtot’ , .false. , .false., ’yearly’ , ’’ , ’’ , ’’
sn_qsr = ’qsr’ , 24 , ’qsr’ , .false. , .false., ’yearly’ , ’’ , ’’ , ’’
sn_emp = ’emp’ , 24 , ’emp’ , .false. , .false., ’yearly’ , ’’ , ’’ , ’’
!
cn_dir = ’./’ ! root directory for the location of the flux files

/

In the flux formulation (ln flx=true), the surface boundary condition fields are
directly read from input files. The user has to define in the namelist namsbc flx
the name of the file, the name of the variable read in the file, the time frequency at
which it is given (in hours), and a logical setting whether a time interpolation to the
model time step is required for this field. See §7.2.1 for a more detailed description
of the parameters.

Note that in general, a flux formulation is used in associated with a restoring
term to observed SST and/or SSS. See §7.13.3 for its specification.

7.5 Bulk formulation (sbcblk core.F90 sbcblk clio.F90 sbcblk mfs.F90 modules)

In the bulk formulation, the surface boundary condition fields are computed using
bulk formulae and atmospheric fields and ocean (and ice) variables.

The atmospheric fields used depend on the bulk formulae used. Three bulk
formulations are available : the CORE, the CLIO and the MFS bulk formulea. The
choice is made by setting to true one of the following namelist variable : ln core ;
ln clio or ln mfs.

Note : in forced mode, when a sea-ice model is used, a bulk formulation (CLIO
or CORE) have to be used. Therefore the two bulk (CLIO and CORE) formulea
include the computation of the fluxes over both an ocean and an ice surface.

7.5.1 CORE Bulk formulea (ln core=true, sbcblk core.F90)

136 Surface Boundary Condition (SBC, ISF, ICB)

The CORE bulk formulae have been developed by Large and Yeager [2004].
They have been designed to handle the CORE forcing, a mixture of NCEP re-
analysis and satellite data. They use an inertial dissipative method to compute the
turbulent transfer coefficients (momentum, sensible heat and evaporation) from the
10 metre wind speed, air temperature and specific humidity. This Large and Yeager
[2004] dataset is available through the GFDL web site.

Note that substituting ERA40 to NCEP reanalysis fields does not require changes
in the bulk formulea themself. This is the so-called DRAKKAR Forcing Set (DFS)
[Brodeau et al. 2009].

Options are defined through the namsbc core namelist variables. The required
8 input fields are:

Variable desciption Model variable Units point
i-component of the 10m air velocity utau m.s−1 T
j-component of the 10m air velocity vtau m.s−1 T
10m air temperature tair ˚K T
Specific humidity humi % T
Incoming long wave radiation qlw W.m−2 T
Incoming short wave radiation qsr W.m−2 T
Total precipitation (liquid + solid) precip Kg.m−2.s−1 T
Solid precipitation snow Kg.m−2.s−1 T

Note that the air velocity is provided at a tracer ocean point, not at a velocity
ocean point (u- and v-points). It is simpler and faster (less fields to be read), but
it is not the recommended method when the ocean grid size is the same or larger
than the one of the input atmospheric fields.

The sn wndi, sn wndj, sn qsr, sn qlw, sn tair, sn humi, sn prec, sn snow, sn tdif
parameters describe the fields and the way they have to be used (spatial and tem-
poral interpolations).

cn dir is the directory of location of bulk files ln taudif is the flag to specify if
we use Hight Frequency (HF) tau information (.true.) or not (.false.) rn zqt: is the
height of humidity and temperature measurements (m) rn zu: is the height of wind
measurements (m)

Three multiplicative factors are availables : rn pfac and rn efac allows to ad-
just (if necessary) the global freshwater budget by increasing/reducing the precip-
itations (total and snow) and or evaporation, respectively. The third one,rn vfac,
control to which extend the ice/ocean velocities are taken into account in the cal-
culation of surface wind stress. Its range should be between zero and one, and it is
recommended to set it to 0.

7.5.2 CLIO Bulk formulea (ln clio=true, sbcblk clio.F90)

http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html

7.5. Bulk formulation (sbcblk core, sbcblk clio or sbcblk mfs) 137

The CLIO bulk formulae were developed several years ago for the Louvain-
la-neuve coupled ice-ocean model (CLIO, Goosse et al. [1999]). They are simpler
bulk formulae. They assume the stress to be known and compute the radiative
fluxes from a climatological cloud cover.

Options are defined through the namsbc clio namelist variables. The required
7 input fields are:

Variable desciption Model variable Units point
i-component of the ocean stress utau N.m−2 U
j-component of the ocean stress vtau N.m−2 V
Wind speed module vatm m.s−1 T
10m air temperature tair ˚K T
Specific humidity humi % T
Cloud cover % T
Total precipitation (liquid + solid) precip Kg.m−2.s−1 T
Solid precipitation snow Kg.m−2.s−1 T

As for the flux formulation, information about the input data required by the
model is provided in the namsbc blk core or namsbc blk clio namelist (see §7.2.1).

7.5.3 MFS Bulk formulea (ln mfs=true, sbcblk mfs.F90)

The MFS (Mediterranean Forecasting System) bulk formulae have been devel-
oped by Castellari et al. [1998]. They have been designed to handle the ECMWF
operational data and are currently in use in the MFS operational system [Tonani
et al. 2008], [Oddo et al. 2009]. The wind stress computation uses a drag co-
efficient computed according to Hellerman and Rosenstein [1983]. The surface
boundary condition for temperature involves the balance between surface solar ra-
diation, net long-wave radiation, the latent and sensible heat fluxes. Solar radiation
is dependent on cloud cover and is computed by means of an astronomical formula
[Reed 1977]. Albedo monthly values are from Payne [1972] as means of the val-
ues at 40oN and 30oN for the Atlantic Ocean (hence the same latitudinal band of
the Mediterranean Sea). The net long-wave radiation flux [Bignami et al. 1995]
is a function of air temperature, sea-surface temperature, cloud cover and relative
humidity. Sensible heat and latent heat fluxes are computed by classical bulk for-
mulae parameterised according to Kondo [1975]. Details on the bulk formulae
used can be found in Maggiore et al. [1998] and Castellari et al. [1998].

Options are defined through the namsbc mfs namelist variables. The required
7 input fields must be provided on the model Grid-T and are:

• Zonal Component of the 10m wind (ms−1) (sn windi)

• Meridional Component of the 10m wind (ms−1) (sn windj)

138 Surface Boundary Condition (SBC, ISF, ICB)

• Total Claud Cover (%) (sn clc)

• 2m Air Temperature (K) (sn tair)

• 2m Dew Point Temperature (K) (sn rhm)

• Total Precipitation Kgm−2s−1 (sn prec)

• Mean Sea Level Pressure (Pa) (sn msl)

7.6 Coupled formulation (sbccpl.F90 module)
!---
&namsbc_cpl ! coupled ocean/atmosphere model ("key_oasis3")
!---
! ! description ! multiple ! vector ! vector ! vector !
! ! ! categories ! reference ! orientation ! grids !
! send

sn_snd_temp = ’weighted oce and ice’ , ’no’ , ’’ , ’’ , ’’
sn_snd_alb = ’weighted ice’ , ’no’ , ’’ , ’’ , ’’
sn_snd_thick = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_snd_crt = ’none’ , ’no’ , ’spherical’ , ’eastward-northward’ , ’T’
sn_snd_co2 = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_snd_crtw = ’none’ , ’no’ , ’’ , ’’ , ’U,V’
sn_snd_ifrac = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_snd_wlev = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_snd_cond = ’weighted ice’ , ’no’ , ’’ , ’’ , ’’
sn_snd_thick1 = ’ice and snow’ , ’no’ , ’’ , ’’ , ’’
sn_snd_mpnd = ’weighted ice’ , ’no’ , ’’ , ’’ , ’’
sn_snd_sstfrz = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_snd_ttilyr = ’weighted ice’ , ’no’ , ’’ , ’’ , ’’

! receive
sn_rcv_w10m = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_taumod = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_tau = ’oce only’ , ’no’ , ’cartesian’ , ’eastward-northward’ , ’U,V’
sn_rcv_dqnsdt = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_qsr = ’oce and ice’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_qns = ’oce and ice’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_emp = ’conservative’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_rnf = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_cal = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_co2 = ’coupled’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_hsig = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_iceflx = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_mslp = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_phioc = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_sdrfx = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_sdrfy = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_wper = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_wnum = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_wstrf = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_wdrag = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_ts_ice = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_isf = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_icb = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_tauwoc = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_tauw = ’none’ , ’no’ , ’’ , ’’ , ’’
sn_rcv_wdrag = ’none’ , ’no’ , ’’ , ’’ , ’’

!
nn_cplmodel = 1 ! Maximum number of models to/from which NEMO is potentialy sending/receiving data
ln_usecplmask = .false. ! use a coupling mask file to merge data received from several models
! ! -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel)
nn_cats_cpl = 5 ! Number of sea ice categories over which coupling is to be carried out (if not 1)

/

In the coupled formulation of the surface boundary condition, the fluxes are
provided by the OASIS coupler at a frequency which is defined in the OASIS
coupler, while sea and ice surface temperature, ocean and ice albedo, and ocean
currents are sent to the atmospheric component.

A generalised coupled interface has been developed. It is currently inter-
faced with OASIS-3-MCT (key oasis3). It has been successfully used to interface

7.7. Atmospheric pressure (sbcapr) 139

NEMO to most of the European atmospheric GCM (ARPEGE, ECHAM, ECMWF,
HadAM, HadGAM, LMDz), as well as to WRF (Weather Research and Forecast-
ing Model).

Note that in addition to the setting of ln cpl to true, the key coupled have to
be defined. The CPP key is mainly used in sea-ice to ensure that the atmospheric
fluxes are actually recieved by the ice-ocean system (no calculation of ice sub-
limation in coupled mode). When PISCES biogeochemical model (key top and
key pisces) is also used in the coupled system, the whole carbon cycle is computed
by defining key cpl carbon cycle. In this case, CO2 fluxes will be exchanged
between the atmosphere and the ice-ocean system (and need to be activated in
namsbc cpl).

The namelist above allows control of various aspects of the coupling fields (par-
ticularly for vectors) and now allows for any coupling fields to have multiple sea
ice categories (as required by LIM3 and CICE). When indicating a multi-category
coupling field in namsbc cpl the number of categories will be determined by the
number used in the sea ice model. In some limited cases it may be possible to
specify single category coupling fields even when the sea ice model is running
with multiple categories - in this case the user should examine the code to be sure
the assumptions made are satisfactory. In cases where this is definitely not possible
the model should abort with an error message. The new code has been tested using
ECHAM with LIM2, and HadGAM3 with CICE but although it will compile with
key lim3 additional minor code changes may be required to run using LIM3.

7.7 Atmospheric pressure (sbcapr.F90)
!---
&namsbc_apr ! Atmospheric pressure used as ocean forcing (ln_apr_dyn =T)
!---
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_apr = ’patm’ , -1 ,’somslpre’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the bulk files
rn_pref = 101000. ! reference atmospheric pressure [N/m2]/
ln_ref_apr = .false. ! ref. pressure: global mean Patm (T) or a constant (F)
ln_apr_obc = .false. ! inverse barometer added to OBC ssh data

/

The optional atmospheric pressure can be used to force ocean and ice dynamics
(ln apr dyn = true, namsbc namelist). The input atmospheric forcing defined via
sn apr structure (namsbc apr namelist) can be interpolated in time to the model
time step, and even in space when the interpolation on-the-fly is used. When
used to force the dynamics, the atmospheric pressure is further transformed into
an equivalent inverse barometer sea surface height, ηib, using:

ηib = − 1

g ρo
(Patm − Po) (7.2)

where Patm is the atmospheric pressure and Po a reference atmospheric pressure.
A value of 101, 000 N/m2 is used unless ln ref apr is set to true. In this case Po

http://wrf-model.org/

140 Surface Boundary Condition (SBC, ISF, ICB)

is set to the value of Patm averaged over the ocean domain, i.e. the mean value of
ηib is kept to zero at all time step.

The gradient of ηib is added to the RHS of the ocean momentum equation
(see dynspg.F90 for the ocean). For sea-ice, the sea surface height, ηm, which is
provided to the sea ice model is set to η − ηib (see sbcssr.F90 module). ηib can
be set in the output. This can simplify altimetry data and model comparison as
inverse barometer sea surface height is usually removed from these date prior to
their distribution.

When using time-splitting and BDY package for open boundaries conditions,
the equivalent inverse barometer sea surface height ηib can be added to BDY ssh
data: ln apr obc might be set to true.

7.8 Tidal Potential (sbctide.F90)
!---
&nam_tide ! tide parameters
!---

ln_tide = .false. ! Activate tides
ln_tide_pot = .true. ! use tidal potential forcing

ln_scal_load = .false. ! Use scalar approximation for
rn_scal_load = 0.094 ! load potential

ln_read_load = .false. ! Or read load potential from file
cn_tide_load = ’tide_LOAD_grid_T.nc’ ! filename for load potential
!

ln_tide_ramp = .false. ! Use linear ramp for tides at startup
rdttideramp = 0. ! ramp duration in days

clname(1) = ’DUMMY’ ! name of constituent - all tidal components must be set in namelist_cfg
/

A module is available to compute the tidal potential and use it in the momentum
equation. This option is activated when ln tide is set to true in nam tide.

Some parameters are available in namelist nam tide:
- ln tide pot activate the tidal potential forcing
- nb harmo is the number of constituent used
- clname is the name of constituent
The tide is generated by the forces of gravity ot the Earth-Moon and Earth-Sun

sytem; they are expressed as the gradient of the astronomical potential (~∇Πa).

The potential astronomical expressed, for the three types of tidal frequencies
following, by :
Tide long period :

Πa = gAk(
1

2
− 3

2
sin2φ)cos(ωkt+ V0k) (7.3)

diurnal Tide :
Πa = gAk(sin2φ)cos(ωkt+ λ+ V0k) (7.4)

Semi-diurnal tide:

Πa = gAk(cos
2φ)cos(ωkt+ 2λ+ V0k) (7.5)

Ak is the amplitude of the wave k, ωk the pulsation of the wave k, V0k the
astronomical phase of the wave k to Greenwich.

7.9. River runoffs (sbcrnf) 141

We make corrections to the astronomical potential. We obtain :

Π− gδ = (1 + k − h)ΠA(λ, φ) (7.6)

with k a number of Love estimated to 0.6 which parameterised the astronomical
tidal land, and h a number of Love to 0.3 which parameterised the parameterisation
due to the astronomical tidal land.

7.9 River runoffs (sbcrnf.F90)
!---
&namsbc_rnf ! runoffs namelist surface boundary condition (ln_rnf =T)
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_rnf = ’runoff_core_monthly’, -1 , ’sorunoff’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_cnf = ’runoff_core_monthly’, 0 , ’socoefr0’, .false. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_s_rnf = ’runoffs’ , 24 , ’rosaline’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_t_rnf = ’runoffs’ , 24 , ’rotemper’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_dep_rnf = ’runoffs’ , 0 , ’rodepth’ , .false. , .true. , ’yearly’ , ’’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the runoff files
ln_rnf_mouth= .true. ! specific treatment at rivers mouths

rn_hrnf = 15.e0 ! depth over which enhanced vertical mixing is used (ln_rnf_mouth=T)
rn_avt_rnf = 1.e-3 ! value of the additional vertical mixing coef. [m2/s] (ln_rnf_mouth=T)

rn_rfact = 1.e0 ! multiplicative factor for runoff
ln_rnf_depth= .false. ! read in depth information for runoff
ln_rnf_tem = .false. ! read in temperature information for runoff
ln_rnf_sal = .false. ! read in salinity information for runoff
ln_rnf_depth_ini = .false. ! compute depth at initialisation from runoff file

rn_rnf_max = 5.735e-4 ! max value of the runoff climatologie over global domain (ln_rnf_depth_ini = .true)
rn_dep_max = 150. ! depth over which runoffs is spread (ln_rnf_depth_ini = .true)
nn_rnf_depth_file = 0 ! create (=1) a runoff depth file or not (=0)

/

River runoff generally enters the ocean at a nonzero depth rather than through
the surface. Many models, however, have traditionally inserted river runoff to the
top model cell. This was the case in NEMO prior to the version 3.3, and was
combined with an option to increase vertical mixing near the river mouth.

However, with this method numerical and physical problems arise when the
top grid cells are of the order of one meter. This situation is common in coastal
modelling and is becoming more common in open ocean and climate modelling 2.

As such from V 3.3 onwards it is possible to add river runoff through a non-zero
depth, and for the temperature and salinity of the river to effect the surrounding
ocean. The user is able to specify, in a NetCDF input file, the temperature and
salinity of the river, along with the depth (in metres) which the river should be
added to.

Namelist variables in namsbc rnf , ln rnf depth, ln rnf sal and ln rnf temp con-
trol whether the river attributes (depth, salinity and temperature) are read in and
used. If these are set as false the river is added to the surface box only, assumed to
be fresh (0 psu), and/or taken as surface temperature respectively.

The runoff value and attributes are read in in sbcrnf. For temperature -999 is
taken as missing data and the river temperature is taken to be the surface temperatue
at the river point. For the depth parameter a value of -1 means the river is added

2At least a top cells thickness of 1 meter and a 3 hours forcing frequency are required to properly
represent the diurnal cycle [Bernie et al. 2005]. see also §7.13.1.

142 Surface Boundary Condition (SBC, ISF, ICB)

to the surface box only, and a value of -999 means the river is added through the
entire water column. After being read in the temperature and salinity variables are
multiplied by the amount of runoff (converted into m/s) to give the heat and salt
content of the river runoff. After the user specified depth is read ini, the number of
grid boxes this corresponds to is calculated and stored in the variable nz rnf . The
variable h dep is then calculated to be the depth (in metres) of the bottom of the
lowest box the river water is being added to (i.e. the total depth that river water is
being added to in the model).

The mass/volume addition due to the river runoff is, at each relevant depth
level, added to the horizontal divergence (hdivn) in the subroutine sbc rnf div
(called from divcur.F90). This increases the diffusion term in the vicinity of the
river, thereby simulating a momentum flux. The sea surface height is calculated
using the sum of the horizontal divergence terms, and so the river runoff indirectly
forces an increase in sea surface height.

The hdivn terms are used in the tracer advection modules to force vertical ve-
locities. This causes a mass of water, equal to the amount of runoff, to be moved
into the box above. The heat and salt content of the river runoff is not included in
this step, and so the tracer concentrations are diluted as water of ocean temperature
and salinity is moved upward out of the box and replaced by the same volume of
river water with no corresponding heat and salt addition.

For the linear free surface case, at the surface box the tracer advection causes
a flux of water (of equal volume to the runoff) through the sea surface out of the
domain, which causes a salt and heat flux out of the model. As such the volume of
water does not change, but the water is diluted.

For the non-linear free surface case (key vvl), no flux is allowed through the
surface. Instead in the surface box (as well as water moving up from the boxes
below) a volume of runoff water is added with no corresponding heat and salt
addition and so as happens in the lower boxes there is a dilution effect. (The runoff
addition to the top box along with the water being moved up through boxes below
means the surface box has a large increase in volume, whilst all other boxes remain
the same size)

In trasbc the addition of heat and salt due to the river runoff is added. This is
done in the same way for both vvl and non-vvl. The temperature and salinity are
increased through the specified depth according to the heat and salt content of the
river.

In the non-linear free surface case (vvl), near the end of the time step the change
in sea surface height is redistrubuted through the grid boxes, so that the original
ratios of grid box heights are restored. In doing this water is moved into boxes
below, throughout the water column, so the large volume addition to the surface
box is spread between all the grid boxes.

It is also possible for runnoff to be specified as a negative value for modelling
flow through straits, i.e. modelling the Baltic flow in and out of the North Sea.
When the flow is out of the domain there is no change in temperature and salinity,
regardless of the namelist options used, as the ocean water leaving the domain

7.10. Ice shelf melting (sbcisf) 143

removes heat and salt (at the same concentration) with it.

7.10 Ice shelf melting (sbcisf.F90)
!---
&namsbc_isf ! Top boundary layer (ISF) (nn_isf >0)
!---
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !
! nn_isf == 4

sn_fwfisf = ’rnfisf’ , -12 ,’sowflisf’, .false. , .true. , ’yearly’ , ’’ , ’’ , ’’
! nn_isf == 3

sn_rnfisf = ’rnfisf’ , -12 ,’sofwfisf’, .false. , .true. , ’yearly’ , ’’ , ’’ , ’’
! nn_isf == 2 and 3

sn_depmax_isf=’rnfisf’ , -12 ,’sozisfmax’, .false. , .true. , ’yearly’ , ’’ , ’’ , ’’
sn_depmin_isf=’rnfisf’ , -12 ,’sozisfmin’, .false. , .true. , ’yearly’ , ’’ , ’’ , ’’

! nn_isf == 2
sn_Leff_isf = ’rnfisf’ , -12 ,’Leff’ , .false. , .true. , ’yearly’ , ’’ , ’’ , ’’

!
! for all case

nn_isf = 1 ! ice shelf melting/freezing
! 1 = presence of ISF 2 = bg03 parametrisation
! 3 = rnf file for isf 4 = ISF fwf specified
! option 1 and 4 need ln_isfcav = .true. (domzgr)

! only for nn_isf = 1 or 2
rn_gammat0 = 1.e-4 ! gammat coefficient used in blk formula
rn_gammas0 = 1.e-4 ! gammas coefficient used in blk formula

! only for nn_isf = 1 or 4
rn_hisf_tbl = 30. ! thickness of the top boundary layer (Losh et al. 2008)
! ! 0 => thickness of the tbl = thickness of the first wet cell

! only for nn_isf = 1
nn_isfblk = 1 ! 1 ISOMIP like: 2 equations formulation (Hunter et al., 2006)
! ! 2 ISOMIP+ like: 3 equations formulation (Asay-Davis et al., 2015)
nn_gammablk = 1 ! 0 = cst Gammat (= gammat/s)
! ! 1 = velocity dependend Gamma (u* * gammat/s) (Jenkins et al. 2010)
! ! 2 = velocity and stability dependent Gamma (Holland et al. 1999)

/

Namelist variable in namsbc, nn isf , controls the ice shelf representation used.

nn isf = 1 The ice shelf cavity is represented (ln isfcav = true needed). The fwf
and heat flux are computed. Two different bulk formula are available:

nn isfblk = 1 The bulk formula used to compute the melt is based the one
described in Hunter [2006]. This formulation is based on a balance
between the upward ocean heat flux and the latent heat flux at the ice
shelf base.

nn isfblk = 2 The bulk formula used to compute the melt is based the one
described in Jenkins [1991]. This formulation is based on a 3 equa-
tions formulation (a heat flux budget, a salt flux budget and a linearised
freezing point temperature equation).

For this 2 bulk formulations, there are 3 different ways to compute the ex-
change coeficient:

nn gammablk = 0 The salt and heat exchange coefficients are constant and
defined by rn gammas0 and rn gammat0

nn gammablk = 1 The salt and heat exchange coefficients are velocity de-
pendent and defined as rn gammas0×u∗ and rn gammat0×u∗ where
u∗ is the friction velocity in the top boundary layer (ie first rn hisf tbl
meters). See Jenkins [2010] for all the details on this formulation.

144 Surface Boundary Condition (SBC, ISF, ICB)

nn gammablk = 2 The salt and heat exchange coefficients are velocity and
stability dependent and defined as γT,S = u∗

ΓTurb+ΓT,SMole

where u∗ is the

friction velocity in the top boundary layer (ie first rn hisf tbl meters),
ΓTurb the contribution of the ocean stability and ΓT,SMole the contribution
of the molecular diffusion. See Holland and Jenkins [1999] for all the
details on this formulation.

nn isf = 2 A parameterisation of isf is used. The ice shelf cavity is not repre-
sented. The fwf is distributed along the ice shelf edge between the depth
of the average grounding line (GL) (sn depmax isf) and the base of the ice
shelf along the calving front (sn depmin isf) as in (nn isf = 3). Furthermore
the fwf and heat flux are computed using the Beckmann and Goosse [2003]
parameterisation of isf melting. The effective melting length (sn Leff isf) is
read from a file.

nn isf = 3 A simple parameterisation of isf is used. The ice shelf cavity is not rep-
resented. The fwf (sn rnfisf) is prescribed and distributed along the ice shelf
edge between the depth of the average grounding line (GL) (sn depmax isf)
and the base of the ice shelf along the calving front (sn depmin isf). The
heat flux (Qh) is computed as Qh = fwf × Lf .

nn isf = 4 The ice shelf cavity is opened (ln isfcav = true needed). However, the
fwf is not computed but specified from file sn fwfisf). The heat flux (Qh) is
computed as Qh = fwf × Lf .

• nn isf = 1 and nn isf = 2 compute a melt rate based on the water mass prop-
erties, ocean velocities and depth. This flux is thus highly dependent of the model
resolution (horizontal and vertical), realism of the water masses onto the shelf ...

• nn isf = 3 and nn isf = 4 read the melt rate from a file. You have total control
of the fwf forcing. This can be usefull if the water masses on the shelf are not real-
istic or the resolution (horizontal/vertical) are too coarse to have realistic melting
or for studies where you need to control your heat and fw input.

A namelist parameters control over how many meters the heat and fw fluxes are
spread. rn hisf tbl] is the top boundary layer thickness as defined in Losch [2008].
This parameter is only used if nn isf = 1 or nn isf = 4

If rn hisf tbl = 0., the fluxes are put in the top level whatever is its tickness.
If rn hisf tbl > 0., the fluxes are spread over the first rn hisf tbl m (ie over one

or several cells).

The ice shelf melt is implemented as a volume flux with in the same way as
for the runoff. The fw addition due to the ice shelf melting is, at each relevant
depth level, added to the horizontal divergence (hdivn) in the subroutine sbc isf div,

7.11. Ice sheet coupling 145

called from divcur.F90. See the runoff section 7.9 for all the details about the
divergence correction.

7.11 Ice sheet coupling
!---
&namsbc_iscpl ! land ice / ocean coupling option
!---

nn_drown = 10 ! number of iteration of the extrapolation loop (fill the new wet cells)
ln_hsb = .false. ! activate conservation module (conservation exact after a time of rn_fiscpl)
nn_fiscpl = 43800 ! (number of time step) conservation period (maybe should be fix to the coupling frequencey of restart frequency)

/

Ice sheet/ocean coupling is done through file exchange at the restart step. NEMO,
at each restart step, read the bathymetry and ice shelf draft variable in a netcdf file.
If ln iscpl = true, the isf draft is assume to be different at each restart step with
potentially some new wet/dry cells due to the ice sheet dynamics/thermodynamics.
The wetting and drying scheme applied on the restart is very simple and described
below for the 6 different cases:

Thin a cell down: T/S/ssh are unchanged and U/V in the top cell are corrected to
keep the barotropic transport (bt) constant (btb = btn).

Enlarge a cell: See case ”Thin a cell down”

Dry a cell: mask, T/S, U/V and ssh are set to 0. Furthermore, U/V into the water
column are modified to satisfy (btb = btn).

Wet a cell: mask is set to 1, T/S is extrapolated from neighbours, sshn = sshb
and U/V set to 0. If no neighbours along i,j and k, T/S/U/V and mask are set
to 0.

Dry a column: mask, T/S, U/V are set to 0 everywhere in the column and ssh set
to 0.

Wet a column: set mask to 1, T/S is extrapolated from neighbours, ssh is extrapo-
lated from neighbours and U/V set to 0. If no neighbour, T/S/U/V and mask
set to 0.

The extrapolation is call nn drown times. It means that if the grounding line retreat
by more than nn drown cells between 2 coupling steps, the code will be unable to
fill all the new wet cells properly. The default number is set up for the MISOMIP
idealised experiments.
This coupling procedure is able to take into account grounding line and calving
front migration. However, it is a non-conservative processe. This could lead to a
trend in heat/salt content and volume. In order to remove the trend and keep the
conservation level as close to 0 as possible, a simple conservation scheme is avail-
able with ln hsb = true. The heat/salt/vol. gain/loss is diagnose, as well as the
location. Based on what is done on sbcrnf to prescribed a source of heat/salt/vol.,
the heat/salt/vol. gain/loss is removed/added, over a period of rn fiscpl time step,

146 Surface Boundary Condition (SBC, ISF, ICB)

into the system. So after rn fiscpl time step, all the heat/salt/vol. gain/loss due to
extrapolation process is canceled.

As the before and now fields are not compatible (modification of the geometry),
the restart time step is prescribed to be an euler time step instead of a leap frog and
fieldsb = fieldsn.

7.12 Handling of icebergs (ICB)
!---
&namberg ! iceberg parameters (default: No iceberg)
!---

ln_icebergs = .false. ! iceberg floats or not
ln_bergdia = .true. ! Calculate budgets
nn_verbose_level = 1 ! Turn on more verbose output if level > 0
nn_verbose_write = 15 ! Timesteps between verbose messages
nn_sample_rate = 1 ! Timesteps between sampling for trajectory storage

! Initial mass required for an iceberg of each class
rn_initial_mass = 8.8e7, 4.1e8, 3.3e9, 1.8e10, 3.8e10, 7.5e10, 1.2e11, 2.2e11, 3.9e11, 7.4e11

! Proportion of calving mass to apportion to each class
rn_distribution = 0.24, 0.12, 0.15, 0.18, 0.12, 0.07, 0.03, 0.03, 0.03, 0.02

! Ratio between effective and real iceberg mass (non-dim)
! i.e. number of icebergs represented at a point

rn_mass_scaling = 2000, 200, 50, 20, 10, 5, 2, 1, 1, 1
! thickness of newly calved bergs (m)

rn_initial_thickness = 40., 67., 133., 175., 250., 250., 250., 250., 250., 250.
rn_rho_bergs = 850. ! Density of icebergs
rn_LoW_ratio = 1.5 ! Initial ratio L/W for newly calved icebergs
ln_operator_splitting = .true. ! Use first order operator splitting for thermodynamics
rn_bits_erosion_fraction = 0. ! Fraction of erosion melt flux to divert to bergy bits
rn_sicn_shift = 0. ! Shift of sea-ice concn in erosion flux (0<sicn_shift<1)
ln_passive_mode = .false. ! iceberg - ocean decoupling
nn_test_icebergs = 10 ! Create test icebergs of this class (-1 = no)

! Put a test iceberg at each gridpoint in box (lon1,lon2,lat1,lat2)
rn_test_box = 108.0, 116.0, -66.0, -58.0
rn_speed_limit = 0. ! CFL speed limit for a berg

! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_icb = ’calving’, -1 , ’calvingmask’, .true. , .true. , ’yearly’ , ’’ , ’’ , ’’

cn_dir = ’./’
/

Icebergs are modelled as lagrangian particles in NEMO [Marsh et al. 2015].
Their physical behaviour is controlled by equations as described in Martin and
Adcroft [2010]). (Note that the authors kindly provided a copy of their code
to act as a basis for implementation in NEMO). Icebergs are initially spawned
into one of ten classes which have specific mass and thickness as described in
the namberg namelist: rn initial mass and rn initial thickness. Each class has an
associated scaling (rn mass scaling), which is an integer representing how many
icebergs of this class are being described as one lagrangian point (this reduces the
numerical problem of tracking every single iceberg). They are enabled by setting
ln icebergs = true.

Two initialisation schemes are possible.

nn test icebergs > 0 In this scheme, the value of nn test icebergs represents the
class of iceberg to generate (so between 1 and 10), and nn test icebergs pro-
vides a lon/lat box in the domain at each grid point of which an iceberg is
generated at the beginning of the run. (Note that this happens each time

7.13. Miscellaneous options 147

the timestep equals nn nit000.) nn test icebergs is defined by four num-
bers in nn test box representing the corners of the geographical box: lon-
min,lonmax,latmin,latmax

nn test icebergs = -1 In this scheme the model reads a calving file supplied in the
sn icb parameter. This should be a file with a field on the configuration grid
(typically ORCA) representing ice accumulation rate at each model point.
These should be ocean points adjacent to land where icebergs are known to
calve. Most points in this input grid are going to have value zero. When
the model runs, ice is accumulated at each grid point which has a non-zero
source term. At each time step, a test is performed to see if there is enough
ice mass to calve an iceberg of each class in order (1 to 10). Note that this
is the initial mass multiplied by the number each particle represents (i.e.
the scaling). If there is enough ice, a new iceberg is spawned and the total
available ice reduced accordingly.

Icebergs are influenced by wind, waves and currents, bottom melt and erosion.
The latter act to disintegrate the iceberg. This is either all melted freshwater, or
(if rn bits erosion fraction > 0) into melt and additionally small ice bits which are
assumed to propagate with their larger parent and thus delay fluxing into the ocean.
Melt water (and other variables on the configuration grid) are written into the main
NEMO model output files.

Extensive diagnostics can be produced. Separate output files are maintained for
human-readable iceberg information. A separate file is produced for each processor
(independent of ln ctl). The amount of information is controlled by two integer
parameters:

nn verbose level takes a value between one and four and represents an increasing
number of points in the code at which variables are written, and an increasing
level of obscurity.

nn verbose write is the number of timesteps between writes

Iceberg trajectories can also be written out and this is enabled by setting nn sample rate> 0.
A non-zero value represents how many timesteps between writes of information
into the output file. These output files are in NETCDF format. When key mpp mpi
is defined, each output file contains only those icebergs in the corresponding pro-
cessor. Trajectory points are written out in the order of their parent iceberg in the
model’s ”linked list” of icebergs. So care is needed to recreate data for individual
icebergs, since its trajectory data may be spread across multiple files.

7.13 Miscellaneous options

7.13.1 Diurnal cycle (sbcdcy.F90)

Bernie et al. [2005] have shown that to capture 90% of the diurnal variability of

148 Surface Boundary Condition (SBC, ISF, ICB)

Q
sr

∆t

analytical solution
reconstructed (mean of over ∆t)
analytical solution at ti

t1 t2 t3 t4 t5 t6
time of day (t)

Figure 7.1: Example of recontruction of the diurnal cycle variation of short wave
flux from daily mean values. The reconstructed diurnal cycle (black line) is chosen as
the mean value of the analytical cycle (blue line) over a time step, not as the mid time
step value of the analytically cycle (red square). From Bernie et al. [2007].

SST requires a vertical resolution in upper ocean of 1 m or better and a tempo-
ral resolution of the surface fluxes of 3 h or less. Unfortunately high frequency
forcing fields are rare, not to say inexistent. Nevertheless, it is possible to obtain
a reasonable diurnal cycle of the SST knowning only short wave flux (SWF) at
high frequency [Bernie et al. 2007]. Furthermore, only the knowledge of daily
mean value of SWF is needed, as higher frequency variations can be reconstructed
from them, assuming that the diurnal cycle of SWF is a scaling of the top of the
atmosphere diurnal cycle of incident SWF. The Bernie et al. [2007] reconstruction
algorithm is available in NEMO by setting ln dm2dc = true (a namsbc namelist vari-
able) when using CORE bulk formulea (ln blk core = true) or the flux formulation
(ln flx = true). The reconstruction is performed in the sbcdcy.F90 module. The
detail of the algoritm used can be found in the appendix A of Bernie et al. [2007].
The algorithm preserve the daily mean incomming SWF as the reconstructed SWF
at a given time step is the mean value of the analytical cycle over this time step
(Fig.7.1). The use of diurnal cycle reconstruction requires the input SWF to be
daily (i.e. a frequency of 24 and a time interpolation set to true in sn qsr namelist
parameter). Furthermore, it is recommended to have a least 8 surface module time
step per day, that is ∆t nn fsbc < 10, 800 s = 3 h. An example of recontructed
SWF is given in Fig.7.2 for a 12 reconstructed diurnal cycle, one every 2 hours

7.13. Miscellaneous options 149

time = 1h

0 50 100 150
0

20

40

60

80

100

120

140 time = 3h

0 50 100 150

time = 5h

0 50 100 150

time = 7h time = 9h time = 11h

time = 13h time = 15h time = 17h

time = 19h time = 21h time = 23h

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0 50 100 150 0 50 100 150 0 50 100 150

0 50 100 150 0 50 100 150 0 50 100 150

Figure 7.2: Example of recontruction of the diurnal cycle variation of short wave flux
from daily mean values on an ORCA2 grid with a time sampling of 2 hours (from 1am
to 11pm). The display is on (i,j) plane.

(from 1am to 11pm).
Note also that the setting a diurnal cycle in SWF is highly recommended when

the top layer thickness approach 1 m or less, otherwise large error in SST can
appear due to an inconsistency between the scale of the vertical resolution and the
forcing acting on that scale.

7.13.2 Rotation of vector pairs onto the model grid directions

When using a flux (ln flx=true) or bulk (ln clio=true or ln core=true) formulation,
pairs of vector components can be rotated from east-north directions onto the local
grid directions. This is particularly useful when interpolation on the fly is used

150 Surface Boundary Condition (SBC, ISF, ICB)

since here any vectors are likely to be defined relative to a rectilinear grid. To
activate this option a non-empty string is supplied in the rotation pair column of the
relevant namelist. The eastward component must start with ”U” and the northward
component with ”V”. The remaining characters in the strings are used to identify
which pair of components go together. So for example, strings ”U1” and ”V1”
next to ”utau” and ”vtau” would pair the wind stress components together and
rotate them on to the model grid directions; ”U2” and ”V2” could be used against a
second pair of components, and so on. The extra characters used in the strings are
arbitrary. The rot rep routine from the geo2ocean.F90 module is used to perform
the rotation.

7.13.3 Surface restoring to observed SST and/or SSS (sbcssr.F90)
!---
&namsbc_ssr ! surface boundary condition : sea surface restoring (ln_ssr =T)
!---
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_sst = ’sst_data’, 24 , ’sst’ , .false. , .false., ’yearly’ , ’’ , ’’ , ’’
sn_sss = ’sss_data’, -1 , ’sss’ , .true. , .true. , ’yearly’ , ’’ , ’’ , ’’

cn_dir = ’./’ ! root directory for the location of the runoff files
nn_sstr = 0 ! add a retroaction term in the surface heat flux (=1) or not (=0)
nn_sssr = 2 ! add a damping term in the surface freshwater flux (=2)
! ! or to SSS only (=1) or no damping term (=0)
rn_dqdt = -40. ! magnitude of the retroaction on temperature [W/m2/K]
rn_deds = -166.67 ! magnitude of the damping on salinity [mm/day]
ln_sssr_bnd = .true. ! flag to bound erp term (associated with nn_sssr=2)
rn_sssr_bnd = 4.e0 ! ABS(Max/Min) value of the damping erp term [mm/day]

/

IOptions are defined through the namsbc ssr namelist variables. n forced mode
using a flux formulation (ln flx = true), a feedback term must be added to the surface
heat flux Qons:

Qns = Qons +
dQ

dT
(T |k=1 − SSTObs) (7.7)

where SST is a sea surface temperature field (observed or climatological), T is the
model surface layer temperature and dQ

dT is a negative feedback coefficient usually
taken equal to −40 W/m2/K. For a 50 m mixed-layer depth, this value cor-
responds to a relaxation time scale of two months. This term ensures that if T
perfectly matches the supplied SST, then Q is equal to Qo.

In the fresh water budget, a feedback term can also be added. Converted into
an equivalent freshwater flux, it takes the following expression :

emp = empo + γ−1
s e3t

(S|k=1 − SSSObs)
S|k=1

(7.8)

where empo is a net surface fresh water flux (observed, climatological or an
atmospheric model product), SSSObs is a sea surface salinity (usually a time in-
terpolation of the monthly mean Polar Hydrographic Climatology [Steele et al.
2001]), S|k=1 is the model surface layer salinity and γs is a negative feedback
coefficient which is provided as a namelist parameter. Unlike heat flux, there is
no physical justification for the feedback term in 7.8 as the atmosphere does not

7.13. Miscellaneous options 151

care about ocean surface salinity [Madec and Delecluse 1997]. The SSS restor-
ing term should be viewed as a flux correction on freshwater fluxes to reduce the
uncertainties we have on the observed freshwater budget.

7.13.4 Handling of ice-covered area (sbcice ...)

The presence at the sea surface of an ice covered area modifies all the fluxes trans-
mitted to the ocean. There are several way to handle sea-ice in the system depend-
ing on the value of the nn ice namelist parameter found in namsbc namelist.

nn ice = 0 there will never be sea-ice in the computational domain. This is a typ-
ical namelist value used for tropical ocean domain. The surface fluxes are
simply specified for an ice-free ocean. No specific things is done for sea-ice.

nn ice = 1 sea-ice can exist in the computational domain, but no sea-ice model is
used. An observed ice covered area is read in a file. Below this area, the
SST is restored to the freezing point and the heat fluxes are set to −4 W/m2

(−2 W/m2) in the northern (southern) hemisphere. The associated modi-
fication of the freshwater fluxes are done in such a way that the change in
buoyancy fluxes remains zero. This prevents deep convection to occur when
trying to reach the freezing point (and so ice covered area condition) while
the SSS is too large. This manner of managing sea-ice area, just by using
si IF case, is usually referred as the ice-if model. It can be found in the
sbcice if.F90 module.

nn ice = 2 or more A full sea ice model is used. This model computes the ice-
ocean fluxes, that are combined with the air-sea fluxes using the ice fraction
of each model cell to provide the surface ocean fluxes. Note that the ac-
tivation of a sea-ice model is is done by defining a CPP key (key lim3 or
key cice). The activation automatically overwrites the read value of nn ice
to its appropriate value (i.e. 2 for LIM-3 or 3 for CICE).

7.13.5 Interface to CICE (sbcice cice.F90)

It is now possible to couple a regional or global NEMO configuration (without
AGRIF) to the CICE sea-ice model by using key cice. The CICE code can be ob-
tained from LANL and the additional ’hadgem3’ drivers will be required, even with
the latest code release. Input grid files consistent with those used in NEMO will
also be needed, and CICE CPP keys ORCA GRID, CICE IN NEMO and cou-
pled should be used (seek advice from UKMO if necessary). Currently the code
is only designed to work when using the CORE forcing option for NEMO (with
calc strair = true and calc Tsfc = true in the CICE name-list), or alternatively
when NEMO is coupled to the HadGAM3 atmosphere model (with calc strair = false
and calc Tsfc = false). The code is intended to be used with nn fsbc set to 1 (al-
though coupling ocean and ice less frequently should work, it is possible the cal-

http://oceans11.lanl.gov/trac/CICE/

152 Surface Boundary Condition (SBC, ISF, ICB)

culation of some of the ocean-ice fluxes needs to be modified slightly - the user
should check that results are not significantly different to the standard case).

There are two options for the technical coupling between NEMO and CICE.
The standard version allows complete flexibility for the domain decompositions
in the individual models, but this is at the expense of global gather and scatter
operations in the coupling which become very expensive on larger numbers of pro-
cessors. The alternative option (using key nemocice decomp for both NEMO and
CICE) ensures that the domain decomposition is identical in both models (pro-
vided domain parameters are set appropriately, and processor shape = square-ice
and distribution wght = block in the CICE name-list) and allows much more ef-
ficient direct coupling on individual processors. This solution scales much better
although it is at the expense of having more idle CICE processors in areas where
there is no sea ice.

7.13.6 Freshwater budget control (sbcfwb.F90)

For global ocean simulation it can be useful to introduce a control of the mean sea
level in order to prevent unrealistic drift of the sea surface height due to inaccuracy
in the freshwater fluxes. In NEMO, two way of controlling the the freshwater
budget.

nn fwb=0 no control at all. The mean sea level is free to drift, and will certainly
do so.

nn fwb=1 global mean emp set to zero at each model time step.

nn fwb=2 freshwater budget is adjusted from the previous year annual mean bud-
get which is read in the EMPave old.dat file. As the model uses the Boussi-
nesq approximation, the annual mean fresh water budget is simply evaluated
from the change in the mean sea level at January the first and saved in the
EMPav.dat file.

7.13.7 Neutral drag coefficient from external wave model (sbcwave.F90)
!---
&namsbc_wave ! External fields from wave model (ln_wave=T)
!---
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

sn_cdg = ’sdw_wave’ , 1 , ’drag_coeff’ , .true. , .false. , ’daily’ , ’’ , ’’ , ’’
sn_usd = ’sdw_wave’ , 1 , ’u_sd2d’ , .true. , .false. , ’daily’ , ’’ , ’’ , ’’
sn_vsd = ’sdw_wave’ , 1 , ’v_sd2d’ , .true. , .false. , ’daily’ , ’’ , ’’ , ’’
sn_hsw = ’sdw_wave’ , 1 , ’hs’ , .true. , .false. , ’daily’ , ’’ , ’’ , ’’
sn_wmp = ’sdw_wave’ , 1 , ’wmp’ , .true. , .false. , ’daily’ , ’’ , ’’ , ’’
sn_wfr = ’sdw_wave’ , 1 , ’wfr’ , .true. , .false. , ’daily’ , ’’ , ’’ , ’’
sn_wnum = ’sdw_wave’ , 1 , ’wave_num’ , .true. , .false. , ’daily’ , ’’ , ’’ , ’’
sn_tauwoc = ’sdw_wave’ , 1 , ’wave_stress’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
sn_tauwx = ’sdw_wave’ , 1 , ’wave_stress’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
sn_tauwy = ’sdw_wave’ , 1 , ’wave_stress’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’

!
cn_dir = ’./’ ! root directory for the location of drag coefficient files

/

In order to read a neutral drag coeff, from an external data source (i.e. a wave
model), the logical variable ln cdgw in namsbc namelist must be set to true. The

7.13. Miscellaneous options 153

sbcwave.F90 module containing the routine sbc wave reads the namelist namsbc wave
(for external data names, locations, frequency, interpolation and all the miscel-
lanous options allowed by Input Data generic Interface see §7.2) and a 2D field of
neutral drag coefficient. Then using the routine TURB CORE 1Z or TURB CORE 2Z,
and starting from the neutral drag coefficent provided, the drag coefficient is com-
puted according to stable/unstable conditions of the air-sea interface following
Large and Yeager [2004].

8 Lateral Boundary Condition (LBC)

Contents
8.1 Boundary Condition at the Coast (rn shlat) 156
8.2 Model Domain Boundary Condition (jperio) 159

8.2.1 Closed, cyclic, south symmetric (jperio = 0, 1 or 2) . . 159
8.2.2 North-fold (jperio = 3 to 6) 160

8.3 Exchange with neighbouring processors (lbclnk, lib mpp) . 160
8.4 Unstructured Open Boundary Conditions (BDY) 163

8.4.1 The namelists . 165
8.4.2 The Flow Relaxation Scheme 166
8.4.3 The Flather radiation scheme 167
8.4.4 Boundary geometry 167
8.4.5 Input boundary data files 169
8.4.6 Volume correction 169
8.4.7 Tidal harmonic forcing 170

156 Lateral Boundary Condition (LBC)

8.1 Boundary Condition at the Coast (rn shlat)
!---
&namlbc ! lateral momentum boundary condition
!---

! ! free slip ! partial slip ! no slip ! strong slip
rn_shlat = 2. ! shlat = 0 ! 0 < shlat < 2 ! shlat = 2 ! 2 < shlat
ln_vorlat = .false. ! consistency of vorticity boundary condition with analytical Eqs.

/

Options are defined through the namlbc namelist variables. The discrete repre-
sentation of a domain with complex boundaries (coastlines and bottom topography)
leads to arrays that include large portions where a computation is not required as
the model variables remain at zero. Nevertheless, vectorial supercomputers are far
more efficient when computing over a whole array, and the readability of a code
is greatly improved when boundary conditions are applied in an automatic way
rather than by a specific computation before or after each computational loop. An
efficient way to work over the whole domain while specifying the boundary con-
ditions, is to use multiplication by mask arrays in the computation. A mask array
is a matrix whose elements are 1 in the ocean domain and 0 elsewhere. A simple
multiplication of a variable by its own mask ensures that it will remain zero over
land areas. Since most of the boundary conditions consist of a zero flux across the
solid boundaries, they can be simply applied by multiplying variables by the cor-
rect mask arrays, i.e. the mask array of the grid point where the flux is evaluated.
For example, the heat flux in the i-direction is evaluated at u-points. Evaluating
this quantity as,

AlT

e1

∂T

∂i
≡ AlTu
e1u

δi+1/2 [T] masku (8.1)

(where masku is the mask array at a u-point) ensures that the heat flux is zero inside
land and at the boundaries, since masku is zero at solid boundaries which in this
case are defined at u-points (normal velocity u remains zero at the coast) (Fig. 8.1).

For momentum the situation is a bit more complex as two boundary conditions
must be provided along the coast (one each for the normal and tangential veloci-
ties). The boundary of the ocean in the C-grid is defined by the velocity-faces. For
example, at a given T -level, the lateral boundary (a coastline or an intersection with
the bottom topography) is made of segments joining f -points, and normal velocity
points are located between two f−points (Fig. 8.1). The boundary condition on the
normal velocity (no flux through solid boundaries) can thus be easily implemented
using the mask system. The boundary condition on the tangential velocity requires
a more specific treatment. This boundary condition influences the relative vorticity
and momentum diffusive trends, and is required in order to compute the vorticity
at the coast. Four different types of lateral boundary condition are available, con-
trolled by the value of the rn shlat namelist parameter. (The value of the maskf
array along the coastline is set equal to this parameter.) These are:

8.1. Boundary Condition at the Coast (rn shlat) 157

land

ocean

T-point
f-point
u-, v-points

V=0 V=0

V=0

U=0

U=0

Figure 8.1: Lateral boundary (thick line) at T-level. The velocity normal to the
boundary is set to zero.

free-slip boundary condition (rn shlat=0): the tangential velocity at the coast-
line is equal to the offshore velocity, i.e. the normal derivative of the tangen-
tial velocity is zero at the coast, so the vorticity: maskf array is set to zero
inside the land and just at the coast (Fig. 8.2-a).

no-slip boundary condition (rn shlat=2): the tangential velocity vanishes at the
coastline. Assuming that the tangential velocity decreases linearly from the
closest ocean velocity grid point to the coastline, the normal derivative is
evaluated as if the velocities at the closest land velocity gridpoint and the
closest ocean velocity gridpoint were of the same magnitude but in the op-
posite direction (Fig. 8.2-b). Therefore, the vorticity along the coastlines is
given by:

ζ ≡ 2
(
δi+1/2 [e2vv]− δj+1/2 [e1uu]

)
/ (e1fe2f) ,

where u and v are masked fields. Setting the maskf array to 2 along the
coastline provides a vorticity field computed with the no-slip boundary con-
dition, simply by multiplying it by the maskf :

ζ ≡ 1

e1f e2f

(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
maskf (8.2)

158 Lateral Boundary Condition (LBC)

V V

land ocean land ocean

V V

land ocean land ocean

fmask=0
fmask=2

fmask=1
fmask>2

0<fmask<2

(a) (b)

(c) (d)

Figure 8.2: lateral boundary condition (a) free-slip (rn shlat = 0) ; (b) no-slip
(rn shlat = 2) ; (c) ”partial” free-slip (0 < rn shlat < 2) and (d) ”strong” no-slip
(2 < rn shlat). Implied ”ghost” velocity inside land area is display in grey.

8.2. Model Domain Boundary Condition (jperio) 159

”partial” free-slip boundary condition (0<rn shlat<2): the tangential velocity
at the coastline is smaller than the offshore velocity, i.e. there is a lateral fric-
tion but not strong enough to make the tangential velocity at the coast vanish
(Fig. 8.2-c). This can be selected by providing a value of maskf strictly
inbetween 0 and 2.

”strong” no-slip boundary condition (2<rn shlat): the viscous boundary layer
is assumed to be smaller than half the grid size (Fig. 8.2-d). The friction is
thus larger than in the no-slip case.

Note that when the bottom topography is entirely represented by the s-coor-
dinates (pure s-coordinate), the lateral boundary condition on tangential velocity is
of much less importance as it is only applied next to the coast where the minimum
water depth can be quite shallow.

8.2 Model Domain Boundary Condition (jperio)

At the model domain boundaries several choices are offered: closed, cyclic east-
west, south symmetric across the equator, a north-fold, and combination closed-
north fold or cyclic-north-fold. The north-fold boundary condition is associated
with the 3-pole ORCA mesh.

8.2.1 Closed, cyclic, south symmetric (jperio = 0, 1 or 2)

The choice of closed, cyclic or symmetric model domain boundary condition is
made by setting jperio to 0, 1 or 2 in namelist namcfg. Each time such a boundary
condition is needed, it is set by a call to routine lbclnk.F90. The computation of
momentum and tracer trends proceeds from i = 2 to i = jpi − 1 and from j = 2
to j = jpj − 1, i.e. in the model interior. To choose a lateral model boundary
condition is to specify the first and last rows and columns of the model variables.

For closed boundary (jperio=0) , solid walls are imposed at all model bound-
aries: first and last rows and columns are set to zero.

For cyclic east-west boundary (jperio=1) , first and last rows are set to zero (closed)
whilst the first column is set to the value of the last-but-one column and the
last column to the value of the second one (Fig. 8.3-a). Whatever flows out
of the eastern (western) end of the basin enters the western (eastern) end.
Note that there is no option for north-south cyclic or for doubly cyclic cases.

For symmetric boundary condition across the equator (jperio=2) , last rows, and
first and last columns are set to zero (closed). The row of symmetry is cho-
sen to be the u- and T−points equator line (j = 2, i.e. at the southern end of
the domain). For arrays defined at u− or T−points, the first row is set to the
value of the third row while for most of v- and f -point arrays (v, ζ, jψ, but

160 Lateral Boundary Condition (LBC)

row(jpj) = row(2)

row(1) = row(jpj-1) line(1) = -line(2)

line(1) = line(2)

T- or u-point
variables

v- or f-point
variables

(a) (b)

Figure 8.3: setting of (a) east-west cyclic (b) symmetric across the equator boundary
conditions.

scalar arrays such as eddy coefficients) the first row is set to minus the value
of the second row (Fig. 8.3-b). Note that this boundary condition is not yet
available for the case of a massively parallel computer (key mpp defined).

8.2.2 North-fold (jperio = 3 to 6)

The north fold boundary condition has been introduced in order to handle the north
boundary of a three-polar ORCA grid. Such a grid has two poles in the northern
hemisphere (Fig.16.1, and thus requires a specific treatment illustrated in Fig.8.4.
Further information can be found in lbcnfd.F90 module which applies the north
fold boundary condition.

8.3 Exchange with neighbouring processors (lbclnk.F90, lib mpp.F90)

For massively parallel processing (mpp), a domain decomposition method is used.
The basic idea of the method is to split the large computation domain of a numerical
experiment into several smaller domains and solve the set of equations by address-
ing independent local problems. Each processor has its own local memory and
computes the model equation over a subdomain of the whole model domain. The
subdomain boundary conditions are specified through communications between
processors which are organized by explicit statements (message passing method).

A big advantage is that the method does not need many modifications of the
initial FORTRAN code. From the modeller’s point of view, each sub domain
running on a processor is identical to the ”mono-domain” code. In addition, the
programmer manages the communications between subdomains, and the code is
faster when the number of processors is increased. The porting of OPA code on an

8.3. Exchange with neighbouring processors (lbclnk, lib mpp) 161

Figure 8.4: North fold boundary with a T -point pivot and cyclic east-west bound-
ary condition (jperio = 4), as used in ORCA 2, 1/4, and 1/12. Pink shaded area
corresponds to the inner domain mask (see text).

iPSC860 was achieved during Guyon’s PhD [Guyon et al. 1994, 1995] in collab-
oration with CETIIS and ONERA. The implementation in the operational context
and the studies of performance on a T3D and T3E Cray computers have been made
in collaboration with IDRIS and CNRS. The present implementation is largely in-
spired by Guyon’s work [Guyon 1995].

The parallelization strategy is defined by the physical characteristics of the
ocean model. Second order finite difference schemes lead to local discrete op-
erators that depend at the very most on one neighbouring point. The only non-
local computations concern the vertical physics (implicit diffusion, turbulent clo-
sure scheme, ...) (delocalization over the whole water column), and the solving
of the elliptic equation associated with the surface pressure gradient computation
(delocalization over the whole horizontal domain). Therefore, a pencil strategy is
used for the data sub-structuration : the 3D initial domain is laid out on local pro-
cessor memories following a 2D horizontal topological splitting. Each sub-domain
computes its own surface and bottom boundary conditions and has a side wall over-
lapping interface which defines the lateral boundary conditions for computations
in the inner sub-domain. The overlapping area consists of the two rows at each
edge of the sub-domain. After a computation, a communication phase starts: each
processor sends to its neighbouring processors the update values of the points cor-
responding to the interior overlapping area to its neighbouring sub-domain (i.e.
the innermost of the two overlapping rows). The communication is done through
the Message Passing Interface (MPI). The data exchanges between processors are
required at the very place where lateral domain boundary conditions are set in
the mono-domain computation : the lbc lnk routine (found in lbclnk.F90 module)

162 Lateral Boundary Condition (LBC)

Figure 8.5: Positioning of a sub-domain when massively parallel processing is used.

which manages such conditions is interfaced with routines found in lib mpp.F90
module when running on an MPP computer (i.e. when key mpp mpi defined). It
has to be pointed out that when using the MPP version of the model, the east-west
cyclic boundary condition is done implicitly, whilst the south-symmetric boundary
condition option is not available.

In the standard version of NEMO, the splitting is regular and arithmetic. The
i-axis is divided by jpni and the j-axis by jpnj for a number of processors jpnij most
often equal to jpni × jpnj (parameters set in nammpp namelist). Each processor
is independent and without message passing or synchronous process, programs
run alone and access just its own local memory. For this reason, the main model
dimensions are now the local dimensions of the subdomain (pencil) that are named
jpi, jpj, jpk. These dimensions include the internal domain and the overlapping
rows. The number of rows to exchange (known as the halo) is usually set to one
(jpreci=1, in par oce.F90). The whole domain dimensions are named jpiglo, jpjglo
and jpk. The relationship between the whole domain and a sub-domain is:

jpi = (jpiglo− 2 ∗ jpreci+ (jpni− 1))/jpni+ 2 ∗ jpreci
jpj = (jpjglo− 2 ∗ jprecj + (jpnj − 1))/jpnj + 2 ∗ jprecj (8.3)

where jpni, jpnj are the number of processors following the i- and j-axis.
One also defines variables nldi and nlei which correspond to the internal do-

main bounds, and the variables nimpp and njmpp which are the position of the
(1,1) grid-point in the global domain. An element of Tl, a local array (subdomain)
corresponds to an element of Tg, a global array (whole domain) by the relationship:

8.4. Unstructured Open Boundary Conditions (BDY) 163

Tg(i+ nimpp− 1, j + njmpp− 1, k) = Tl(i, j, k), (8.4)

with 1 ≤ i ≤ jpi, 1 ≤ j ≤ jpj , and 1 ≤ k ≤ jpk.
Processors are numbered from 0 to jpnij − 1, the number is saved in the vari-

able nproc. In the standard version, a processor has no more than four neighbouring
processors named nono (for north), noea (east), noso (south) and nowe (west) and
two variables, nbondi and nbondj, indicate the relative position of the processor :

• nbondi = -1 an east neighbour, no west processor,

• nbondi = 0 an east neighbour, a west neighbour,

• nbondi = 1 no east processor, a west neighbour,

• nbondi = 2 no splitting following the i-axis.

During the simulation, processors exchange data with their neighbours. If there is
effectively a neighbour, the processor receives variables from this processor on its
overlapping row, and sends the data issued from internal domain corresponding to
the overlapping row of the other processor.

The NEMO model computes equation terms with the help of mask arrays (0
on land points and 1 on sea points). It is easily readable and very efficient in
the context of a computer with vectorial architecture. However, in the case of
a scalar processor, computations over the land regions become more expensive
in terms of CPU time. It is worse when we use a complex configuration with a
realistic bathymetry like the global ocean where more than 50 % of points are land
points. For this reason, a pre-processing tool can be used to choose the mpp domain
decomposition with a maximum number of only land points processors, which
can then be eliminated (Fig. 8.6) (For example, the mpp optimiz tools, available
from the DRAKKAR web site). This optimisation is dependent on the specific
bathymetry employed. The user then chooses optimal parameters jpni, jpnj and
jpnij with jpnij < jpni×jpnj, leading to the elimination of jpni×jpnj−jpnij
land processors. When those parameters are specified in nammpp namelist, the
algorithm in the inimpp2 routine sets each processor’s parameters (nbound, nono,
noea,...) so that the land-only processors are not taken into account.

When land processors are eliminated, the value corresponding to these loca-
tions in the model output files is undefined. Note that this is a problem for the
meshmask file which requires to be defined over the whole domain. Therefore,
user should not eliminate land processors when creating a meshmask file (i.e.when
setting a non-zero value to nn msh).

8.4 Unstructured Open Boundary Conditions (BDY)
!---
&nambdy ! unstructured open boundaries
!---

164 Lateral Boundary Condition (LBC)

(a) (b)

Figure 8.6: Example of Atlantic domain defined for the CLIPPER projet. Initial
grid is composed of 773 x 1236 horizontal points. (a) the domain is split onto 9
subdomains (jpni=9, jpnj=20). 52 subdomains are land areas. (b) 52 subdomains
are eliminated (white rectangles) and the resulting number of processors really used
during the computation is jpnij=128.

ln_bdy = .false. ! Use unstructured open boundaries
nb_bdy = 0 ! number of open boundary sets
ln_coords_file = .true. ! =T : read bdy coordinates from file
cn_coords_file = ’coordinates.bdy.nc’ ! bdy coordinates files
ln_mask_file = .false. ! =T : read mask from file
cn_mask_file = ’’ ! name of mask file (if ln_mask_file=.TRUE.)
cn_dyn2d = ’none’ !
nn_dyn2d_dta = 0 ! = 0, bdy data are equal to the initial state

! = 1, bdy data are read in ’bdydata .nc’ files
! = 2, use tidal harmonic forcing data from files
! = 3, use external data AND tidal harmonic forcing

cn_dyn3d = ’none’ !
nn_dyn3d_dta = 0 ! = 0, bdy data are equal to the initial state

! = 1, bdy data are read in ’bdydata .nc’ files
cn_tra = ’none’ !
nn_tra_dta = 0 ! = 0, bdy data are equal to the initial state

! = 1, bdy data are read in ’bdydata .nc’ files
cn_ice_lim = ’none’ !
nn_ice_lim_dta = 0 ! = 0, bdy data are equal to the initial state

! = 1, bdy data are read in ’bdydata .nc’ files
rn_ice_tem = 270. ! lim3 only: arbitrary temperature of incoming sea ice
rn_ice_sal = 10. ! lim3 only: -- salinity --
rn_ice_age = 30. ! lim3 only: -- age --

ln_tra_dmp =.false. ! open boudaries conditions for tracers
ln_dyn3d_dmp =.false. ! open boundary condition for baroclinic velocities
rn_time_dmp = 1. ! Damping time scale in days
rn_time_dmp_out = 1. ! Outflow damping time scale
nn_rimwidth = 10 ! width of the relaxation zone
ln_vol = .false. ! total volume correction (see nn_volctl parameter)
nn_volctl = 1 ! = 0, the total water flux across open boundaries is zero
nb_jpk_bdy = -1 ! number of levels in the bdy data (set < 0 if consistent with planned run)

/

8.4. Unstructured Open Boundary Conditions (BDY) 165

!---
&nambdy_dta ! open boundaries - external data
!---
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! ’yearly’/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! ’monthly’ ! filename ! pairing ! filename !

bn_ssh = ’amm12_bdyT_u2d’, 24 , ’sossheig’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
bn_u2d = ’amm12_bdyU_u2d’, 24 , ’vobtcrtx’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
bn_v2d = ’amm12_bdyV_u2d’, 24 , ’vobtcrty’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
bn_u3d = ’amm12_bdyU_u3d’, 24 , ’vozocrtx’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
bn_v3d = ’amm12_bdyV_u3d’, 24 , ’vomecrty’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
bn_tem = ’amm12_bdyT_tra’, 24 , ’votemper’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
bn_sal = ’amm12_bdyT_tra’, 24 , ’vosaline’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’

! for lim3
! bn_a_i = ’amm12_bdyT_ice’, 24 , ’ileadfra’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
! bn_h_i = ’amm12_bdyT_ice’, 24 , ’iicethic’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’
! bn_h_s = ’amm12_bdyT_ice’, 24 , ’isnowthi’, .true. , .false. , ’daily’ , ’’ , ’’ , ’’

cn_dir = ’bdydta/’ ! root directory for the location of the bulk files
ln_full_vel = .false. !

/

Options are defined through the nambdy nambdy index nambdy dta nambdy dta2
namelist variables. The BDY module is the core implementation of open boundary
conditions for regional configurations. It implements the Flow Relaxation Scheme
algorithm for temperature, salinity, velocities and ice fields, and the Flather radia-
tion condition for the depth-mean transports. The specification of the location of
the open boundary is completely flexible and allows for example the open bound-
ary to follow an isobath or other irregular contour.

The BDY module was modelled on the OBC module (see NEMO 3.4) and
shares many features and a similar coding structure [Chanut 2005].

Boundary data files used with earlier versions of NEMO may need to be re-
ordered to work with this version. See the section on the Input Boundary Data
Files for details.

8.4.1 The namelists

The BDY module is activated by setting ln bdy to true. It is possible to define
more than one boundary “set” and apply different boundary conditions to each set.
The number of boundary sets is defined by nb bdy. Each boundary set may be
defined as a set of straight line segments in a namelist (ln coords file=.false.) or
read in from a file (ln coords file=.true.). If the set is defined in a namelist, then
the namelists nambdy index must be included separately, one for each set. If the
set is defined by a file, then a “coordinates.bdy.nc” file must be provided. The
coordinates.bdy file is analagous to the usual NEMO “coordinates.nc” file. In the
example above, there are two boundary sets, the first of which is defined via a file
and the second is defined in a namelist. For more details of the definition of the
boundary geometry see section 8.4.4.

For each boundary set a boundary condition has to be chosen for the barotropic
solution (“u2d”: sea-surface height and barotropic velocities), for the baroclinic
velocities (“u3d”), and for the active tracers1 (“tra”). For each set of variables

1The BDY module does not deal with passive tracers at this version

166 Lateral Boundary Condition (LBC)

there is a choice of algorithm and a choice for the data, eg. for the active tracers
the algorithm is set by nn tra and the choice of data is set by nn tra dta.

The choice of algorithm is currently as follows:

0. No boundary condition applied. So the solution will “see” the land points
around the edge of the edge of the domain.

1. Flow Relaxation Scheme (FRS) available for all variables.

2. Flather radiation scheme for the barotropic variables. The Flather scheme is
not compatible with the filtered free surface (dynspg ts).

The main choice for the boundary data is to use initial conditions as boundary
data (nn tra dta=0) or to use external data from a file (nn tra dta=1). For the
barotropic solution there is also the option to use tidal harmonic forcing either by
itself or in addition to other external data.

If external boundary data is required then the nambdy dta namelist must be
defined. One nambdy dta namelist is required for each boundary set in the order
in which the boundary sets are defined in nambdy. In the example given, two
boundary sets have been defined and so there are two nambdy dta namelists. The
boundary data is read in using the fldread module, so the nambdy dta namelist
is in the format required for fldread. For each variable required, the filename,
the frequency of the files and the frequency of the data in the files is given. Also
whether or not time-interpolation is required and whether the data is climatological
(time-cyclic) data. Note that on-the-fly spatial interpolation of boundary data is not
available at this version.

In the example namelists given, two boundary sets are defined. The first set
is defined via a file and applies FRS conditions to temperature and salinity and
Flather conditions to the barotropic variables. External data is provided in daily
files (from a large-scale model). Tidal harmonic forcing is also used. The second
set is defined in a namelist. FRS conditions are applied on temperature and salinity
and climatological data is read from external files.

8.4.2 The Flow Relaxation Scheme

The Flow Relaxation Scheme (FRS) [Davies 1976, Engerdahl 1995], applies a
simple relaxation of the model fields to externally-specified values over a zone
next to the edge of the model domain. Given a model prognostic variable Φ

Φ(d) = α(d)Φe(d) + (1− α(d))Φm(d) d = 1, N (8.5)

where Φm is the model solution and Φe is the specified external field, d gives the
discrete distance from the model boundary and α is a parameter that varies from 1

8.4. Unstructured Open Boundary Conditions (BDY) 167

at d = 1 to a small value at d = N . It can be shown that this scheme is equivalent
to adding a relaxation term to the prognostic equation for Φ of the form:

−1

τ
(Φ− Φe) (8.6)

where the relaxation time scale τ is given by a function of α and the model time
step ∆t:

τ =
1− α
α

∆t (8.7)

Thus the model solution is completely prescribed by the external conditions at the
edge of the model domain and is relaxed towards the external conditions over the
rest of the FRS zone. The application of a relaxation zone helps to prevent spurious
reflection of outgoing signals from the model boundary.

The function α is specified as a tanh function:

α(d) = 1− tanh

(
d− 1

2

)
, d = 1, N (8.8)

The width of the FRS zone is specified in the namelist as nn rimwidth. This is
typically set to a value between 8 and 10.

8.4.3 The Flather radiation scheme

The Flather [1994] scheme is a radiation condition on the normal, depth-mean
transport across the open boundary. It takes the form

U = Ue +
c

h
(η − ηe) , (8.9)

where U is the depth-mean velocity normal to the boundary and η is the sea surface
height, both from the model. The subscript e indicates the same fields from external
sources. The speed of external gravity waves is given by c =

√
gh, and h is the

depth of the water column. The depth-mean normal velocity along the edge of
the model domain is set equal to the external depth-mean normal velocity, plus a
correction term that allows gravity waves generated internally to exit the model
boundary. Note that the sea-surface height gradient in (8.9) is a spatial gradient
across the model boundary, so that ηe is defined on the T points with nbr = 1 and
η is defined on the T points with nbr = 2. U and Ue are defined on the U or V
points with nbr = 1, i.e. between the two T grid points.

8.4.4 Boundary geometry

Each open boundary set is defined as a list of points. The information is stored
in the arrays nbi, nbj, and nbr in the idx bdy structure. The nbi and nbj arrays
define the local (i, j) indices of each point in the boundary zone and the nbr array
defines the discrete distance from the boundary with nbr = 1 meaning that the

168 Lateral Boundary Condition (LBC)

Figure 8.7: Example of geometry of unstructured open boundary

point is next to the edge of the model domain and nbr > 1 showing that the point
is increasingly further away from the edge of the model domain. A set of nbi, nbj,
and nbr arrays is defined for each of the T , U and V grids. Figure 8.7 shows an
example of an irregular boundary.

The boundary geometry for each set may be defined in a namelist nambdy index
or by reading in a “coordinates.bdy.nc” file. The nambdy index namelist defines a
series of straight-line segments for north, east, south and west boundaries. For the
northern boundary, nbdysegn gives the number of segments, jpjnob gives the j in-
dex for each segment and jpindt and jpinft give the start and end i indices for each
segment with similar for the other boundaries. These segments define a list of T
grid points along the outermost row of the boundary (nbr = 1). The code deduces
the U and V points and also the points for nbr > 1 if nn rimwidth > 1.

The boundary geometry may also be defined from a “coordinates.bdy.nc” file.
Figure 8.8 gives an example of the header information from such a file. The file
should contain the index arrays for each of the T , U and V grids. The arrays must
be in order of increasing nbr. Note that the nbi, nbj values in the file are global
values and are converted to local values in the code. Typically this file will be used
to generate external boundary data via interpolation and so will also contain the
latitudes and longitudes of each point as shown. However, this is not necessary to
run the model.

For some choices of irregular boundary the model domain may contain areas
of ocean which are not part of the computational domain. For example if an open
boundary is defined along an isobath, say at the shelf break, then the areas of ocean
outside of this boundary will need to be masked out. This can be done by reading
a mask file defined as cn mask file in the nam bdy namelist. Only one mask file is
used even if multiple boundary sets are defined.

8.4. Unstructured Open Boundary Conditions (BDY) 169

8.4.5 Input boundary data files

The data files contain the data arrays in the order in which the points are defined in
the nbi and nbj arrays. The data arrays are dimensioned on: a time dimension; xb
which is the index of the boundary data point in the horizontal; and yb which is a
degenerate dimension of 1 to enable the file to be read by the standard NEMO I/O
routines. The 3D fields also have a depth dimension.

At Version 3.4 there are new restrictions on the order in which the boundary
points are defined (and therefore restrictions on the order of the data in the file). In
particular:

1. The data points must be in order of increasing nbr, ie. all the nbr = 1 points,
then all the nbr = 2 points etc.

2. All the data for a particular boundary set must be in the same order. (Prior
to 3.4 it was possible to define barotropic data in a different order to the data
for tracers and baroclinic velocities).

These restrictions mean that data files used with previous versions of the model
may not work with version 3.4. A fortran utility bdy reorder exists in the TOOLS
directory which will re-order the data in old BDY data files.

8.4.6 Volume correction

There is an option to force the total volume in the regional model to be constant,
similar to the option in the OBC module. This is controlled by the nn volctl pa-
rameter in the namelist. A value of nn volctl = 0 indicates that this option is not
used. If nn volctl = 1 then a correction is applied to the normal velocities around
the boundary at each timestep to ensure that the integrated volume flow through
the boundary is zero. If nn volctl = 2 then the calculation of the volume change on
the timestep includes the change due to the freshwater flux across the surface and
the correction velocity corrects for this as well.

If more than one boundary set is used then volume correction is applied to all
boundaries at once.

170 Lateral Boundary Condition (LBC)

netcdf med12.obc.coordinates {
dimensions:

yb = 1 ;
xbT = 3218 ;
xbU = 3200 ;
xbV = 3201 ;

variables:
int nbit(yb, xbT) ;
int nbiu(yb, xbU) ;
int nbiv(yb, xbV) ;
int nbjt(yb, xbT) ;
int nbju(yb, xbU) ;
int nbjv(yb, xbV) ;
int nbrt(yb, xbT) ;
int nbru(yb, xbU) ;
int nbrv(yb, xbV) ;
float e1t(yb, xbT) ;

e1t:units = "metres" ;
float e1u(yb, xbU) ;

e1u:units = "metres" ;
float e1v(yb, xbV) ;

e1v:units = "metres" ;
float e2t(yb, xbT) ;

e2t:units = "metres" ;
float e2u(yb, xbU) ;

e2u:units = "metres" ;
float e2v(yb, xbV) ;

e2v:units = "metres" ;
float glamt(yb, xbT) ;

glamt:units = "degrees_east" ;
float glamu(yb, xbU) ;

glamu:units = "degrees_east" ;
float glamv(yb, xbV) ;

glamv:units = "degrees_east" ;
float gphit(yb, xbT) ;

gphit:units = "degrees_north" ;
float gphiu(yb, xbU) ;

gphiu:units = "degrees_north" ;
float gphiv(yb, xbV) ;

gphiv:units = "degrees_north" ;

// global attributes:
:file_name = "med12.obc.coordinates.reorder.nc" ;
:rimwidth = 9 ;
:NCO = "3.9.9" ;

}

Figure 8.8: Example of the header for a coordinates.bdy.nc file

8.4.7 Tidal harmonic forcing
!---

8.4. Unstructured Open Boundary Conditions (BDY) 171

&nambdy_tide ! tidal forcing at open boundaries
!---

filtide = ’bdydta/amm12_bdytide_’ ! file name root of tidal forcing files
ln_bdytide_2ddta = .false. !
ln_bdytide_conj = .false. !

/

Options are defined through the nambdy tide namelist variables. To be writ-
ten....

9 Lateral Ocean Physics (LDF)

Contents
9.1 Direction of Lateral Mixing (ldfslp) 175

9.1.1 slopes for tracer geopotential mixing in the s-coordinate 175
9.1.2 Slopes for tracer iso-neutral mixing 175
9.1.3 slopes for momentum iso-neutral mixing 178

9.2 Lateral Mixing Operators (ldftra, ldfdyn) 180
9.3 Lateral Mixing Coefficient (ldftra, ldfdyn) 180
9.4 Eddy Induced Velocity (traadv eiv, ldfeiv) 182

174 Lateral Ocean Physics (LDF)

The lateral physics terms in the momentum and tracer equations have been
described in §2.5.1 and their discrete formulation in §5.2 and §6.6). In this sec-
tion we further discuss each lateral physics option. Choosing one lateral physics
scheme means for the user defining, (1) the type of operator used (laplacian or
bilaplacian operators, or no lateral mixing term) ; (2) the direction along which
the lateral diffusive fluxes are evaluated (model level, geopotential or isopycnal
surfaces) ; and (3) the space and time variations of the eddy coefficients. These
three aspects of the lateral diffusion are set through namelist parameters (see the
nam traldf and nam dynldf below). Note that this chapter describes the standard
implementation of iso-neutral tracer mixing, and Griffies’s implementation, which
is used if traldf grif =true, is described in AppdxD

!---
&namtra_ldf ! lateral diffusion scheme for tracers (default: NO selection)
!---

! ! Operator type:
ln_traldf_NONE = .false. ! No explicit diffusion
ln_traldf_lap = .false. ! laplacian operator
ln_traldf_blp = .false. ! bilaplacian operator
!
! ! Direction of action:
ln_traldf_lev = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential)
ln_traldf_iso = .false. ! iso-neutral (standard operator)
ln_traldf_triad = .false. ! iso-neutral (triad operator)
!
! ! iso-neutral options:
ln_traldf_msc = .false. ! Method of Stabilizing Correction (both operators)
rn_slpmax = 0.01 ! slope limit (both operators)
ln_triad_iso = .false. ! pure horizontal mixing in ML (triad only)
rn_sw_triad = 1 ! =1 switching triad ; =0 all 4 triads used (triad only)
ln_botmix_triad = .false. ! lateral mixing on bottom (triad only)
!
! ! Coefficients:
nn_aht_ijk_t = 0 ! space/time variation of eddy coef
! ! =-20 (=-30) read in eddy_diffusivity_2D.nc (..._3D.nc) file
! ! = 0 constant
! ! = 10 F(k) =ldf_c1d
! ! = 20 F(i,j) =ldf_c2d
! ! = 21 F(i,j,t) =Treguier et al. JPO 1997 formulation
! ! = 30 F(i,j,k) =ldf_c2d * ldf_c1d
! ! = 31 F(i,j,k,t)=F(local velocity and grid-spacing)
rn_aht_0 = 2000. ! lateral eddy diffusivity (lap. operator) [m2/s]
rn_bht_0 = 1.e+12 ! lateral eddy diffusivity (bilap. operator) [m4/s]

/

!---
&namdyn_ldf ! lateral diffusion on momentum (default: NO selection)
!---

! ! Type of the operator :
ln_dynldf_NONE= .false. ! No operator (i.e. no explicit diffusion)
ln_dynldf_lap = .false. ! laplacian operator
ln_dynldf_blp = .false. ! bilaplacian operator
! ! Direction of action :
ln_dynldf_lev = .false. ! iso-level
ln_dynldf_hor = .false. ! horizontal (geopotential)
ln_dynldf_iso = .false. ! iso-neutral
! ! Coefficient
nn_ahm_ijk_t = 0 ! space/time variation of eddy coef
! ! =-30 read in eddy_viscosity_3D.nc file
! ! =-20 read in eddy_viscosity_2D.nc file
! ! = 0 constant
! ! = 10 F(k)=c1d
! ! = 20 F(i,j)=F(grid spacing)=c2d
! ! = 30 F(i,j,k)=c2d*c1d
! ! = 31 F(i,j,k)=F(grid spacing and local velocity)
! ! = 32 F(i,j,k)=F(local gridscale and deformation rate)
! Caution in 20 and 30 cases the coefficient have to be given for a 1 degree grid (˜111km)
rn_ahm_0 = 40000. ! horizontal laplacian eddy viscosity [m2/s]
rn_ahm_b = 0. ! background eddy viscosity for ldf_iso [m2/s]

9.1. Direction of Lateral Mixing (ldfslp) 175

rn_bhm_0 = 1.e+12 ! horizontal bilaplacian eddy viscosity [m4/s]
! ! Smagorinsky settings (nn_ahm_ijk_t = 32) :
rn_csmc = 3.5 ! Smagorinsky constant of proportionality
rn_minfac = 1.0 ! multiplier of theorectical lower limit
rn_maxfac = 1.0 ! multiplier of theorectical upper limit

/

9.1 Direction of Lateral Mixing (ldfslp.F90)

A direction for lateral mixing has to be defined when the desired operator does not
act along the model levels. This occurs when (a) horizontal mixing is required
on tracer or momentum (ln traldf hor or ln dynldf hor) in s- or mixed s-z- coor-
dinates, and (b) isoneutral mixing is required whatever the vertical coordinate is.
This direction of mixing is defined by its slopes in the i- and j-directions at the face
of the cell of the quantity to be diffused. For a tracer, this leads to the following
four slopes : r1u, r1w, r2v, r2w (see (5.10)), while for momentum the slopes are
r1t, r1uw, r2f , r2uw for u and r1f , r1vw, r2t, r2vw for v.

9.1.1 slopes for tracer geopotential mixing in the s-coordinate

In s-coordinates, geopotential mixing (i.e. horizontal mixing) r1 and r2 are the
slopes between the geopotential and computational surfaces. Their discrete for-
mulation is found by locally solving (5.10) when the diffusive fluxes in the three
directions are set to zero and T is assumed to be horizontally uniform, i.e. a linear
function of zT , the depth of a T -point.

r1u =
e3u(

e1u e3w
i+1/2, k

) δi+1/2[zt] ≈ 1

e1u
δi+1/2[zt]

r2v =
e3v(

e2v e3w
j+1/2, k

) δj+1/2[zt] ≈
1

e2v
δj+1/2[zt]

r1w =
1

e1w
δi+1/2[zt]

i, k+1/2
≈ 1

e1w
δi+1/2[zuw]

r2w =
1

e2w
δj+1/2[zt]

j, k+1/2
≈ 1

e2w
δj+1/2[zvw]

(9.1)

These slopes are computed once in ldfslp init when ln sco=True, and either
ln traldf hor=True or ln dynldf hor=True.

9.1.2 Slopes for tracer iso-neutral mixing

In iso-neutral mixing r1 and r2 are the slopes between the iso-neutral and com-
putational surfaces. Their formulation does not depend on the vertical coordinate
used. Their discrete formulation is found using the fact that the diffusive fluxes of
locally referenced potential density (i.e. insitu density) vanish. So, substituting T

176 Lateral Ocean Physics (LDF)

by ρ in (5.10) and setting the diffusive fluxes in the three directions to zero leads to
the following definition for the neutral slopes:

r1u =
e3u

e1u

δi+1/2[ρ]

δk+1/2[ρ]
i+1/2, k

r2v =
e3v

e2v

δj+1/2 [ρ]

δk+1/2[ρ]
j+1/2, k

r1w =
e3w

e1w

δi+1/2[ρ]
i, k+1/2

δk+1/2[ρ]

r2w =
e3w

e2w

δj+1/2[ρ]
j, k+1/2

δk+1/2[ρ]

(9.2)

As the mixing is performed along neutral surfaces, the gradient of ρ in (9.2)
has to be evaluated at the same local pressure (which, in decibars, is approximated
by the depth in meters in the model). Therefore (9.2) cannot be used as such, but
further transformation is needed depending on the vertical coordinate used:

z-coordinate with full step : in (9.2) the densities appearing in the i and j deriva-
tives are taken at the same depth, thus the insitu density can be used. This
is not the case for the vertical derivatives: δk+1/2[ρ] is replaced by−ρN2/g,
whereN2 is the local Brunt-Vaisälä frequency evaluated following McDougall
[1987] (see §5.8.2).

z-coordinate with partial step : this case is identical to the full step case except
that at partial step level, the horizontal density gradient is evaluated as de-
scribed in §5.9.

s- or hybrid s-z- coordinate : in the current release of NEMO, iso-neutral mix-
ing is only employed for s-coordinates if the Griffies scheme is used (traldf grif =true;
see Appdx D). In other words, iso-neutral mixing will only be accurately
represented with a linear equation of state (nn eos=1 or 2). In the case of
a ”true” equation of state, the evaluation of i and j derivatives in (9.2) will
include a pressure dependent part, leading to the wrong evaluation of the
neutral slopes.

Note: The solution for s-coordinate passes trough the use of different (and
better) expression for the constraint on iso-neutral fluxes. Following Griffies
[2004], instead of specifying directly that there is a zero neutral diffusive
flux of locally referenced potential density, we stay in the T -S plane and
consider the balance between the neutral direction diffusive fluxes of poten-
tial temperature and salinity:

α F(T) = β F(S) (9.3)

9.1. Direction of Lateral Mixing (ldfslp) 177

This constraint leads to the following definition for the slopes:

r1u =
e3u

e1u

αu δi+1/2[T]− βu δi+1/2[S]

αu δk+1/2[T]
i+1/2, k

− βu δk+1/2[S]
i+1/2, k

r2v =
e3v

e2v

αv δj+1/2[T]− βv δj+1/2[S]

αv δk+1/2[T]
j+1/2, k

− βv δk+1/2[S]
j+1/2, k

r1w =
e3w

e1w

αw δi+1/2[T]
i, k+1/2

− βw δi+1/2[S]
i, k+1/2

αw δk+1/2[T]− βw δk+1/2[S]

r2w =
e3w

e2w

αw δj+1/2[T]
j, k+1/2

− βw δj+1/2[S]
j, k+1/2

αw δk+1/2[T]− βw δk+1/2[S]

(9.4)

where α and β, the thermal expansion and saline contraction coefficients
introduced in §5.8.2, have to be evaluated at the three velocity points. In
order to save computation time, they should be approximated by the mean
of their values at T -points (for example in the case of α: αu = αT

i+1/2,
αv = αT

j+1/2 and αw = αT
k+1/2).

Note that such a formulation could be also used in the z-coordinate and z-
coordinate with partial steps cases.

This implementation is a rather old one. It is similar to the one proposed by
Cox [1987], except for the background horizontal diffusion. Indeed, the Cox imple-
mentation of isopycnal diffusion in GFDL-type models requires a minimum back-
ground horizontal diffusion for numerical stability reasons. To overcome this prob-
lem, several techniques have been proposed in which the numerical schemes of the
ocean model are modified [Weaver and Eby 1997, Griffies et al. 1998]. Griffies’s
scheme is now available in NEMO if traldf grif iso is set true; see Appdx D. Here,
another strategy is presented [Lazar 1997]: a local filtering of the iso-neutral slopes
(made on 9 grid-points) prevents the development of grid point noise generated by
the iso-neutral diffusion operator (Fig. 9.1). This allows an iso-neutral diffusion
scheme without additional background horizontal mixing. This technique can be
viewed as a diffusion operator that acts along large-scale (2 ∆x) iso-neutral sur-
faces. The diapycnal diffusion required for numerical stability is thus minimized
and its net effect on the flow is quite small when compared to the effect of an
horizontal background mixing.

Nevertheless, this iso-neutral operator does not ensure that variance cannot in-
crease, contrary to the Griffies et al. [1998] operator which has that property.

For numerical stability reasons [Cox 1987, Griffies 2004], the slopes must also
be bounded by 1/100 everywhere. This constraint is applied in a piecewise linear
fashion, increasing from zero at the surface to 1/100 at 70 metres and thereafter

178 Lateral Ocean Physics (LDF)

Figure 9.1: averaging procedure for isopycnal slope computation.

decreasing to zero at the bottom of the ocean. (the fact that the eddies ”feel” the
surface motivates this flattening of isopycnals near the surface).

add here a discussion about the flattening of the slopes, vs tapering the coefficient.

9.1.3 slopes for momentum iso-neutral mixing

The iso-neutral diffusion operator on momentum is the same as the one used on
tracers but applied to each component of the velocity separately (see (6.27) in sec-
tion 6.6.2). The slopes between the surface along which the diffusion operator acts
and the surface of computation (z- or s-surfaces) are defined at T -, f -, and uw-
points for the u-component, and T -, f - and vw- points for the v-component. They
are computed from the slopes used for tracer diffusion, i.e. (9.1) and (9.2) :

r1t = r1u
i r1f = r1u

i+1/2

r2f = r2v
j+1/2 r2t = r2v

j

r1uw = r1w
i+1/2 and r1vw = r1w

j+1/2

r2uw = r2w
j+1/2 r2vw = r2w

j+1/2

(9.5)

The major issue remaining is in the specification of the boundary conditions.
The same boundary conditions are chosen as those used for lateral diffusion along
model level surfaces, i.e. using the shear computed along the model levels and with
no additional friction at the ocean bottom (see §8.1).

9.1. Direction of Lateral Mixing (ldfslp) 179

interior
ocean

iso-neutral
surface

bounded by
the surface

slopes

de
pt

h

0

slopes

de
pt

h

0

slopes

de
pt

h

0

mixed
layer(a)

(b)

(c)

?
?

mixed
layer

mixed
layer

interior
ocean

interior
ocean

iso-neutral
surface

iso-neutral
surface

10-2

?

Figure 9.2: Vertical profile of the slope used for lateral mixing in the mixed layer :
(a) in the real ocean the slope is the iso-neutral slope in the ocean interior, which has to
be adjusted at the surface boundary (i.e. it must tend to zero at the surface since there
is no mixing across the air-sea interface: wall boundary condition). Nevertheless, the
profile between the surface zero value and the interior iso-neutral one is unknown,
and especially the value at the base of the mixed layer ; (b) profile of slope using a
linear tapering of the slope near the surface and imposing a maximum slope of 1/100
; (c) profile of slope actually used in NEMO: a linear decrease of the slope from zero
at the surface to its ocean interior value computed just below the mixed layer. Note
the huge change in the slope at the base of the mixed layer between (b) and (c).

180 Lateral Ocean Physics (LDF)

9.2 Lateral Mixing Operators (traldf.F90, traldf.F90)

9.3 Lateral Mixing Coefficient (ldftra.F90, ldfdyn.F90)

Introducing a space variation in the lateral eddy mixing coefficients changes the
model core memory requirement, adding up to four extra three-dimensional arrays
for the geopotential or isopycnal second order operator applied to momentum. Six
CPP keys control the space variation of eddy coefficients: three for momentum and
three for tracer. The three choices allow: a space variation in the three space direc-
tions (key traldf c3d, key dynldf c3d), in the horizontal plane (key traldf c2d,
key dynldf c2d), or in the vertical only (key traldf c1d, key dynldf c1d). The
default option is a constant value over the whole ocean on both momentum and
tracers.

The number of additional arrays that have to be defined and the gridpoint po-
sition at which they are defined depend on both the space variation chosen and
the type of operator used. The resulting eddy viscosity and diffusivity coeffi-
cients can be a function of more than one variable. Changes in the computer code
when switching from one option to another have been minimized by introducing
the eddy coefficients as statement functions (include file ldftra substitute.h90 and
ldfdyn substitute.h90). The functions are replaced by their actual meaning during
the preprocessing step (CPP). The specification of the space variation of the co-
efficient is made in ldftra.F90 and ldfdyn.F90, or more precisely in include files
traldf cNd.h90 and dynldf cNd.h90, with N=1, 2 or 3. The user can modify these
include files as he/she wishes. The way the mixing coefficient are set in the refer-
ence version can be briefly described as follows:

Constant Mixing Coefficients (default option)

When none of the key dynldf ... and key traldf ... keys are defined, a constant
value is used over the whole ocean for momentum and tracers, which is specified
through the rn ahm0 and rn aht0 namelist parameters.

Vertically varying Mixing Coefficients (key traldf c1d and key dynldf c1d)

The 1D option is only available when using the z-coordinate with full step. Indeed
in all the other types of vertical coordinate, the depth is a 3D function of (i,j,k) and
therefore, introducing depth-dependent mixing coefficients will require 3D arrays.
In the 1D option, a hyperbolic variation of the lateral mixing coefficient is intro-
duced in which the surface value is rn aht0 (rn ahm0), the bottom value is 1/4 of
the surface value, and the transition takes place around z=300 m with a width of
300 m (i.e. both the depth and the width of the inflection point are set to 300 m).
This profile is hard coded in file traldf c1d.h90, but can be easily modified by users.

9.3. Lateral Mixing Coefficient (ldftra, ldfdyn) 181

Horizontally Varying Mixing Coefficients (key traldf c2d and key dynldf c2d)

By default the horizontal variation of the eddy coefficient depends on the local
mesh size and the type of operator used:

Al =

max(e1, e2)

emax
Alo for laplacian operator

max(e1, e2)3

e3
max

Alo for bilaplacian operator
(9.6)

where emax is the maximum of e1 and e2 taken over the whole masked ocean do-
main, and Alo is the rn ahm0 (momentum) or rn aht0 (tracer) namelist parameter.
This variation is intended to reflect the lesser need for subgrid scale eddy mixing
where the grid size is smaller in the domain. It was introduced in the context of the
DYNAMO modelling project [Willebrand et al. 2001]. Note that such a grid scale
dependance of mixing coefficients significantly increase the range of stability of
model configurations presenting large changes in grid pacing such as global ocean
models. Indeed, in such a case, a constant mixing coefficient can lead to a blow up
of the model due to large coefficient compare to the smallest grid size (see §3.3),
especially when using a bilaplacian operator.

Other formulations can be introduced by the user for a given configuration.
For example, in the ORCA2 global ocean model (see Configurations), the lapla-
cian viscosity operator uses rn ahm0 = 4.104 m2/s poleward of 20◦ north and
south and decreases linearly to rn aht0 = 2.103 m2/s at the equator [Madec et al.
1996, Delecluse and Madec 2000]. This modification can be found in routine
ldf dyn c2d orca defined in ldfdyn c2d.F90. Similar modified horizontal varia-
tions can be found with the Antarctic or Arctic sub-domain options of ORCA2 and
ORCA05 (see &namcfg namelist).

Space Varying Mixing Coefficients (key traldf c3d and key dynldf c3d)

The 3D space variation of the mixing coefficient is simply the combination of the
1D and 2D cases, i.e. a hyperbolic tangent variation with depth associated with a
grid size dependence of the magnitude of the coefficient.

Space and Time Varying Mixing Coefficients

There is no default specification of space and time varying mixing coefficient. The
only case available is specific to the ORCA2 and ORCA05 global ocean config-
urations. It provides only a tracer mixing coefficient for eddy induced velocity
(ORCA2) or both iso-neutral and eddy induced velocity (ORCA05) that depends
on the local growth rate of baroclinic instability. This specification is actually used
when an ORCA key and both key traldf eiv and key traldf c2d are defined.

182 Lateral Ocean Physics (LDF)

The following points are relevant when the eddy coefficient varies spatially:
(1) the momentum diffusion operator acting along model level surfaces is writ-

ten in terms of curl and divergent components of the horizontal current (see §2.5.2).
Although the eddy coefficient could be set to different values in these two terms,
this option is not currently available.

(2) with an horizontally varying viscosity, the quadratic integral constraints on
enstrophy and on the square of the horizontal divergence for operators acting along
model-surfaces are no longer satisfied (Appendix C.7).

(3) for isopycnal diffusion on momentum or tracers, an additional purely hor-
izontal background diffusion with uniform coefficient can be added by setting a
non zero value of rn ahmb0 or rn ahtb0, a background horizontal eddy viscosity
or diffusivity coefficient (namelist parameters whose default values are 0). How-
ever, the technique used to compute the isopycnal slopes is intended to get rid of
such a background diffusion, since it introduces spurious diapycnal diffusion (see
§9.1).

(4) when an eddy induced advection term is used (key traldf eiv), Aeiv, the
eddy induced coefficient has to be defined. Its space variations are controlled by
the same CPP variable as for the eddy diffusivity coefficient (i.e. key traldf cNd).

(5) the eddy coefficient associated with a biharmonic operator must be set to a
negative value.

(6) it is possible to use both the laplacian and biharmonic operators concur-
rently.

(7) it is possible to run without explicit lateral diffusion on momentum (ln dynldf lap
= ln dynldf bilap = false). This is recommended when using the UBS advection
scheme on momentum (ln dynadv ubs = true, see 6.3.2) and can be useful for test-
ing purposes.

9.4 Eddy Induced Velocity (traadv eiv.F90, ldfeiv.F90)

When Gent and McWilliams [1990] diffusion is used (key traldf eiv defined), an
eddy induced tracer advection term is added, the formulation of which depends on
the slopes of iso-neutral surfaces. Contrary to the case of iso-neutral mixing, the
slopes used here are referenced to the geopotential surfaces, i.e. (9.1) is used in z-
coordinates, and the sum (9.1) + (9.2) in s-coordinates. The eddy induced velocity
is given by:

u∗ =
1

e2ue3u
δk

[
e2uA

eiv
uw r1w

i+1/2
]

v∗ =
1

e1ue3v
δk

[
e1v A

eiv
vw r2w

j+1/2
]

w∗ =
1

e1we2w

{
δi

[
e2uA

eiv
uw r1w

i+1/2
]

+ δj

[
e1v A

eiv
vw r2w

j+1/2
]} (9.7)

where Aeiv is the eddy induced velocity coefficient whose value is set through
rn aeiv, a nam traldf namelist parameter. The three components of the eddy in-

9.4. Eddy Induced Velocity (traadv eiv, ldfeiv) 183

duced velocity are computed and add to the eulerian velocity in traadv eiv.F90.
This has been preferred to a separate computation of the advective trends associ-
ated with the eiv velocity, since it allows us to take advantage of all the advection
schemes offered for the tracers (see §5.1) and not just the 2nd order advection
scheme as in previous releases of OPA [Madec et al. 1998]. This is particularly
useful for passive tracers where positivity of the advection scheme is of paramount
importance.

At the surface, lateral and bottom boundaries, the eddy induced velocity, and
thus the advective eddy fluxes of heat and salt, are set to zero.

10 Vertical Ocean Physics (ZDF)

Contents
10.1 Vertical Mixing . 187

10.1.1 Constant (key zdfcst) 187

10.1.2 Richardson Number Dependent (key zdfric) 188

10.1.3 TKE Turbulent Closure Scheme (key zdftke) 189

10.1.4 TKE discretization considerations (key zdftke) 194

10.1.5 GLS Generic Length Scale (key zdfgls) 197

10.1.6 OSM OSMOSIS Boundary Layer scheme (key zdfosm) 199

10.2 Convection . 199
10.2.1 Non-Penetrative Convective Adjustment (ln tranpc) . 200

10.2.2 Enhanced Vertical Diffusion (ln zdfevd) 202

10.2.3 Turbulent Closure Scheme (key zdftke, key zdfgls or
key zdfosm) . 203

10.3 Double Diffusion Mixing (key zdfddm) 203
10.4 Bottom and Top Friction (zdfbfr) 205

10.4.1 Linear Bottom Friction (nn botfr = 0 or 1) 206

10.4.2 Non-Linear Bottom Friction (nn botfr = 2) 206

10.4.3 Log-layer Bottom Friction enhancement (nn botfr = 2,
ln loglayer = .true.) 207

10.4.4 Bottom Friction stability considerations 207

10.4.5 Implicit Bottom Friction (ln bfrimp=T) 208

10.4.6 Bottom Friction with split-explicit time splitting (ln bfrimp=F)209

10.5 Tidal Mixing (key zdftmx) 210
10.5.1 Bottom intensified tidal mixing 210

186 Vertical Ocean Physics (ZDF)

10.5.2 Indonesian area specific treatment (ln zdftmx itf) . . . 211
10.6 Internal wave-driven mixing (key zdftmx new) 213

10.1. Vertical Mixing 187

10.1 Vertical Mixing

The discrete form of the ocean subgrid scale physics has been presented in §5.3
and §6.7. At the surface and bottom boundaries, the turbulent fluxes of momen-
tum, heat and salt have to be defined. At the surface they are prescribed from the
surface forcing (see Chap. 7), while at the bottom they are set to zero for heat and
salt, unless a geothermal flux forcing is prescribed as a bottom boundary condi-
tion (i.e. key trabbl defined, see §5.4.3), and specified through a bottom friction
parameterisation for momentum (see §10.4).

In this section we briefly discuss the various choices offered to compute the
vertical eddy viscosity and diffusivity coefficients, Avmu , Avmv and AvT (AvS),
defined at uw-, vw- and w- points, respectively (see §5.3 and §6.7). These coeffi-
cients can be assumed to be either constant, or a function of the local Richardson
number, or computed from a turbulent closure model (either TKE or GLS formula-
tion). The computation of these coefficients is initialized in the zdfini.F90 module
and performed in the zdfric.F90, zdftke.F90 or zdfgls.F90 modules. The trends due
to the vertical momentum and tracer diffusion, including the surface forcing, are
computed and added to the general trend in the dynzdf.F90 and trazdf.F90 modules,
respectively. These trends can be computed using either a forward time stepping
scheme (namelist parameter ln zdfexp=true) or a backward time stepping scheme
(ln zdfexp=false) depending on the magnitude of the mixing coefficients, and thus
of the formulation used (see §3).

10.1.1 Constant (key zdfcst)
!---
&namzdf ! vertical physics (default: NO selection)
!---

! ! type of vertical closure (required)
ln_zdfcst = .false. ! constant mixing
ln_zdfric = .false. ! local Richardson dependent formulation (T => fill namzdf_ric)
ln_zdftke = .false. ! Turbulent Kinetic Energy closure (T => fill namzdf_tke)
ln_zdfgls = .false. ! Generic Length Scale closure (T => fill namzdf_gls)
ln_zdfosm = .false. ! OSMOSIS BL closure (T => fill namzdf_osm)
!
! ! convection
ln_zdfevd = .false. ! enhanced vertical diffusion

nn_evdm = 0 ! apply on tracer (=0) or on tracer and momentum (=1)
rn_evd = 100. ! mixing coefficient [m2/s]

ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency

!
ln_zdfddm = .false. ! double diffusive mixing

rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio

!
! ! gravity wave-driven vertical mixing
ln_zdfiwm = .false. ! internal wave-induced mixing (T => fill namzdf_iwm)
ln_zdfswm = .false. ! surface wave-induced mixing (T => ln_wave=ln_sdw=T)
!
! ! coefficients
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if ln_zdfcst=F)
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if ln_zdfcst=F)
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)

188 Vertical Ocean Physics (ZDF)

nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
/

Options are defined through the namzdf namelist variables. When key zdfcst
is defined, the momentum and tracer vertical eddy coefficients are set to constant
values over the whole ocean. This is the crudest way to define the vertical ocean
physics. It is recommended that this option is only used in process studies, not in
basin scale simulations. Typical values used in this case are:

Avmu = Avmv = 1.2 10−4 m2.s−1

AvT = AvS = 1.2 10−5 m2.s−1

These values are set through the rn avm0 and rn avt0 namelist parameters.
In all cases, do not use values smaller that those associated with the molecular
viscosity and diffusivity, that is ∼ 10−6 m2.s−1 for momentum, ∼ 10−7 m2.s−1

for temperature and ∼ 10−9 m2.s−1 for salinity.

10.1.2 Richardson Number Dependent (key zdfric)
!---
&namzdf_ric ! richardson number dependent vertical diffusion (ln_zdfric =T)
!---

rn_avmri = 100.e-4 ! maximum value of the vertical viscosity
rn_alp = 5. ! coefficient of the parameterization
nn_ric = 2 ! coefficient of the parameterization
ln_mldw = .false. ! enhanced mixing in the Ekman layer

rn_ekmfc = 0.7 ! Factor in the Ekman depth Equation
rn_mldmin = 1.0 ! minimum allowable mixed-layer depth estimate (m)
rn_mldmax = 1000.0 ! maximum allowable mixed-layer depth estimate (m)
rn_wtmix = 10.0 ! vertical eddy viscosity coeff [m2/s] in the mixed-layer
rn_wvmix = 10.0 ! vertical eddy diffusion coeff [m2/s] in the mixed-layer

/

When key zdfric is defined, a local Richardson number dependent formula-
tion for the vertical momentum and tracer eddy coefficients is set through the
namzdf ric namelist variables.The vertical mixing coefficients are diagnosed from
the large scale variables computed by the model. In situ measurements have been
used to link vertical turbulent activity to large scale ocean structures. The hy-
pothesis of a mixing mainly maintained by the growth of Kelvin-Helmholtz like
instabilities leads to a dependency between the vertical eddy coefficients and the
local Richardson number (i.e. the ratio of stratification to vertical shear). Follow-
ing Pacanowski and Philander [1981], the following formulation has been imple-
mented:

AvT =
AvTric

(1 + a Ri)n
+AvTb

Avm =
AvT

(1 + a Ri)
+Avmb

(10.1)

where Ri = N2/ (∂zUh)2 is the local Richardson number, N is the local Brunt-
Vaisälä frequency (see §5.8.2), AvTb and Avmb are the constant background values
set as in the constant case (see §10.1.1), and AvTric = 10−4 m2.s−1 is the maximum
value that can be reached by the coefficient when Ri ≤ 0, a = 5 and n = 2.
The last three values can be modified by setting the rn avmri, rn alp and nn ric
namelist parameters, respectively.

10.1. Vertical Mixing 189

A simple mixing-layer model to transfer and dissipate the atmospheric forcings
(wind-stress and buoyancy fluxes) can be activated setting the ln mldw =.true. in
the namelist.

In this case, the local depth of turbulent wind-mixing or ”Ekman depth” he(x, y, t)
is evaluated and the vertical eddy coefficients prescribed within this layer.

This depth is assumed proportional to the ”depth of frictional influence” that is
limited by rotation:

he = Ek
u∗

f0
(10.2)

where, Ek is an empirical parameter, u∗ is the friction velocity and f0 is the Cori-
olis parameter.

In this similarity height relationship, the turbulent friction velocity:

u∗ =

√
|τ |
ρo

(10.3)

is computed from the wind stress vector |τ | and the reference density ρo. The
final he is further constrained by the adjustable bounds rn mldmin and rn mldmax.
Once he is computed, the vertical eddy coefficients within he are set to the empiri-
cal values rn wtmix and rn wvmix [Lermusiaux 2001].

10.1.3 TKE Turbulent Closure Scheme (key zdftke)
!---
&namzdf_tke ! turbulent eddy kinetic dependent vertical diffusion (ln_zdftke =T)
!---

rn_ediff = 0.1 ! coef. for vertical eddy coef. (avt=rn_ediff*mxl*sqrt(e))
rn_ediss = 0.7 ! coef. of the Kolmogoroff dissipation
rn_ebb = 67.83 ! coef. of the surface input of tke (=67.83 suggested when ln_mxl0=T)
rn_emin = 1.e-6 ! minimum value of tke [m2/s2]
rn_emin0 = 1.e-4 ! surface minimum value of tke [m2/s2]
rn_bshear = 1.e-20 ! background shear (>0) currently a numerical threshold (do not change it)
nn_pdl = 1 ! Prandtl number function of richarson number (=1, avt=pdl(Ri)*avm) or not (=0, avt=avm)
nn_mxl = 2 ! mixing length: = 0 bounded by the distance to surface and bottom
! ! = 1 bounded by the local vertical scale factor
! ! = 2 first vertical derivative of mixing length bounded by 1
! ! = 3 as =2 with distinct disspipative an mixing length scale
ln_mxl0 = .true. ! surface mixing length scale = F(wind stress) (T) or not (F)
rn_mxl0 = 0.04 ! surface buoyancy lenght scale minimum value
ln_drg = .false. ! top/bottom friction added as boundary condition of TKE
ln_lc = .true. ! Langmuir cell parameterisation (Axell 2002)

rn_lc = 0.15 ! coef. associated to Langmuir cells
nn_etau = 1 ! penetration of tke below the mixed layer (ML) due to NIWs

! = 0 none ; = 1 add a tke source below the ML
! = 2 add a tke source just at the base of the ML
! = 3 as = 1 applied on HF part of the stress (ln_cpl=T)

rn_efr = 0.05 ! fraction of surface tke value which penetrates below the ML (nn_etau=1 or 2)
nn_htau = 1 ! type of exponential decrease of tke penetration below the ML

! = 0 constant 10 m length scale
! = 1 0.5m at the equator to 30m poleward of 40 degrees

/

The vertical eddy viscosity and diffusivity coefficients are computed from a
TKE turbulent closure model based on a prognostic equation for ē, the turbulent
kinetic energy, and a closure assumption for the turbulent length scales. This tur-
bulent closure model has been developed by Bougeault and Lacarrere [1989] in
the atmospheric case, adapted by Gaspar et al. [1990] for the oceanic case, and
embedded in OPA, the ancestor of NEMO, by Blanke and Delecluse [1993] for

190 Vertical Ocean Physics (ZDF)

equatorial Atlantic simulations. Since then, significant modifications have been in-
troduced by Madec et al. [1998] in both the implementation and the formulation of
the mixing length scale. The time evolution of ē is the result of the production of
ē through vertical shear, its destruction through stratification, its vertical diffusion,
and its dissipation of Kolmogorov [1942] type:

∂ē

∂t
=
Km

e3
2

[(
∂u

∂k

)2

+

(
∂v

∂k

)2
]
−KρN

2 +
1

e3

∂

∂k

[
Avm

e3

∂ē

∂k

]
− cε

ē3/2

lε
(10.4)

Km = Ck lk
√
ē

Kρ = Avm/Prt
(10.5)

where N is the local Brunt-Vaisälä frequency (see §5.8.2), lε and lκ are the dis-
sipation and mixing length scales, Prt is the Prandtl number, Km and Kρ are the
vertical eddy viscosity and diffusivity coefficients. The constants Ck = 0.1 and
Cε =

√
2/2 ≈ 0.7 are designed to deal with vertical mixing at any depth [Gaspar

et al. 1990]. They are set through namelist parameters nn ediff and nn ediss. Prt
can be set to unity or, following Blanke and Delecluse [1993], be a function of the
local Richardson number, Ri:

Prt =

1 if Ri ≤ 0.2

5Ri if 0.2 ≤ Ri ≤ 2

10 if 2 ≤ Ri

Options are defined through the namzdfy tke namelist variables. The choice of Prt
is controlled by the nn pdl namelist variable.

At the sea surface, the value of ē is prescribed from the wind stress field as
ēo = ebb|τ |/ρo, with ebb the rn ebb namelist parameter. The default value of ebb is
3.75. [Gaspar et al. 1990]), however a much larger value can be used when taking
into account the surface wave breaking (see below Eq. (10.10)). The bottom value
of TKE is assumed to be equal to the value of the level just above. The time
integration of the ē equation may formally lead to negative values because the
numerical scheme does not ensure its positivity. To overcome this problem, a cut-
off in the minimum value of ē is used (rn emin namelist parameter). Following
Gaspar et al. [1990], the cut-off value is set to

√
2/2 10−6 m2.s−2. This allows

the subsequent formulations to match that of Gargett [1984] for the diffusion in
the thermocline and deep ocean : Kρ = 10−3/N . In addition, a cut-off is applied
on Km and Kρ to avoid numerical instabilities associated with too weak vertical
diffusion. They must be specified at least larger than the molecular values, and are
set through rn avm0 and rn avt0 (namzdf namelist, see §10.1.1).

10.1. Vertical Mixing 191

Turbulent length scale

For computational efficiency, the original formulation of the turbulent length scales
proposed by Gaspar et al. [1990] has been simplified. Four formulations are pro-
posed, the choice of which is controlled by the nn mxl namelist parameter. The first
two are based on the following first order approximation [Blanke and Delecluse
1993]:

lk = lε =
√

2ē /N (10.6)

which is valid in a stable stratified region with constant values of the Brunt- Vaisälä
frequency. The resulting length scale is bounded by the distance to the surface or
to the bottom (nn mxl = 0) or by the local vertical scale factor (nn mxl = 1). Blanke
and Delecluse [1993] notice that this simplification has two major drawbacks: it
makes no sense for locally unstable stratification and the computation no longer
uses all the information contained in the vertical density profile. To overcome
these drawbacks, Madec et al. [1998] introduces the nn mxl = 2 or 3 cases, which
add an extra assumption concerning the vertical gradient of the computed length
scale. So, the length scales are first evaluated as in (10.6) and then bounded such
that:

1

e3

∣∣∣∣ ∂l∂k
∣∣∣∣ ≤ 1 with l = lk = lε (10.7)

(10.7) means that the vertical variations of the length scale cannot be larger than
the variations of depth. It provides a better approximation of the Gaspar et al.
[1990] formulation while being much less time consuming. In particular, it allows
the length scale to be limited not only by the distance to the surface or to the ocean
bottom but also by the distance to a strongly stratified portion of the water column
such as the thermocline (Fig. 10.1). In order to impose the (10.7) constraint, we
introduce two additional length scales: lup and ldwn, the upward and downward
length scales, and evaluate the dissipation and mixing length scales as (and note
that here we use numerical indexing):

l(k)
up = min

(
l(k) , l(k+1)

up + e
(k)
3t

)
from k = 1 to jpk

l
(k)
dwn = min

(
l(k) , l

(k−1)
dwn + e

(k−1)
3t

)
from k = jpk to 1

(10.8)

where l(k) is computed using (10.6), i.e. l(k) =

√
2ē(k)/N2(k).

In the nn mxl = 2 case, the dissipation and mixing length scales take the same
value: lk = lε = min (lup , ldwn), while in the nn mxl = 3 case, the dissipation
and mixing turbulent length scales are give as in Gaspar et al. [1990]:

lk =
√
lup ldwn

lε = min (lup , ldwn)
(10.9)

At the ocean surface, a non zero length scale is set through the rn mxl0 namelist
parameter. Usually the surface scale is given by lo = κ zo where κ = 0.4 is von

192 Vertical Ocean Physics (ZDF)

0 10 20 30 40 50

100

80

60

40

20

0
D

ep
th

 (m
)

Mixing length scale(m)
60 70 80 90 100

l = 2 ēN

lup

ldwn

l

lk

Figure 10.1: Illustration of the mixing length computation.

Karman’s constant and zo the roughness parameter of the surface. Assuming zo =
0.1 m [Craig and Banner 1994] leads to a 0.04 m, the default value of rn mxl0. In
the ocean interior a minimum length scale is set to recover the molecular viscosity
when ē reach its minimum value (1.10−6 = Ck lmin

√
ēmin).

Surface wave breaking parameterization

Following Mellor and Blumberg [2004], the TKE turbulence closure model has
been modified to include the effect of surface wave breaking energetics. This re-
sults in a reduction of summertime surface temperature when the mixed layer is
relatively shallow. The Mellor and Blumberg [2004] modifications acts on surface
length scale and TKE values and air-sea drag coefficient. The latter concerns the
bulk formulea and is not discussed here.

Following Craig and Banner [1994], the boundary condition on surface TKE
value is :

ēo =
1

2
(15.8αCB)2/3 |τ |

ρo
(10.10)

where αCB is the Craig and Banner [1994] constant of proportionality which de-
pends on the ”wave age”, ranging from 57 for mature waves to 146 for younger
waves [Mellor and Blumberg 2004]. The boundary condition on the turbulent
length scale follows the Charnock’s relation:

lo = κβ
|τ |
g ρo

(10.11)

10.1. Vertical Mixing 193

where κ = 0.40 is the von Karman constant, and β is the Charnock’s constant.
Mellor and Blumberg [2004] suggest β = 2.105 the value chosen by Stacey [1999]
citing observation evidence, and αCB = 100 the Craig and Banner’s value. As the
surface boundary condition on TKE is prescribed through ēo = ebb|τ |/ρo, with ebb
the rn ebb namelist parameter, setting rn ebb = 67.83 corresponds to αCB = 100.
Further setting ln mxl0 to true applies (10.11) as surface boundary condition on
length scale, with β hard coded to the Stacey’s value. Note that a minimal threshold
of rn emin0= 10−4 m2.s−2 (namelist parameters) is applied on surface ē value.

Langmuir cells

Langmuir circulations (LC) can be described as ordered large-scale vertical mo-
tions in the surface layer of the oceans. Although LC have nothing to do with
convection, the circulation pattern is rather similar to so-called convective rolls in
the atmospheric boundary layer. The detailed physics behind LC is described in,
for example, Craik and Leibovich [1976]. The prevailing explanation is that LC
arise from a nonlinear interaction between the Stokes drift and wind drift currents.

Here we introduced in the TKE turbulent closure the simple parameterization
of Langmuir circulations proposed by [Axell 2002] for a k − ε turbulent closure.
The parameterization, tuned against large-eddy simulation, includes the whole ef-
fect of LC in an extra source terms of TKE, PLC . The presence of PLC in (10.4),
the TKE equation, is controlled by setting ln lc to true in the namtke namelist.

By making an analogy with the characteristic convective velocity scale (e.g.,
D’Alessio et al. [1998]), PLC is assumed to be :

PLC(z) =
w3
LC(z)

HLC
(10.12)

where wLC(z) is the vertical velocity profile of LC, and HLC is the LC depth.
With no information about the wave field, wLC is assumed to be proportional to
the Stokes drift us = 0.377 |τ |1/2, where |τ | is the surface wind stress module 1.
For the vertical variation, wLC is assumed to be zero at the surface as well as at a
finite depth HLC (which is often close to the mixed layer depth), and simply varies
as a sine function in between (a first-order profile for the Langmuir cell structures).
The resulting expression for wLC is :

wLC =

{
cLC us sin(−π z/HLC) if −z ≤ HLC

0 otherwise
(10.13)

where cLC = 0.15 has been chosen by [Axell 2002] as a good compromise to fit
LES data. The chosen value yields maximum vertical velocities wLC of the order

1Following Li and Garrett [1993], the surface Stoke drift velocity may be expressed as us =
0.016 |U10m|. Assuming an air density of ρa = 1.22Kg/m3 and a drag coefficient of 1.5 10−3

give the expression used of us as a function of the module of surface stress

194 Vertical Ocean Physics (ZDF)

of a few centimeters per second. The value of cLC is set through the rn lc namelist
parameter, having in mind that it should stay between 0.15 and 0.54 [Axell 2002].

The HLC is estimated in a similar way as the turbulent length scale of TKE
equations: HLC is depth to which a water parcel with kinetic energy due to Stoke
drift can reach on its own by converting its kinetic energy to potential energy,
according to

−
∫ 0

−HLC
N2 z dz =

1

2
u2
s (10.14)

Mixing just below the mixed layer

Vertical mixing parameterizations commonly used in ocean general circulation
models tend to produce mixed-layer depths that are too shallow during summer
months and windy conditions. This bias is particularly acute over the Southern
Ocean. To overcome this systematic bias, an ad hoc parameterization is introduced
into the TKE scheme Rodgers et al. [2014]. The parameterization is an empir-
ical one, i.e. not derived from theoretical considerations, but rather is meant to
account for observed processes that affect the density structure of the oceans plan-
etary boundary layer that are not explicitly captured by default in the TKE scheme
(i.e. near-inertial oscillations and ocean swells and waves).

When using this parameterization (i.e.when nn etau = 1), the TKE input to the
ocean (S) imposed by the winds in the form of near-inertial oscillations, swell and
waves is parameterized by (10.10) the standard TKE surface boundary condition,
plus a depth depend one given by:

S = (1− fi) fr es e−z/hτ (10.15)

where z is the depth, es is TKE surface boundary condition, fr is the fraction of the
surface TKE that penetrate in the ocean, hτ is a vertical mixing length scale that
controls exponential shape of the penetration, and fi is the ice concentration (no
penetration if fi = 1, that is if the ocean is entirely covered by sea-ice). The value
of fr, usually a few percents, is specified through rn efr namelist parameter. The
vertical mixing length scale, hτ , can be set as a 10 m uniform value (nn etau = 0)
or a latitude dependent value (varying from 0.5 m at the Equator to a maximum
value of 30 m at high latitudes (nn etau = 1).

Note that two other option existe, nn etau = 2, or 3. They correspond to ap-
plying (10.15) only at the base of the mixed layer, or to using the high frequency
part of the stress to evaluate the fraction of TKE that penetrate the ocean. Those
two options are obsolescent features introduced for test purposes. They will be
removed in the next release.

10.1.4 TKE discretization considerations (key zdftke)

The production of turbulence by vertical shear (the first term of the right hand side
of (10.4)) should balance the loss of kinetic energy associated with the vertical

10.1. Vertical Mixing 195

t-∆t t+∆tt
momentum

TKE

tracer

Figure 10.2: Illustration of the TKE time integration and its links to the momentum
and tracer time integration.

momentum diffusion (first line in (2.34)). To do so a special care have to be taken
for both the time and space discretization of the TKE equation [Burchard 2002,
Marsaleix et al. 2008].

Let us first address the time stepping issue. Fig. 10.2 shows how the two-level
Leap-Frog time stepping of the momentum and tracer equations interplays with the
one-level forward time stepping of TKE equation. With this framework, the total
loss of kinetic energy (in 1D for the demonstration) due to the vertical momentum

196 Vertical Ocean Physics (ZDF)

diffusion is obtained by multiplying this quantity by ut and summing the result
vertically:∫ η

−H
ut ∂z

(
Km

t (∂zu)t+∆t
)
dz

=
[
utKm

t (∂zu)t+∆t
]η
−H
−
∫ η

−H
Km

t ∂zu
t ∂zu

t+∆t dz

(10.16)

Here, the vertical diffusion of momentum is discretized backward in time with
a coefficient, Km, known at time t (Fig. 10.2), as it is required when using the
TKE scheme (see §3.3). The first term of the right hand side of (10.16) represents
the kinetic energy transfer at the surface (atmospheric forcing) and at the bottom
(friction effect). The second term is always negative. It is the dissipation rate of
kinetic energy, and thus minus the shear production rate of ē. (10.16) implies that,
to be energetically consistent, the production rate of ē used to compute (ē)t (and
thus Km

t) should be expressed as Km
t−∆t (∂zu)t−∆t (∂zu)t (and not by the more

straightforward Km (∂zu)2 expression taken at time t or t−∆t).
A similar consideration applies on the destruction rate of ē due to stratification

(second term of the right hand side of (10.4)). This term must balance the input
of potential energy resulting from vertical mixing. The rate of change of potential
energy (in 1D for the demonstration) due vertical mixing is obtained by multiplying
vertical density diffusion tendency by g z and and summing the result vertically:∫ η

−H
g z ∂z

(
Kρ

t (∂kρ)t+∆t
)
dz

=
[
g z Kρ

t (∂zρ)t+∆t
]η
−H
−
∫ η

−H
g Kρ

t (∂kρ)t+∆t dz

= −
[
z Kρ

t (N2)t+∆t
]η
−H

+

∫ η

−H
ρt+∆tKρ

t (N2)t+∆t dz

(10.17)

where we use N2 = −g ∂kρ/(e3ρ). The first term of the right hand side of (10.17)
is always zero because there is no diffusive flux through the ocean surface and bot-
tom). The second term is minus the destruction rate of ē due to stratification. There-
fore (10.16) implies that, to be energetically consistent, the product Kρ

t−∆t (N2)t

should be used in (10.4), the TKE equation.
Let us now address the space discretization issue. The vertical eddy coefficients

are defined at w-point whereas the horizontal velocity components are in the centre
of the side faces of a t-box in staggered C-grid (Fig.4.1). A space averaging is thus
required to obtain the shear TKE production term. By redoing the (10.16) in the
3D case, it can be shown that the product of eddy coefficient by the shear at t and
t − ∆t must be performed prior to the averaging. Furthermore, the possible time
variation of e3 (key vvl case) have to be taken into account.

The above energetic considerations leads to the following final discrete form

10.1. Vertical Mixing 197

for the TKE equation:

(ē)t − (ē)t−∆t

∆t
≡

{((
Km

i+1/2
)t−∆t δk+1/2[ut+∆t]

e3ut+∆t

δk+1/2[ut]

e3ut

) i

+

((
Km

j+1/2
)t−∆t δk+1/2[vt+∆t]

e3vt+∆t

δk+1/2[vt]

e3vt

) j}
−Kρ

t−∆t (N2)t

+
1

e3wt+∆t
δk+1/2

[
Km

t−∆t δk[(ē)
t+∆t]

e3wt+∆t

]
−cε

(√
ē

lε

)t−∆t

(ē)t+∆t

(10.18)

where the last two terms in (10.18) (vertical diffusion and Kolmogorov dissipation)
are time stepped using a backward scheme (see§3.3). Note that the Kolmogorov
term has been linearized in time in order to render the implicit computation pos-
sible. The restart of the TKE scheme requires the storage of ē, Km, Kρ and lε as
they all appear in the right hand side of (10.18). For the latter, it is in fact the ratio√
ē/lε which is stored.

10.1.5 GLS Generic Length Scale (key zdfgls)
!---
&namzdf_gls ! GLS vertical diffusion (ln_zdfgls =T)
!---

rn_emin = 1.e-7 ! minimum value of e [m2/s2]
rn_epsmin = 1.e-12 ! minimum value of eps [m2/s3]
ln_length_lim = .true. ! limit on the dissipation rate under stable stratification (Galperin et al., 1988)
rn_clim_galp = 0.267 ! galperin limit
ln_sigpsi = .true. ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case
rn_crban = 100. ! Craig and Banner 1994 constant for wb tke flux
rn_charn = 70000. ! Charnock constant for wb induced roughness length
rn_hsro = 0.02 ! Minimum surface roughness
rn_frac_hs = 1.3 ! Fraction of wave height as roughness (if nn_z0_met>1)
nn_z0_met = 2 ! Method for surface roughness computation (0/1/2/3)
! ! =3 requires ln_wave=T
nn_bc_surf = 1 ! surface condition (0/1=Dir/Neum)
nn_bc_bot = 1 ! bottom condition (0/1=Dir/Neum)
nn_stab_func = 2 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
nn_clos = 1 ! predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen)

/

The Generic Length Scale (GLS) scheme is a turbulent closure scheme based
on two prognostic equations: one for the turbulent kinetic energy ē, and another
for the generic length scale, ψ [Umlauf and Burchard 2003; 2005]. This later
variable is defined as : ψ = C0µ

p ēm ln, where the triplet (p,m, n) value given
in Tab.10.1 allows to recover a number of well-known turbulent closures (k-kl
[Mellor and Yamada 1982], k-ε [Rodi 1987], k-ω [Wilcox 1988] among others
[Umlauf and Burchard 2003, Kantha and Carniel 2005]). The GLS scheme is given
by the following set of equations:

∂ē

∂t
=

Km

σee3

[(
∂u

∂k

)2

+

(
∂v

∂k

)2
]
−KρN

2 +
1

e3

∂

∂k

[
Km

e3

∂ē

∂k

]
− ε (10.19)

198 Vertical Ocean Physics (ZDF)

∂ψ

∂t
=
ψ

ē

{
C1Km

σψe3

[(
∂u

∂k

)2

+

(
∂v

∂k

)2
]
− C3KρN

2 − C2 ε Fw

}

+
1

e3

∂

∂k

[
Km

e3

∂ψ

∂k

] (10.20)

Km = Cµ
√
ē l

Kρ = Cµ′
√
ē l

(10.21)

ε = C0µ
ē3/2

l
(10.22)

where N is the local Brunt-Vaisälä frequency (see §5.8.2) and ε the dissipation
rate. The constants C1, C2, C3, σe, σψ and the wall function (Fw) depends of the
choice of the turbulence model. Four different turbulent models are pre-defined
(Tab.10.1). They are made available through the nn clo namelist parameter.

Table 10.1: Set of predefined GLS parameters, or equivalently predefined turbulence
models available with key zdfgls and controlled by the nn clos namelist variable in
namzdf gls .

k − kl k − ε k − ω generic
nn clo 0 1 2 3

(p, n,m) (0 , 1 , 1) (3 , 1.5 , -1) (-1 , 0.5 , -1) (2 , 1 , -0.67)
σk 2.44 1. 2. 0.8
σψ 2.44 1.3 2. 1.07
C1 0.9 1.44 0.555 1.
C2 0.5 1.92 0.833 1.22
C3 1. 1. 1. 1.
Fwall Yes – – –

In the Mellor-Yamada model, the negativity of n allows to use a wall func-
tion to force the convergence of the mixing length towards Kzb (K: Kappa and
zb: rugosity length) value near physical boundaries (logarithmic boundary layer
law). Cµ and Cµ′ are calculated from stability function proposed by Galperin et al.
[1988], or by Kantha and Clayson [1994] or one of the two functions suggested by
Canuto et al. [2001] (nn stab func = 0, 1, 2 or 3, resp.). The value of C0µ depends
of the choice of the stability function.

The surface and bottom boundary condition on both ē and ψ can be calculated
thanks to Dirichlet or Neumann condition through nn tkebc surf and nn tkebc bot,
resp. As for TKE closure , the wave effect on the mixing is considered when
ln crban = true [Craig and Banner 1994, Mellor and Blumberg 2004]. The rn crban

10.2. Convection 199

namelist parameter is αCB in (10.10) and rn charn provides the value of β in
(10.11).

The ψ equation is known to fail in stably stratified flows, and for this rea-
son almost all authors apply a clipping of the length scale as an ad hoc rem-
edy. With this clipping, the maximum permissible length scale is determined by
lmax = clim

√
2ē/N . A value of clim = 0.53 is often used [Galperin et al. 1988].

Umlauf and Burchard [2005] show that the value of the clipping factor is of cru-
cial importance for the entrainment depth predicted in stably stratified situations,
and that its value has to be chosen in accordance with the algebraic model for the
turbulent fluxes. The clipping is only activated if ln length lim=true, and the clim
is set to the rn clim galp value.

The time and space discretization of the GLS equations follows the same ener-
getic consideration as for the TKE case described in §10.1.4 [Burchard 2002]. Ex-
amples of performance of the 4 turbulent closure scheme can be found in Warner
et al. [2005].

10.1.6 OSM OSMOSIS Boundary Layer scheme (key zdfosm)
!---
&namzdf_osm ! OSM vertical diffusion (ln_zdfosm =T)
!---

ln_use_osm_la = .false. ! Use namelist rn_osm_la
rn_osm_la = 0.3 ! Turbulent Langmuir number
rn_osm_dstokes = 5. ! Depth scale of Stokes drift (m)
nn_ave = 0 ! choice of horizontal averaging on avt, avmu, avmv
ln_dia_osm = .true. ! output OSMOSIS-OBL variables
rn_osm_hbl0 = 10. ! initial hbl value
ln_kpprimix = .true. ! Use KPP-style Ri# mixing below BL
rn_riinfty = 0.7 ! Highest local Ri_g permitting shear instability
rn_difri = 0.005 ! max Ri# diffusivity at Ri_g = 0 (mˆ2/s)
ln_convmix = .true. ! Use convective instability mixing below BL
rn_difconv = 1. ! diffusivity when unstable below BL (m2/s)
nn_osm_wave = 0 ! Method used to calculate Stokes drift

! = 2: Use ECMWF wave fields
! = 1: Pierson Moskowitz wave spectrum
! = 0: Constant La# = 0.3

/

The OSMOSIS turbulent closure scheme is based on...... TBC

10.2 Convection
!---
&namzdf ! vertical physics (default: NO selection)
!---

! ! type of vertical closure (required)
ln_zdfcst = .false. ! constant mixing
ln_zdfric = .false. ! local Richardson dependent formulation (T => fill namzdf_ric)
ln_zdftke = .false. ! Turbulent Kinetic Energy closure (T => fill namzdf_tke)
ln_zdfgls = .false. ! Generic Length Scale closure (T => fill namzdf_gls)
ln_zdfosm = .false. ! OSMOSIS BL closure (T => fill namzdf_osm)
!
! ! convection
ln_zdfevd = .false. ! enhanced vertical diffusion

nn_evdm = 0 ! apply on tracer (=0) or on tracer and momentum (=1)
rn_evd = 100. ! mixing coefficient [m2/s]

ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency

!
ln_zdfddm = .false. ! double diffusive mixing

rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio

!
! ! gravity wave-driven vertical mixing

200 Vertical Ocean Physics (ZDF)

ln_zdfiwm = .false. ! internal wave-induced mixing (T => fill namzdf_iwm)
ln_zdfswm = .false. ! surface wave-induced mixing (T => ln_wave=ln_sdw=T)
!
! ! coefficients
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if ln_zdfcst=F)
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if ln_zdfcst=F)
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)

/

Static instabilities (i.e. light potential densities under heavy ones) may occur
at particular ocean grid points. In nature, convective processes quickly re-establish
the static stability of the water column. These processes have been removed from
the model via the hydrostatic assumption so they must be parameterized. Three pa-
rameterisations are available to deal with convective processes: a non-penetrative
convective adjustment or an enhanced vertical diffusion, or/and the use of a turbu-
lent closure scheme.

10.2.1 Non-Penetrative Convective Adjustment (ln tranpc=.true.)
!---
&namzdf ! vertical physics (default: NO selection)
!---

! ! type of vertical closure (required)
ln_zdfcst = .false. ! constant mixing
ln_zdfric = .false. ! local Richardson dependent formulation (T => fill namzdf_ric)
ln_zdftke = .false. ! Turbulent Kinetic Energy closure (T => fill namzdf_tke)
ln_zdfgls = .false. ! Generic Length Scale closure (T => fill namzdf_gls)
ln_zdfosm = .false. ! OSMOSIS BL closure (T => fill namzdf_osm)
!
! ! convection
ln_zdfevd = .false. ! enhanced vertical diffusion

nn_evdm = 0 ! apply on tracer (=0) or on tracer and momentum (=1)
rn_evd = 100. ! mixing coefficient [m2/s]

ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency

!
ln_zdfddm = .false. ! double diffusive mixing

rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio

!
! ! gravity wave-driven vertical mixing
ln_zdfiwm = .false. ! internal wave-induced mixing (T => fill namzdf_iwm)
ln_zdfswm = .false. ! surface wave-induced mixing (T => ln_wave=ln_sdw=T)
!
! ! coefficients
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if ln_zdfcst=F)
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if ln_zdfcst=F)
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)

/

Options are defined through the namzdf namelist variables. The non-penetrative
convective adjustment is used when ln zdfnpc = true. It is applied at each nn npc
time step and mixes downwards instantaneously the statically unstable portion of
the water column, but only until the density structure becomes neutrally stable (i.e.
until the mixed portion of the water column has exactly the density of the water just
below) [Madec et al. 1991b]. The associated algorithm is an iterative process used
in the following way (Fig. 10.3): starting from the top of the ocean, the first in-
stability is found. Assume in the following that the instability is located between
levels k and k + 1. The temperature and salinity in the two levels are vertically
mixed, conserving the heat and salt contents of the water column. The new density
is then computed by a linear approximation. If the new density profile is still un-
stable between levels k + 1 and k + 2, levels k, k + 1 and k + 2 are then mixed.

10.2. Convection 201

initial profile

2nd step

1

2

3

4

5

LE
V

EL
S

1st step

Figure 10.3: Example of an unstable density profile treated by the non penetrative
convective adjustment algorithm. 1st step: the initial profile is checked from the
surface to the bottom. It is found to be unstable between levels 3 and 4. They are
mixed. The resulting ρ is still larger than ρ(5): levels 3 to 5 are mixed. The resulting
ρ is still larger than ρ(6): levels 3 to 6 are mixed. The 1st step ends since the density
profile is then stable below the level 3. 2nd step: the new ρ profile is checked following
the same procedure as in 1st step: levels 2 to 5 are mixed. The new density profile is
checked. It is found stable: end of algorithm.

This process is repeated until stability is established below the level k (the mixing
process can go down to the ocean bottom). The algorithm is repeated to check if
the density profile between level k−1 and k is unstable and/or if there is no deeper
instability.

This algorithm is significantly different from mixing statically unstable levels
two by two. The latter procedure cannot converge with a finite number of iterations
for some vertical profiles while the algorithm used in NEMO converges for any pro-
file in a number of iterations which is less than the number of vertical levels. This
property is of paramount importance as pointed out by Killworth [1989]: it avoids
the existence of permanent and unrealistic static instabilities at the sea surface.
This non-penetrative convective algorithm has been proved successful in studies
of the deep water formation in the north-western Mediterranean Sea [Madec et al.
1991b;a, Madec and Crépon 1991].

The current implementation has been modified in order to deal with any non
linear equation of seawater (L. Brodeau, personnal communication). Two main dif-

202 Vertical Ocean Physics (ZDF)

ferences have been introduced compared to the original algorithm: (i) the stability
is now checked using the Brunt-Väisälä frequency (not the the difference in po-
tential density) ; (ii) when two levels are found unstable, their thermal and haline
expansion coefficients are vertically mixed in the same way their temperature and
salinity has been mixed. These two modifications allow the algorithm to perform
properly and accurately with TEOS10 or EOS-80 without having to recompute the
expansion coefficients at each mixing iteration.

10.2.2 Enhanced Vertical Diffusion (ln zdfevd=true)
!---
&namzdf ! vertical physics (default: NO selection)
!---

! ! type of vertical closure (required)
ln_zdfcst = .false. ! constant mixing
ln_zdfric = .false. ! local Richardson dependent formulation (T => fill namzdf_ric)
ln_zdftke = .false. ! Turbulent Kinetic Energy closure (T => fill namzdf_tke)
ln_zdfgls = .false. ! Generic Length Scale closure (T => fill namzdf_gls)
ln_zdfosm = .false. ! OSMOSIS BL closure (T => fill namzdf_osm)
!
! ! convection
ln_zdfevd = .false. ! enhanced vertical diffusion

nn_evdm = 0 ! apply on tracer (=0) or on tracer and momentum (=1)
rn_evd = 100. ! mixing coefficient [m2/s]

ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency

!
ln_zdfddm = .false. ! double diffusive mixing

rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio

!
! ! gravity wave-driven vertical mixing
ln_zdfiwm = .false. ! internal wave-induced mixing (T => fill namzdf_iwm)
ln_zdfswm = .false. ! surface wave-induced mixing (T => ln_wave=ln_sdw=T)
!
! ! coefficients
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if ln_zdfcst=F)
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if ln_zdfcst=F)
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)

/

Options are defined through the namzdf namelist variables. The enhanced ver-
tical diffusion parameterisation is used when ln zdfevd=true. In this case, the ver-
tical eddy mixing coefficients are assigned very large values (a typical value is
10 m2s−1) in regions where the stratification is unstable (i.e. when N2 the Brunt-
Vaisälä frequency is negative) [Lazar 1997, Lazar et al. 1999]. This is done either
on tracers only (nn evdm=0) or on both momentum and tracers (nn evdm=1).

In practice, where N2 ≤ 10−12, AvTT and AvST , and if nn evdm=1, the four
neighbouring Avmu and Avmv values also, are set equal to the namelist parameter
rn avevd. A typical value for rn avevd is between 1 and 100 m2.s−1. This pa-
rameterisation of convective processes is less time consuming than the convective
adjustment algorithm presented above when mixing both tracers and momentum
in the case of static instabilities. It requires the use of an implicit time stepping on
vertical diffusion terms (i.e. ln zdfexp=false).

Note that the stability test is performed on both before and now values of N2.
This removes a potential source of divergence of odd and even time step in a
leapfrog environment [Leclair 2010] (see §3.5).

10.3. Double Diffusion Mixing (key zdfddm) 203

10.2.3 Turbulent Closure Scheme (key zdftke, key zdfgls or key zdfosm)

The turbulent closure scheme presented in §10.1.3 and §10.1.5 (key zdftke or
key zdftke is defined) in theory solves the problem of statically unstable density
profiles. In such a case, the term corresponding to the destruction of turbulent
kinetic energy through stratification in (10.4) or (10.19) becomes a source term,
since N2 is negative. It results in large values of AvTT and AvTT , and also the four
neighbouring Avmu and Avmv (up to 1 m2s−1). These large values restore the static
stability of the water column in a way similar to that of the enhanced vertical dif-
fusion parameterisation (§10.2.2). However, in the vicinity of the sea surface (first
ocean layer), the eddy coefficients computed by the turbulent closure scheme do
not usually exceed 10−2m.s−1, because the mixing length scale is bounded by the
distance to the sea surface. It can thus be useful to combine the enhanced verti-
cal diffusion with the turbulent closure scheme, i.e. setting the ln zdfnpc namelist
parameter to true and defining the turbulent closure CPP key all together.

The KPP turbulent closure scheme already includes enhanced vertical diffusion
in the case of convection, as governed by the variables bvsqcon and difcon found
in zdfkpp.F90, therefore ln zdfevd=false should be used with the KPP scheme.

10.3 Double Diffusion Mixing (key zdfddm)

Options are defined through the namzdf ddm namelist variables. Double dif-
fusion occurs when relatively warm, salty water overlies cooler, fresher water, or
vice versa. The former condition leads to salt fingering and the latter to diffusive
convection. Double-diffusive phenomena contribute to diapycnal mixing in exten-
sive regions of the ocean. Merryfield et al. [1999] include a parameterisation of
such phenomena in a global ocean model and show that it leads to relatively minor
changes in circulation but exerts significant regional influences on temperature and
salinity. This parameterisation has been introduced in zdfddm.F90 module and is
controlled by the key zdfddm CPP key.

Diapycnal mixing of S and T are described by diapycnal diffusion coefficients

AvT = AvTo +AvTf +AvTd

AvS = AvSo +AvSf +AvSd

where subscript f represents mixing by salt fingering, d by diffusive convection,
and o by processes other than double diffusion. The rates of double-diffusive mix-
ing depend on the buoyancy ratio Rρ = α∂zT/β∂zS, where α and β are co-
efficients of thermal expansion and saline contraction (see §5.8.1). To represent
mixing of S and T by salt fingering, we adopt the diapycnal diffusivities suggested

204 Vertical Ocean Physics (ZDF)

Figure 10.4: From Merryfield et al. [1999] : (a) Diapycnal diffusivities AvT
f and

AvS
f for temperature and salt in regions of salt fingering. Heavy curves denote A∗v =

10−3 m2.s−1 and thin curves A∗v = 10−4 m2.s−1 ; (b) diapycnal diffusivities AvT
d

and AvS
d for temperature and salt in regions of diffusive convection. Heavy curves

denote the Federov parameterisation and thin curves the Kelley parameterisation. The
latter is not implemented in NEMO.

by Schmitt (1981):

AvSf =

{
A∗v

1+(Rρ/Rc)n
if Rρ > 1 and N2 > 0

0 otherwise
(10.23)

AvTf = 0.7 AvSf /Rρ (10.24)

The factor 0.7 in (10.24) reflects the measured ratio αFT /βFS ≈ 0.7 of buoy-
ancy flux of heat to buoyancy flux of salt (e.g., McDougall and Taylor [1984]).
Following Merryfield et al. [1999], we adopt Rc = 1.6, n = 6, and A∗v =
10−4 m2.s−1.

To represent mixing of S and T by diffusive layering, the diapycnal diffusivities
suggested by Federov (1988) is used:

AvTd =

{
1.3635 exp

(
4.6 exp

[
−0.54 (R−1

ρ − 1)
])

if 0 < Rρ < 1 and N2 > 0

0 otherwise

(10.25)

AvSd =

AvTd (1.85Rρ − 0.85) if 0.5 ≤ Rρ < 1 and N2 > 0

AvTd 0.15 Rρ if 0 < Rρ < 0.5 and N2 > 0

0 otherwise

(10.26)

The dependencies of (10.23) to (10.26) on Rρ are illustrated in Fig. 10.4. Im-
plementing this requires computing Rρ at each grid point on every time step. This
is done in eosbn2.F90 at the same time asN2 is computed. This avoids duplication
in the computation of α and β (which is usually quite expensive).

10.4. Bottom and Top Friction (zdfbfr) 205

10.4 Bottom and Top Friction (zdfbfr.F90 module)

Options to define the top and bottom friction are defined through the nambfr
namelist variables. The bottom friction represents the friction generated by the
bathymetry. The top friction represents the friction generated by the ice shelf/ocean
interface. As the friction processes at the top and bottom are treated in similar way,
only the bottom friction is described in detail below.

Both the surface momentum flux (wind stress) and the bottom momentum flux
(bottom friction) enter the equations as a condition on the vertical diffusive flux.
For the bottom boundary layer, one has:

Avm (∂Uh/∂z) = FU
h (10.27)

where FU
h is represents the downward flux of horizontal momentum outside the

logarithmic turbulent boundary layer (thickness of the order of 1 m in the ocean).
How FU

h influences the interior depends on the vertical resolution of the model
near the bottom relative to the Ekman layer depth. For example, in order to obtain
an Ekman layer depth d =

√
2 Avm/f = 50 m, one needs a vertical diffusion

coefficient Avm = 0.125 m2s−1 (for a Coriolis frequency f = 10−4 m2s−1).
With a background diffusion coefficient Avm = 10−4 m2s−1, the Ekman layer
depth is only 1.4 m. When the vertical mixing coefficient is this small, using a
flux condition is equivalent to entering the viscous forces (either wind stress or
bottom friction) as a body force over the depth of the top or bottom model layer.
To illustrate this, consider the equation for u at k, the last ocean level:

∂uk
∂t

=
1

e3u

[
Avmuw
e3uw

δk+1/2 [u]−Fuh
]
≈ −
Fuh
e3u

(10.28)

If the bottom layer thickness is 200 m, the Ekman transport will be distributed over
that depth. On the other hand, if the vertical resolution is high (1 m or less) and
a turbulent closure model is used, the turbulent Ekman layer will be represented
explicitly by the model. However, the logarithmic layer is never represented in
current primitive equation model applications: it is necessary to parameterize the
flux Fuh . Two choices are available in NEMO: a linear and a quadratic bottom
friction. Note that in both cases, the rotation between the interior velocity and the
bottom friction is neglected in the present release of NEMO.

In the code, the bottom friction is imposed by adding the trend due to the bot-
tom friction to the general momentum trend in dynbfr.F90. For the time-split sur-
face pressure gradient algorithm, the momentum trend due to the barotropic com-
ponent needs to be handled separately. For this purpose it is convenient to compute
and store coefficients which can be simply combined with bottom velocities and
geometric values to provide the momentum trend due to bottom friction. These
coefficients are computed in zdfbfr.F90 and generally take the form cU

b where:

∂Uh

∂t
= −
FU
h

e3u
=

cU
b

e3u
Ub
h (10.29)

206 Vertical Ocean Physics (ZDF)

where Ub
h = (ub , vb) is the near-bottom, horizontal, ocean velocity.

10.4.1 Linear Bottom Friction (nn botfr = 0 or 1)

The linear bottom friction parameterisation (including the special case of a free-slip
condition) assumes that the bottom friction is proportional to the interior velocity
(i.e. the velocity of the last model level):

FU
h =

Avm

e3

∂Uh

∂k
= r Ub

h (10.30)

where r is a friction coefficient expressed in ms−1. This coefficient is generally
estimated by setting a typical decay time τ in the deep ocean, and setting r = H/τ ,
where H is the ocean depth. Commonly accepted values of τ are of the order of
100 to 200 days [Weatherly 1984]. A value τ−1 = 10−7 s−1 equivalent to 115
days, is usually used in quasi-geostrophic models. One may consider the linear
friction as an approximation of quadratic friction, r ≈ 2 CD Uav (Gill [1982],
Eq. 9.6.6). For example, with a drag coefficient CD = 0.002, a typical speed of
tidal currents of Uav = 0.1 m s−1, and assuming an ocean depth H = 4000 m, the
resulting friction coefficient is r = 4 10−4 m s−1. This is the default value used
in NEMO. It corresponds to a decay time scale of 115 days. It can be changed by
specifying rn bfri1 (namelist parameter).

For the linear friction case the coefficients defined in the general expression
(10.29) are:

cub = −r
cvb = −r

(10.31)

When nn botfr=1, the value of r used is rn bfri1. Setting nn botfr=0 is equivalent
to setting r = 0 and leads to a free-slip bottom boundary condition. These values
are assigned in zdfbfr.F90. From v3.2 onwards there is support for local enhance-
ment of these values via an externally defined 2D mask array (ln bfr2d=true) given
in the bfr coef.nc input NetCDF file. The mask values should vary from 0 to 1.
Locations with a non-zero mask value will have the friction coefficient increased
by mask value*rn bfrien*rn bfri1.

10.4.2 Non-Linear Bottom Friction (nn botfr = 2)

The non-linear bottom friction parameterisation assumes that the bottom friction is
quadratic:

FU
h =

Avm

e3

∂Uh

∂k
= CD

√
u2
b + v2

b + eb Ub
h (10.32)

where CD is a drag coefficient, and eb a bottom turbulent kinetic energy due to
tides, internal waves breaking and other short time scale currents. A typical value
of the drag coefficient is CD = 10−3. As an example, the CME experiment

10.4. Bottom and Top Friction (zdfbfr) 207

[Tréguier 1992] uses CD = 10−3 and eb = 2.5 10−3m2 s−2, while the FRAM
experiment [Killworth 1992] uses CD = 1.4 10−3 and eb = 2.5 10−3m2 s−2.
The CME choices have been set as default values (rn bfri2 and rn bfeb2 namelist
parameters).

As for the linear case, the bottom friction is imposed in the code by adding the
trend due to the bottom friction to the general momentum trend in dynbfr.F90. For
the non-linear friction case the terms computed in zdfbfr.F90 are:

cub = − CD
[
u2 +

(
¯̄vi+1,j

)2
+ eb

]1/2

cvb = − CD
[(

¯̄ui,j+1
)2

+ v2 + eb

]1/2
(10.33)

The coefficients that control the strength of the non-linear bottom friction are
initialised as namelist parameters: CD= rn bfri2, and eb =rn bfeb2. Note for ap-
plications which treat tides explicitly a low or even zero value of rn bfeb2 is rec-
ommended. From v3.2 onwards a local enhancement of CD is possible via an
externally defined 2D mask array (ln bfr2d=true). This works in the same way as
for the linear bottom friction case with non-zero masked locations increased by
mask value*rn bfrien*rn bfri2.

10.4.3 Log-layer Bottom Friction enhancement (nn botfr = 2, ln loglayer =
.true.)

In the non-linear bottom friction case, the drag coefficient, CD, can be optionally
enhanced using a ”law of the wall” scaling. If ln loglayer = .true., CD is no longer
constant but is related to the thickness of the last wet layer in each column by:

CD =

(
κ

log (0.5e3t/rn bfrz0)

)2

(10.34)

where κ is the von-Karman constant and rn bfrz0 is a roughness length provided
via the namelist.

For stability, the drag coefficient is bounded such that it is kept greater or equal
to the base rn bfri2 value and it is not allowed to exceed the value of an additional
namelist parameter: rn bfri2 max, i.e.:

rn bfri2 ≤ CD ≤ rn bfri2 max (10.35)

Note also that a log-layer enhancement can also be applied to the top boundary
friction if under ice-shelf cavities are in use (ln isfcav=.true.). In this case, the
relevant namelist parameters are rn tfrz0, rn tfri2 and rn tfri2 max.

10.4.4 Bottom Friction stability considerations

Some care needs to exercised over the choice of parameters to ensure that the im-
plementation of bottom friction does not induce numerical instability. For the pur-

208 Vertical Ocean Physics (ZDF)

poses of stability analysis, an approximation to (10.28) is:

∆u = −Fh
u

e3u
2∆t

= − ru
e3u

2∆t
(10.36)

where linear bottom friction and a leapfrog timestep have been assumed. To ensure
that the bottom friction cannot reverse the direction of flow it is necessary to have:

|∆u| < |u| (10.37)

which, using (10.36), gives:

r
2∆t

e3u
< 1 ⇒ r <

e3u

2∆t
(10.38)

This same inequality can also be derived in the non-linear bottom friction case if
a velocity of 1 m.s−1 is assumed. Alternatively, this criterion can be rearranged to
suggest a minimum bottom box thickness to ensure stability:

e3u > 2 r ∆t (10.39)

which it may be necessary to impose if partial steps are being used. For example,
if |u| = 1 m.s−1, rdt = 1800 s, r = 10−3 then e3u should be greater than 3.6 m.
For most applications, with physically sensible parameters these restrictions should
not be of concern. But caution may be necessary if attempts are made to locally
enhance the bottom friction parameters. To ensure stability limits are imposed
on the bottom friction coefficients both during initialisation and at each time step.
Checks at initialisation are made in zdfbfr.F90 (assuming a 1 m.s−1 velocity in the
non-linear case). The number of breaches of the stability criterion are reported as
well as the minimum and maximum values that have been set. The criterion is
also checked at each time step, using the actual velocity, in dynbfr.F90. Values of
the bottom friction coefficient are reduced as necessary to ensure stability; these
changes are not reported.

Limits on the bottom friction coefficient are not imposed if the user has elected
to handle the bottom friction implicitly (see §10.4.5). The number of potential
breaches of the explicit stability criterion are still reported for information pur-
poses.

10.4.5 Implicit Bottom Friction (ln bfrimp=T)

An optional implicit form of bottom friction has been implemented to improve
model stability. We recommend this option for shelf sea and coastal ocean appli-
cations, especially for split-explicit time splitting. This option can be invoked by
setting ln bfrimp to true in the nambfr namelist. This option requires ln zdfexp to
be false in the namzdf namelist.

10.4. Bottom and Top Friction (zdfbfr) 209

This implementation is realised in dynzdf imp.F90 and dynspg ts.F90. In dynzdf imp.F90,
the bottom boundary condition is implemented implicitly.(

Avm

e3

∂Uh

∂k

)∣∣∣∣
mbk

=

(
cubu

n+1
mbk

cvbv
n+1
mbk

)
(10.40)

where mbk is the layer number of the bottom wet layer. superscript n + 1
means the velocity used in the friction formula is to be calculated, so, it is implicit.

If split-explicit time splitting is used, care must be taken to avoid the double
counting of the bottom friction in the 2-D barotropic momentum equations. As
NEMO only updates the barotropic pressure gradient and Coriolis’ forcing terms
in the 2-D barotropic calculation, we need to remove the bottom friction induced by
these two terms which has been included in the 3-D momentum trend and update
it with the latest value. On the other hand, the bottom friction contributed by the
other terms (e.g. the advection term, viscosity term) has been included in the 3-D
momentum equations and should not be added in the 2-D barotropic mode.

The implementation of the implicit bottom friction in dynspg ts.F90 is done in
two steps as the following:

Umed − Um−1

2∆t
= −g∇η − fk× Um + cb

(
Umed − Um−1

)
(10.41)

Um+1 − Umed

2∆t
= T+

(
g∇η′ + fk× U

′
)
−2∆tbccb

(
g∇η′ + fk× ub

)
(10.42)

where T is the vertical integrated 3-D momentum trend. We assume the leap-
frog time-stepping is used here. ∆t is the barotropic mode time step and ∆tbc is
the baroclinic mode time step. cb is the friction coefficient. η is the sea surface
level calculated in the barotropic loops while η

′
is the sea surface level used in the

3-D baroclinic mode. ub is the bottom layer horizontal velocity.

10.4.6 Bottom Friction with split-explicit time splitting (ln bfrimp=F)

When calculating the momentum trend due to bottom friction in dynbfr.F90, the
bottom velocity at the before time step is used. This velocity includes both the baro-
clinic and barotropic components which is appropriate when using either the ex-
plicit or filtered surface pressure gradient algorithms (key dynspg exp or key dynspg flt).
Extra attention is required, however, when using split-explicit time stepping (key dynspg ts).
In this case the free surface equation is solved with a small time step rn rdt/nn baro,
while the three dimensional prognostic variables are solved with the longer time
step of rn rdt seconds. The trend in the barotropic momentum due to bottom fric-
tion appropriate to this method is that given by the selected parameterisation (i.e.
linear or non-linear bottom friction) computed with the evolving velocities at each
barotropic timestep.

210 Vertical Ocean Physics (ZDF)

In the case of non-linear bottom friction, we have elected to partially lin-
earise the problem by keeping the coefficients fixed throughout the barotropic time-
stepping to those computed in zdfbfr.F90 using the now timestep. This decision
allows an efficient use of the cUb coefficients to:

1. On entry to dyn spg ts, remove the contribution of the before barotropic ve-
locity to the bottom friction component of the vertically integrated momen-
tum trend. Note the same stability check that is carried out on the bottom
friction coefficient in dynbfr.F90 has to be applied here to ensure that the
trend removed matches that which was added in dynbfr.F90.

2. At each barotropic step, compute the contribution of the current barotropic
velocity to the trend due to bottom friction. Add this contribution to the ver-
tically integrated momentum trend. This contribution is handled implicitly
which eliminates the need to impose a stability criteria on the values of the
bottom friction coefficient within the barotropic loop.

Note that the use of an implicit formulation within the barotropic loop for the
bottom friction trend means that any limiting of the bottom friction coefficient in
dynbfr.F90 does not adversely affect the solution when using split-explicit time
splitting. This is because the major contribution to bottom friction is likely to
come from the barotropic component which uses the unrestricted value of the co-
efficient. However, if the limiting is thought to be having a major effect (a more
likely prospect in coastal and shelf seas applications) then the fully implicit form of
the bottom friction should be used (see §10.4.5) which can be selected by setting
ln bfrimp = true.

Otherwise, the implicit formulation takes the form:

Ū t+∆t =
[
Ū t−∆t + 2∆t RHS

]
/ [1− 2∆t cub /He] (10.43)

where Ū is the barotropic velocity, He is the full depth (including sea surface
height), cub is the bottom friction coefficient as calculated in zdf bfr and RHS
represents all the components to the vertically integrated momentum trend except
for that due to bottom friction.

10.5 Tidal Mixing (key zdftmx)

10.5.1 Bottom intensified tidal mixing

Options are defined through the namzdf tmx namelist variables. The parameteriza-
tion of tidal mixing follows the general formulation for the vertical eddy diffusivity
proposed by St. Laurent et al. [2002] and first introduced in an OGCM by [Sim-
mons et al. 2004]. In this formulation an additional vertical diffusivity resulting

10.5. Tidal Mixing (key zdftmx) 211

from internal tide breaking, AvTtides is expressed as a function of E(x, y), the en-
ergy transfer from barotropic tides to baroclinic tides :

AvTtides = q Γ
E(x, y)F (z)

ρN2
(10.44)

where Γ is the mixing efficiency, N the Brunt-Vaisälä frequency (see §5.8.2), ρ the
density, q the tidal dissipation efficiency, and F (z) the vertical structure function.

The mixing efficiency of turbulence is set by Γ (rn me namelist parameter) and
is usually taken to be the canonical value of Γ = 0.2 (Osborn 1980). The tidal
dissipation efficiency is given by the parameter q (rn tfe namelist parameter) rep-
resents the part of the internal wave energy flux E(x, y) that is dissipated locally,
with the remaining 1− q radiating away as low mode internal waves and contribut-
ing to the background internal wave field. A value of q = 1/3 is typically used St.
Laurent et al. [2002]. The vertical structure function F (z) models the distribution
of the turbulent mixing in the vertical. It is implemented as a simple exponen-
tial decaying upward away from the bottom, with a vertical scale of ho (rn htmx
namelist parameter, with a typical value of 500m) [St. Laurent and Nash 2004],

F (i, j, k) =
e−

H+z
ho

ho

(
1− e−

H
ho

) (10.45)

and is normalized so that vertical integral over the water column is unity.
The associated vertical viscosity is calculated from the vertical diffusivity as-

suming a Prandtl number of 1, i.e. Avmtides = AvTtides. In the limit of N → 0 (or
becoming negative), the vertical diffusivity is capped at 300 cm2/s and impose a
lower limit on N2 of rn n2min usually set to 10−8s−2. These bounds are usually
rarely encountered.

The internal wave energy map, E(x, y) in (10.44), is derived from a barotropic
model of the tides utilizing a parameterization of the conversion of barotropic tidal
energy into internal waves. The essential goal of the parameterization is to repre-
sent the momentum exchange between the barotropic tides and the unrepresented
internal waves induced by the tidal flow over rough topography in a stratified ocean.
In the current version of NEMO, the map is built from the output of the barotropic
global ocean tide model MOG2D-G [Carrère and Lyard 2003]. This model pro-
vides the dissipation associated with internal wave energy for the M2 and K1 tides
component (Fig. 10.5). The S2 dissipation is simply approximated as being 1/4 of
the M2 one. The internal wave energy is thus : E(x, y) = 1.25EM2 + EK1. Its
global mean value is 1.1 TW, in agreement with independent estimates [Egbert and
Ray 2000; 2001].

10.5.2 Indonesian area specific treatment (ln zdftmx itf)

When the Indonesian Through Flow (ITF) area is included in the model domain, a
specific treatment of tidal induced mixing in this area can be used. It is activated

212 Vertical Ocean Physics (ZDF)

Figure 10.5: (a) M2 and (b) K1 internal wave drag energy from Carrère and Lyard
[2003] (W/m2).

through the namelist logical ln tmx itf , and the user must provide an input NetCDF
file, mask itf.nc , which contains a mask array defining the ITF area where the
specific treatment is applied.

When ln tmx itf =true, the two key parameters q and F (z) are adjusted follow-
ing the parameterisation developed by Koch-Larrouy et al. [2007]:

First, the Indonesian archipelago is a complex geographic region with a series
of large, deep, semi-enclosed basins connected via numerous narrow straits. Once
generated, internal tides remain confined within this semi-enclosed area and hardly
radiate away. Therefore all the internal tides energy is consumed within this area.
So it is assumed that q = 1, i.e. all the energy generated is available for mixing.

10.6. Internal wave-driven mixing (key zdftmx new) 213

Note that for test purposed, the ITF tidal dissipation efficiency is a namelist param-
eter (rn tfe itf). A value of 1 or close to is this recommended for this parameter.

Second, the vertical structure function, F (z), is no more associated with a bot-
tom intensification of the mixing, but with a maximum of energy available within
the thermocline. Koch-Larrouy et al. [2007] have suggested that the vertical distri-
bution of the energy dissipation proportional to N2 below the core of the thermo-
cline and to N above. The resulting F (z) is:

F (i, j, k) ∼

q ΓE(i, j)

ρN
∫
Ndz

when ∂zN < 0

q ΓE(i, j)

ρ
∫
N2dz

when ∂zN > 0

(10.46)

Averaged over the ITF area, the resulting tidal mixing coefficient is 1.5 cm2/s,
which agrees with the independent estimates inferred from observations. Intro-
duced in a regional OGCM, the parameterization improves the water mass charac-
teristics in the different Indonesian seas, suggesting that the horizontal and vertical
distributions of the mixing are adequately prescribed [Koch-Larrouy et al. 2007;
2008b;a]. Note also that such a parameterisation has a significant impact on the
behaviour of global coupled GCMs [Koch-Larrouy et al. 2010].

10.6 Internal wave-driven mixing (key zdftmx new)

The parameterization of mixing induced by breaking internal waves is a gen-
eralization of the approach originally proposed by St. Laurent et al. [2002]. A
three-dimensional field of internal wave energy dissipation ε(x, y, z) is first con-
structed, and the resulting diffusivity is obtained as

AvTwave = Rf
ε

ρN2
(10.47)

where Rf is the mixing efficiency and ε is a specified three dimensional distri-
bution of the energy available for mixing. If the ln mevar namelist parameter is
set to false, the mixing efficiency is taken as constant and equal to 1/6 [Osborn
1980]. In the opposite (recommended) case, Rf is instead a function of the turbu-
lence intensity parameter Reb = ε

ν N2 , with ν the molecular viscosity of seawater,
following the model of Bouffard and Boegman [2013] and the implementation of
de Lavergne et al. [2016]. Note that AvTwave is bounded by 10−2m2/s, a limit that
is often reached when the mixing efficiency is constant.

In addition to the mixing efficiency, the ratio of salt to heat diffusivities can
chosen to vary as a function of Reb by setting the ln tsdiff parameter to true, a rec-
ommended choice). This parameterization of differential mixing, due to Jackson
and Rehmann [2014], is implemented as in de Lavergne et al. [2016].

214 Vertical Ocean Physics (ZDF)

The three-dimensional distribution of the energy available for mixing, ε(i, j, k),
is constructed from three static maps of column-integrated internal wave energy
dissipation, Ecri(i, j), Epyc(i, j), and Ebot(i, j), combined to three corresponding
vertical structures (de Lavergne et al., in prep):

Fcri(i, j, k) ∝ e−hab/hcri

Fpyc(i, j, k) ∝ Nn p

Fbot(i, j, k) ∝ N2 e−hwkb/hbot

In the above formula, hab denotes the height above bottom, hwkb denotes the WKB-
stretched height above bottom, defined by

hwkb = H

∫ z
−H N dz′∫ η
−H N dz′

,

The np parameter (given by nn zpyc in namzdf tmx new namelist) controls the
stratification-dependence of the pycnocline-intensified dissipation. It can take val-
ues of 1 (recommended) or 2. Finally, the vertical structures Fcri and Fbot require
the specification of the decay scales hcri(i, j) and hbot(i, j), which are defined by
two additional input maps. hcri is related to the large-scale topography of the ocean
(etopo2) and hbot is a function of the energy flux Ebot, the characteristic horizontal
scale of the abyssal hill topography [Goff 2010] and the latitude.

11 Output and Diagnostics (IOM, DIA, TRD, FLO)

Contents
11.1 Old Model Output (default) 216
11.2 Standard model Output (IOM) 216

11.2.1 XIOS: the IO SERVER 218
11.2.2 Practical issues . 219
11.2.3 XML fundamentals 220
11.2.4 Detailed functionalities 224
11.2.5 XML reference tables 226
11.2.6 CF metadata standard compliance 233

11.3 NetCDF4 Support (key netcdf4) 233
11.4 Tracer/Dynamics Trends (TRD) 236
11.5 On-line Floats trajectories (FLO) (key floats) 237
11.6 Harmonic analysis of tidal constituents (key diaharm) . . 238
11.7 Transports across sections (key diadct) 239
11.8 Diagnosing the Steric effect in sea surface height 241
11.9 Other Diagnostics (key diahth, key diaar5) 244

11.9.1 Depth of various quantities (diahth.F90) 244
11.9.2 Poleward heat and salt transports (diaptr.F90) 245
11.9.3 CMIP specific diagnostics (diaar5.F90) 245
11.9.4 25 hour mean output for tidal models 245
11.9.5 Top Middle and Bed hourly output 246
11.9.6 Courant numbers . 246

216 Output and Diagnostics (IOM, DIA, TRD, FLO)

11.1 Old Model Output (default)

The model outputs are of three types: the restart file, the output listing, and the
diagnostic output file(s). The restart file is used internally by the code when the user
wants to start the model with initial conditions defined by a previous simulation.
It contains all the information that is necessary in order for there to be no changes
in the model results (even at the computer precision) between a run performed
with several restarts and the same run performed in one step. It should be noted
that this requires that the restart file contain two consecutive time steps for all the
prognostic variables, and that it is saved in the same binary format as the one used
by the computer that is to read it (in particular, 32 bits binary IEEE format must
not be used for this file).

The output listing and file(s) are predefined but should be checked and eventu-
ally adapted to the user’s needs. The output listing is stored in the ocean.output
file. The information is printed from within the code on the logical unit numout.
To locate these prints, use the UNIX command ”grep -i numout” in the source code
directory.

By default, diagnostic output files are written in NetCDF format. Since version
3.2, when defining key iomput, an I/O server has been added which provides more
flexibility in the choice of the fields to be written as well as how the writing work
is distributed over the processors in massively parallel computing. A complete
description of the use of this I/O server is presented in the next section.

By default, key iomput is not defined, NEMO produces NetCDF with the
old IOIPSL library which has been kept for compatibility and its easy installa-
tion. However, the IOIPSL library is quite inefficient on parallel machines and,
since version 3.2, many diagnostic options have been added presuming the use
of key iomput. The usefulness of the default IOIPSL-based option is expected
to reduce with each new release. If key iomput is not defined, output files and
content are defined in the diawri.F90 module and contain mean (or instantaneous
if key diainstant is defined) values over a regular period of nn write time-steps
(namelist parameter).

11.2 Standard model Output (IOM)

Since version 3.2, iomput is the NEMO output interface of choice. It has been
designed to be simple to use, flexible and efficient. The two main purposes of
iomput are:

1. The complete and flexible control of the output files through external XML
files adapted by the user from standard templates.

11.2. Standard model Output (IOM) 217

2. To achieve high performance and scalable output through the optional distri-
bution of all diagnostic output related tasks to dedicated processes.

The first functionality allows the user to specify, without code changes or recom-
pilation, aspects of the diagnostic output stream, such as:

• The choice of output frequencies that can be different for each file (including
real months and years).

• The choice of file contents; includes complete flexibility over which data are
written in which files (the same data can be written in different files).

• The possibility to split output files at a chosen frequency.

• The possibility to extract a vertical or an horizontal subdomain.

• The choice of the temporal operation to perform, e.g.: average, accumulate,
instantaneous, min, max and once.

• Control over metadata via a large XML ”database” of possible output fields.

In addition, iomput allows the user to add in the code the output of any new variable
(scalar, 2D or 3D) in a very easy way. All details of iomput functionalities are listed
in the following subsections. Examples of the XML files that control the outputs
can be found in:

NEMOGCM/CONFIG/ORCA2_LIM/EXP00/iodef.xml
NEMOGCM/CONFIG/SHARED/field_def.xml
and
NEMOGCM/CONFIG/SHARED/domain_def.xml.

The second functionality targets output performance when running in parallel
(key mpp mpi). Iomput provides the possibility to specify N dedicated I/O pro-
cesses (in addition to the NEMO processes) to collect and write the outputs. With
an appropriate choice of N by the user, the bottleneck associated with the writing
of the output files can be greatly reduced.

In version 3.6, the iom put interface depends on an external code called XIOS-
1.0 (use of revision 618 or higher is required). This new IO server can take ad-
vantage of the parallel I/O functionality of NetCDF4 to create a single output file
and therefore to bypass the rebuilding phase. Note that writing in parallel into
the same NetCDF files requires that your NetCDF4 library is linked to an HDF5
library that has been correctly compiled (i.e. with the configure option −−enable-
parallel). Note that the files created by iomput through XIOS are incompatible with
NetCDF3. All post-processsing and visualization tools must therefore be compati-
ble with NetCDF4 and not only NetCDF3.

Even if not using the parallel I/O functionality of NetCDF4, using N dedicated
I/O servers, where N is typically much less than the number of NEMO processors,

https://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/branchs/xios-1.0
https://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/branchs/xios-1.0

218 Output and Diagnostics (IOM, DIA, TRD, FLO)

will reduce the number of output files created. This can greatly reduce the post-
processing burden usually associated with using large numbers of NEMO proces-
sors. Note that for smaller configurations, the rebuilding phase can be avoided,
even without a parallel-enabled NetCDF4 library, simply by employing only one
dedicated I/O server.

11.2.1 XIOS: the IO SERVER

Attached or detached mode?

Iomput is based on XIOS, the io server developed by Yann Meurdesoif from IPSL.
The behaviour of the I/O subsystem is controlled by settings in the external XML
files listed above. Key settings in the iodef.xml file are using server and the
type tag associated with each defined file. The using server setting de-
termines whether or not the server will be used in attached mode (as a library)
[false] or in detached mode (as an external executable on N additional, dedicated
cpus) [true]. The attached mode is simpler to use but much less efficient for mas-
sively parallel applications. The type of each file can be either ”multiple file” or
”one file”.

In attached mode and if the type of file is ”multiple file”, then each NEMO
process will also act as an IO server and produce its own set of output files. Super-
ficially, this emulates the standard behaviour in previous versions. However, the
subdomain written out by each process does not correspond to the jpi x jpj
x jpk domain actually computed by the process (although it may if jpni=1).
Instead each process will have collected and written out a number of complete lon-
gitudinal strips. If the ”one file” option is chosen then all processes will collect
their longitudinal strips and write (in parallel) to a single output file.

In detached mode and if the type of file is ”multiple file”, then each stand-
alone XIOS process will collect data for a range of complete longitudinal strips
and write to its own set of output files. If the ”one file” option is chosen then all
XIOS processes will collect their longitudinal strips and write (in parallel) to a
single output file. Note running in detached mode requires launching a Multiple
Process Multiple Data (MPMD) parallel job. The following subsection provides a
typical example but the syntax will vary in different MPP environments.

Number of cpu used by XIOS in detached mode

The number of cores used by the XIOS is specified when launching the model. The
number of cores dedicated to XIOS should be from 1/10 to 1/50 of the number
or cores dedicated to NEMO. Some manufacturers suggest using O(

√
N) dedi-

cated IO processors for N processors but this is a general recommendation and not
specific to NEMO. It is difficult to provide precise recommendations because the
optimal choice will depend on the particular hardware properties of the target sys-
tem (parallel filesystem performance, available memory, memory bandwidth etc.)

http://forge.ipsl.jussieu.fr/ioserver/wiki

11.2. Standard model Output (IOM) 219

and the volume and frequency of data to be created. Here is an example of 2 cpus
for the io server and 62 cpu for nemo using mpirun:

mpirun -np 62 ./nemo.exe : -np 2 ./xios server.exe

Control of XIOS: the XIOS context in iodef.xml

As well as the using server flag, other controls on the use of XIOS are set in
the XIOS context in iodef.xml. See the XML basics section below for more details
on XML syntax and rules.

variable name description example
buffer size buffer size used by XIOS to send data

from NEMO to XIOS. Larger is more
efficient. Note that needed/used buffer
sizes are summarized at the end of the
job

25000000

buffer server factor size ratio between NEMO and XIOS buffer
size. Should be 2.

2

info level verbosity level (0 to 100) 0
using server activate attached(false) or de-

tached(true) mode
true

using oasis XIOS is used with OASIS(true) or not
(false)

false

oasis codes id when using oasis, define the identifier
of NEMO in the namcouple. Note that
the identifier of XIOS is xios.x

oceanx

11.2.2 Practical issues

Installation

As mentioned, XIOS is supported separately and must be downloaded and com-
piled before it can be used with NEMO. See the installation guide on the XIOS
wiki for help and guidance. NEMO will need to link to the compiled XIOS library.
The XIOS with NEMO guide provides an example illustration of how this can be
achieved.

Add your own outputs

It is very easy to add your own outputs with iomput. Many standard fields and
diagnostics are already prepared (i.e., steps 1 to 3 below have been done) and
simply need to be activated by including the required output in a file definition in
iodef.xml (step 4). To add new output variables, all 4 of the following steps must
be taken.

http://forge.ipsl.jussieu.fr/ioserver/wiki
http://www.nemo-ocean.eu/Using-NEMO/User-Guides/Basics/XIOS-IO-server-installation-and-use

220 Output and Diagnostics (IOM, DIA, TRD, FLO)

1. in NEMO code, add a
CALL iom put(’identifier’, array)
where you want to output a 2D or 3D array.

2. If necessary, add
USE iom ! I/O manager library
to the list of used modules in the upper part of your module.

3. in the field def.xml file, add the definition of your variable using the same iden-
tifier you used in the f90 code (see subsequent sections for a details of the
XML syntax and rules). For example:

<field_definition>
<!-- T grid -->

<field_group id="grid_T" grid_ref="grid_T_3D">
...
<field id="identifier" long_name="blabla" ... />
...

</field_definition>

Note your definition must be added to the field group whose reference grid is
consistent with the size of the array passed to iomput. The grid ref attribute
refers to definitions set in iodef.xml which, in turn, reference grids and
axes either defined in the code (iom set domain attr and iom set axis attr
in iom.F90) or defined in the domain def.xml file. e.g.:

<grid id="grid_T_3D" domain_ref="grid_T" axis_ref="deptht"/>

Note, if your array is computed within the surface module each nn fsbc
time step, add the field definition within the field group defined with the id
”SBC”: <field group id=”SBC”...> which has been defined with the correct
frequency of operations (iom set field attr in iom.F90)

4. add your field in one of the output files defined in iodef.xml (again see subse-
quent sections for syntax and rules)

<file id="file1" .../>
...
<field field_ref="identifier" />
...

</file>

11.2.3 XML fundamentals

XML basic rules

XML tags begin with the less-than character (”<”) and end with the greater-than
character (”>”). You use tags to mark the start and end of elements, which are

11.2. Standard model Output (IOM) 221

the logical units of information in an XML document. In addition to marking the
beginning of an element, XML start tags also provide a place to specify attributes.
An attribute specifies a single property for an element, using a name/value pair, for
example: See here for more details.

Structure of the xml file used in NEMO

The XML file used in XIOS is structured by 7 families of tags: context, axis, do-
main, grid, field, file and variable. Each tag family has hierarchy of three flavors
(except for context):

flavor description example
root declaration of the root ele-

ment that can contain ele-
ment groups or elements

< file_definition ... >

group declaration of a group ele-
ment that can contain ele-
ment groups or elements

< file_group ... >

element declaration of an element that
can contain elements

< file ... >

Each element may have several attributes. Some attributes are mandatory, other
are optional but have a default value and other are are completely optional. Id is
a special attribute used to identify an element or a group of elements. It must be
unique for a kind of element. It is optional, but no reference to the corresponding
element can be done if it is not defined.

The XML file is split into context tags that are used to isolate IO definition from
different codes or different parts of a code. No interference is possible between 2
different contexts. Each context has its own calendar and an associated timestep.
In NEMO, we used the following contexts (that can be defined in any order):

context description example
context xios context containing informa-

tion for XIOS
<context id="xios" ...

context nemo context containing IO infor-
mation for NEMO (mother
grid when using AGRIF)

<context id="nemo" ...

context 1 nemo context containing IO infor-
mation for NEMO child grid
1 (when using AGRIF)

<context id="1_nemo" ...

context n nemo context containing IO infor-
mation for NEMO child grid
n (when using AGRIF)

<context id="n_nemo" ...

The xios context contains only 1 tag:

http://www.xmlnews.org/docs/xml-basics.html

222 Output and Diagnostics (IOM, DIA, TRD, FLO)

context tag description example
variable definition define variables needed by

XIOS. This can be seen as a
kind of namelist for XIOS.

<variable_definition ...

Each context tag related to NEMO (mother or child grids) is divided into 5 parts
(that can be defined in any order):

context tag description example
field definition define all variables that can

potentially be outputted
<field_definition ...

file definition define the netcdf files to be
created and the variables they
will contain

<file_definition ...

axis definition define vertical axis <axis_definition ...

domain definition define the horizontal grids <domain_definition ...

grid definition define the 2D and 3D grids
(association of an axis and a
domain)

<grid_definition ...

Nesting XML files

The XML file can be split in different parts to improve its readability and facilitate
its use. The inclusion of XML files into the main XML file can be done through
the attribute src:
<context src="./nemo_def.xml" />

In NEMO, by default, the field and domain definition is done in 2 separate files:

NEMOGCM/CONFIG/SHARED/field_def.xml
and
NEMOGCM/CONFIG/SHARED/domain_def.xml

that are included in the main iodef.xml file through the following commands:
<field_definition src="./field_def.xml" />

<domain_definition src="./domain_def.xml" />

Use of inheritance

XML extensively uses the concept of inheritance. XML has a tree based structure
with a parent-child oriented relation: all children inherit attributes from parent, but
an attribute defined in a child replace the inherited attribute value. Note that the
special attribute ”id” is never inherited.

example 1: Direct inheritance.

11.2. Standard model Output (IOM) 223

<field_definition operation="average" >
<field id="sst" /> <!-- averaged sst -->
<field id="sss" operation="instant"/> <!-- instantaneous sss -->

</field_definition>

The field ”sst” which is part (or a child) of the field definition will inherit the
value ”average” of the attribute ”operation” from its parent. Note that a child can
overwrite the attribute definition inherited from its parents. In the example above,
the field ”sss” will for example output instantaneous values instead of average val-
ues.

example 2: Inheritance by reference.
<field_definition>

<field id="sst" long_name="sea surface temperature" />
<field id="sss" long_name="sea surface salinity" />

</field_definition>

<file_definition>
<file id="myfile" output_freq="1d" />

<field field_ref="sst" /> <!-- default def -->
<field field_ref="sss" long_name="my description" /> <!-- overwrite -->

</file>
</file_definition>

Inherit (and overwrite, if needed) the attributes of a tag you are refering to.

Use of Groups

Groups can be used for 2 purposes. Firstly, the group can be used to define com-
mon attributes to be shared by the elements of the group through inheritance. In
the following example, we define a group of field that will share a common grid
”grid T 2D”. Note that for the field ”toce”, we overwrite the grid definition inher-
ited from the group by ”grid T 3D”.

<field_group id="grid_T" grid_ref="grid_T_2D">
<field id="toce" long_name="temperature" unit="degC" grid_ref="grid_T_3D"/>
<field id="sst" long_name="sea surface temperature" unit="degC" />
<field id="sss" long_name="sea surface salinity" unit="psu" />
<field id="ssh" long_name="sea surface height" unit="m" />

...

Secondly, the group can be used to replace a list of elements. Several examples
of groups of fields are proposed at the end of the file CONFIG/SHARED/field def.xml.
For example, a short list of the usual variables related to the U grid:

<field_group id="groupU" >
<field field_ref="uoce" />
<field field_ref="suoce" />
<field field_ref="utau" />
</field_group>

that can be directly included in a file through the following syntax:
<file id="myfile_U" output_freq="1d" />
<field_group group_ref="groupU"/>
<field field_ref="uocetr_eff" /> <!-- add another field -->
</file>

224 Output and Diagnostics (IOM, DIA, TRD, FLO)

11.2.4 Detailed functionalities

The file NEMOGCM/CONFIG/ORCA2 LIM/iodef demo.xml provides several
examples of the use of the new functionalities offered by the XML interface of
XIOS.

Define horizontal subdomains

Horizontal subdomains are defined through the attributs zoom ibegin, zoom jbegin,
zoom ni, zoom nj of the tag family domain. It must therefore be done in the do-
main part of the XML file. For example, in CONFIG/SHARED/domain def.xml,
we provide the following example of a definition of a 5 by 5 box with the bottom
left corner at point (10,10).

<domain_group id="grid_T">
<domain id="myzoom" zoom_ibegin="10" zoom_jbegin="10" zoom_ni="5" zoom_nj="5" />

The use of this subdomain is done through the redefinition of the attribute do-
main ref of the tag family field. For example:

<file id="myfile_vzoom" output_freq="1d" >
<field field_ref="toce" domain_ref="myzoom"/>

</file>

Moorings are seen as an extrem case corresponding to a 1 by 1 subdomain. The
Equatorial section, the TAO, RAMA and PIRATA moorings are alredy registered
in the code and can therefore be outputted without taking care of their (i,j) posi-
tion in the grid. These predefined domains can be activated by the use of specific
domain ref: ”EqT”, ”EqU” or ”EqW” for the equatorial sections and the mooring
position for TAO, RAMA and PIRATA followed by ”T” (for example: ”8s137eT”,
”1.5s80.5eT” ...)

<file id="myfile_vzoom" output_freq="1d" >
<field field_ref="toce" domain_ref="0n180wT"/>

</file>

Note that if the domain decomposition used in XIOS cuts the subdomain in several
parts and if you use the ”multiple file” type for your output files, you will endup
with several files you will need to rebuild using unprovided tools (like ncpdq and
ncrcat, see nco manual). We are therefore advising to use the ”one file” type in this
case.

Define vertical zooms

Vertical zooms are defined through the attributs zoom begin and zoom end of the
tag family axis. It must therefore be done in the axis part of the XML file. For
example, in NEMOGCM/CONFIG/ORCA2 LIM/iodef demo.xml, we provide the
following example:

http://nco.sourceforge.net/nco.html#Concatenation

11.2. Standard model Output (IOM) 225

<axis_group id="deptht" long_name="Vertical T levels" unit="m" positive="down" >
<axis id="deptht" />
<axis id="deptht_myzoom" zoom_begin="1" zoom_end="10" />

The use of this vertical zoom is done through the redefinition of the attribute
axis ref of the tag family field. For example:

<file id="myfile_hzoom" output_freq="1d" >
<field field_ref="toce" axis_ref="deptht_myzoom"/>

</file>

Control of the output file names

The output file names are defined by the attributs ”name” and ”name suffix” of the
tag family file. for example:

<file_group id="1d" output_freq="1d" name="myfile_1d" >
<file id="myfileA" name_suffix="_AAA" > <!-- will create file "myfile_1d_AAA" -->

...
</file>
<file id="myfileB" name_suffix="_BBB" > <!-- will create file "myfile_1d_BBB" -->

...
</file>

</file_group>

However it is often very convienent to define the file name with the name of the
experiment, the output file frequency and the date of the beginning and the end of
the simulation (which are informations stored either in the namelist or in the XML
file). To do so, we added the following rule: if the id of the tag file is ”fileN”(where
N = 1 to 999 on 1 to 3 digits) or one of the predefined sections or moorings (see
next subsection), the following part of the name and the name suffix (that can be
inherited) will be automatically replaced by:

placeholder string automatically replaced by
@expname@ the experiment name (from cn exp in the namelist)

@freq@ output frequency (from attribute output freq)
@startdate@ starting date of the simulation (from nn date0 in the

restart or the namelist). yyyymmdd format
@startdatefull@ starting date of the simulation (from nn date0 in the

restart or the namelist). yyyymmdd_hh:mm:ss
format

@enddate@ ending date of the simulation (from nn date0 and
nn itend in the namelist). yyyymmdd format

@enddatefull@ ending date of the simulation (from nn date0 and
nn itend in the namelist). yyyymmdd_hh:mm:ss
format

For example,

<file id="myfile_hzoom" name="myfile_@expname@_@startdate@_freq@freq@" output_freq="1d" >

226 Output and Diagnostics (IOM, DIA, TRD, FLO)

with the namelist:

cn_exp = "ORCA2"
nn_date0 = 19891231
ln_rstart = .false.

will give the following file name radical:

myfile_ORCA2_19891231_freq1d

Other controls of the xml attributes from NEMO

The values of some attributes are defined by subroutine calls within NEMO (calls
to iom set domain attr, iom set axis attr and iom set field attr in iom.F90). Any
definition given in the xml file will be overwritten. By convention, these attributes
are defined to ”auto” (for string) or ”0000” (for integer) in the xml file (but this is
not necessary).

Here is the list of these attributes:

tag ids affected by automatic name attribute value
definition of some of their attributes attribute

field definition freq op rn rdt
SBC freq op rn rdt × nn fsbc

ptrc T freq op rn rdt × nn dttrc
diad T freq op rn rdt × nn dttrc

EqT, EqU, EqW jbegin, ni, according to the grid
name suffix

TAO, RAMA and PIRATA moorings zoom ibegin, zoom jbegin, according to the grid
name suffix

Advanced use of XIOS functionalities

11.2.5 XML reference tables

(1) Simple computation: directly define the computation when refering to the vari-
able in the file definition.

<field field_ref="sst" name="tosK" unit="degK" > sst + 273.15 </field>
<field field_ref="taum" name="taum2" unit="N2/m4" long_name="square of wind stress module" > taum * taum </field>
<field field_ref="qt" name="stupid_check" > qt - qsr - qns </field>

(2) Simple computation: define a new variable and use it in the file definition.
in field definition:

<field id="sst2" long_name="square of sea surface temperature" unit="degC2" > sst * sst </field >

in file definition:

<field field_ref="sst2" > sst2 </field>

11.2. Standard model Output (IOM) 227

Note that in this case, the following syntaxe<field field ref=”sst2” /> is not work-
ing as sst2 won’t be evaluated.

(3) Change of variable precision:

<!-- force to keep real 8 -->
<field field_ref="sst" name="tos_r8" prec="8" />

<!-- integer 2 with add_offset and scale_factor attributes -->
<field field_ref="sss" name="sos_i2" prec="2" add_offset="20." scale_factor="1.e-3" />

Note that, then the code is crashing, writting real4 variables forces a numerical
convection from real8 to real4 which will create an internal error in NetCDF and
will avoid the creation of the output files. Forcing double precision outputs with
prec=”8” (for example in the field definition) will avoid this problem.

(4) add user defined attributes:

<file_group id="1d" output_freq="1d" output_level="10" enabled=".TRUE."> <!-- 1d files -->
<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >

<field field_ref="sst" name="tos" >
<variable id="my_attribute1" type="string" > blabla </variable>
<variable id="my_attribute2" type="integer" > 3 </variable>
<variable id="my_attribute3" type="float" > 5.0 </variable>

</field>
<variable id="my_global_attribute" type="string" > blabla_global </variable>

</file>
</file_group>

(5) use of the “@” function: example 1, weighted temporal average
- define a new variable in field definition

<field id="toce_e3t" long_name="temperature * e3t" unit="degC*m" grid_ref="grid_T_3D" > toce * e3t </field >

- use it when defining your file.

<file_group id="5d" output_freq="5d" output_level="10" enabled=".TRUE." > <!-- 5d files -->
<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="toce" operation="instant" freq_op="5d" > @toce_e3t / @e3t </field>
</file>
</file_group>

The freq op=”5d” attribute is used to define the operation frequency of the “@”
function: here 5 day. The temporal operation done by the “@” is the one defined
in the field definition: here we use the default, average. So, in the above case,
@toce e3t will do the 5-day mean of toce*e3t. Operation=”instant” refers to the
temporal operation to be performed on the field”@toce e3t / @e3t”: here the tem-
poral average is alreday done by the “@” function so we just use instant to do the
ratio of the 2 mean values. field ref=”toce” means that attributes not explicitely
defined, are inherited from toce field. Note that in this case, freq op must be equal
to the file output freq.

(6) use of the “@” function: example 2, monthly SSH standard deviation
- define a new variable in field definition

<field id="ssh2" long_name="square of sea surface temperature" unit="degC2" > ssh * ssh </field >

- use it when defining your file.

228 Output and Diagnostics (IOM, DIA, TRD, FLO)

<file_group id="1m" output_freq="1m" output_level="10" enabled=".TRUE." > <!-- 1m files -->
<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="ssh" name="sshstd" long_name="sea_surface_temperature_standard_deviation" operation="instant" freq_op="1m" > sqrt(@ssh2 - @ssh * @ssh) </field>
</file>

</file_group>

The freq op=”1m” attribute is used to define the operation frequency of the “@”
function: here 1 month. The temporal operation done by the “@” is the one defined
in the field definition: here we use the default, average. So, in the above case,
@ssh2 will do the monthly mean of ssh*ssh. Operation=”instant” refers to the
temporal operation to be performed on the field ”sqrt(@ssh2 - @ssh * @ssh)”:
here the temporal average is alreday done by the “@” function so we just use
instant. field ref=”ssh” means that attributes not explicitely defined, are inherited
from ssh field. Note that in this case, freq op must be equal to the file output freq.

(7) use of the “@” function: example 3, monthly average of SST diurnal cycle
- define 2 new variables in field definition

<field id="sstmax" field_ref="sst" long_name="max of sea surface temperature" operation="maximum" />
<field id="sstmin" field_ref="sst" long_name="min of sea surface temperature" operation="minimum" />

- use these 2 new variables when defining your file.

<file_group id="1m" output_freq="1m" output_level="10" enabled=".TRUE." > <!-- 1m files -->
<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="sst" name="sstdcy" long_name="amplitude of sst diurnal cycle" operation="average" freq_op="1d" > @sstmax - @sstmin </field>
</file>
</file_group>

The freq op=”1d” attribute is used to define the operation frequency of the “@”
function: here 1 day. The temporal operation done by the “@” is the one defined
in the field definition: here maximum for sstmax and minimum for sstmin. So,
in the above case, @sstmax will do the daily max and @sstmin the daily min.
Operation=”average” refers to the temporal operation to be performed on the field
“@sstmax - @sstmin”: here monthly mean (of daily max - daily min of the sst).
field ref=”sst” means that attributes not explicitely defined, are inherited from sst
field.

Tag list

tag name description accepted attribute child of parent of
simulation this tag is the

root tag which
encapsulates all
the content of
the xml file

none none context

11.2. Standard model Output (IOM) 229

tag name description accepted attribute child of parent of
context encapsulates

parts of the xml
file dedicated to
different codes
or different
parts of a code

id (”xios”, ”nemo” or
”n nemo” for the nth
AGRIF zoom), src,
time origin

simulation all root
tags: ...
definition

field definition encapsulates the
definition of all
the fields that
can potentially
be outputted

axis ref, default value,
domain ref, enabled,
grid ref, level, opera-
tion, prec, src

context field or
field group

field group encapsulates a
group of fields

axis ref, default value,
domain ref, enabled,
group ref, grid ref, id,
level, operation, prec,
src

field definition,
field group,
file

field or
field group

field define a specific
field

axis ref, default value,
domain ref, enabled,
field ref, grid ref,
id, level, long name,
name, operation, prec,
standard name, unit

field definition,
field group,
file

none

file definition encapsulates
the definition
of all the files
that will be
outputted

enabled, min digits,
name, name suffix,
output level,
split freq format,
split freq, sync freq,
type, src

context file or
file group

file group encapsulates a
group of files
that will be
outputted

enabled, description,
id, min digits, name,
name suffix, out-
put freq, output level,
split freq format,
split freq, sync freq,
type, src

file definition,
file group

file or
file group

file define the con-
tents of a file to
be outputted

enabled, description,
id, min digits, name,
name suffix, out-
put freq, output level,
split freq format,
split freq, sync freq,
type, src

file definition,
file group

field

230 Output and Diagnostics (IOM, DIA, TRD, FLO)

tag name description accepted attribute child of parent of
axis definition define all the

vertical axis
potentially used
by the variables

src context axis group,
axis

axis group encapsulates
a group of
vertical axis

id, lon name, positive,
src, standard name,
unit, zoom begin,
zoom end, zoom size

axis definition,
axis group

axis group,
axis

axis define a vertical
axis

id, lon name, positive,
src, standard name,
unit, zoom begin,
zoom end, zoom size

axis definition,
axis group

none

domain -
definition

define all the
horizontal
domains poten-
tially used by
the variables

src context domain -
group,
domain

domain group encapsulates
a group of
horizontal
domains

id, lon name,
src, zoom ibegin,
zoom jbegin,
zoom ni, zoom nj

domain -
definition,
domain group

domain -
group,
domain

domain define an hori-
zontal domain

id, lon name,
src, zoom ibegin,
zoom jbegin,
zoom ni, zoom nj

domain -
definition,
domain group

none

grid definition define all the
grid (associa-
tion of a domain
and/or an axis)
potentially used
by the variables

src context grid group,
grid

grid group encapsulates a
group of grids

id, domain ref,
axis ref

grid definition,
grid group

grid group,
grid

grid define a grid id, domain ref,
axis ref

grid definition,
grid group

none

Attributes list

attribute name description example accepted by
axis ref refers to the id of a verti-

cal axis
axis ref=”deptht” field, grid

families

11.2. Standard model Output (IOM) 231

attribute name description example accepted by
enabled switch on/off the output

of a field or a file
enabled=”.TRUE.” field, file

families
default value missing value definition default value=”1.e20” field family
description just for information, not

used
description=”ocean T
grid variables”

all tags

domain ref refers to the id of a do-
main

domain ref=”grid T” field or grid
families

field ref id of the field we want to
add in a file

field ref=”toce” field

grid ref refers to the id of a grid grid ref=”grid T 2D” field family
group ref refer to a group of vari-

ables
group ref=”mooring” field group

id allow to identify a tag id=”nemo” accepted by
all tags ex-
cept simula-
tion

level output priority of a field:
0 (high) to 10 (low)

level=”1” field family

long name define the long name at-
tribute in the NetCDF file

long name=”Vertical T
levels”

field

min digits specify the minimum of
digits used in the core
number in the name of the
NetCDF file

min digits=”4” file family

name name of a variable or a
file. If the name of a file
is undefined, its id is used
as a name

name=”tos” field or file
families

name suffix suffix to be inserted after
the name and before the
cpu number and the ”.nc”
termination of a file

name suffix=” myzoom” file family

attribute name description example accepted by
operation type of temporal opera-

tion: average, accumu-
late, instantaneous, min,
max and once

operation=”average” field family

output freq operation frequency. units
can be ts (timestep), y,
mo, d, h, mi, s.

output freq=”1d12h” field family

232 Output and Diagnostics (IOM, DIA, TRD, FLO)

attribute name description example accepted by
output level output priority of vari-

ables in a file: 0 (high)
to 10 (low). All variables
listed in the file with a
level smaller or equal to
output level will be out-
put. Other variables won’t
be output even if they are
listed in the file.

output level=”10” file family

positive convention used for the
orientation of vertival
axis (positive downward
in NEMO).

positive=”down” axis family

prec output precision: real 4 or
real 8

prec=”4” field family

split freq frequency at which to
temporally split output
files. Units can be ts
(timestep), y, mo, d, h, mi,
s. Useful for long runs to
prevent over-sized output
files.

split freq=”1mo” file family

split freq-
format

date format used in the
name of temporally split
output files. Can be spec-
ified using the following
syntaxes: %y, %mo, %d,
%h %mi and %s

split freq format=
”%y%mo%d”

file family

src allow to include a file src=”./field def.xml” accepted by
all tags ex-
cept simula-
tion

standard name define the standard name
attribute in the NetCDF
file

standard name= ”East-
ward Sea Ice Transport”

field

sync freq NetCDF file synchroniza-
tion frequency (update of
the time counter). units
can be ts (timestep), y,
mo, d, h, mi, s.

sync freq=”10d” file family

attribute name description example accepted by

11.3. NetCDF4 Support (key netcdf4) 233

attribute name description example accepted by
time origin specify the origin of the

time counter
time origin=”1900-01-
01 00:00:00”

context

type (1) specify if the output files
are to be split spatially
(multiple file) or not
(one file)

type=”multiple file” file familly

type (2) define the type of a vari-
able tag

type=”boolean” variable

unit unit of a variable or the
vertical axis

unit=”m” field and
axis families

zoom ibegin starting point along x
direction of the zoom.
Automatically defined
for TAO/RAMA/PIRATA
moorings

zoom ibegin=”1” domain fam-
ily

zoom jbegin starting point along y
direction of the zoom.
Automatically defined
for TAO/RAMA/PIRATA
moorings

zoom jbegin=”1” domain fam-
ily

zoom ni zoom extent along x di-
rection

zoom ni=”1” domain fam-
ily

zoom nj zoom extent along y di-
rection

zoom nj=”1” domain fam-
ily

11.2.6 CF metadata standard compliance

Output from the XIOS-1.0 IO server is compliant with version 1.5 of the CF meta-
data standard. Therefore while a user may wish to add their own metadata to the
output files (as demonstrated in example 4 of section 11.2.5) the metadata should,
for the most part, comply with the CF-1.5 standard.

Some metadata that may significantly increase the file size (horizontal cell ar-
eas and vertices) are controlled by the namelist parameter ln cfmeta in the namrun
namelist. This must be set to true if these metadata are to be included in the output
files.

11.3 NetCDF4 Support (key netcdf4)

Since version 3.3, support for NetCDF4 chunking and (loss-less) compression has
been included. These options build on the standard NetCDF output and allow
the user control over the size of the chunks via namelist settings. Chunking and
compression can lead to significant reductions in file sizes for a small runtime

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.5/build/cf-conventions.html

234 Output and Diagnostics (IOM, DIA, TRD, FLO)

overhead. For a fuller discussion on chunking and other performance issues the
reader is referred to the NetCDF4 documentation found here.

The new features are only available when the code has been linked with a
NetCDF4 library (version 4.1 onwards, recommended) which has been built with
HDF5 support (version 1.8.4 onwards, recommended). Datasets created with chunk-
ing and compression are not backwards compatible with NetCDF3 ”classic” format
but most analysis codes can be relinked simply with the new libraries and will then
read both NetCDF3 and NetCDF4 files. NEMO executables linked with NetCDF4
libraries can be made to produce NetCDF3 files by setting the ln nc4zip logical to
false in the namnc4 namelist:

!---
&namnc4 ! netcdf4 chunking and compression settings ("key_netcdf4")
!---

nn_nchunks_i= 4 ! number of chunks in i-dimension
nn_nchunks_j= 4 ! number of chunks in j-dimension
nn_nchunks_k= 31 ! number of chunks in k-dimension
! ! setting nn_nchunks_k = jpk will give a chunk size of 1 in the vertical which
! ! is optimal for postprocessing which works exclusively with horizontal slabs
ln_nc4zip = .true. ! (T) use netcdf4 chunking and compression
! ! (F) ignore chunking information and produce netcdf3-compatible files

/

If key netcdf4 has not been defined, these namelist parameters are not read.
In this case, ln nc4zip is set false and dummy routines for a few NetCDF4-specific
functions are defined. These functions will not be used but need to be included so
that compilation is possible with NetCDF3 libraries.

When using NetCDF4 libraries, key netcdf4 should be defined even if the in-
tention is to create only NetCDF3-compatible files. This is necessary to avoid
duplication between the dummy routines and the actual routines present in the li-
brary. Most compilers will fail at compile time when faced with such duplication.
Thus when linking with NetCDF4 libraries the user must define key netcdf4 and
control the type of NetCDF file produced via the namelist parameter.

Chunking and compression is applied only to 4D fields and there is no ad-
vantage in chunking across more than one time dimension since previously writ-
ten chunks would have to be read back and decompressed before being added to.
Therefore, user control over chunk sizes is provided only for the three space dimen-
sions. The user sets an approximate number of chunks along each spatial axis. The
actual size of the chunks will depend on global domain size for mono-processors
or, more likely, the local processor domain size for distributed processing. The
derived values are subject to practical minimum values (to avoid wastefully small
chunk sizes) and cannot be greater than the domain size in any dimension. The
algorithm used is:

ichunksz(1) = MIN(idomain_size,MAX((idomain_size-1)/nn_nchunks_i + 1 ,16))
ichunksz(2) = MIN(jdomain_size,MAX((jdomain_size-1)/nn_nchunks_j + 1 ,16))
ichunksz(3) = MIN(kdomain_size,MAX((kdomain_size-1)/nn_nchunks_k + 1 , 1))
ichunksz(4) = 1

As an example, setting:

nn_nchunks_i=4, nn_nchunks_j=4 and nn_nchunks_k=31

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html#Chunking

11.3. NetCDF4 Support (key netcdf4) 235

Table 11.3: Filesize comparison between NetCDF3 and NetCDF4 with chunking
and compression

Filename NetCDF3 NetCDF4 Reduction
filesize filesize %

(KB) (KB)
ORCA2 restart 0000.nc 16420 8860 47%
ORCA2 restart 0001.nc 16064 11456 29%
ORCA2 restart 0002.nc 16064 9744 40%
ORCA2 restart 0003.nc 16420 9404 43%
ORCA2 restart 0004.nc 16200 5844 64%
ORCA2 restart 0005.nc 15848 8172 49%
ORCA2 restart 0006.nc 15848 8012 50%
ORCA2 restart 0007.nc 16200 5148 69%
ORCA2 2d grid T 0000.nc 2200 1504 32%
ORCA2 2d grid T 0001.nc 2200 1748 21%
ORCA2 2d grid T 0002.nc 2200 1592 28%
ORCA2 2d grid T 0003.nc 2200 1540 30%
ORCA2 2d grid T 0004.nc 2200 1204 46%
ORCA2 2d grid T 0005.nc 2200 1444 35%
ORCA2 2d grid T 0006.nc 2200 1428 36%
ORCA2 2d grid T 0007.nc 2200 1148 48%
...
ORCA2 2d grid W 0000.nc 4416 2240 50%
ORCA2 2d grid W 0001.nc 4416 2924 34%
ORCA2 2d grid W 0002.nc 4416 2512 44%
ORCA2 2d grid W 0003.nc 4416 2368 47%
ORCA2 2d grid W 0004.nc 4416 1432 68%
ORCA2 2d grid W 0005.nc 4416 1972 56%
ORCA2 2d grid W 0006.nc 4416 2028 55%
ORCA2 2d grid W 0007.nc 4416 1368 70%

for a standard ORCA2 LIM configuration gives chunksizes of 46x38x1 respec-
tively in the mono-processor case (i.e. global domain of 182x149x31). An il-
lustration of the potential space savings that NetCDF4 chunking and compression
provides is given in table 11.3 which compares the results of two short runs of the
ORCA2 LIM reference configuration with a 4x2 mpi partitioning. Note the varia-
tion in the compression ratio achieved which reflects chiefly the dry to wet volume
ratio of each processing region.

When key iomput is activated with key netcdf4 chunking and compression
parameters for fields produced via iom put calls are set via an equivalent and iden-
tically named namelist to namnc4 in xmlio server.def . Typically this namelist
serves the mean files whilst the namnc4 in the main namelist file continues to
serve the restart files. This duplication is unfortunate but appropriate since, if us-

236 Output and Diagnostics (IOM, DIA, TRD, FLO)

ing io servers, the domain sizes of the individual files produced by the io server
processes may be different to those produced by the invidual processing regions
and different chunking choices may be desired.

11.4 Tracer/Dynamics Trends (namtrd)
!---
&namtrd ! trend diagnostics (default F)
!---

ln_glo_trd = .false. ! (T) global domain averaged diag for T, Tˆ2, KE, and PE
ln_dyn_trd = .false. ! (T) 3D momentum trend output
ln_dyn_mxl = .false. ! (T) 2D momentum trends averaged over the mixed layer (not coded yet)
ln_vor_trd = .false. ! (T) 2D barotropic vorticity trends (not coded yet)
ln_KE_trd = .false. ! (T) 3D Kinetic Energy trends
ln_PE_trd = .false. ! (T) 3D Potential Energy trends
ln_tra_trd = .false. ! (T) 3D tracer trend output
ln_tra_mxl = .false. ! (T) 2D tracer trends averaged over the mixed layer (not coded yet)
nn_trd = 365 ! print frequency (ln_glo_trd=T) (unit=time step)

/

Each trend of the dynamics and/or temperature and salinity time evolution
equations can be send to trddyn.F90 and/or trdtra.F90 modules (see TRD direc-
tory) just after their computation (i.e. at the end of each dyn · · · .F90 and/or
tra · · · .F90 routines). This capability is controlled by options offered in namtrd
namelist. Note that the output are done with xIOS, and therefore the key IOM is
required.

What is done depends on the namtrd logical set to true:

ln glo trd : at each nn trd time-step a check of the basin averaged properties of the
momentum and tracer equations is performed. This also includes a check of
T 2, S2, 1

2(u2 +v2), and potential energy time evolution equations properties
;

ln dyn trd : each 3D trend of the evolution of the two momentum components is
output ;

ln dyn mxl : each 3D trend of the evolution of the two momentum components
averaged over the mixed layer is output ;

ln vor trd : a vertical summation of the moment tendencies is performed, then
the curl is computed to obtain the barotropic vorticity tendencies which are
output ;

ln KE trd : each 3D trend of the Kinetic Energy equation is output ;

ln tra trd : each 3D trend of the evolution of temperature and salinity is output ;

ln tra mxl : each 2D trend of the evolution of temperature and salinity averaged
over the mixed layer is output ;

Note that the mixed layer tendency diagnostic can also be used on biogeochem-
ical models via the key trdtrc and key trdmld trc CPP keys.

Note that in the current version (v3.6), many changes has been introduced but
not fully tested. In particular, options associated with ln dyn mxl, ln vor trd, and

11.5. On-line Floats trajectories (FLO) (key floats) 237

ln tra mxl are not working, and none of the option have been tested with variable
volume (i.e. key vvl defined).

11.5 On-line Floats trajectories (FLO) (key floats)
!---
&namflo ! float parameters ("key_float")
!---

jpnfl = 1 ! total number of floats during the run
jpnnewflo = 0 ! number of floats for the restart
ln_rstflo = .false. ! float restart (T) or not (F)
nn_writefl = 75 ! frequency of writing in float output file
nn_stockfl = 5475 ! frequency of creation of the float restart file
ln_argo = .false. ! Argo type floats (stay at the surface each 10 days)
ln_flork4 = .false. ! trajectories computed with a 4th order Runge-Kutta (T)
! ! or computed with Blanke’ scheme (F)
ln_ariane = .true. ! Input with Ariane tool convention(T)
ln_flo_ascii= .true. ! Output with Ariane tool netcdf convention(F) or ascii file (T)

/

The on-line computation of floats advected either by the three dimensional ve-
locity field or constraint to remain at a given depth (w = 0 in the computation)
have been introduced in the system during the CLIPPER project. Options are de-
fined by namflo namelis variables. The algorithm used is based either on the work
of Blanke and Raynaud [1997] (default option), or on a 4th Runge-Hutta algorithm
(ln flork4=true). Note that the Blanke and Raynaud [1997] algorithm have the ad-
vantage of providing trajectories which are consistent with the numeric of the code,
so that the trajectories never intercept the bathymetry.

Input data: initial coordinates

Initial coordinates can be given with Ariane Tools convention (IJK coordinates
,(ln ariane=true)) or with longitude and latitude.

In case of Ariane convention, input filename is init float ariane. Its format is:
I J K nisobfl itrash itrash

with:
- I,J,K : indexes of initial position
- nisobfl: 0 for an isobar float, 1 for a float following the w velocity
- itrash : set to zero; it is a dummy variable to respect Ariane Tools convention
- itrash :set to zero; it is a dummy variable to respect Ariane Tools convention

Example:
100.00000 90.00000 -1.50000 1.00000 0.00000
102.00000 90.00000 -1.50000 1.00000 0.00000
104.00000 90.00000 -1.50000 1.00000 0.00000
106.00000 90.00000 -1.50000 1.00000 0.00000
108.00000 90.00000 -1.50000 1.00000 0.00000

In the other case (longitude and latitude), input filename is init float. Its
format is:

Long Lat depth nisobfl ngrpfl itrash
with:

238 Output and Diagnostics (IOM, DIA, TRD, FLO)

- Long, Lat, depth : Longitude, latitude, depth
- nisobfl: 0 for an isobar float, 1 for a float following the w velocity
- ngrpfl : number to identify searcher group
- itrash :set to 1; it is a dummy variable.

Example:
20.0 0.0 0.0 0 1 1

-21.0 0.0 0.0 0 1 1
-22.0 0.0 0.0 0 1 1
-23.0 0.0 0.0 0 1 1
-24.0 0.0 0.0 0 1 1

jpnfl is the total number of floats during the run. When initial positions are read
in a restart file (ln rstflo= .TRUE.), jpnflnewflo can be added in the initialization
file.

Output data

nn writefl is the frequency of writing in float output file and nn stockfl is the fre-
quency of creation of the float restart file.

Output data can be written in ascii files (ln flo ascii = .TRUE.). In that case,
output filename is trajec float.

Another possiblity of writing format is Netcdf (ln flo ascii = .FALSE.). There
are 2 possibilities:

- if (key iomput) is used, outputs are selected in iodef.xml. Here it is an ex-
ample of specification to put in files description section:

<group id="1d_grid_T" name="auto" description="ocean T grid variables" > }
<file id="floats" description="floats variables"> }\\

<field ref="traj_lon" name="floats_longitude" freq_op="86400" />}
<field ref="traj_lat" name="floats_latitude" freq_op="86400" />}
<field ref="traj_dep" name="floats_depth" freq_op="86400" />}
<field ref="traj_temp" name="floats_temperature" freq_op="86400" />}
<field ref="traj_salt" name="floats_salinity" freq_op="86400" />}
<field ref="traj_dens" name="floats_density" freq_op="86400" />}
<field ref="traj_group" name="floats_group" freq_op="86400" />}

</file>}
</group>}

- if (key iomput) is not used, a file called trajec float.nc will be created by
IOIPSL library.

See also here the web site describing the off-line use of this marvellous diag-
nostic tool.

11.6 Harmonic analysis of tidal constituents (key diaharm)

http://stockage.univ-brest.fr/~grima/Ariane/

11.7. Transports across sections (key diadct) 239

A module is available to compute the amplitude and phase of tidal waves. This
on-line Harmonic analysis is actived with key diaharm. Some parameters are
available in namelist namdia harm :

- nit000 han is the first time step used for harmonic analysis
- nitend han is the last time step used for harmonic analysis
- nstep han is the time step frequency for harmonic analysis
- nb ana is the number of harmonics to analyse
- tname is an array with names of tidal constituents to analyse
nit000 han and nitend han must be between nit000 and nitend of the simula-

tion. The restart capability is not implemented.
The Harmonic analysis solve the following equation:

hi −A0 +

nb ana∑
j=1

[Ajcos(νjtj − φj)] = ei (11.1)

With Aj ,νj ,φj , the amplitude, frequency and phase for each wave and ei the
error. hi is the sea level for the time ti and A0 is the mean sea level.
We can rewrite this equation:

hi −A0 +
nb ana∑
j=1

[Cjcos(νjtj) + Sjsin(νjtj)] = ei (11.2)

with Aj =
√
C2
j + S2

j et φj = arctan(Sj/Cj).
We obtain in output Cj and Sj for each tidal wave.

11.7 Transports across sections (key diadct)
!---
&namdct ! transports through some sections ("key_diadct")
!---

nn_dct = 15 ! time step frequency for transports computing
nn_dctwri = 15 ! time step frequency for transports writing
nn_secdebug= 112 ! 0 : no section to debug
! ! -1 : debug all section
! ! 0 < n : debug section number n

/

A module is available to compute the transport of volume, heat and salt through
sections. This diagnostic is actived with key diadct.

Each section is defined by the coordinates of its 2 extremities. The pathways
between them are contructed using tools which can be found in NEMOGCM/TOOLS/SECTIONS DIADCT
and are written in a binary file section ijglobal.diadct ORCA2 LIMwhich
is later read in by NEMO to compute on-line transports.

The on-line transports module creates three output ascii files:
- volume transport for volume transports (unit: 106m3s−1)
- heat transport for heat transports (unit: 1015W)
- salt transport for salt transports (unit: 109Kgs−1)

240 Output and Diagnostics (IOM, DIA, TRD, FLO)

Namelist variables in namdct control how frequently the flows are summed
and the time scales over which they are averaged, as well as the level of output for
debugging:

nn dct: frequency of instantaneous transports computing
nn dctwri: frequency of writing (mean of instantaneous transports)
nn debug: debugging of the section

Creating a binary file containing the pathway of each section

In NEMOGCM/TOOLS/SECTIONS DIADCT/run, the file list sections.ascii global
contains a list of all the sections that are to be computed (this list of sections is
based on MERSEA project metrics).

Another file is available for the GYRE configuration (list sections.ascii GYRE).
Each section is defined by:

long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section name
with:

- long1 lat1 , coordinates of the first extremity of the section;
- long2 lat2 , coordinates of the second extremity of the section;
- nclass the number of bounds of your classes (e.g. 3 bounds for 2 classes);
- okstrpond to compute heat and salt transport, nostrpond if no;
- ice to compute surface and volume ice transports, noice if no.

The results of the computing of transports, and the directions of positive and nega-
tive flow do not depend on the order of the 2 extremities in this file.

If nclass =/ 0,the next lines contain the class type and the nclass bounds:
long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section name
classtype
zbound1
zbound2
.
.
nclass-1
nclass

where classtype can be:
- zsal for salinity classes
- ztem for temperature classes
- zlay for depth classes
- zsigi for insitu density classes
- zsigp for potential density classes

The script job.ksh computes the pathway for each section and creates a bi-
nary file section ijglobal.diadct ORCA2 LIM which is read by NEMO.

11.8. Diagnosing the Steric effect in sea surface height 241

It is possible to use this tools for new configuations: job.ksh has to be up-
dated with the coordinates file name and path.

Examples of two sections, the ACC Drake Passage with no classes, and the
ATL Cuba Florida with 4 temperature clases (5 class bounds), are shown:
-68. -54.5 -60. -64.7 00 okstrpond noice ACC Drake Passage
-80.5 22.5 -80.5 25.5 05 nostrpond noice ATL Cuba Florida
ztem
-2.0
4.5
7.0
12.0
40.0

To read the output files

The output format is :
date, time-step number, section number, section name, section

slope coefficient, class number, class name, class bound 1 ,

classe bound2, transport direction1 , transport direction2, transport total

For sections with classes, the first nclass-1 lines correspond to the transport
for each class and the last line corresponds to the total transport summed over all
classes. For sections with no classes, class number 1 corresponds to total
class and this class is called N, meaning none.

transport direction1 is the positive part of the transport (> = 0).
transport direction2 is the negative part of the transport (< = 0).

The section slope coefficient gives information about the significance
of transports signs and direction:

section slope coefficient section type direction 1 direction 2 total transport
0. horizontal northward southward postive: northward

1000. vertical eastward westward postive: eastward
=/0, =/ 1000. diagonal eastward westward postive: eastward

11.8 Diagnosing the Steric effect in sea surface height

Changes in steric sea level are caused when changes in the density of the water col-
umn imply an expansion or contraction of the column. It is essentially produced
through surface heating/cooling and to a lesser extent through non-linear effects of
the equation of state (cabbeling, thermobaricity...). Non-Boussinesq models con-
tain all ocean effects within the ocean acting on the sea level. In particular, they

242 Output and Diagnostics (IOM, DIA, TRD, FLO)

include the steric effect. In contrast, Boussinesq models, such as NEMO, conserve
volume, rather than mass, and so do not properly represent expansion or contrac-
tion. The steric effect is therefore not explicitely represented. This approximation
does not represent a serious error with respect to the flow field calculated by the
model [Greatbatch 1994], but extra attention is required when investigating sea
level, as steric changes are an important contribution to local changes in sea level
on seasonal and climatic time scales. This is especially true for investigation into
sea level rise due to global warming.

Fortunately, the steric contribution to the sea level consists of a spatially uni-
form component that can be diagnosed by considering the mass budget of the world
ocean [Greatbatch 1994]. In order to better understand how global mean sea level
evolves and thus how the steric sea level can be diagnosed, we compare, in the
following, the non-Boussinesq and Boussinesq cases.

Let denote M the total mass of liquid seawater (M =
∫
D ρdv), V the total

volume of seawater (V =
∫
D dv), A the total surface of the ocean (A =

∫
S ds),

ρ̄ the global mean seawater (in situ) density (ρ̄ = 1/V
∫
D ρ dv), and η̄ the global

mean sea level (η̄ = 1/A
∫
S η ds).

A non-Boussinesq fluid conserves mass. It satisfies the following relations:

M = V ρ̄
V = A η̄

(11.3)

Temporal changes in total mass is obtained from the density conservation equation
:

1

e3
∂t(e3 ρ) +∇(ρU) =

emp
e3

∣∣∣∣
surface

(11.4)

where ρ is the in situ density, and emp the surface mass exchanges with the other
media of the Earth system (atmosphere, sea-ice, land). Its global averaged leads to
the total mass change

∂tM = A emp (11.5)

where emp =
∫
S emp ds is the net mass flux through the ocean surface. Bringing

(11.5) and the time derivative of (11.3) together leads to the evolution equation of
the mean sea level

∂tη̄ =
emp
ρ̄
− V
A
∂tρ̄

ρ̄
(11.6)

The first term in equation (11.6) alters sea level by adding or subtracting mass
from the ocean. The second term arises from temporal changes in the global mean
density; i.e. from steric effects.

In a Boussinesq fluid, ρ is replaced by ρo in all the equation except when ρ
appears multiplied by the gravity (i.e. in the hydrostatic balance of the primitive
Equations). In particular, the mass conservation equation, (11.4), degenerates into
the incompressibility equation:

1

e3
∂t(e3) +∇(U) =

emp
ρo e3

∣∣∣∣
surface

(11.7)

11.8. Diagnosing the Steric effect in sea surface height 243

and the global average of this equation now gives the temporal change of the total
volume,

∂tV = A emp
ρo

(11.8)

Only the volume is conserved, not mass, or, more precisely, the mass which is
conserved is the Boussinesq mass,Mo = ρoV . The total volume (or equivalently
the global mean sea level) is altered only by net volume fluxes across the ocean
surface, not by changes in mean mass of the ocean: the steric effect is missing in a
Boussinesq fluid.

Nevertheless, following [Greatbatch 1994], the steric effect on the volume can
be diagnosed by considering the mass budget of the ocean. The apparent changes
in M, mass of the ocean, which are not induced by surface mass flux must be
compensated by a spatially uniform change in the mean sea level due to expan-
sion/contraction of the ocean [Greatbatch 1994]. In others words, the Boussinesq
mass,Mo, can be related toM, the total mass of the ocean seen by the Boussinesq
model, via the steric contribution to the sea level, ηs, a spatially uniform variable,
as follows:

Mo =M+ ρo ηsA (11.9)

Any change in M which cannot be explained by the net mass flux through the
ocean surface is converted into a mean change in sea level. Introducing the total
density anomaly, D =

∫
D da dv, where da = (ρ − ρo)/ρo is the density anomaly

used in NEMO (cf. §5.8.1) in (11.9) leads to a very simple form for the steric
height:

ηs = − 1

A
D (11.10)

The above formulation of the steric height of a Boussinesq ocean requires four
remarks. First, one can be tempted to define ρo as the initial value ofM/V , i.e.
set Dt=0 = 0, so that the initial steric height is zero. We do not recommend that.
Indeed, in this case ρo depends on the initial state of the ocean. Since ρo has a
direct effect on the dynamics of the ocean (it appears in the pressure gradient term
of the momentum equation) it is definitively not a good idea when inter-comparing
experiments. We better recommend to fixe once for all ρo to 1035 Kgm−3. This
value is a sensible choice for the reference density used in a Boussinesq ocean
climate model since, with the exception of only a small percentage of the ocean,
density in the World Ocean varies by no more than 2% from this value (Gill [1982],
page 47).

Second, we have assumed here that the total ocean surface,A, does not change
when the sea level is changing as it is the case in all global ocean GCMs (wetting
and drying of grid point is not allowed).

Third, the discretisation of (11.10) depends on the type of free surface which is
considered. In the non linear free surface case, i.e. key vvl defined, it is given by

ηs = −
∑

i, j, k da e1te2te3t∑
i, j, k e1te2te3t

(11.11)

244 Output and Diagnostics (IOM, DIA, TRD, FLO)

whereas in the linear free surface, the volume above the z=0 surface must be ex-
plicitly taken into account to better approximate the total ocean mass and thus the
steric sea level:

ηs = −
∑

i, j, k da e1te2te3t +
∑

i, j da e1te2tη∑
i, j, k e1te2te3t +

∑
i, j e1te2tη

(11.12)

The fourth and last remark concerns the effective sea level and the presence
of sea-ice. In the real ocean, sea ice (and snow above it) depresses the liquid
seawater through its mass loading. This depression is a result of the mass of sea
ice/snow system acting on the liquid ocean. There is, however, no dynamical effect
associated with these depressions in the liquid ocean sea level, so that there are
no associated ocean currents. Hence, the dynamically relevant sea level is the
effective sea level, i.e. the sea level as if sea ice (and snow) were converted to
liquid seawater [Campin et al. 2008]. However, in the current version of NEMO
the sea-ice is levitating above the ocean without mass exchanges between ice and
ocean. Therefore the model effective sea level is always given by η + ηs, whether
or not there is sea ice present.

In AR5 outputs, the thermosteric sea level is demanded. It is steric sea level
due to changes in ocean density arising just from changes in temperature. It is
given by:

ηs = − 1

A

∫
D
da(T, So, po) dv (11.13)

where So and po are the initial salinity and pressure, respectively.
Both steric and thermosteric sea level are computed in diaar5.F90 which needs

the key diaar5 defined to be called.

11.9 Other Diagnostics (key diahth, key diaar5)

Aside from the standard model variables, other diagnostics can be computed on-
line. The available ready-to-add diagnostics modules can be found in directory
DIA.

11.9.1 Depth of various quantities (diahth.F90)

Among the available diagnostics the following ones are obtained when defining the
key diahth CPP key:

- the mixed layer depth (based on a density criterion [de Boyer Montégut et al.
2004]) (diahth.F90)

- the turbocline depth (based on a turbulent mixing coefficient criterion) (di-
ahth.F90)

- the depth of the 20◦C isotherm (diahth.F90)
- the depth of the thermocline (maximum of the vertical temperature gradient)

(diahth.F90)

11.9. Other Diagnostics (key diahth, key diaar5) 245

Figure 11.1: Decomposition of the World Ocean (here ORCA2) into sub-basin used
in to compute the heat and salt transports as well as the meridional stream-function:
Atlantic basin (red), Pacific basin (green), Indian basin (bleue), Indo-Pacific basin
(bleue+green). Note that semi-enclosed seas (Red, Med and Baltic seas) as well as
Hudson Bay are removed from the sub-basins. Note also that the Arctic Ocean has
been split into Atlantic and Pacific basins along the North fold line.

11.9.2 Poleward heat and salt transports (diaptr.F90)
!---
&namptr ! Poleward Transport Diagnostic (default F)
!---

ln_diaptr = .false. ! Poleward heat and salt transport (T) or not (F)
ln_subbas = .false. ! Atlantic/Pacific/Indian basins computation (T) or not

/

The poleward heat and salt transports, their advective and diffusive compo-
nent, and the meriodional stream function can be computed on-line in diaptr.F90
ln diaptr to true (see the namptr namelist below). When ln subbas = true, trans-
ports and stream function are computed for the Atlantic, Indian, Pacific and Indo-
Pacific Oceans (defined north of 30◦S) as well as for the World Ocean. The sub-
basin decomposition requires an input file (subbasins.nc) which contains three 2D
mask arrays, the Indo-Pacific mask been deduced from the sum of the Indian and
Pacific mask (Fig 11.1).

11.9.3 CMIP specific diagnostics (diaar5.F90)

A series of diagnostics has been added in the diaar5.F90. They corresponds to
outputs that are required for AR5 simulations (CMIP5) (see also Section 11.8 for
one of them). Activating those outputs requires to define the key diaar5 CPP key.

11.9.4 25 hour mean output for tidal models
!---

246 Output and Diagnostics (IOM, DIA, TRD, FLO)

&nam_dia25h ! 25h Mean Output (default F)
!---

ln_dia25h = .false. ! Choose 25h mean output or not
/

A module is available to compute a crudely detided M2 signal by obtaining a
25 hour mean. The 25 hour mean is available for daily runs by summing up the
25 hourly instantananeous hourly values from midnight at the start of the day to
midight at the day end. This diagnostic is actived with the logical ln dia25h

11.9.5 Top Middle and Bed hourly output
!---
&nam_diatmb ! Top Middle Bottom Output (default F)
!---

ln_diatmb = .false. ! Choose Top Middle and Bottom output or not
/

A module is available to output the surface (top), mid water and bed diagnostics
of a set of standard variables. This can be a useful diagnostic when hourly or sub-
hourly output is required in high resolution tidal outputs. The tidal signal is retained
but the overall data usage is cut to just three vertical levels. Also the bottom level
is calculated for each cell. This diagnostic is actived with the logical ln diatmb

11.9.6 Courant numbers

Courant numbers provide a theoretical indication of the model’s numerical stabil-
ity. The advective Courant numbers can be calculated according to

Cu = |u|∆t
e1u

, Cv = |v|∆t
e2v

, Cw = |w| ∆t
e3w

(11.14)

in the zonal, meridional and vertical directions respectively. The vertical compo-
nent is included although it is not strictly valid as the vertical velocity is calculated
from the continuity equation rather than as a prognostic variable. Physically this
represents the rate at which information is propogated across a grid cell. Values
greater than 1 indicate that information is propagated across more than one grid
cell in a single time step.

The variables can be activated by setting the nn diacfl namelist parameter to 1
in the namctl namelist. The diagnostics will be written out to an ascii file named
cfl diagnostics.ascii. In this file the maximum value of Cu, Cv, and Cw are printed
at each timestep along with the coordinates of where the maximum value occurs.
At the end of the model run the maximum value of Cu, Cv, and Cw for the whole
model run is printed along with the coordinates of each. The maximum values
from the run are also copied to the ocean.output file.

12 Observation and model comparison (OBS)

Authors: D. Lea, M. Martin, K. Mogensen, A. Vidard, A. Weaver, A. Ryan, ...

Contents
12.1 Running the observation operator code example 248
12.2 Technical details . 249

12.2.1 Profile feedback type observation file header 250
12.2.2 Sea level anomaly feedback type observation file header 252
12.2.3 Sea surface temperature feedback type observation file

header . 254
12.3 Theoretical details . 255

12.3.1 Horizontal interpolation methods 255
12.3.2 Grid search . 257
12.3.3 Parallel aspects of horizontal interpolation 257
12.3.4 Vertical interpolation operator 260

12.4 Offline observation operator 261
12.4.1 Concept . 261
12.4.2 Using the offline observation operator 261
12.4.3 Configuring the offline observation operator 262
12.4.4 Advanced usage . 266

12.5 Observation Utilities . 267
12.5.1 Obstools . 267
12.5.2 building the obstools 270
12.5.3 Dataplot . 270

248 Observation and model comparison (OBS)

The observation and model comparison code (OBS) reads in observation files
(profile temperature and salinity, sea surface temperature, sea level anomaly, sea
ice concentration, and velocity) and calculates an interpolated model equivalent
value at the observation location and nearest model timestep. The resulting data
are saved in a “feedback” file (or files). The code was originally developed for
use with the NEMOVAR data assimilation code, but can be used for validation or
verification of the model or with any other data assimilation system.

The OBS code is called from nemogcm.F90 for model initialisation and to
calculate the model equivalent values for observations on the 0th timestep. The
code is then called again after each timestep from step.F90. The code is only
activated if the namelist logical ln diaobs is set to true.

For all data types a 2D horizontal interpolator is needed to interpolate the model
fields to the observation location. For in situ profiles, a 1D vertical interpolator is
needed in addition to provide model fields at the observation depths. Currently this
only works in z-level model configurations, but is being developed to work with a
generalised vertical coordinate system.

Some profile observation types (e.g. tropical moored buoys) are made available
as daily averaged quantities. The observation operator code can be set-up to calcu-
lated the equivalent daily average model temperature fields using the nn profdavtypes
namelist array. Some SST observations are equivalent to a night-time average
value and the observation operator code can calculate equivalent night-time av-
erage model SST fields by setting the namelist value ln sstnight to true. Otherwise
the model value from the nearest timestep to the observation time is used.

The code is controlled by the namelist nam obs. See the following sections for
more details on setting up the namelist.

Section 12.1 introduces a test example of the observation operator code includ-
ing where to obtain data and how to setup the namelist. Section 12.2 introduces
some more technical details of the different observation types used and also shows
a more complete namelist. Section 12.3 introduces some of the theoretical as-
pects of the observation operator including interpolation methods and running on
multiple processors. Section 12.4 describes the offline observation operator code.
Section 12.5 introduces some utilities to help working with the files produced by
the OBS code.

12.1 Running the observation operator code example

This section describes an example of running the observation operator code using
profile data which can be freely downloaded. It shows how to adapt an existing run
and build of NEMO to run the observation operator.

1. Compile NEMO.

12.2. Technical details 249

2. Download some EN4 data from http://www.metoffice.gov.uk/hadobs. Choose
observations which are valid for the period of your test run because the ob-
servation operator compares the model and observations for a matching date
and time.

3. Compile the OBSTOOLS code using:

./maketools -n OBSTOOLS -m [ARCH].

4. Convert the EN4 data into feedback format:

enact2fb.exe profiles_01.nc EN.4.1.1.f.profiles.g10.YYYYMM.nc

5. Include the following in the NEMO namelist to run the observation operator
on this data:

Options are defined through the namobs namelist variables. The options ln t3d
and ln s3d switch on the temperature and salinity profile observation operator code.
The filename or array of filenames are specified using the cn profbfiles variable.
The model grid points for a particular observation latitude and longitude are found
using the grid searching part of the code. This can be expensive, particularly for
large numbers of observations, setting ln grid search lookup allows the use of a
lookup table which is saved into an “xypos“ file (or files). This will need to be
generated the first time if it does not exist in the run directory. However, once
produced it will significantly speed up future grid searches. Setting ln grid global
means that the code distributes the observations evenly between processors. Al-
ternatively each processor will work with observations located within the model
subdomain (see section 12.3.3).

A number of utilities are now provided to plot the feedback files, convert and
recombine the files. These are explained in more detail in section 12.5. Utilites
to convert other input data formats into the feedback format are also described in
section 12.5.

12.2 Technical details

Here we show a more complete example namelist namobs and also show the NetCDF
headers of the observation files that may be used with the observation operator

!---
&namobs ! observation usage switch
!---

ln_diaobs = .false. ! Logical switch for the observation operator
ln_t3d = .false. ! Logical switch for T profile observations
ln_s3d = .false. ! Logical switch for S profile observations
ln_sla = .false. ! Logical switch for SLA observations
ln_sst = .false. ! Logical switch for SST observations
ln_sss = .false. ! Logical swithc for SSS observations
ln_sic = .false. ! Logical switch for Sea Ice observations

http://www.metoffice.gov.uk/hadobs

250 Observation and model comparison (OBS)

ln_vel3d = .false. ! Logical switch for velocity observations
ln_altbias = .false. ! Logical switch for altimeter bias correction
ln_sstbias = .false. ! Logical switch for SST bias correction
ln_nea = .false. ! Logical switch for rejection of observations near land
ln_grid_global = .true. ! Logical switch for global distribution of observations
ln_grid_search_lookup = .false. ! Logical switch for obs grid search w/lookup table
ln_ignmis = .true. ! Logical switch for ignoring missing files
ln_s_at_t = .false. ! Logical switch for computing model S at T obs if not there
ln_sstnight = .false. ! Logical switch for calculating night-time average for SST obs
ln_sla_fp_indegs = .true. ! Logical for SLA: T=> averaging footprint is in degrees, F=> in metres
ln_sst_fp_indegs = .true. ! Logical for SST: T=> averaging footprint is in degrees, F=> in metres
ln_sss_fp_indegs = .true. ! Logical for SSS: T=> averaging footprint is in degrees, F=> in metres
ln_sic_fp_indegs = .true. ! Logical for SIC: T=> averaging footprint is in degrees, F=> in metres

! All of the *files* variables below are arrays. Use namelist_cfg to add more files
cn_profbfiles = ’profiles_01.nc’ ! Profile feedback input observation file names
cn_slafbfiles = ’sla_01.nc’ ! SLA feedback input observation file names
cn_sstfbfiles = ’sst_01.nc’ ! SST feedback input observation file names
cn_sssfbfiles = ’sss_01.nc’ ! SSS feedback input observation file names
cn_sicfbfiles = ’sic_01.nc’ ! SIC feedback input observation file names
cn_velfbfiles = ’vel_01.nc’ ! Velocity feedback input observation file names
cn_altbiasfile = ’altbias.nc’ ! Altimeter bias input file name
cn_sstbiasfiles = ’sstbias.nc’ ! SST bias input file name
cn_gridsearchfile=’gridsearch.nc’ ! Grid search file name
rn_gridsearchres = 0.5 ! Grid search resolution
rn_mdtcorr = 1.61 ! MDT correction
rn_mdtcutoff = 65.0 ! MDT cutoff for computed correction
rn_dobsini = 00010101.000000 ! Initial date in window YYYYMMDD.HHMMSS
rn_dobsend = 00010102.000000 ! Final date in window YYYYMMDD.HHMMSS
rn_sla_avglamscl = 0. ! E/W diameter of SLA observation footprint (metres/degrees)
rn_sla_avgphiscl = 0. ! N/S diameter of SLA observation footprint (metres/degrees)
rn_sst_avglamscl = 0. ! E/W diameter of SST observation footprint (metres/degrees)
rn_sst_avgphiscl = 0. ! N/S diameter of SST observation footprint (metres/degrees)
rn_sss_avglamscl = 0. ! E/W diameter of SSS observation footprint (metres/degrees)
rn_sss_avgphiscl = 0. ! N/S diameter of SSS observation footprint (metres/degrees)
rn_sic_avglamscl = 0. ! E/W diameter of SIC observation footprint (metres/degrees)
rn_sic_avgphiscl = 0. ! N/S diameter of SIC observation footprint (metres/degrees)
nn_1dint = 0 ! Type of vertical interpolation method
nn_2dint = 0 ! Default horizontal interpolation method
nn_2dint_sla = 0 ! Horizontal interpolation method for SLA
nn_2dint_sst = 0 ! Horizontal interpolation method for SST
nn_2dint_sss = 0 ! Horizontal interpolation method for SSS
nn_2dint_sic = 0 ! Horizontal interpolation method for SIC
nn_msshc = 0 ! MSSH correction scheme
nn_profdavtypes = -1 ! Profile daily average types - array

/

The observation operator code uses the ”feedback” observation file format for
all data types. All the observation files must be in NetCDF format. Some example
headers (produced using ncdump -h) for profile data, sea level anomaly and sea
surface temperature are in the following subsections.

12.2.1 Profile feedback type observation file header

netcdf profiles_01 {
dimensions:

N_OBS = 603 ;
N_LEVELS = 150 ;
N_VARS = 2 ;
N_QCF = 2 ;
N_ENTRIES = 1 ;
N_EXTRA = 1 ;
STRINGNAM = 8 ;
STRINGGRID = 1 ;
STRINGWMO = 8 ;
STRINGTYP = 4 ;
STRINGJULD = 14 ;

variables:
char VARIABLES(N_VARS, STRINGNAM) ;

VARIABLES:long_name = "List of variables in feedback files" ;
char ENTRIES(N_ENTRIES, STRINGNAM) ;

ENTRIES:long_name = "List of additional entries for each variable in feedback files" ;
char EXTRA(N_EXTRA, STRINGNAM) ;

EXTRA:long_name = "List of extra variables" ;
char STATION_IDENTIFIER(N_OBS, STRINGWMO) ;

STATION_IDENTIFIER:long_name = "Station identifier" ;
char STATION_TYPE(N_OBS, STRINGTYP) ;

12.2. Technical details 251

STATION_TYPE:long_name = "Code instrument type" ;
double LONGITUDE(N_OBS) ;

LONGITUDE:long_name = "Longitude" ;
LONGITUDE:units = "degrees_east" ;
LONGITUDE:_Fillvalue = 99999.f ;

double LATITUDE(N_OBS) ;
LATITUDE:long_name = "Latitude" ;
LATITUDE:units = "degrees_north" ;
LATITUDE:_Fillvalue = 99999.f ;

double DEPTH(N_OBS, N_LEVELS) ;
DEPTH:long_name = "Depth" ;
DEPTH:units = "metre" ;
DEPTH:_Fillvalue = 99999.f ;

int DEPTH_QC(N_OBS, N_LEVELS) ;
DEPTH_QC:long_name = "Quality on depth" ;
DEPTH_QC:Conventions = "q where q =[0,9]" ;
DEPTH_QC:_Fillvalue = 0 ;

int DEPTH_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
DEPTH_QC_FLAGS:long_name = "Quality flags on depth" ;
DEPTH_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;

double JULD(N_OBS) ;
JULD:long_name = "Julian day" ;
JULD:units = "days since JULD_REFERENCE" ;
JULD:Conventions = "relative julian days with decimal part (as parts of day)" ;
JULD:_Fillvalue = 99999.f ;

char JULD_REFERENCE(STRINGJULD) ;
JULD_REFERENCE:long_name = "Date of reference for julian days" ;
JULD_REFERENCE:Conventions = "YYYYMMDDHHMMSS" ;

int OBSERVATION_QC(N_OBS) ;
OBSERVATION_QC:long_name = "Quality on observation" ;
OBSERVATION_QC:Conventions = "q where q =[0,9]" ;
OBSERVATION_QC:_Fillvalue = 0 ;

int OBSERVATION_QC_FLAGS(N_OBS, N_QCF) ;
OBSERVATION_QC_FLAGS:long_name = "Quality flags on observation" ;
OBSERVATION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
OBSERVATION_QC_FLAGS:_Fillvalue = 0 ;

int POSITION_QC(N_OBS) ;
POSITION_QC:long_name = "Quality on position (latitude and longitude)" ;
POSITION_QC:Conventions = "q where q =[0,9]" ;
POSITION_QC:_Fillvalue = 0 ;

int POSITION_QC_FLAGS(N_OBS, N_QCF) ;
POSITION_QC_FLAGS:long_name = "Quality flags on position" ;
POSITION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POSITION_QC_FLAGS:_Fillvalue = 0 ;

int JULD_QC(N_OBS) ;
JULD_QC:long_name = "Quality on date and time" ;
JULD_QC:Conventions = "q where q =[0,9]" ;
JULD_QC:_Fillvalue = 0 ;

int JULD_QC_FLAGS(N_OBS, N_QCF) ;
JULD_QC_FLAGS:long_name = "Quality flags on date and time" ;
JULD_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
JULD_QC_FLAGS:_Fillvalue = 0 ;

int ORIGINAL_FILE_INDEX(N_OBS) ;
ORIGINAL_FILE_INDEX:long_name = "Index in original data file" ;
ORIGINAL_FILE_INDEX:_Fillvalue = -99999 ;

float POTM_OBS(N_OBS, N_LEVELS) ;
POTM_OBS:long_name = "Potential temperature" ;
POTM_OBS:units = "Degrees Celsius" ;
POTM_OBS:_Fillvalue = 99999.f ;

float POTM_Hx(N_OBS, N_LEVELS) ;
POTM_Hx:long_name = "Model interpolated potential temperature" ;
POTM_Hx:units = "Degrees Celsius" ;
POTM_Hx:_Fillvalue = 99999.f ;

int POTM_QC(N_OBS) ;
POTM_QC:long_name = "Quality on potential temperature" ;
POTM_QC:Conventions = "q where q =[0,9]" ;
POTM_QC:_Fillvalue = 0 ;

int POTM_QC_FLAGS(N_OBS, N_QCF) ;
POTM_QC_FLAGS:long_name = "Quality flags on potential temperature" ;
POTM_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POTM_QC_FLAGS:_Fillvalue = 0 ;

int POTM_LEVEL_QC(N_OBS, N_LEVELS) ;
POTM_LEVEL_QC:long_name = "Quality for each level on potential temperature" ;
POTM_LEVEL_QC:Conventions = "q where q =[0,9]" ;
POTM_LEVEL_QC:_Fillvalue = 0 ;

int POTM_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
POTM_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on potential temperature" ;
POTM_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POTM_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int POTM_IOBSI(N_OBS) ;
POTM_IOBSI:long_name = "ORCA grid search I coordinate" ;

int POTM_IOBSJ(N_OBS) ;
POTM_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int POTM_IOBSK(N_OBS, N_LEVELS) ;

252 Observation and model comparison (OBS)

POTM_IOBSK:long_name = "ORCA grid search K coordinate" ;
char POTM_GRID(STRINGGRID) ;

POTM_GRID:long_name = "ORCA grid search grid (T,U,V)" ;
float PSAL_OBS(N_OBS, N_LEVELS) ;

PSAL_OBS:long_name = "Practical salinity" ;
PSAL_OBS:units = "PSU" ;
PSAL_OBS:_Fillvalue = 99999.f ;

float PSAL_Hx(N_OBS, N_LEVELS) ;
PSAL_Hx:long_name = "Model interpolated practical salinity" ;
PSAL_Hx:units = "PSU" ;
PSAL_Hx:_Fillvalue = 99999.f ;

int PSAL_QC(N_OBS) ;
PSAL_QC:long_name = "Quality on practical salinity" ;
PSAL_QC:Conventions = "q where q =[0,9]" ;
PSAL_QC:_Fillvalue = 0 ;

int PSAL_QC_FLAGS(N_OBS, N_QCF) ;
PSAL_QC_FLAGS:long_name = "Quality flags on practical salinity" ;
PSAL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
PSAL_QC_FLAGS:_Fillvalue = 0 ;

int PSAL_LEVEL_QC(N_OBS, N_LEVELS) ;
PSAL_LEVEL_QC:long_name = "Quality for each level on practical salinity" ;
PSAL_LEVEL_QC:Conventions = "q where q =[0,9]" ;
PSAL_LEVEL_QC:_Fillvalue = 0 ;

int PSAL_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
PSAL_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on practical salinity" ;
PSAL_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
PSAL_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int PSAL_IOBSI(N_OBS) ;
PSAL_IOBSI:long_name = "ORCA grid search I coordinate" ;

int PSAL_IOBSJ(N_OBS) ;
PSAL_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int PSAL_IOBSK(N_OBS, N_LEVELS) ;
PSAL_IOBSK:long_name = "ORCA grid search K coordinate" ;

char PSAL_GRID(STRINGGRID) ;
PSAL_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

float TEMP(N_OBS, N_LEVELS) ;
TEMP:long_name = "Insitu temperature" ;
TEMP:units = "Degrees Celsius" ;
TEMP:_Fillvalue = 99999.f ;

// global attributes:
:title = "NEMO observation operator output" ;
:Convention = "NEMO unified observation operator output" ;

}

12.2.2 Sea level anomaly feedback type observation file header

netcdf sla_01 {
dimensions:

N_OBS = 41301 ;
N_LEVELS = 1 ;
N_VARS = 1 ;
N_QCF = 2 ;
N_ENTRIES = 1 ;
N_EXTRA = 1 ;
STRINGNAM = 8 ;
STRINGGRID = 1 ;
STRINGWMO = 8 ;
STRINGTYP = 4 ;
STRINGJULD = 14 ;

variables:
char VARIABLES(N_VARS, STRINGNAM) ;

VARIABLES:long_name = "List of variables in feedback files" ;
char ENTRIES(N_ENTRIES, STRINGNAM) ;

ENTRIES:long_name = "List of additional entries for each variable in feedback files" ;
char EXTRA(N_EXTRA, STRINGNAM) ;

EXTRA:long_name = "List of extra variables" ;
char STATION_IDENTIFIER(N_OBS, STRINGWMO) ;

STATION_IDENTIFIER:long_name = "Station identifier" ;
char STATION_TYPE(N_OBS, STRINGTYP) ;

STATION_TYPE:long_name = "Code instrument type" ;
double LONGITUDE(N_OBS) ;

LONGITUDE:long_name = "Longitude" ;
LONGITUDE:units = "degrees_east" ;
LONGITUDE:_Fillvalue = 99999.f ;

double LATITUDE(N_OBS) ;
LATITUDE:long_name = "Latitude" ;
LATITUDE:units = "degrees_north" ;
LATITUDE:_Fillvalue = 99999.f ;

12.2. Technical details 253

double DEPTH(N_OBS, N_LEVELS) ;
DEPTH:long_name = "Depth" ;
DEPTH:units = "metre" ;
DEPTH:_Fillvalue = 99999.f ;

int DEPTH_QC(N_OBS, N_LEVELS) ;
DEPTH_QC:long_name = "Quality on depth" ;
DEPTH_QC:Conventions = "q where q =[0,9]" ;
DEPTH_QC:_Fillvalue = 0 ;

int DEPTH_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
DEPTH_QC_FLAGS:long_name = "Quality flags on depth" ;
DEPTH_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;

double JULD(N_OBS) ;
JULD:long_name = "Julian day" ;
JULD:units = "days since JULD_REFERENCE" ;
JULD:Conventions = "relative julian days with decimal part (as parts of day)" ;
JULD:_Fillvalue = 99999.f ;

char JULD_REFERENCE(STRINGJULD) ;
JULD_REFERENCE:long_name = "Date of reference for julian days" ;
JULD_REFERENCE:Conventions = "YYYYMMDDHHMMSS" ;

int OBSERVATION_QC(N_OBS) ;
OBSERVATION_QC:long_name = "Quality on observation" ;
OBSERVATION_QC:Conventions = "q where q =[0,9]" ;
OBSERVATION_QC:_Fillvalue = 0 ;

int OBSERVATION_QC_FLAGS(N_OBS, N_QCF) ;
OBSERVATION_QC_FLAGS:long_name = "Quality flags on observation" ;
OBSERVATION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
OBSERVATION_QC_FLAGS:_Fillvalue = 0 ;

int POSITION_QC(N_OBS) ;
POSITION_QC:long_name = "Quality on position (latitude and longitude)" ;
POSITION_QC:Conventions = "q where q =[0,9]" ;
POSITION_QC:_Fillvalue = 0 ;

int POSITION_QC_FLAGS(N_OBS, N_QCF) ;
POSITION_QC_FLAGS:long_name = "Quality flags on position" ;
POSITION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POSITION_QC_FLAGS:_Fillvalue = 0 ;

int JULD_QC(N_OBS) ;
JULD_QC:long_name = "Quality on date and time" ;
JULD_QC:Conventions = "q where q =[0,9]" ;
JULD_QC:_Fillvalue = 0 ;

int JULD_QC_FLAGS(N_OBS, N_QCF) ;
JULD_QC_FLAGS:long_name = "Quality flags on date and time" ;
JULD_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
JULD_QC_FLAGS:_Fillvalue = 0 ;

int ORIGINAL_FILE_INDEX(N_OBS) ;
ORIGINAL_FILE_INDEX:long_name = "Index in original data file" ;
ORIGINAL_FILE_INDEX:_Fillvalue = -99999 ;

float SLA_OBS(N_OBS, N_LEVELS) ;
SLA_OBS:long_name = "Sea level anomaly" ;
SLA_OBS:units = "metre" ;
SLA_OBS:_Fillvalue = 99999.f ;

float SLA_Hx(N_OBS, N_LEVELS) ;
SLA_Hx:long_name = "Model interpolated sea level anomaly" ;
SLA_Hx:units = "metre" ;
SLA_Hx:_Fillvalue = 99999.f ;

int SLA_QC(N_OBS) ;
SLA_QC:long_name = "Quality on sea level anomaly" ;
SLA_QC:Conventions = "q where q =[0,9]" ;
SLA_QC:_Fillvalue = 0 ;

int SLA_QC_FLAGS(N_OBS, N_QCF) ;
SLA_QC_FLAGS:long_name = "Quality flags on sea level anomaly" ;
SLA_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SLA_QC_FLAGS:_Fillvalue = 0 ;

int SLA_LEVEL_QC(N_OBS, N_LEVELS) ;
SLA_LEVEL_QC:long_name = "Quality for each level on sea level anomaly" ;
SLA_LEVEL_QC:Conventions = "q where q =[0,9]" ;
SLA_LEVEL_QC:_Fillvalue = 0 ;

int SLA_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
SLA_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on sea level anomaly" ;
SLA_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SLA_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int SLA_IOBSI(N_OBS) ;
SLA_IOBSI:long_name = "ORCA grid search I coordinate" ;

int SLA_IOBSJ(N_OBS) ;
SLA_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int SLA_IOBSK(N_OBS, N_LEVELS) ;
SLA_IOBSK:long_name = "ORCA grid search K coordinate" ;

char SLA_GRID(STRINGGRID) ;
SLA_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

float MDT(N_OBS, N_LEVELS) ;
MDT:long_name = "Mean Dynamic Topography" ;
MDT:units = "metre" ;
MDT:_Fillvalue = 99999.f ;

// global attributes:

254 Observation and model comparison (OBS)

:title = "NEMO observation operator output" ;
:Convention = "NEMO unified observation operator output" ;

}

The mean dynamic topography (MDT) must be provided in a separate file de-
fined on the model grid called slaReferenceLevel.nc. The MDT is required in order
to produce the model equivalent sea level anomaly from the model sea surface
height. Below is an example header for this file (on the ORCA025 grid).

dimensions:
x = 1442 ;
y = 1021 ;

variables:
float nav_lon(y, x) ;

nav_lon:units = "degrees_east" ;
float nav_lat(y, x) ;

nav_lat:units = "degrees_north" ;
float sossheig(y, x) ;

sossheig:_FillValue = -1.e+30f ;
sossheig:coordinates = "nav_lon nav_lat" ;
sossheig:long_name = "Mean Dynamic Topography" ;
sossheig:units = "metres" ;
sossheig:grid = "orca025T" ;

12.2.3 Sea surface temperature feedback type observation file header

netcdf sst_01 {
dimensions:

N_OBS = 33099 ;
N_LEVELS = 1 ;
N_VARS = 1 ;
N_QCF = 2 ;
N_ENTRIES = 1 ;
STRINGNAM = 8 ;
STRINGGRID = 1 ;
STRINGWMO = 8 ;
STRINGTYP = 4 ;
STRINGJULD = 14 ;

variables:
char VARIABLES(N_VARS, STRINGNAM) ;

VARIABLES:long_name = "List of variables in feedback files" ;
char ENTRIES(N_ENTRIES, STRINGNAM) ;

ENTRIES:long_name = "List of additional entries for each variable in feedback files" ;
char STATION_IDENTIFIER(N_OBS, STRINGWMO) ;

STATION_IDENTIFIER:long_name = "Station identifier" ;
char STATION_TYPE(N_OBS, STRINGTYP) ;

STATION_TYPE:long_name = "Code instrument type" ;
double LONGITUDE(N_OBS) ;

LONGITUDE:long_name = "Longitude" ;
LONGITUDE:units = "degrees_east" ;
LONGITUDE:_Fillvalue = 99999.f ;

double LATITUDE(N_OBS) ;
LATITUDE:long_name = "Latitude" ;
LATITUDE:units = "degrees_north" ;
LATITUDE:_Fillvalue = 99999.f ;

double DEPTH(N_OBS, N_LEVELS) ;
DEPTH:long_name = "Depth" ;
DEPTH:units = "metre" ;
DEPTH:_Fillvalue = 99999.f ;

int DEPTH_QC(N_OBS, N_LEVELS) ;
DEPTH_QC:long_name = "Quality on depth" ;
DEPTH_QC:Conventions = "q where q =[0,9]" ;
DEPTH_QC:_Fillvalue = 0 ;

int DEPTH_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
DEPTH_QC_FLAGS:long_name = "Quality flags on depth" ;
DEPTH_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;

double JULD(N_OBS) ;
JULD:long_name = "Julian day" ;
JULD:units = "days since JULD_REFERENCE" ;
JULD:Conventions = "relative julian days with decimal part (as parts of day)" ;
JULD:_Fillvalue = 99999.f ;

char JULD_REFERENCE(STRINGJULD) ;

12.3. Theoretical details 255

JULD_REFERENCE:long_name = "Date of reference for julian days" ;
JULD_REFERENCE:Conventions = "YYYYMMDDHHMMSS" ;

int OBSERVATION_QC(N_OBS) ;
OBSERVATION_QC:long_name = "Quality on observation" ;
OBSERVATION_QC:Conventions = "q where q =[0,9]" ;
OBSERVATION_QC:_Fillvalue = 0 ;

int OBSERVATION_QC_FLAGS(N_OBS, N_QCF) ;
OBSERVATION_QC_FLAGS:long_name = "Quality flags on observation" ;
OBSERVATION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
OBSERVATION_QC_FLAGS:_Fillvalue = 0 ;

int POSITION_QC(N_OBS) ;
POSITION_QC:long_name = "Quality on position (latitude and longitude)" ;
POSITION_QC:Conventions = "q where q =[0,9]" ;
POSITION_QC:_Fillvalue = 0 ;

int POSITION_QC_FLAGS(N_OBS, N_QCF) ;
POSITION_QC_FLAGS:long_name = "Quality flags on position" ;
POSITION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POSITION_QC_FLAGS:_Fillvalue = 0 ;

int JULD_QC(N_OBS) ;
JULD_QC:long_name = "Quality on date and time" ;
JULD_QC:Conventions = "q where q =[0,9]" ;
JULD_QC:_Fillvalue = 0 ;

int JULD_QC_FLAGS(N_OBS, N_QCF) ;
JULD_QC_FLAGS:long_name = "Quality flags on date and time" ;
JULD_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
JULD_QC_FLAGS:_Fillvalue = 0 ;

int ORIGINAL_FILE_INDEX(N_OBS) ;
ORIGINAL_FILE_INDEX:long_name = "Index in original data file" ;
ORIGINAL_FILE_INDEX:_Fillvalue = -99999 ;

float SST_OBS(N_OBS, N_LEVELS) ;
SST_OBS:long_name = "Sea surface temperature" ;
SST_OBS:units = "Degree centigrade" ;
SST_OBS:_Fillvalue = 99999.f ;

float SST_Hx(N_OBS, N_LEVELS) ;
SST_Hx:long_name = "Model interpolated sea surface temperature" ;
SST_Hx:units = "Degree centigrade" ;
SST_Hx:_Fillvalue = 99999.f ;

int SST_QC(N_OBS) ;
SST_QC:long_name = "Quality on sea surface temperature" ;
SST_QC:Conventions = "q where q =[0,9]" ;
SST_QC:_Fillvalue = 0 ;

int SST_QC_FLAGS(N_OBS, N_QCF) ;
SST_QC_FLAGS:long_name = "Quality flags on sea surface temperature" ;
SST_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SST_QC_FLAGS:_Fillvalue = 0 ;

int SST_LEVEL_QC(N_OBS, N_LEVELS) ;
SST_LEVEL_QC:long_name = "Quality for each level on sea surface temperature" ;
SST_LEVEL_QC:Conventions = "q where q =[0,9]" ;
SST_LEVEL_QC:_Fillvalue = 0 ;

int SST_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
SST_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on sea surface temperature" ;
SST_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SST_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int SST_IOBSI(N_OBS) ;
SST_IOBSI:long_name = "ORCA grid search I coordinate" ;

int SST_IOBSJ(N_OBS) ;
SST_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int SST_IOBSK(N_OBS, N_LEVELS) ;
SST_IOBSK:long_name = "ORCA grid search K coordinate" ;

char SST_GRID(STRINGGRID) ;
SST_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

// global attributes:
:title = "NEMO observation operator output" ;
:Convention = "NEMO unified observation operator output" ;

}

12.3 Theoretical details

12.3.1 Horizontal interpolation methods

Consider an observation point P with with longitude and latitude (λP, φP) and the
four nearest neighbouring model grid points A, B, C and D with longitude and
latitude (λA, φA), (λB, φB) etc. All horizontal interpolation methods implemented
in NEMO estimate the value of a model variable x at point P as a weighted linear

256 Observation and model comparison (OBS)

combination of the values of the model variables at the grid points A, B etc.:

xP =
1

w
(wAxA + wBxB + wCxC + wDxD) (12.1)

where wA, wB etc. are the respective weights for the model field at points A, B
etc., and w = wA + wB + wC + wD.

Four different possibilities are available for computing the weights.

1. Great-Circle distance-weighted interpolation. The weights are computed
as a function of the great-circle distance s(P, ·) between P and the model
grid points A, B etc. For example, the weight given to the field xA is speci-
fied as the product of the distances from P to the other points:

wA = s(P,B) s(P,C) s(P,D)

where

s (P,M) = cos−1{sinφP sinφM + cosφP cosφM cos(λM − λP)}(12.2)

and M corresponds to B, C or D. A more stable form of the great-circle
distance formula for small distances (x near 1) involves the arcsine function
(e.g. see p. 101 of Daley and Barker [2001]:

s (P,M) = sin−1
{√

1− x2
}

where

x = aMaP + bMbP + cMcP

and

aM = sinφM,

aP = sinφP,

bM = cosφM cosφM,

bP = cosφP cosφP,

cM = cosφM sinφM,

cP = cosφP sinφP.

2. Great-Circle distance-weighted interpolation with small angle approxi-
mation. Similar to the previous interpolation but with the distance s com-
puted as

s (P,M) =

√
(φM − φP)2 + (λM − λP)2 cos2 φM (12.3)

where M corresponds to A, B, C or D.

12.3. Theoretical details 257

3. Bilinear interpolation for a regular spaced grid. The interpolation is split
into two 1D interpolations in the longitude and latitude directions, respec-
tively.

4. Bilinear remapping interpolation for a general grid. An iterative scheme
that involves first mapping a quadrilateral cell into a cell with coordinates
(0,0), (1,0), (0,1) and (1,1). This method is based on the SCRIP interpolation
package [Jones 1998].

12.3.2 Grid search

For many grids used by the NEMO model, such as the ORCA family, the horizontal
grid coordinates i and j are not simple functions of latitude and longitude. There-
fore, it is not always straightforward to determine the grid points surrounding any
given observational position. Before the interpolation can be performed, a search
algorithm is then required to determine the corner points of the quadrilateral cell
in which the observation is located. This is the most difficult and time consuming
part of the 2D interpolation procedure. A robust test for determining if an obser-
vation falls within a given quadrilateral cell is as follows. Let P(λP, φP) denote
the observation point, and let A(λA, φA), B(λB, φB), C(λC, φC) and D(λD, φD)
denote the bottom left, bottom right, top left and top right corner points of the cell,
respectively. To determine if P is inside the cell, we verify that the cross-products

rPA × rPC = [(λA − λP)(φC − φP)− (λC − λP)(φA − φP)] k̂

rPB × rPA = [(λB − λP)(φA − φP)− (λA − λP)(φB − φP)] k̂

rPC × rPD = [(λC − λP)(φD − φP)− (λD − λP)(φC − φP)] k̂

rPD × rPB = [(λD − λP)(φB − φP)− (λB − λP)(φD − φP)] k̂

(12.4)

point in the opposite direction to the unit normal k̂ (i.e., that the coefficients of k̂
are negative), where rPA, rPB, etc. correspond to the vectors between points P
and A, P and B, etc.. The method used is similar to the method used in the SCRIP
interpolation package [Jones 1998].

In order to speed up the grid search, there is the possibility to construct a lookup
table for a user specified resolution. This lookup table contains the lower and
upper bounds on the i and j indices to be searched for on a regular grid. For
each observation position, the closest point on the regular grid of this position is
computed and the i and j ranges of this point searched to determine the precise
four points surrounding the observation.

12.3.3 Parallel aspects of horizontal interpolation

For horizontal interpolation, there is the basic problem that the observations are
unevenly distributed on the globe. In numerical models, it is common to divide
the model grid into subgrids (or domains) where each subgrid is executed on a

258 Observation and model comparison (OBS)

340°E320°E300°E280°E260°E240°E220°E200°E180°E160°E140°E120°E100°E80°E60°E40°E20°E

340°E320°E300°E280°E260°E240°E220°E200°E180°E160°E140°E120°E100°E80°E60°E40°E20°E

80°N

70°N

60°N

50°N

40°N

30°N

20°N

10°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

80°N

70°N

60°N

50°N

40°N

30°N

20°N

10°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

Magics++ 2.4.1 - cranmer - ne1 - Mon Mar 3 14:05:09 2008

Figure 12.1: Example of the distribution of observations with the geographical dis-
tribution of observational data.

single processing element with explicit message passing for exchange of informa-
tion along the domain boundaries when running on a massively parallel processor
(MPP) system. This approach is used by NEMO.

For observations there is no natural distribution since the observations are not
equally distributed on the globe. Two options have been made available: 1) geo-
graphical distribution; and 2) round-robin.

Geographical distribution of observations among processors

This is the simplest option in which the observations are distributed according to
the domain of the grid-point parallelization. Figure 12.1 shows an example of
the distribution of the in situ data on processors with a different colour for each
observation on a given processor for a 4 × 2 decomposition with ORCA2. The
grid-point domain decomposition is clearly visible on the plot.

The advantage of this approach is that all information needed for horizontal in-
terpolation is available without any MPP communication. Of course, this is under
the assumption that we are only using a 2 × 2 grid-point stencil for the interpola-
tion (e.g., bilinear interpolation). For higher order interpolation schemes this is no

12.3. Theoretical details 259

340°E320°E300°E280°E260°E240°E220°E200°E180°E160°E140°E120°E100°E80°E60°E40°E20°E

340°E320°E300°E280°E260°E240°E220°E200°E180°E160°E140°E120°E100°E80°E60°E40°E20°E

80°N

70°N

60°N

50°N

40°N

30°N

20°N

10°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

80°N

70°N

60°N

50°N

40°N

30°N

20°N

10°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

Magics++ 2.4.1 - cranmer - ne1 - Mon Mar 3 14:08:38 2008

Figure 12.2: Example of the distribution of observations with the round-robin distri-
bution of observational data.

longer valid. A disadvantage with the above scheme is that the number of observa-
tions on each processor can be very different. If the cost of the actual interpolation
is expensive relative to the communication of data needed for interpolation, this
could lead to load imbalance.

Round-robin distribution of observations among processors

An alternative approach is to distribute the observations equally among proces-
sors and use message passing in order to retrieve the stencil for interpolation. The
simplest distribution of the observations is to distribute them using a round-robin
scheme. Figure 12.2 shows the distribution of the in situ data on processors for
the round-robin distribution of observations with a different colour for each obser-
vation on a given processor for a 4 × 2 decomposition with ORCA2 for the same
input data as in Fig. 12.1. The observations are now clearly randomly distributed
on the globe. In order to be able to perform horizontal interpolation in this case, a
subroutine has been developed that retrieves any grid points in the global space.

260 Observation and model comparison (OBS)

12.3.4 Vertical interpolation operator

Vertical interpolation is achieved using either a cubic spline or linear interpola-
tion. For the cubic spline, the top and bottom boundary conditions for the second
derivative of the interpolating polynomial in the spline are set to zero. At the bot-
tom boundary, this is done using the land-ocean mask.

12.4. Offline observation operator 261

12.4 Offline observation operator

12.4.1 Concept

The obs oper maps model variables to observation space. It is possible to apply this
mapping without running the model. The software which performs this functional-
ity is known as the offline obs oper. The obs oper is divided into three stages. An
initialisation phase, an interpolation phase and an output phase. The implementa-
tion of which is outlined in the previous sections. During the interpolation phase
the offline obs oper populates the model arrays by reading saved model fields from
disk.

There are two ways of exploiting this offline capacity. The first is to mimic
the behaviour of the online system by supplying model fields at regular intervals
between the start and the end of the run. This approach results in a single model
counterpart per observation. This kind of usage produces feedback files the same
file format as the online obs oper. The second is to take advantage of the offline
setting in which multiple model counterparts can be calculated per observation.
In this case it is possible to consider all forecasts verifying at the same time. By
forecast, I mean any method which produces an estimate of physical reality which
is not an observed value. In the case of class 4 files this means forecasts, analyses,
persisted analyses and climatological values verifying at the same time. Although
the class 4 file format doesn’t account for multiple ensemble members or multiple
experiments per observation, it is possible to include these components in the same
or multiple files.

12.4.2 Using the offline observation operator

Building

In addition to OPA SRC the offline obs oper requires the inclusion of the OOO SRC
directory. OOO SRC contains a replacement nemo.f90 and nemogcm.F90 which
overwrites the resultant nemo.exe. This is the approach taken by SAS SRC and
OFF SRC.

Running

The simplest way to use the executable is to edit and append the ooo.nml namelist
to a full NEMO namelist and then to run the executable as if it were nemo.exe.

Quick script

A useful Python utility to control the namelist options can be found in OBSTOOLS/OOO.
The functions which locate model fields and observation files can be manually
specified. The package can be installed by appropriate use of the included setup.py
script.

262 Observation and model comparison (OBS)

Documentation can be auto-generated by Sphinx by running make html in the
doc directory.

12.4.3 Configuring the offline observation operator

The observation files and settings understood by namobs have been outlined in the
online obs oper section. In addition there are two further namelists wich control
the operation of the offline obs oper. namooo which controls the input model fields
and namcl4 which controls the production of class 4 files.

Single field

In offline mode model arrays are populated at appropriate time steps via input files.
At present, tsn and sshn are populated by the default read routines. These routines
will be expanded upon in future versions to allow the specification of any model
variable. As such, input files must be global versions of the model domain with
votemper, vosaline and optionally sshn present.

For each field read there must be an entry in the namooo namelist specifying
the name of the file to read and the index along the time counter. For example, to
read the second time counter from a single file the namelist would be.

!--
! namooo Offline obs_oper namelist
!--
! ooo_files specifies the files containing the model counterpart
! nn_ooo_idx specifies the time_counter index within the model file
&namooo

ooo_files = "foo.nc"
nn_ooo_idx = 2

/

Multiple fields per run

Model field iteration is controlled via nn ooo freq which specifies the number of
model steps at which the next field gets read. For example, if 12 hourly fields are
to be interpolated in a setup where 288 steps equals 24 hours.

!--
! namooo Offline obs_oper namelist
!--
! ooo_files specifies the files containing the model counterpart
! nn_ooo_idx specifies the time_counter index within the model file
! nn_ooo_freq specifies number of time steps between read operations
&namooo

ooo_files = "foo.nc" "foo.nc"
nn_ooo_idx = 1 2
nn_ooo_freq = 144

/

The above namelist will result in feedback files whose first 12 hours contain
the first field of foo.nc and the second 12 hours contain the second field.

Note Missing files can be denoted as ”nofile”.

12.4. Offline observation operator 263

It is easy to see how a collection of fields taken fron a number of files at differ-
ent indices can be combined at a particular frequency in time to generate a pseudo
model evolution. As long as all that is needed is a single model counterpart at a
regular interval then namooo is all that needs to be edited. However, a far more
interesting approach can be taken in which multiple forecasts, analyses, persisted
analyses and climatologies are considered against the same set of observations.
For this a slightly more complicated approach is needed. It is referred to as Class
4 since it is the fourth metric defined by the GODAE intercomparison project.

Multiple model counterparts per observation a.k.a Class 4

A generalisation of feedback files to allow multiple model components per obser-
vation. For a single observation, as well as previous forecasts verifying at the same
time there are also analyses, persisted analyses and climatologies.

The above namelist performs two basic functions. It organises the fields given
in namooo into groups so that observations can be matched up multiple times. It
also controls the metadata and the output variable of the class 4 file when a write
routine is called.

Note: ln cl4 must be set to .TRUE. in namobs to use class 4 outputs.

Class 4 naming convention

The standard class 4 file naming convention is as follows.

${prefix} ${yyyymmdd} ${sys} ${cfg} ${vn} ${kind} ${nproc}.nc

Much of the namelist is devoted to specifying this convention. The following
namelist settings control the elements of the output file names. Each should be
specified as a single string of character data.

cl4 prefix Prefix for class 4 files e.g. class4

cl4 date YYYYMMDD validity date

cl4 sys The name of the class 4 model system e.g. FOAM

cl4 cfg The name of the class 4 model configuration e.g. orca025

cl4 vn The name of the class 4 model version e.g. 12.0

The kind is specified by the observation type internally to the obs oper. The pro-
cessor number is specified internally in NEMO.

264 Observation and model comparison (OBS)

Class 4 file global attributes

Global attributes necessary to fulfill the class 4 file definition. These are also useful
pieces of information when collaborating with external partners.

cl4 contact Contact email for class 4 files.

cl4 inst The name of the producers institution.

cl4 cfg The name of the class 4 model configuration e.g. orca025

cl4 vn The name of the class 4 model version e.g. 12.0

The obs type, creation date and validity time are specified internally to the obs
oper.

Class 4 model counterpart configuration

As seen previously it is possible to perform a single sweep of the obs oper and
specify a collection of model fields equally spaced along that sweep. In the class
4 case the single sweep is replaced with multiple sweeps and a certain ammount
of book keeping is needed to ensure each model counterpart makes its way to the
correct piece of memory in the output files.

In terms of book keeping, the offline obs oper needs to know how many full sweeps
need to be performed. This is specified via the cl4 match len variable and is the to-
tal number of model counterparts per observation. For example, a 3 forecasts plus
3 persistence fields plus an analysis field would be 7 counterparts per observation.

cl4_match_len = 7

Then to correctly allocate a class 4 file the forecast axis must be defined. This
is controlled via cl4 fcst len, which in out above example would be 3.

cl4_fcst_len = 3

Then for each model field it is necessary to designate what class 4 variable and
index along the forecast dimension the model counterpart should be stored in the
output file. As well as a value for that lead time in hours, this will be useful when
interpreting the data afterwards.

cl4_vars = "forecast" "forecast" "forecast" "persistence" "persistence"
"persistence" "best_estimate"

cl4_fcst_idx = 1 2 3 1 2 3 1
cl4_leadtime = 12 36 60

12.4. Offline observation operator 265

In terms of files and indices of fields inside each file the class 4 approach makes
use of the namooo namelist. If our fields are in separate files with a single field per
file our example inputs will be specified.

ooo_files = "F.1.nc" "F.2.nc" "F.3.nc" "P.1.nc" "P.2.nc" "P.3.nc" "A.1.nc"
nn_ooo_idx = 1 1 1 1 1 1 1

When we combine all of the naming conventions, global attributes and i/o in-
structions the class 4 namelist becomes.

!--
! namooo Offline obs_oper namelist
!--
! ooo_files specifies the files containing the model counterpart
! nn_ooo_idx specifies the time_counter index within the model file
! nn_ooo_freq specifies number of time steps between read operations
&namooo

ooo_files = "F.1.nc" "F.2.nc" "F.3.nc" "P.1.nc" "P.2.nc" "P.3.nc" "A.1.nc"
nn_ooo_idx = 1 1 1 1 1 1 1

/
!--
! namcl4 Offline obs_oper class 4 namelist
!--
!
! Naming convention
! -----------------
! cl4_prefix specifies the output file prefix
! cl4_date specifies the output file validity date
! cl4_sys specifies the model counterpart system
! cl4_cfg specifies the model counterpart configuration
! cl4_vn specifies the model counterpart version
! cl4_inst specifies the model counterpart institute
! cl4_contact specifies the file producers contact details
!
! I/O specification
! -----------------
! cl4_vars specifies the names of the output file netcdf variable
! cl4_fcst_idx specifies output file forecast index
! cl4_fcst_len specifies forecast axis length
! cl4_match_len specifies number of unique matches per observation
! cl4_leadtime specifies the forecast axis lead time
!
&namcl4

cl4_match_len = 7
cl4_fcst_len = 3
cl4_fcst_idx = 1 2 3 1 2 3 1
cl4_vars = "forecast" "forecast" "forecast" "persistence" "persistence"

"persistence" "best_estimate"
cl4_leadtime = 12 36 60
cl4_prefix = "class4"
cl4_date = "20130101"
cl4_vn = "12.0"
cl4_sys = "FOAM"
cl4_cfg = "AMM7"
cl4_contact = "example@example.com"
cl4_inst = "UK Met Office"

/

Climatology interpolation

The climatological counterpart is generated at the start of the run by restarting the
model from climatology through appropriate use of namtsd. To override the of-
fline observation operator read routine and to take advantage of the restart settings,
specify the first entry in cl4 vars as ”climatology”. This will then pipe the restart
from climatology into the output class 4 file. As in every other class 4 matchup the
input file, input index and output index must be specified. These can be replaced

266 Observation and model comparison (OBS)

with dummy data since they are not used but they must be present to cycle through
the matchups correctly.

12.4.4 Advanced usage

In certain cases it may be desirable to include both multiple model fields per ob-
servation window with multiple match ups per observation. This can be achieved
by specifying nn ooo freq as well as the class 4 settings. Care must be taken in
generating the ooo files list such that the files are arranged into consecutive blocks
of single match ups. For example, 2 forecast fields of 12 hourly data would result
in 4 separate read operations but only 2 write operations, 1 per forecast.

ooo_files = "F1.nc" "F1.nc" "F2.nc" "F2.nc"
...

cl4_fcst_idx = 1 2

The above notation reveals the internal split between match up iterators and file
iterators. This technique has not been used before so experimentation is needed
before results can be trusted.

12.5. Observation Utilities 267

12.5 Observation Utilities

Some tools for viewing and processing of observation and feedback files are pro-
vided in the NEMO repository for convenience. These include OBSTOOLS which
are a collection of Fortran programs which are helpful to deal with feedback files.
They do such tasks as observation file conversion, printing of file contents, some
basic statistical analysis of feedback files. The other tool is an IDL program called
dataplot which uses a graphical interface to visualise observations and feedback
files. OBSTOOLS and dataplot are described in more detail below.

12.5.1 Obstools

A series of Fortran utilities is provided with NEMO called OBSTOOLS. This are
helpful in handling observation files and the feedback file output from the NEMO
observation operator. The utilities are as follows

c4comb

The program c4comb combines multiple class 4 files produced by individual pro-
cessors in an MPI run of NEMO offline obs oper into a single class 4 file. The
program is called in the following way:

c4comb.exe outputfile inputfile1 inputfile2 ...

corio2fb

The program corio2fb converts profile observation files from the Coriolis format to
the standard feedback format. The program is called in the following way:

corio2fb.exe outputfile inputfile1 inputfile2 ...

enact2fb

The program enact2fb converts profile observation files from the ENACT format
to the standard feedback format. The program is called in the following way:

enact2fb.exe outputfile inputfile1 inputfile2 ...

268 Observation and model comparison (OBS)

fbcomb

The program fbcomb combines multiple feedback files produced by individual pro-
cessors in an MPI run of NEMO into a single feedback file. The program is called
in the following way:

fbcomb.exe outputfile inputfile1 inputfile2 ...

fbmatchup

The program fbmatchup will match observations from two feedback files. The
program is called in the following way:

fbmatchup.exe outputfile inputfile1 varname1 inputfile2 varname2 ...

fbprint

The program fbprint will print the contents of a feedback file or files to standard
output. Selected information can be output using optional arguments. The program
is called in the following way:

fbprint.exe [options] inputfile

options:
-b shorter output
-q Select observations based on QC flags
-Q Select observations based on QC flags
-B Select observations based on QC flags
-u unsorted
-s ID select station ID
-t TYPE select observation type
-v NUM1-NUM2 select variable range to print by number

(default all)
-a NUM1-NUM2 select additional variable range to print by number

(default all)
-e NUM1-NUM2 select extra variable range to print by number

(default all)
-d output date range
-D print depths
-z use zipped files

12.5. Observation Utilities 269

fbsel

The program fbsel will select or subsample observations. The program is called in
the following way:

fbsel.exe <input filename> <output filename>

fbstat

The program fbstat will output summary statistics in different global areas into a
number of files. The program is called in the following way:

fbstat.exe [-nmlev] <filenames>

fbthin

The program fbthin will thin the data to 1 degree resolution. The code could easily
be modified to thin to a different resolution. The program is called in the following
way:

fbthin.exe inputfile outputfile

sla2fb

The program sla2fb will convert an AVISO SLA format file to feedback format.
The program is called in the following way:

sla2fb.exe [-s type] outputfile inputfile1 inputfile2 ...

Option:
-s Select altimeter data_source

vel2fb

The program vel2fb will convert TAO/PIRATA/RAMA currents files to feedback
format. The program is called in the following way:

vel2fb.exe outputfile inputfile1 inputfile2 ...

270 Observation and model comparison (OBS)

12.5.2 building the obstools

To build the obstools use in the tools directory use ./maketools -n OBSTOOLS -m
[ARCH].

12.5.3 Dataplot

An IDL program called dataplot is included which uses a graphical interface to
visualise observations and feedback files. It is possible to zoom in, plot individual
profiles and calculate some basic statistics. To plot some data run IDL and then:

IDL> dataplot, "filename"

To read multiple files into dataplot, for example multiple feedback files from
different processors or from different days, the easiest method is to use the spawn
command to generate a list of files which can then be passed to dataplot.

IDL> spawn, ’ls profb*.nc’, files
IDL> dataplot, files

Fig 12.3 shows the main window which is launched when dataplot starts. This
is split into three parts. At the top there is a menu bar which contains a variety of
drop down menus. Areas - zooms into prespecified regions; plot - plots the data
as a timeseries or a T-S diagram if appropriate; Find - allows data to be searched;
Config - sets various configuration options.

The middle part is a plot of the geographical location of the observations. This
will plot the observation value, the model background value or observation minus
background value depending on the option selected in the radio button at the bottom
of the window. The plotting colour range can be changed by clicking on the colour
bar. The title of the plot gives some basic information about the date range and
depth range shown, the extreme values, and the mean and rms values. It is possible
to zoom in using a drag-box. You may also zoom in or out using the mouse wheel.

The bottom part of the window controls what is visible in the plot above. There
are two bars which select the level range plotted (for profile data). The other bars
below select the date range shown. The bottom of the figure allows the option to
plot the mean, root mean square, standard deviation or mean square values. As
mentioned above you can choose to plot the observation value, the model back-
ground value or observation minus background value. The next group of radio
buttons selects the map projection. This can either be regular latitude longitude
grid, or north or south polar stereographic. The next group of radio buttons will
plot bad observations, switch to salinity and plot density for profile observations.
The rightmost group of buttons will print the plot window as a postscript, save it as
png, or exit from dataplot.

If a profile point is clicked with the mouse button a plot of the observation and
background values as a function of depth (Fig 12.4).

12.5. Observation Utilities 271

Figure 12.3: Main window of dataplot.

Figure 12.4: Profile plot from dataplot produced by right clicking on a point in the
main window.

13 Apply assimilation increments (ASM)

Authors: D. Lea, M. Martin, K. Mogensen, A. Weaver, ...

Contents
13.1 Direct initialization . 274
13.2 Incremental Analysis Updates 274
13.3 Divergence damping initialisation 275
13.4 Implementation details . 275

274 Apply assimilation increments (ASM)

The ASM code adds the functionality to apply increments to the model vari-
ables: temperature, salinity, sea surface height, velocity and sea ice concentration.
These are read into the model from a NetCDF file which may be produced by sep-
arate data assimilation code. The code can also output model background fields
which are used as an input to data assimilation code. This is all controlled by
the namelist nam asminc . There is a brief description of all the namelist options
provided. To build the ASM code key asminc must be set.

13.1 Direct initialization

Direct initialization (DI) refers to the instantaneous correction of the model back-
ground state using the analysis increment. DI is used when ln asmdin is set to
true.

13.2 Incremental Analysis Updates

Rather than updating the model state directly with the analysis increment, it may
be preferable to introduce the increment gradually into the ocean model in order to
minimize spurious adjustment processes. This technique is referred to as Incremen-
tal Analysis Updates (IAU) [Bloom et al. 1996]. IAU is a common technique used
with 3D assimilation methods such as 3D-Var or OI. IAU is used when ln asmiau
is set to true.

With IAU, the model state trajectory x in the assimilation window (t0 ≤ ti ≤
tN) is corrected by adding the analysis increments for temperature, salinity, hori-
zontal velocity and SSH as additional tendency terms to the prognostic equations:

xa(ti) = M(ti, t0)[xb(t0)] + Fiδx̃
a (13.1)

where Fi is a weighting function for applying the increments δx̃a defined such that∑N
i=1 Fi = 1. xb denotes the model initial state and xa is the model state after

the increments are applied. To control the adjustment time of the model to the
increment, the increment can be applied over an arbitrary sub-window, tm ≤ ti ≤
tn, of the main assimilation window, where t0 ≤ tm ≤ ti and ti ≤ tn ≤ tN ,
Typically the increments are spread evenly over the full window. In addition, two
different weighting functions have been implemented. The first function employs
constant weights,

F
(1)
i =

0 if ti < tm
1/M if tm < ti ≤ tn
0 if ti > tn

(13.2)

where M = m − n. The second function employs peaked hat-like weights in
order to give maximum weight in the centre of the sub-window, with the weighting

13.3. Divergence damping initialisation 275

reduced linearly to a small value at the window end-points:

F
(2)
i =

0 if ti < tm
α i if tm ≤ ti ≤ tM/2

α (M − i+ 1) if tM/2 < ti ≤ tn
0 if ti > tn

(13.3)

where α−1 =
∑M/2

i=1 2i and M is assumed to be even. The weights described by
(13.3) provide a smoother transition of the analysis trajectory from one assimilation
cycle to the next than that described by (13.2).

13.3 Divergence damping initialisation

The velocity increments may be initialized by the iterative application of a diver-
gence damping operator. In iteration step n new estimates of velocity increments
unI and vnI are updated by:

unI = un−1
I +

1

e1u
δi+1/2

(
AD χn−1

I

)

vnI = vn−1
I +

1

e2v
δj+1/2

(
AD χn−1

I

) , (13.4)

where

χn−1
I =

1

e1t e2t e3t

(
δi
[
e2u e3u u

n−1
I

]
+ δj

[
e1v e3v v

n−1
I

])
. (13.5)

By the application of (13.4) and (13.4) the divergence is filtered in each iteration,
and the vorticity is left unchanged. In the presence of coastal boundaries with zero
velocity increments perpendicular to the coast the divergence is strongly damped.
This type of the initialisation reduces the vertical velocity magnitude and alleviates
the problem of the excessive unphysical vertical mixing in the first steps of the
model integration [Talagrand 1972, Dobricic et al. 2007]. Diffusion coefficients are
defined as AD = αe1te2t, where α = 0.2. The divergence damping is activated by
assigning to nn divdmp in the nam asminc namelist a value greater than zero. By
choosing this value to be of the order of 100 the increments in the vertical velocity
will be significantly reduced.

13.4 Implementation details

Here we show an example namasm namelist and the header of an example assimi-
lation increments file on the ORCA2 grid.

276 Apply assimilation increments (ASM)

The header of an assimilation increments file produced using the NetCDF tool
ncdump -h is shown below

netcdf assim_background_increments {
dimensions:

x = 182 ;
y = 149 ;
z = 31 ;
t = UNLIMITED ; // (1 currently)

variables:
float nav_lon(y, x) ;
float nav_lat(y, x) ;
float nav_lev(z) ;
double time_counter(t) ;
double time ;
double z_inc_dateb ;
double z_inc_datef ;
double bckint(t, z, y, x) ;
double bckins(t, z, y, x) ;
double bckinu(t, z, y, x) ;
double bckinv(t, z, y, x) ;
double bckineta(t, y, x) ;

// global attributes:
:DOMAIN_number_total = 1 ;
:DOMAIN_number = 0 ;
:DOMAIN_dimensions_ids = 1, 2 ;
:DOMAIN_size_global = 182, 149 ;
:DOMAIN_size_local = 182, 149 ;
:DOMAIN_position_first = 1, 1 ;
:DOMAIN_position_last = 182, 149 ;
:DOMAIN_halo_size_start = 0, 0 ;
:DOMAIN_halo_size_end = 0, 0 ;
:DOMAIN_type = "BOX" ;

}

14 Stochastic parametrization of EOS (STO)

Authors: P.-A. Bouttier

Contents
14.1 Stochastic processes . 278
14.2 Implementation details . 279

278 Stochastic parametrization of EOS (STO)

The stochastic parametrization module aims to explicitly simulate uncertainties
in the model. More particularly, Brankart [2013] has shown that, because of the
nonlinearity of the seawater equation of state, unresolved scales represent a major
source of uncertainties in the computation of the large scale horizontal density
gradient (from T/S large scale fields), and that the impact of these uncertainties can
be simulated by random processes representing unresolved T/S fluctuations.

The stochastic formulation of the equation of state can be written as:

ρ =
1

2

m∑
i=1

{ρ[T + ∆Ti, S + ∆Si, po(z)] + ρ[T −∆Ti, S −∆Si, po(z)]} (14.1)

where po(z) is the reference pressure depending on the depth and, ∆Ti and ∆Si
are a set of T/S perturbations defined as the scalar product of the respective local
T/S gradients with random walks ξ:

∆Ti = ξi · ∇T and ∆Si = ξi · ∇S (14.2)

ξi are produced by a first-order autoregressive processes (AR-1) with a parametrized
decorrelation time scale, and horizontal and vertical standard deviations σs. ξ are
uncorrelated over the horizontal and fully correlated along the vertical.

14.1 Stochastic processes

The starting point of our implementation of stochastic parameterizations in NEMO
is to observe that many existing parameterizations are based on autoregressive pro-
cesses, which are used as a basic source of randomness to transform a deterministic
model into a probabilistic model. A generic approach is thus to add one single new
module in NEMO, generating processes with appropriate statistics to simulate each
kind of uncertainty in the model (see Brankart et al. [2015] for more details).

In practice, at every model grid point, independent Gaussian autoregressive
processes ξ(i), i = 1, . . . ,m are first generated using the same basic equation:

ξ
(i)
k+1 = a(i)ξ

(i)
k + b(i)w(i) + c(i) (14.3)

where k is the index of the model timestep; and a(i), b(i), c(i) are parameters defin-
ing the mean (µ(i)) standard deviation (σ(i)) and correlation timescale (τ (i)) of each
process:

• for order 1 processes, w(i) is a Gaussian white noise, with zero mean and
standard deviation equal to 1, and the parameters a(i), b(i), c(i) are given by:

a(i) = ϕ

b(i) = σ(i)
√

1− ϕ2 with ϕ = exp
(
−1/τ (i)

)
c(i) = µ(i) (1− ϕ)

(14.4)

14.2. Implementation details 279

• for order n > 1 processes, w(i) is an order n − 1 autoregressive process,
with zero mean, standard deviation equal to σ(i); correlation timescale equal
to τ (i); and the parameters a(i), b(i), c(i) are given by:

a(i) = ϕ

b(i) = n−1
2(4n−3)

√
1− ϕ2 with ϕ = exp

(
−1/τ (i)

)
c(i) = µ(i) (1− ϕ)

(14.5)

In this way, higher order processes can be easily generated recursively using the
same piece of code implementing Eq. (14.3), and using succesively processes from
order 0 to n − 1 as w(i). The parameters in Eq. (14.5) are computed so that this
recursive application of Eq. (14.3) leads to processes with the required standard
deviation and correlation timescale, with the additional condition that the n − 1
first derivatives of the autocorrelation function are equal to zero at t = 0, so that
the resulting processes become smoother and smoother as n is increased.

Overall, this method provides quite a simple and generic way of generating
a wide class of stochastic processes. However, this also means that new model
parameters are needed to specify each of these stochastic processes. As in any pa-
rameterization of lacking physics, a very important issues then to tune these new
parameters using either first principles, model simulations, or real-world observa-
tions.

14.2 Implementation details
!---
&namsto ! Stochastic parametrization of EOS (default: NO)
!---

ln_sto_eos = .false. ! stochastic equation of state
nn_sto_eos = 1 ! number of independent random walks
rn_eos_stdxy= 1.4 ! random walk horz. standard deviation (in grid points)
rn_eos_stdz = 0.7 ! random walk vert. standard deviation (in grid points)
rn_eos_tcor = 1440. ! random walk time correlation (in timesteps)
nn_eos_ord = 1 ! order of autoregressive processes
nn_eos_flt = 0 ! passes of Laplacian filter
rn_eos_lim = 2.0 ! limitation factor (default = 3.0)
ln_rststo = .false. ! start from mean parameter (F) or from restart file (T)
ln_rstseed = .true. ! read seed of RNG from restart file
cn_storst_in = "restart_sto" ! suffix of stochastic parameter restart file (input)
cn_storst_out = "restart_sto" ! suffix of stochastic parameter restart file (output)

/

The computer code implementing stochastic parametrisations can be found in
the STO directory. It involves three modules :

stopar.F90 : define the Stochastic parameters and their time evolution.

storng.F90 : a random number generator based on (and includes) the 64-bit KISS
(Keep It Simple Stupid) random number generator distributed by George
Marsaglia (see here)

https://groups.google.com/forum/#!searchin/comp.lang.fortran/64-bit$20KISS$20RNGs

280 Stochastic parametrization of EOS (STO)

stopts.F90 : stochastic parametrisation associated with the non-linearity of the
equation of seawater, implementing Eq 14.2 and specific piece of code in the
equation of state implementing Eq 14.1.

The stopar.F90 module has 3 public routines to be called by the model (in our
case, NEMO):

The first routine (sto par) is a direct implementation of Eq. (14.3), applied at
each model grid point (in 2D or 3D), and called at each model time step (k) to
update every autoregressive process (i = 1, . . . ,m). This routine also includes
a filtering operator, applied to w(i), to introduce a spatial correlation between the
stochastic processes.

The second routine (sto par init) is an initialization routine mainly dedicated
to the computation of parameters a(i), b(i), c(i) for each autoregressive process, as
a function of the statistical properties required by the model user (mean, standard
deviation, time correlation, order of the process,. . .).

Parameters for the processes can be specified through the following namsto
namelist parameters:

nn sto eos : number of independent random walks

rn eos stdxy : random walk horz. standard deviation (in grid points)

rn eos stdz : random walk vert. standard deviation (in grid points)

rn eos tcor : random walk time correlation (in timesteps)

nn eos ord : order of autoregressive processes

nn eos flt : passes of Laplacian filter

rn eos lim : limitation factor (default = 3.0)

This routine also includes the initialization (seeding) of the random number gener-
ator.

The third routine (sto rst write) writes a restart file (which suffix name is given
by cn storst out namelist parameter) containing the current value of all autoregres-
sive processes to allow restarting a simulation from where it has been interrupted.
This file also contains the current state of the random number generator. When
ln rststo is set to true), the restart file (which suffix name is given by cn storst in
namelist parameter) is read by the initialization routine (sto par init). The simula-
tion will continue exactly as if it was not interrupted only when ln rstseed is set to
true, i.e. when the state of the random number generator is read in the restart file.

15 Miscellaneous Topics

Contents
15.1 Representation of Unresolved Straits 282

15.1.1 Hand made geometry changes 282
15.2 Closed seas (closea.F90) . 284
15.3 Sub-Domain Functionality 284

15.3.1 Simple subsetting of input files via netCDF attributes . 284
15.4 Accuracy and Reproducibility (lib fortran.F90) 285

15.4.1 Issues with intrinsinc SIGN function (key nosignedzero)285
15.4.2 MPP reproducibility 286
15.4.3 MPP scalability . 286

15.5 Model Optimisation, Control Print and Benchmark 287

282 Miscellaneous Topics

15.1 Representation of Unresolved Straits

In climate modeling, it often occurs that a crucial connections between water
masses is broken as the grid mesh is too coarse to resolve narrow straits. For
example, coarse grid spacing typically closes off the Mediterranean from the At-
lantic at the Strait of Gibraltar. In this case, it is important for climate models
to include the effects of salty water entering the Atlantic from the Mediterranean.
Likewise, it is important for the Mediterranean to replenish its supply of water
from the Atlantic to balance the net evaporation occurring over the Mediterranean
region. This problem occurs even in eddy permitting simulations. For example, in
ORCA 1/4◦several straits of the Indonesian archipelago (Ombai, Lombok...) are
much narrow than even a single ocean grid-point.

We describe briefly here the three methods that can be used in NEMO to handle
such improperly resolved straits. The first two consist of opening the strait by
hand while ensuring that the mass exchanges through the strait are not too large by
either artificially reducing the surface of the strait grid-cells or, locally increasing
the lateral friction. In the third one, the strait is closed but exchanges of mass, heat
and salt across the land are allowed. Note that such modifications are so specific
to a given configuration that no attempt has been made to set them in a generic
way. However, examples of how they can be set up is given in the ORCA 2◦and
0.5◦configurations. For example, for details of implementation in ORCA2, search:
IF(cp cfg == "orca" .AND. jp cfg == 2)

15.1.1 Hand made geometry changes

• reduced scale factor in the cross-strait direction to a value in better agreement
with the true mean width of the strait. (Fig. 15.1). This technique is sometime
called ”partially open face” or ”partially closed cells”. The key issue here is only
to reduce the faces of T -cell (i.e. change the value of the horizontal scale factors
at u- or v-point) but not the volume of the T -cell. Indeed, reducing the volume
of strait T -cell can easily produce a numerical instability at that grid point that
would require a reduction of the model time step. The changes associated with
strait management are done in domhgr.F90, just after the definition or reading of
the horizontal scale factors.

• increase of the viscous boundary layer thickness by local increase of the
fmask value at the coast (Fig. 15.1). This is done in dommsk.F90 together with the
setting of the coastal value of fmask (see Section 8.1)

15.1. Representation of Unresolved Straits 283

10oW 8oW 6oW 4oW 2oW 0o

34oN

36oN

38oN

10oW 8oW 6oW 4oW 2oW 0o

34oN

36oN

38oN

Viscous Boundary
layer

fmask set to value > 2

Figure 15.1: Example of the Gibraltar strait defined in a 1◦ × 1◦ mesh. Top: using
partially open cells. The meridional scale factor at v-point is reduced on both sides of
the strait to account for the real width of the strait (about 20 km). Note that the scale
factors of the strait T -point remains unchanged. Bottom: using viscous boundary
layers. The four fmask parameters along the strait coastlines are set to a value larger
than 4, i.e. ”strong” no-slip case (see Fig.8.2) creating a large viscous boundary layer
that allows a reduced transport through the strait.

284 Miscellaneous Topics

15.2 Closed seas (closea.F90)

Add here a short description of the way closed seas are managed

15.3 Sub-Domain Functionality

15.3.1 Simple subsetting of input files via netCDF attributes

The extended grids for use with the under-shelf ice cavities will result in redundant
rows around Antarctica if the ice cavities are not active. A simple mechanism for
subsetting input files associated with the extended domains has been implemented
to avoid the need to maintain different sets of input fields for use with or without
active ice cavities. The existing ’zoom’ options are overly complex for this task and
marked for deletion anyway. This alternative subsetting operates for the j-direction
only and works by optionally looking for and using a global file attribute (named:
open ocean jstart) to determine the starting j-row for input. The use of this option
is best explained with an example: Consider an ORCA1 configuration using the
extended grid bathymetry and coordinate files:

eORCA1_bathymetry_v2.nc
eORCA1_coordinates.nc

These files define a horizontal domain of 362x332. Assuming the first row with
open ocean wet points in the non-isf bathymetry for this set is row 42 (Fortran
indexing) then the formally correct setting for open ocean jstart is 41. Using this
value as the first row to be read will result in a 362x292 domain which is the same
size as the original ORCA1 domain. Thus the extended coordinates and bathymetry
files can be used with all the original input files for ORCA1 if the ice cavities are
not active (ln isfcav = .false.). Full instructions for achieving this are:
Add the new attribute to any input files requiring a j-row offset, i.e:

ncatted -a open_ocean_jstart,global,a,d,41 eORCA1_coordinates.nc
ncatted -a open_ocean_jstart,global,a,d,41 eORCA1_bathymetry_v2.nc

Add the logical switch to namcfg in the configuration namelist and set true:
!---
&namcfg ! parameters of the configuration ! (default: user defined GYRE)
!---

ln_read_cfg = .false. ! (=T) read the domain configuration file
! ! (=F) user defined configuration ==>>> see usrdef(_...) modules
cn_domcfg = "domain_cfg" ! domain configuration filename
!

ln_write_cfg= .true. ! (=T) create the domain configuration file
cn_domcfg_out = "domain_cfg_out" ! newly created domain configuration filename
!

ln_use_jattr = .false. ! use (T) the file attribute: open_ocean_jstart, if present
! ! in netcdf input files, as the start j-row for reading

/

Note the j-size of the global domain is the (extended j-size minus open ocean jstart
+ 1) and this must match the size of all datasets other than bathymetry and coor-
dinates currently. However the option can be extended to any global, 2D and 3D,
netcdf, input field by adding the:

15.4. Accuracy and Reproducibility (lib fortran.F90) 285

lrowattr=ln_use_jattr

optional argument to the appropriate iom get call and the open ocean jstart at-
tribute to the corresponding input files. It remains the users responsibility to set
jpjdta and jpjglo values in the namelist cfg file according to their needs.

jpjdta

jpidta1
1

jpjzoom

jpizoom

input data
domain

model
domain

jpiglo1
1

jpjglo

Figure 15.2: Position of a model domain compared to the data input domain when
the zoom functionality is used.

15.4 Accuracy and Reproducibility (lib fortran.F90)

15.4.1 Issues with intrinsinc SIGN function (key nosignedzero)

The SIGN(A, B) is the FORTRAN intrinsic function delivers the magnitude of A
with the sign of B. For example, SIGN(-3.0,2.0) has the value 3.0. The problematic
case is when the second argument is zero, because, on platforms that support IEEE
arithmetic, zero is actually a signed number. There is a positive zero and a negative
zero.

In FORTRAN 90, the processor was required always to deliver a positive re-
sult for SIGN(A, B) if B was zero. Nevertheless, in FORTRAN 95, the processor
is allowed to do the correct thing and deliver ABS(A) when B is a positive zero
and -ABS(A) when B is a negative zero. This change in the specification becomes
apparent only when B is of type real, and is zero, and the processor is capable
of distinguishing between positive and negative zero, and B is negative real zero.
Then SIGN delivers a negative result where, under FORTRAN 90 rules, it used to

286 Miscellaneous Topics

return a positive result. This change may be especially sensitive for the ice model,
so we overwrite the intrinsinc function with our own function simply performing :

IF(B >= 0.e0) THEN ; SIGN(A,B) = ABS(A)
ELSE ; SIGN(A,B) =-ABS(A)
ENDIF

This feature can be found in lib fortran.F90 module and is effective when key nosignedzero
is defined. We use a CPP key as the overwritting of a intrinsic function can present
performance issues with some computers/compilers.

15.4.2 MPP reproducibility

The numerical reproducibility of simulations on distributed memory parallel com-
puters is a critical issue. In particular, within NEMO global summation of dis-
tributed arrays is most susceptible to rounding errors, and their propagation and ac-
cumulation cause uncertainty in final simulation reproducibility on different num-
bers of processors. To avoid so, based on He and Ding [2001] review of different
technics, we use a so called self-compensated summation method. The idea is to
estimate the roundoff error, store it in a buffer, and then add it back in the next
addition.

Suppose we need to calculate b = a1 + a2 + a3. The following algorithm will
allow to split the sum in two (sum1 = a1 + a2 and b = sum2 = sum1 + a3) with
exactly the same rounding errors as the sum performed all at once.

sum1 = a1 + a2

error1 = a2 + (a1 − sum1)

sum2 = sum1 + a3 + error1

error2 = a3 + error1 + (sum1 − sum2)

b = sum2

An example of this feature can be found in lib fortran.F90 module. It is system-
aticallt used in glob sum function (summation over the entire basin excluding du-
plicated rows and columns due to cyclic or north fold boundary condition as well
as overlap MPP areas). The self-compensated summation method should be used
in all summation in i- and/or j-direction. See closea.F90 module for an example.
Note also that this implementation may be sensitive to the optimization level.

15.4.3 MPP scalability

The default method of communicating values across the north-fold in distributed
memory applications (key mpp mpi) uses a MPI ALLGATHER function to ex-
change values from each processing region in the northern row with every other
processing region in the northern row. This enables a global width array contain-
ing the top 4 rows to be collated on every northern row processor and then folded

15.5. Model Optimisation, Control Print and Benchmark 287

with a simple algorithm. Although conceptually simple, this ”All to All” commu-
nication will hamper performance scalability for large numbers of northern row
processors. From version 3.4 onwards an alternative method is available which
only performs direct ”Peer to Peer” communications between each processor and
its immediate ”neighbours” across the fold line. This is achieved by using the
default MPI ALLGATHER method during initialisation to help identify the ”ac-
tive” neighbours. Stored lists of these neighbours are then used in all subsequent
north-fold exchanges to restrict exchanges to those between associated regions.
The collated global width array for each region is thus only partially filled but is
guaranteed to be set at all the locations actually required by each individual for
the fold operation. This alternative method should give identical results to the de-
fault ALLGATHER method and is recommended for large values of jpni. The
new method is activated by setting ln nnogather to be true (nammpp). The re-
producibility of results using the two methods should be confirmed for each new,
non-reference configuration.

15.5 Model Optimisation, Control Print and Benchmark
!---
&namctl ! Control prints
!---

ln_ctl = .false. ! trends control print (expensive!)
nn_print = 0 ! level of print (0 no extra print)
nn_ictls = 0 ! start i indice of control sum (use to compare mono versus
nn_ictle = 0 ! end i indice of control sum multi processor runs
nn_jctls = 0 ! start j indice of control over a subdomain)
nn_jctle = 0 ! end j indice of control
nn_isplt = 1 ! number of processors in i-direction
nn_jsplt = 1 ! number of processors in j-direction
ln_timing = .false. ! timing by routine write out in timing.output file
ln_diacfl = .false. ! CFL diagnostics write out in cfl_diagnostics.ascii

/

Options are defined through the namctl namelist variables.
• Vector optimisation:
key vectopt loop enables the internal loops to collapse. This is very a very

efficient way to increase the length of vector calculations and thus to speed up the
model on vector computers.
• Control print
1- ln ctl : compute and print the trends averaged over the interior domain in all

TRA, DYN, LDF and ZDF modules. This option is very helpful when diagnosing
the origin of an undesired change in model results.

2- also ln ctl but using the nictl and njctl namelist parameters to check the
source of differences between mono and multi processor runs.

3- last digit comparison (nn bit cmp). In an MPP simulation, the computation
of a sum over the whole domain is performed as the summation over all processors
of each of their sums over their interior domains. This double sum never gives
exactly the same result as a single sum over the whole domain, due to truncation
differences. The ”bit comparison” option has been introduced in order to be able to
check that mono-processor and multi-processor runs give exactly the same results.

288 Miscellaneous Topics

• Benchmark (nn bench). This option defines a benchmark run based on a
GYRE configuration (see §16.4) in which the resolution remains the same what-
ever the domain size. This allows a very large model domain to be used, just by
changing the domain size (jpiglo, jpjglo) and without adjusting either the time-step
or the physical parameterisations.

16 Configurations

Contents
16.1 Introduction . 290
16.2 Water column model: 1D model (C1D) (key c1d) 290
16.3 ORCA family: global ocean with tripolar grid 291

16.3.1 ORCA tripolar grid 291
16.3.2 ORCA pre-defined resolution 294

16.4 GYRE family: double gyre basin 295
16.5 AMM: atlantic margin configuration 296

290 Configurations

16.1 Introduction

The purpose of this part of the manual is to introduce the NEMO reference config-
urations. These configurations are offered as means to explore various numerical
and physical options, thus allowing the user to verify that the code is performing in
a manner consistent with that we are running. This form of verification is critical
as one adopts the code for his or her particular research purposes. The reference
configurations also provide a sense for some of the options available in the code,
though by no means are all options exercised in the reference configurations.
!---
&namcfg ! parameters of the configuration ! (default: user defined GYRE)
!---

ln_read_cfg = .false. ! (=T) read the domain configuration file
! ! (=F) user defined configuration ==>>> see usrdef(_...) modules
cn_domcfg = "domain_cfg" ! domain configuration filename
!

ln_write_cfg= .true. ! (=T) create the domain configuration file
cn_domcfg_out = "domain_cfg_out" ! newly created domain configuration filename
!

ln_use_jattr = .false. ! use (T) the file attribute: open_ocean_jstart, if present
! ! in netcdf input files, as the start j-row for reading

/

16.2 Water column model: 1D model (C1D) (key c1d)

BE careful: to be re-written according to suppression of jpizoom and jpjzoom !!!!

The 1D model option simulates a stand alone water column within the 3D
NEMO system. It can be applied to the ocean alone or to the ocean-ice system and
can include passive tracers or a biogeochemical model. It is set up by defining the
position of the 1D water column in the grid (see CONFIG/SHARED/namelist ref
). The 1D model is a very useful tool (a) to learn about the physics and numerical
treatment of vertical mixing processes ; (b) to investigate suitable parameterisations
of unresolved turbulence (surface wave breaking, Langmuir circulation, ...) ; (c)
to compare the behaviour of different vertical mixing schemes ; (d) to perform
sensitivity studies on the vertical diffusion at a particular point of an ocean domain
; (d) to produce extra diagnostics, without the large memory requirement of the full
3D model.

The methodology is based on the use of the zoom functionality over the small-
est possible domain : a 3x3 domain centered on the grid point of interest, with
some extra routines. There is no need to define a new mesh, bathymetry, initial
state or forcing, since the 1D model will use those of the configuration it is a zoom
of. The chosen grid point is set in namcfg namelist by setting the jpizoom and
jpjzoom parameters to the indices of the location of the chosen grid point.

16.3. ORCA family: global ocean with tripolar grid 291

The 1D model has some specifies. First, all the horizontal derivatives are as-
sumed to be zero, and second, the two components of the velocity are moved on
a T -point. Therefore, defining key c1d changes five main things in the code be-
haviour:

(1) the lateral boundary condition routine (lbc lnk) set the value of the central
column of the 3x3 domain is imposed over the whole domain ;

(3) a call to lbc lnk is systematically done when reading input data (i.e. in iom.F90)
;

(3) a simplified stp routine is used (stp c1d, see step c1d.F90 module) in which
both lateral tendancy terms and lateral physics are not called ;

(4) the vertical velocity is zero (so far, no attempt at introducing a Ekman pumping
velocity has been made) ;

(5) a simplified treatment of the Coriolis term is performed as U - and V -points are
the same (see dyncor c1d.F90).

All the relevant c1d modules can be found in the NEMOGCM/NEMO/OPA SRC/C1D
directory of the NEMO distribution.

16.3 ORCA family: global ocean with tripolar grid

The ORCA family is a series of global ocean configurations that are run together
with the LIM sea-ice model (ORCA-LIM) and possibly with PISCES biogeo-
chemical model (ORCA-LIM-PISCES), using various resolutions. An appropriate
namelist is available in CONFIG/ORCA2 LIM3 PISCES/EXP00/namelist cfg for
ORCA2. The domain of ORCA2 configuration is defined in ORCA R2 zps domcfg.nc
file, this file is available in tar file in the wiki of NEMO :
https://forge.ipsl.jussieu.fr/nemo/wiki/Users/ReferenceConfigurations/ORCA2 LIM3 PISCES
In this namelist cfg the name of domain input file is set in namcfg block of namelist.

16.3.1 ORCA tripolar grid

The ORCA grid is a tripolar is based on the semi-analytical method of Madec and
Imbard [1996]. It allows to construct a global orthogonal curvilinear ocean mesh
which has no singularity point inside the computational domain since two north
mesh poles are introduced and placed on lands. The method involves defining
an analytical set of mesh parallels in the stereographic polar plan, computing the
associated set of mesh meridians, and projecting the resulting mesh onto the sphere.
The set of mesh parallels used is a series of embedded ellipses which foci are the
two mesh north poles (Fig. 16.1). The resulting mesh presents no loss of continuity
in either the mesh lines or the scale factors, or even the scale factor derivatives over
the whole ocean domain, as the mesh is not a composite mesh.

292 Configurations

embedded ellipses

computed normals

geographic mesh

20oN

Figure 16.1: ORCA mesh conception. The departure from an isotropic Mercator
grid start poleward of 20◦N . The two ”north pole” are the foci of a series of embed-
ded ellipses (blue curves) which are determined analytically and form the i-lines of
the ORCA mesh (pseudo latitudes). Then, following Madec and Imbard [1996], the
normal to the series of ellipses (red curves) is computed which provide the j-lines of
the mesh (pseudo longitudes).

The method is applied to Mercator grid (i.e. same zonal and meridional grid
spacing) poleward of 20◦N , so that the Equator is a mesh line, which provides a
better numerical solution for equatorial dynamics. The choice of the series of em-
bedded ellipses (position of the foci and variation of the ellipses) is a compromise
between maintaining the ratio of mesh anisotropy (e1/e2) close to one in the ocean
(especially in area of strong eddy activities such as the Gulf Stream) and keeping
the smallest scale factor in the northern hemisphere larger than the smallest one
in the southern hemisphere. The resulting mesh is shown in Fig. 16.1 and 16.2
for a half a degree grid (ORCA R05). The smallest ocean scale factor is found in
along Antarctica, while the ratio of anisotropy remains close to one except near the

16.3. ORCA family: global ocean with tripolar grid 293

e1

C.I.= 2.5 km

50

40

30

50
40

30

20

20

e2

1.01.0

1.2

1.2

C.I. = 0.05

e1 / e2

20 oN

Figure 16.2: Top: Horizontal scale factors (e1, e2) and Bottom: ratio of anisotropy
(e1/e2) for ORCA 0.5◦ mesh. South of 20◦Na Mercator grid is used (e1 = e2) so
that the anisotropy ratio is 1. Poleward of 20◦N , the two ”north pole” introduce a
weak anisotropy over the ocean areas (< 1.2) except in vicinity of Victoria Island
(Canadian Arctic Archipelago).

294 Configurations

Table 16.1: Domain size of ORCA family configurations. The flag for configurations
of ORCA family need to be set in domain cfg file.

Horizontal Grid ORCA index jpiglo jpjglo
4̃◦ 4 92 76
2̃◦ 2 182 149
1̃◦ 1 362 292
0̃.5◦ 05 722 511
0̃.25◦ 025 1442 1021

Victoria Island in the Canadian Archipelago.

16.3.2 ORCA pre-defined resolution

The NEMO system is provided with five built-in ORCA configurations which dif-
fer in the horizontal resolution. The value of the resolution is given by the resolu-
tion at the Equator expressed in degrees. Each of configuration is set through the
domain cfg domain configuration file, which sets the grid size and configuration
name parameters. The NEMO System Team provides only ORCA2 domain input
file ”ORCA R2 zps domcfg.nc” file (Tab. 16.1).

The ORCA R2 configuration has the following specificity : starting from a
2◦ ORCA mesh, local mesh refinements were applied to the Mediterranean, Red,
Black and Caspian Seas, so that the resolution is 1◦◦there. A local transformation
were also applied with in the Tropics in order to refine the meridional resolution
up to 0.5◦at the Equator.

The ORCA R1 configuration has only a local tropical transformation to refine
the meridional resolution up to 1/3◦ at the Equator. Note that the tropical mesh
refinements in ORCA R2 and R1 strongly increases the mesh anisotropy there.

The ORCA R05 and higher global configurations do not incorporate any re-
gional refinements.

For ORCA R1 and R025, setting the configuration key to 75 allows to use 75
vertical levels, otherwise 46 are used. In the other ORCA configurations, 31 levels
are used (see Tab. 4.2 and Fig. 4.6).

Only the ORCA R2 is provided with all its input files in the NEMO distribu-
tion. It is very similar to that used as part of the climate model developed at IPSL
for the 4th IPCC assessment of climate change (Marti et al., 2009). It is also the ba-
sis for the NEMO contribution to the Coordinate Ocean-ice Reference Experiments
(COREs) documented in Griffies et al. [2009].

This version of ORCA R2 has 31 levels in the vertical, with the highest resolu-
tion (10m) in the upper 150m (see Tab. 4.2 and Fig. 4.6). The bottom topography
and the coastlines are derived from the global atlas of Smith and Sandwell (1997).
The default forcing uses the boundary forcing from Large and Yeager [2004] (see
§7.5.1), which was developed for the purpose of running global coupled ocean-

16.4. GYRE family: double gyre basin 295

ice simulations without an interactive atmosphere. This Large and Yeager [2004]
dataset is available through the GFDL web site. The ”normal year” of Large and
Yeager [2004] has been chosen of the NEMO distribution since release v3.3.

ORCA R2 pre-defined configuration can also be run with an AGRIF zoom
over the Agulhas current area (key agrif defined) and, by setting the appropriate
variables, see CONFIG/SHARED/namelist ref a regional Arctic or peri-Antarctic
configuration is extracted from an ORCA R2 or R05 configurations using sponge
layers at open boundaries.

16.4 GYRE family: double gyre basin

The GYRE configuration [Lévy et al. 2010] has been built to simulate the seasonal
cycle of a double-gyre box model. It consists in an idealized domain similar to
that used in the studies of Drijfhout [1994] and Hazeleger and Drijfhout [1998;
1999; 2000b;a], over which an analytical seasonal forcing is applied. This allows
to investigate the spontaneous generation of a large number of interacting, transient
mesoscale eddies and their contribution to the large scale circulation.

The domain geometry is a closed rectangular basin on the β-plane centred at∼
30◦Nand rotated by 45◦, 3180 km long, 2120 km wide and 4 km deep (Fig. 15.1).
The domain is bounded by vertical walls and by a flat bottom. The configuration
is meant to represent an idealized North Atlantic or North Pacific basin. The cir-
culation is forced by analytical profiles of wind and buoyancy fluxes. The applied
forcings vary seasonally in a sinusoidal manner between winter and summer ex-
trema [Lévy et al. 2010]. The wind stress is zonal and its curl changes sign at
22◦Nand 36◦N . It forces a subpolar gyre in the north, a subtropical gyre in the
wider part of the domain and a small recirculation gyre in the southern corner. The
net heat flux takes the form of a restoring toward a zonal apparent air temperature
profile. A portion of the net heat flux which comes from the solar radiation is al-
lowed to penetrate within the water column. The fresh water flux is also prescribed
and varies zonally. It is determined such as, at each time step, the basin-integrated
flux is zero. The basin is initialised at rest with vertical profiles of temperature and
salinity uniformly applied to the whole domain.

The GYRE configuration is set like an analytical configuration. Through ln read cfg=false
in namcfg namelist defined in the reference configuration CONFIG/GYRE/EXP00/namelist cfg
anaylitical definition of grid in GYRE is done in usrdef hrg, usrdef zgr routines.
Its horizontal resolution (and thus the size of the domain) is determined by setting
nn GYRE in namusr def :
jpiglo = 30× nn GYRE + 2
jpjglo = 20× nn GYRE + 2
Obviously, the namelist parameters have to be adjusted to the chosen resolution, see
the Configurations pages on the NEMO web site (Using NEMOConfigurations) .
In the vertical, GYRE uses the default 30 ocean levels (jpk=31) (Fig. 4.6).

The GYRE configuration is also used in benchmark test as it is very simple

http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html

296 Configurations

Figure 16.3: Snapshot of relative vorticity at the surface of the model domain in
GYRE R9, R27 and R54. From Lévy et al. [2010].

to increase its resolution and as it does not requires any input file. For example,
keeping a same model size on each processor while increasing the number of pro-
cessor used is very easy, even though the physical integrity of the solution can be
compromised. Benchmark is activate via ln bench=true in namusr def in namelist
CONFIG/GYRE/EXP00/namelist cfg.

16.5 AMM: atlantic margin configuration

The AMM, Atlantic Margins Model, is a regional model covering the Northwest
European Shelf domain on a regular lat-lon grid at approximately 12km horizontal
resolution. The appropriate &namcfg namelist is available in CONFIG/AMM12/EXP00/namelist cfg.
It is used to build the correct dimensions of the AMM domain.

This configuration tests several features of NEMO functionality specific to the
shelf seas. In particular, the AMM uses S-coordinates in the vertical rather than
z-coordinates and is forced with tidal lateral boundary conditions using a flather
boundary condition from the BDY module. The AMM configuration uses the
GLS (key zdfgls) turbulence scheme, the VVL non-linear free surface(key vvl)
and time-splitting (key dynspg ts).

In addition to the tidal boundary condition the model may also take open
boundary conditions from a North Atlantic model. Boundaries may be completely
omitted by setting ln bdy to false. Sample surface fluxes, river forcing and a sam-
ple initial restart file are included to test a realistic model run. The Baltic boundary
is included within the river input file and is specified as a river source. Unlike
ordinary river points the Baltic inputs also include salinity and temperature data.

A Curvilinear s−Coordinate Equations

Contents
A.1 The chain rule for s−coordinates 298
A.2 Continuity Equation in s−coordinates 298
A.3 Momentum Equation in s−coordinate 300
A.4 Tracer Equation . 304

298 Curvilinear s−Coordinate Equations

A.1 The chain rule for s−coordinates

In order to establish the set of Primitive Equation in curvilinear s-coordinates (i.e.
an orthogonal curvilinear coordinate in the horizontal and an Arbitrary Lagrangian
Eulerian (ALE) coordinate in the vertical), we start from the set of equations es-
tablished in §2.3.2 for the special case k = z and thus e3 = 1, and we introduce
an arbitrary vertical coordinate a = a(i, j, z, t). Let us define a new vertical scale
factor by e3 = ∂z/∂s (which now depends on (i, j, z, t)) and the horizontal slope
of s−surfaces by :

σ1 =
1

e1

∂z

∂i

∣∣∣∣
s

and σ2 =
1

e2

∂z

∂j

∣∣∣∣
s

(A.1)

The chain rule to establish the model equations in the curvilinear s−coordinate
system is:

∂•
∂t

∣∣∣∣
z

=
∂•
∂t

∣∣∣∣
s

− ∂•
∂s

∂s

∂t

∂•
∂i

∣∣∣∣
z

=
∂•
∂i

∣∣∣∣
s

− ∂•
∂s

∂s

∂i
=
∂•
∂i

∣∣∣∣
s

− e1

e3
σ1
∂•
∂s

∂•
∂j

∣∣∣∣
z

=
∂•
∂j

∣∣∣∣
s

− ∂•
∂s

∂s

∂j
=
∂•
∂j

∣∣∣∣
s

− e2

e3
σ2
∂•
∂s

∂•
∂z

=
1

e3

∂•
∂s

(A.2)

In particular applying the time derivative chain rule to z provides the expression
for ws, the vertical velocity of the s−surfaces referenced to a fix z-coordinate:

ws =
∂z

∂t

∣∣∣∣
s

=
∂z

∂s

∂s

∂t
= e3

∂s

∂t
(A.3)

A.2 Continuity Equation in s−coordinates

Using (A.2) and the fact that the horizontal scale factors e1 and e2 do not depend
on the vertical coordinate, the divergence of the velocity relative to the (i,j,z) co-
ordinate system is transformed as follows in order to obtain its expression in the

A.2. Continuity Equation in s−coordinates 299

curvilinear s−coordinate system:

∇ ·U = 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
z

+ ∂(e1 v)
∂j

∣∣∣
z

]
+ ∂w

∂z

= 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
s
− e1

e3
σ1

∂(e2 u)
∂s + ∂(e1 v)

∂j

∣∣∣
s
− e2

e3
σ2

∂(e1 v)
∂s

]
+ ∂w

∂s
∂s
∂z

= 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
s

+ ∂(e1 v)
∂j

∣∣∣
s

]
+ 1

e3

[
∂w
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]
= 1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s
− e2 u

∂e3
∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s
− e1v

∂e3
∂j

∣∣∣
s

]
+ 1
e3

[
∂w
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]
Noting that 1

e1
∂e3
∂i

∣∣∣
s

= 1
e1

∂2z
∂i ∂s

∣∣∣
s

= ∂
∂s

(
1
e1

∂z
∂i

∣∣
s

)
= ∂σ1

∂s and 1
e2

∂e3
∂j

∣∣∣
s

= ∂σ2
∂s , it

becomes:

∇ ·U = 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1
e3

[
∂w
∂s − u

∂σ1
∂s − v

∂σ2
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]
= 1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂
∂s [w − u σ1 − v σ2]

Here, w is the vertical velocity relative to the z−coordinate system. Introduc-
ing the dia-surface velocity component, ω, defined as the volume flux across the
moving s-surfaces per unit horizontal area:

ω = w − ws − σ1 u− σ2 v (A.5)

with ws given by (A.3), we obtain the expression for the divergence of the velocity
in the curvilinear s−coordinate system:

∇ ·U = 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + 1

e3
∂ws
∂s

= 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + 1

e3
∂
∂s

(
e3

∂s
∂t

)
= 1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + ∂

∂s
∂s
∂t + 1

e3
∂s
∂t
∂e3
∂s

= 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s

+ ∂(e1 e3 v)
∂j

∣∣∣
s

]
+ 1

e3
∂ω
∂s + 1

e3
∂e3
∂t

As a result, the continuity equation (2.1c) in the s−coordinates is:

1

e3

∂e3

∂t
+

1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣∣
s

+
∂(e1 e3 v)

∂j

∣∣∣∣
s

]
+

1

e3

∂ω

∂s
= 0 (A.7)

A additional term has appeared that take into account the contribution of the time
variation of the vertical coordinate to the volume budget.

300 Curvilinear s−Coordinate Equations

A.3 Momentum Equation in s−coordinate

Here we only consider the first component of the momentum equation, the gener-
alization to the second one being straightforward.

• Total derivative in vector invariant form
Let us consider (2.13), the first component of the momentum equation in the

vector invariant form. Its total z−coordinate time derivative, Du
Dt

∣∣
z

can be trans-
formed as follows in order to obtain its expression in the curvilinear s−coordinate
system:

Du
Dt

∣∣
z

= ∂u
∂t

∣∣
z
− ζ|z v + 1

2e1

∂(u2+v2)
∂i

∣∣∣
z

+ w ∂u
∂z

= ∂u
∂t

∣∣
z
− ζ|z v + 1

e1 e2

[
∂(e2 v)
∂i

∣∣∣
z
− ∂(e1 u)

∂j

∣∣∣
z

]
v + 1

2e1

∂(u2+v2)
∂i

∣∣∣
z

+ w ∂u
∂z

introducing the chain rule (A.2)

= ∂u
∂t

∣∣
z
− 1

e1 e2

[
∂(e2 v)
∂i

∣∣∣
s
− ∂(e1 u)

∂j

∣∣∣
s
− e1
e3
σ1

∂(e2 v)
∂s + e2

e3
σ2

∂(e1 u)
∂s

]
v

+ 1
2e1

(
∂(u2+v2)

∂i

∣∣∣
s
− e1

e3
σ1

∂(u2+v2)
∂s

)
+ w

e3
∂u
∂s

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ w
e3

∂u
∂s −

[
σ1
e3
∂v
∂s −

σ2
e3
∂u
∂s

]
v − σ1

2e3

∂(u2+v2)
∂s

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

[
w ∂u
∂s + σ1v

∂v
∂s − σ2v

∂u
∂s − σ1u

∂u
∂s − σ1v

∂v
∂s

]
= ∂u

∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

[w − σ2v − σ1u] ∂u
∂s

Introducing ω, the dia-a-surface velocity given by (A.5)

= ∂u
∂t

∣∣
z

+ ζ|s v + 1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

(ω − ws) ∂u∂s
Applying the time derivative chain rule (first equation of (A.2)) to u and using
(A.3) provides the expression of the last term of the right hand side,

ws
∂u
∂s = ∂s

∂t
∂u
∂s = ∂u

∂t

∣∣
s
− ∂u

∂t

∣∣
z

,

leads to the s−coordinate formulation of the total z−coordinate time derivative,
i.e. the total s−coordinate time derivative :

Du

Dt

∣∣∣∣
s

=
∂u

∂t

∣∣∣∣
s

+ ζ|s v +
1

2 e1

∂(u2 + v2)

∂i

∣∣∣∣
s

+
1

e3
ω
∂u

∂s
(A.9)

A.3. Momentum Equation in s−coordinate 301

Therefore, the vector invariant form of the total time derivative has exactly the
same mathematical form in z− and s−coordinates. This is not the case for the flux
form as shown in next paragraph.

• Total derivative in flux form
Let us start from the total time derivative in the curvilinear s−coordinate sys-

tem we have just establish. Following the procedure used to establish (2.11), it can
be transformed into :

Du
Dt

∣∣
s

= ∂u
∂t

∣∣
s
−ζ v + 1

2 e1

∂(u2+v2)
∂i + 1

e3
ω ∂u

∂s

= ∂u
∂t

∣∣
s

+ 1
e1 e2

(
∂(e2 uu)

∂i + ∂(e1 u v)
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2

(
∂(e2u)
∂i + ∂(e1v)

∂j

)
+ 1

e3
∂ω
∂s

]
− v
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
Introducing the vertical scale factor inside the horizontal derivative of the first two
terms (i.e. the horizontal divergence), it becomes :

Du
Dt

∣∣
s

= ∂u
∂t

∣∣
s

+ 1
e1 e2 e3

(
∂(e2e3 u2)

∂i + ∂(e1e3 uv)
∂j − e2uu

∂e3
∂i − e1uv

∂e3
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2e3

(
∂(e2e3 u)

∂i + ∂(e1e3 v)
∂j − e2u

∂e3
∂i − e1v

∂e3
∂j

)
− 1

e3
∂ω
∂s

]
− v
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
= ∂u

∂t

∣∣
s

+ 1
e1 e2 e3

(
∂(e2e3 uu)

∂i + ∂(e1e3 u v)
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2e3

(
∂(e2e3 u)

∂i + ∂(e1e3 v)
∂j

)
− 1

e3
∂ω
∂s

]
− v

e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
Introducing a more compact form for the divergence of the momentum fluxes, and
using (A.7), the s−coordinate continuity equation, it becomes :

= ∂u
∂t

∣∣
s

+ ∇ · (Uu)|s + u 1
e3
∂e3
∂t −

v
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
which leads to the s−coordinate flux formulation of the total s−coordinate time
derivative, i.e. the total s−coordinate time derivative in flux form :

Du

Dt

∣∣∣∣
s

=
1

e3

∂(e3 u)

∂t

∣∣∣∣
s

+ ∇ · (Uu)|s −
v

e1e2

(
v
∂e2

∂i
− u ∂e1

∂j

)
(A.11)

302 Curvilinear s−Coordinate Equations

which is the total time derivative expressed in the curvilinear s−coordinate system.
It has the same form as in the z−coordinate but for the vertical scale factor that has
appeared inside the time derivative which comes from the modification of (A.7),
the continuity equation.

• horizontal pressure gradient
The horizontal pressure gradient term can be transformed as follows:

− 1

ρo e1

∂p

∂i

∣∣∣∣
z

= − 1

ρoe1

[
∂p

∂i

∣∣∣∣
s

− e1

e3
σ1
∂p

∂s

]
= − 1

ρo e1

∂p

∂i

∣∣∣∣
s

+
σ1

ρo e3
(−g ρ e3)

= − 1

ρo e1

∂p

∂i

∣∣∣∣
s

− g ρ

ρo
σ1

Applying similar manipulation to the second component and replacing σ1 and σ2

by their expression (A.1), it comes:

− 1

ρo e1

∂p

∂i

∣∣∣∣
z

= − 1

ρo e1

(
∂p

∂i

∣∣∣∣
s

+ g ρ
∂z

∂i

∣∣∣∣
s

)
− 1

ρo e2

∂p

∂j

∣∣∣∣
z

= − 1

ρo e2

(
∂p

∂j

∣∣∣∣
s

+ g ρ
∂z

∂j

∣∣∣∣
s

) (A.12)

An additional term appears in (A.14) which accounts for the tilt of s−surfaces
with respect to geopotential z−surfaces.

As in z-coordinate, the horizontal pressure gradient can be split in two parts
following Marsaleix et al. [2008]. Let defined a density anomaly, d, by d = (ρ −
ρo)/ρo, and a hydrostatic pressure anomaly, p′h, by p′h = g

∫ η
z d e3 dk. The

pressure is then given by:

p = g

∫ η

z
ρ e3 dk = g

∫ η

z
(ρo d+ 1) e3 dk

= g ρo

∫ η

z
d e3 dk + g

∫ η

z
e3 dk

Therefore, p and p′h are linked through:

p = ρo p
′
h + g (z + η) (A.13)

and the hydrostatic pressure balance expressed in terms of p′h and d is:

∂p′h
∂k

= −d g e3

A.3. Momentum Equation in s−coordinate 303

Substituing (A.13) in (A.14) and using the definition of the density anomaly it
comes the expression in two parts:

− 1

ρo e1

∂p

∂i

∣∣∣∣
z

= − 1

e1

(
∂p′h
∂i

∣∣∣∣
s

+ g d
∂z

∂i

∣∣∣∣
s

)
− g

e1

∂η

∂i

− 1

ρo e2

∂p

∂j

∣∣∣∣
z

= − 1

e2

(
∂p′h
∂j

∣∣∣∣
s

+ g d
∂z

∂j

∣∣∣∣
s

)
− g

e2

∂η

∂j

(A.14)

This formulation of the pressure gradient is characterised by the appearance of a
term depending on the the sea surface height only (last term on the right hand side
of expression (A.14)). This term will be loosely termed surface pressure gradient
whereas the first term will be termed the hydrostatic pressure gradient by analogy
to the z-coordinate formulation. In fact, the the true surface pressure gradient is
1/ρo∇(ρη), and η is implicitly included in the computation of p′h through the upper
bound of the vertical integration.

• The other terms of the momentum equation
The coriolis and forcing terms as well as the the vertical physics remain un-

changed as they involve neither time nor space derivatives. The form of the lateral
physics is discussed in appendix B.

• Full momentum equation
To sum up, in a curvilinear s-coordinate system, the vector invariant momen-

tum equation solved by the model has the same mathematical expression as the one
in a curvilinear z−coordinate, except for the pressure gradient term :

∂u

∂t
= + (ζ + f) v − 1

2 e1

∂

∂i

(
u2 + v2

)
− 1

e3
ω
∂u

∂k

− 1

e1

(
∂p′h
∂i

+ g d
∂z

∂i

)
− g

e1

∂η

∂i
+DU

u + FU
u (A.15a)

∂v

∂t
= − (ζ + f) u− 1

2 e2

∂

∂j

(
u2 + v2

)
− 1

e3
ω
∂v

∂k

− 1

e2

(
∂p′h
∂j

+ g d
∂z

∂j

)
− g

e2

∂η

∂j
+DU

v + FU
v (A.15b)

whereas the flux form momentum equation differ from it by the formulation of
both the time derivative and the pressure gradient term :

1

e3

∂ (e3 u)

∂t
= ∇ · (Uu) +

{
f +

1

e1e2

(
v
∂e2

∂i
− u ∂e1

∂j

)}
v

− 1

e1

(
∂p′h
∂i

+ g d
∂z

∂i

)
− g

e1

∂η

∂i
+DU

u + FU
u (A.16a)

304 Curvilinear s−Coordinate Equations

1

e3

∂ (e3 v)

∂t
= −∇ · (U v) +

{
f +

1

e1e2

(
v
∂e2

∂i
− u ∂e1

∂j

)}
u

− 1

e2

(
∂p′h
∂j

+ g d
∂z

∂j

)
− g

e2

∂η

∂j
+DU

v + FU
v (A.16b)

Both formulation share the same hydrostatic pressure balance expressed in terms
of hydrostatic pressure and density anomalies, p′h and d = (ρρo − 1):

∂p′h
∂k

= −d g e3 (A.17)

It is important to realize that the change in coordinate system has only con-
cerned the position on the vertical. It has not affected (i,j,k), the orthogonal curvi-
linear set of unit vectors. (u,v) are always horizontal velocities so that their evolu-
tion is driven by horizontal forces, in particular the pressure gradient. By contrast,
ω is not w, the third component of the velocity, but the dia-surface velocity com-
ponent, i.e. the volume flux across the moving s-surfaces per unit horizontal area.

A.4 Tracer Equation

The tracer equation is obtained using the same calculation as for the continuity
equation and then regrouping the time derivative terms in the left hand side :

1

e3

∂ (e3T)

∂t
= − 1

e1 e2 e3

[
∂

∂i
(e2 e3 Tu) +

∂

∂j
(e1 e3 Tv)

]
+

1

e3

∂

∂k
(Tw) +DT + F T (A.18)

The expression for the advection term is a straight consequence of (A.4), the
expression of the 3D divergence in the s−coordinates established above.

B Appendix B : Diffusive Operators

Contents
B.1 Horizontal/Vertical 2nd Order Tracer Diffusive Operators 306
B.2 Iso/diapycnal 2nd Order Tracer Diffusive Operators 308
B.3 Lateral/Vertical Momentum Diffusive Operators 310

306 Appendix B : Diffusive Operators

B.1 Horizontal/Vertical 2nd Order Tracer Diffusive Operators

In z-coordinates

In z-coordinates, the horizontal/vertical second order tracer diffusion operator is
given by:

DT = 1
e1 e2

[
∂
∂i

(
e2
e1
AlT ∂T

∂i

∣∣
z

)∣∣∣
z

+ ∂
∂j

(
e1
e2
AlT ∂T

∂j

∣∣∣
z

)∣∣∣
z

]
+ ∂

∂z

(
AvT ∂T

∂z

)
(B.1)

In generalized vertical coordinates

In s-coordinates, we defined the slopes of s-surfaces, σ1 and σ2 by (A.1) and the
vertical/horizontal ratio of diffusion coefficient by ε = AvT /AlT . The diffusion
operator is given by:

DT = ∇|s ·
[
AlT < · ∇|s T

]
where < =

 1 0 −σ1

0 1 −σ2

−σ1 −σ2 ε+ σ2
1 + σ2

2

(B.2)

or in expanded form:

DT = 1
e1 e2 e3

[
e2 e3A

lT ∂
∂i

(
1
e1

∂T
∂i

∣∣
s
− σ1

e3
∂T
∂s

)∣∣∣
s

+e1 e3A
lT ∂

∂j

(
1
e2

∂T
∂j

∣∣∣
s
− σ2

e3
∂T
∂s

)∣∣∣
s

+e1 e2A
lT ∂

∂s

(
−σ1
e1

∂T
∂i

∣∣
s
− σ2

e2
∂T
∂j

∣∣∣
s

+
(
ε+ σ2

1 + σ2
2

)
1
e3

∂T
∂s

)]

Equation (B.2) is obtained from (B.1) without any additional assumption. In-
deed, for the special case k = z and thus e3 = 1, we introduce an arbitrary vertical
coordinate s = s(i, j, z) as in Appendix A and use (A.1) and (A.2). Since no cross
horizontal derivative ∂i∂j appears in (B.1), the (i,z) and (j,z) planes are indepen-
dent. The derivation can then be demonstrated for the (i,z)→ (j,s) transformation

B.1. Horizontal/Vertical 2nd Order Tracer Diffusive Operators 307

without any loss of generality:

DT = 1
e1 e2

∂
∂i

(
e2
e1
AlT ∂T

∂i

∣∣
z

)∣∣∣
z

+ ∂
∂z

(
AvT ∂T

∂z

)
= 1

e1 e2

[
∂
∂i

(
e2
e1
AlT

(
∂T
∂i

∣∣
s
− e1 σ1

e3
∂T
∂s

))∣∣∣
s

− e1 σ1
e3

∂
∂s

(
e2
e1
AlT

(
∂T
∂i

∣∣
s
− e1 σ1

e3
∂T
∂s

)∣∣∣
s

)]
+ 1

e3
∂
∂s

[
AvT

e3
∂T
∂s

]
= 1

e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s

)∣∣∣
s
− e2

e1
AlT ∂e3

∂i

∣∣∣
s

∂T
∂i

∣∣
s

−e3
∂
∂i

(
e2 σ1
e3

AlT ∂T
∂s

)∣∣∣
s
− e1 σ1

∂
∂s

(
e2
e1
AlT ∂T

∂i

∣∣
s

)
−e1 σ1

∂
∂s

(
− e2 σ1

e3
AlT ∂T

∂s

)
+ ∂
∂s

(
e1 e2
e3
AvT ∂T

∂s

)]
Noting that 1

e1
∂e3
∂i

∣∣∣
s

= ∂σ1
∂s , it becomes:

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1

AlT ∂T
∂i

∣∣
s

)∣∣∣
s
− e3

∂
∂i

(
e2 σ1
e3

AlT ∂T
∂s

)∣∣∣
s

−e2A
lT ∂σ1

∂s
∂T
∂i

∣∣
s
− e1 σ1

∂
∂s

(
e2
e1
AlT ∂T

∂i

∣∣
s

)
+e1 σ1

∂
∂s

(
e2 σ1
e3

AlT ∂T
∂s

)
+ ∂

∂s

(
e1 e2
e3
AvT ∂T

∂z

)]
= 1

e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s

)∣∣∣
s
− ∂
∂i

(
e2 σ1A

lT ∂T
∂s

)∣∣
s

+ e2 σ1
e3

AlT ∂T
∂s

∂e3
∂i

∣∣∣
s
− e2A

lT ∂σ1
∂s

∂T
∂i

∣∣
s

−e2 σ1
∂
∂s

(
AlT ∂T

∂i

∣∣
s

)
+ ∂

∂s

(
e1 e2 σ2

1
e3

AlT ∂T
∂s

)
−∂(e1 e2 σ1)

∂s

(
σ1
e3
AlT ∂T

∂s

)
+ ∂

∂s

(
e1 e2
e3
AvT ∂T

∂s

)]
using the same remark as just above, it becomes:

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s
− e2 σ1A

lT ∂T
∂s

)∣∣∣
s

+ e1 e2 σ1
e3

AlT ∂T
∂s

∂σ1
∂s −

σ1
e3
AlT ∂(e1 e2 σ1)

∂s
∂T
∂s

−e2

(
AlT ∂σ1

∂s
∂T
∂i

∣∣
s

+ ∂
∂s

(
σ1A

lT ∂T
∂i

∣∣
s

)
− ∂σ1

∂s AlT ∂T
∂i

∣∣
s

)
+ ∂
∂s

(
e1 e2 σ2

1
e3

AlT ∂T
∂s + e1 e2

e3
AvT ∂T

∂s

)]

308 Appendix B : Diffusive Operators

Since the horizontal scale factors do not depend on the vertical coordinate, the last
term of the first line and the first term of the last line cancel, while the second line
reduces to a single vertical derivative, so it becomes:

= 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1
AlT ∂T

∂i

∣∣
s
− e2 σ1A

lT ∂T
∂s

)∣∣∣
s

+ ∂
∂s

(
−e2 σ1A

lT ∂T
∂i

∣∣
s

+AlT e1 e2e3

(
ε+ σ2

1

)
∂T
∂s

)]
in other words, the horizontal/vertical Laplacian operator in the (i,s) plane takes
the following form:

1

e1 e2 e3

(
∂(e2e3•)

∂i

∣∣∣
s

∂(e1e2•)
∂s

)
·

[
AlT

(
1 −σ1

−σ1 ε+ σ2
1

)
·

(
1
e1

∂•
∂i

∣∣
s

1
e3

∂•
∂s

)
(T)

]

B.2 Iso/diapycnal 2nd Order Tracer Diffusive Operators

In z-coordinates

The iso/diapycnal diffusive tensor AI expressed in the (i,j,k) curvilinear coordinate
system in which the equations of the ocean circulation model are formulated, takes
the following form [Redi 1982]:

AI =
AlT(

1 + a2
1 + a2

2

)
 1 + a2

1 −a1a2 −a1

−a1a2 1 + a2
2 −a2

−a1 −a2 ε+ a2
1 + a2

2

 (B.3)

where (a1, a2) are the isopycnal slopes in (i, j) directions, relative to geopotentials:

a1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

, a2 =
e3

e2

(
∂ρ

∂j

)(
∂ρ

∂k

)−1

In practice, isopycnal slopes are generally less than 10−2 in the ocean, so AI
can be simplified appreciably [Cox 1987]:

AI ≈ AlT < where < =

 1 0 −a1

0 1 −a2

−a1 −a2 ε+ a2
1 + a2

2

 , (B.4a)

and the iso/dianeutral diffusive operator in z-coordinates is then

DT = ∇|z ·
[
AlT < · ∇|z T

]
. (B.4b)

Physically, the full tensor (B.3) represents strong isoneutral diffusion on a plane
parallel to the isoneutral surface and weak dianeutral diffusion perpendicular to

B.2. Iso/diapycnal 2nd Order Tracer Diffusive Operators 309

this plane. However, the approximate ‘weak-slope’ tensor (B.4a) represents strong
diffusion along the isoneutral surface, with weak vertical diffusion – the principal
axes of the tensor are no longer orthogonal. This simplification also decouples the
(i,z) and (j,z) planes of the tensor. The weak-slope operator therefore takes the
same form, (B.4), as (B.2), the diffusion operator for geopotential diffusion written
in non-orthogonal i, j, s-coordinates. Written out explicitly,

DT =
1

e1e2

{
∂

∂i

[
Ah

(
e2

e1

∂T

∂i
− a1

e2

e3

∂T

∂k

)]
+
∂

∂j

[
Ah

(
e1

e2

∂T

∂j
− a2

e1

e3

∂T

∂k

)] }
+

1

e3

∂

∂k

[
Ah

(
−a1

e1

∂T

∂i
− a2

e2

∂T

∂j
+

(
a2

1 + a2
2 + ε

)
e3

∂T

∂k

)]
.

(B.5)

The isopycnal diffusion operator (B.4), (B.5) conserves tracer quantity and dis-
sipates its square. The demonstration of the first property is trivial as (B.4) is the
divergence of fluxes. Let us demonstrate the second one:∫∫∫

D

T ∇. (AI∇T) dv = −
∫∫∫
D

∇T . (AI∇T) dv,

and since

∇T . (AI∇T) = AlT
[(

∂T
∂i

)2 − 2a1
∂T
∂i

∂T
∂k +

(
∂T
∂j

)2

− 2a2
∂T
∂j

∂T
∂k +

(
a2

1 + a2
2 + ε

) (
∂T
∂k

)2]
= Ah

[(
∂T
∂i − a1

∂T
∂k

)2
+
(
∂T
∂j − a2

∂T
∂k

)2
+ ε

(
∂T
∂k

)2]
≥ 0

the property becomes obvious.

In generalized vertical coordinates

Because the weak-slope operator (B.4), (B.5) is decoupled in the (i,z) and (j,z)
planes, it may be transformed into generalized s-coordinates in the same way as
(B.1) was transformed into (B.2). The resulting operator then takes the simple form

DT = ∇|s ·
[
AlT < · ∇|s T

]
where < =

 1 0 −r1

0 1 −r2

−r1 −r2 ε+ r2
1 + r2

2

 ,

(B.6)

310 Appendix B : Diffusive Operators

where (r1, r2) are the isopycnal slopes in (i, j) directions, relative to s-coordinate
surfaces:

r1 =
e3

e1

(
∂ρ

∂i

)(
∂ρ

∂s

)−1

, r2 =
e3

e2

(
∂ρ

∂j

)(
∂ρ

∂s

)−1

.

To prove (B.7) by direct re-expression of (B.5) is straightforward, but labo-
rious. An easier way is first to note (by reversing the derivation of (B.2) from
(B.1)) that the weak-slope operator may be exactly reexpressed in non-orthogonal
i, j, ρ-coordinates as

DT = ∇|ρ ·
[
AlT < · ∇|ρ T

]
where < =

 1 0 0
0 1 0
0 0 ε

 . (B.7)

Then direct transformation from i, j, ρ-coordinates to i, j, s-coordinates gives (B.6)
immediately.

Note that the weak-slope approximation is only made in transforming from the
(rotated,orthogonal) isoneutral axes to the non-orthogonal i, j, ρ-coordinates. The
further transformation into i, j, s-coordinates is exact, whatever the steepness of the
s-surfaces, in the same way as the transformation of horizontal/vertical Laplacian
diffusion in z-coordinates, (B.1) onto s-coordinates is exact, however steep the
s-surfaces.

B.3 Lateral/Vertical Momentum Diffusive Operators

The second order momentum diffusion operator (Laplacian) in the z-coordinate
is found by applying (2.7e), the expression for the Laplacian of a vector, to the
horizontal velocity vector :

∆Uh = ∇ (∇ · Uh)−∇× (∇× Uh)

=

1
e1
∂χ
∂i

1
e2
∂χ
∂j

1
e3
∂χ
∂k

−

1
e2
∂ζ
∂j −

1
e3

∂
∂k

(
1
e3
∂u
∂k

)
1
e3

∂
∂k

(
− 1
e3
∂v
∂k

)
− 1

e1
∂ζ
∂i

1
e1e2

[
∂
∂i

(
e2
e3
∂u
∂k

)
− ∂

∂j

(
− e1
e3
∂v
∂k

)]

=

 1
e1
∂χ
∂i −

1
e2
∂ζ
∂j

1
e2
∂χ
∂j + 1

e1
∂ζ
∂i

0

+
1

e3

∂
∂k

(
1
e3
∂u
∂k

)
∂
∂k

(
1
e3
∂v
∂k

)
∂χ
∂k −

1
e1e2

(
∂2(e2 u)
∂i∂k + ∂2(e1 v)

∂j∂k

)

B.3. Lateral/Vertical Momentum Diffusive Operators 311

Using (2.7b), the definition of the horizontal divergence, the third componant of
the second vector is obviously zero and thus :

∆Uh = ∇h (χ)−∇h × (ζ) +
1

e3

∂

∂k

(
1

e3

∂ Uh

∂k

)
Note that this operator ensures a full separation between the vorticity and hor-

izontal divergence fields (see Appendix C). It is only equal to a Laplacian applied
to each component in Cartesian coordinates, not on the sphere.

The horizontal/vertical second order (Laplacian type) operator used to diffuse
horizontal momentum in the z-coordinate therefore takes the following form :

DU = ∇h
(
Alm χ

)
−∇h ×

(
Alm ζ k

)
+

1

e3

∂

∂k

(
Avm

e3

∂Uh

∂k

)
(B.8)

that is, in expanded form:

DU
u =

1

e1

∂
(
Almχ

)
∂i

− 1

e2

∂
(
Almζ

)
∂j

+
1

e3

∂u

∂k

DU
v =

1

e2

∂
(
Almχ

)
∂j

+
1

e1

∂
(
Almζ

)
∂i

+
1

e3

∂v

∂k

Note Bene: introducing a rotation in (B.8) does not lead to a useful expression
for the iso/diapycnal Laplacian operator in the z-coordinate. Similarly, we did
not found an expression of practical use for the geopotential horizontal/vertical
Laplacian operator in the s-coordinate. Generally, (B.8) is used in both z- and s-
coordinate systems, that is a Laplacian diffusion is applied on momentum along
the coordinate directions.

C Discrete Invariants of the Equations

Contents
C.1 Introduction / Notations . 314
C.2 Continuous conservation 315
C.3 Discrete total energy conservation : vector invariant form . 318

C.3.1 Total energy conservation 318
C.3.2 Vorticity term (coriolis + vorticity part of the advection) 318
C.3.3 Pressure Gradient Term 322

C.4 Discrete total energy conservation : flux form 324
C.4.1 Total energy conservation 324
C.4.2 Coriolis and advection terms: flux form 325

C.5 Discrete enstrophy conservation 326
C.6 Conservation Properties on Tracers 328

C.6.1 Advection Term . 328
C.7 Conservation Properties on Lateral Momentum Physics . . 329

C.7.1 Conservation of Potential Vorticity 329
C.7.2 Dissipation of Horizontal Kinetic Energy 330
C.7.3 Dissipation of Enstrophy 331
C.7.4 Conservation of Horizontal Divergence 331
C.7.5 Dissipation of Horizontal Divergence Variance 331

C.8 Conservation Properties on Vertical Momentum Physics . . 332
C.9 Conservation Properties on Tracer Physics 335

C.9.1 Conservation of Tracers 335
C.9.2 Dissipation of Tracer Variance 336

314 Discrete Invariants of the Equations

C.1 Introduction / Notations

Notation used in this appendix in the demonstations :
fluxes at the faces of a T -box:

U = e2u e3u u V = e1v e3v v W = e1w e2w ω

volume of cells at u-, v-, and T -points:

bu = e1u e2u e3u bv = e1v e2v e3v bt = e1t e2t e3t

partial derivative notation: ∂• = ∂
∂•

dv = e1 e2 e3 di dj dk is the volume element, with only e3 that depends on
time. D and S are the ocean domain volume and surface, respectively. No wet-
ting/drying is allow (i.e. ∂S∂t = 0) Let ks and kb be the ocean surface and bottom,
resp. (i.e. s(ks) = η and s(kb) = −H , where H is the bottom depth).

z(k) = η −
k̃=ks∫
k̃=k

e3(k̃) dk̃ = η −
ks∫
k

e3 dk̃

Continuity equation with the above notation:

1

e3t
∂t(e3t) +

1

bt

{
δi[U] + δj [V] + δk[W]

}
= 0

A quantity, Q is conserved when its domain averaged time change is zero, that
is when:

∂t

(∫
D
Q dv

)
= 0

Noting that the coordinate system used blah blah

∂t

(∫
D
Q dv

)
=

∫
D
∂t (e3Q) e1e2 di dj dk =

∫
D

1

e3
∂t (e3Q) dv = 0

equation of evolution ofQwritten as the time evolution of the vertical content ofQ
like for tracers, or momentum in flux form, the quadratic quantity 1

2Q
2 is conserved

when :

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

1

2
∂t

(
1

e3
(e3Q)2

)
e1e2 di dj dk

=

∫
D
Q ∂t (e3Q) e1e2 di dj dk −

∫
D

1

2
Q2 ∂t(e3) e1e2 di dj dk

C.2. Continuous conservation 315

that is in a more compact form :

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

Q

e3
∂t (e3Q) dv − 1

2

∫
D

Q2

e3
∂t(e3) dv (C.1)

equation of evolution of Q written as the time evolution of Q like for momentum
in vector invariant form, the quadratic quantity 1

2Q
2 is conserved when :

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

1

2
∂t
(
e3Q

2
)
e1e2 di dj dk

=

∫
D
Q∂tQ e1e2e3 di dj dk +

∫
D

1

2
Q2 ∂te3 e1e2 di dj dk

that is in a more compact form :

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D
Q∂tQ dv +

1

2

∫
D

1

e3
Q2∂te3 dv (C.2)

C.2 Continuous conservation

The discretization of pimitive equation in s-coordinate (i.e. time and space vary-
ing vertical coordinate) must be chosen so that the discrete equation of the model
satisfy integral constrains on energy and enstrophy.

Let us first establish those constraint in the continuous world. The total energy
(i.e. kinetic plus potential energies) is conserved :

∂t

(∫
D

(
1

2
Uh

2 + ρ g z

)
dv

)
=0 (C.3)

under the following assumptions: no dissipation, no forcing (wind, buoyancy flux,
atmospheric pressure variations), mass conservation, and closed domain.

This equation can be transformed to obtain several sub-equalities. The transfor-
mation for the advection term depends on whether the vector invariant form or the
flux form is used for the momentum equation. Using (C.2) and introducing (A.15)
in (C.3) for the former form and Using (C.1) and introducing (A.16) in (C.3) for
the latter form leads to:

advection term (vector invariant form):∫
D

ζ (k× Uh) · Uh dv = 0 (C.4a)

∫
D

Uh · ∇h
(

Uh
2

2

)
dv +

∫
D

Uh · ∇zUh dv −
∫
D

Uh
2

2

1

e3
∂te3 dv = 0 (C.4b)

316 Discrete Invariants of the Equations

advection term (flux form):∫
D

1

e1e2
(v ∂ie2 − u ∂je1) (k× Uh) · Uh dv = 0 (C.4c)

∫
D

Uh ·
(
∇ · (Uu)
∇ · (U v)

)
dv +

1

2

∫
D

Uh
2 1

e3
∂te3 dv = 0 (C.4d)

coriolis term ∫
D

f (k× Uh) · Uh dv = 0 (C.4e)

pressure gradient:

−
∫
D

∇p|z · Uh dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv (C.4f)

where∇h = ∇|k is the gradient along the s-surfaces.
blah blah....

The prognostic ocean dynamics equation can be summarized as follows:

NXT =

(
VOR + KEG + ZAD

COR + ADV

)
+ HPG + SPG + LDF + ZDF

Vector invariant form: ∫
D

Uh · VOR dv = 0 (C.5a)

∫
D

Uh · KEG dv +

∫
D

Uh · ZAD dv −
∫
D

Uh
2

2

1

e3
∂te3 dv = 0 (C.5b)

−
∫
D

Uh · (HPG + SPG) dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv (C.5c)

Flux form: ∫
D

Uh · COR dv = 0 (C.6a)

∫
D

Uh · ADV dv +
1

2

∫
D

Uh
2 1

e3
∂te3 dv = 0 (C.6b)

C.2. Continuous conservation 317

−
∫
D

Uh · (HPG + SPG) dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv (C.6c)

(C.6c) is the balance between the conversion KE to PE and PE to KE. Indeed
the left hand side of (C.6c) can be transformed as follows:

∂t

∫
D

ρ g z dv

 = +

∫
D

1

e3
∂t(e3 ρ) g z dv +

∫
D

g ρ ∂tz dv

= −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv

= +

∫
D

ρ g

(
Uh · ∇hz + ω

1

e3
∂kz

)
dv +

∫
D

g ρ ∂tz dv

= +

∫
D

ρ g (ω + ∂tz + Uh · ∇hz) dv

= +

∫
D

g ρ w dv

where the last equality is obtained by noting that the brackets is exactly the ex-
pression of w, the vertical velocity referenced to the fixe z-coordinate system (see
(A.5)).

The left hand side of (C.6c) can be transformed as follows:

−
∫
D

∇p|z · Uh dv = −
∫
D

(∇hp+ ρ g∇hz) · Uh dv

= −
∫
D

∇hp · Uh dv −
∫
D

ρ g∇hz · Uh dv

= +

∫
D

p∇h · Uh dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

(
1

e3
∂te3 +

1

e3
∂kω

)
dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

e3
∂te3 dv +

∫
D

1

e3
∂kp ω dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g ω dv +

∫
D

ρ g (ω − w + ∂tz) dv

318 Discrete Invariants of the Equations

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g w dv +

∫
D

ρ g ∂tz dv

introducing the hydrostatic balance ∂kp = −ρ g e3 in the last term, it becomes:

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g w dv −
∫
D

1

e3
∂kp ∂tz dv

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g w dv +

∫
D

p

e3
∂t(∂kz)dv

= −
∫
D

ρ g w dv

C.3 Discrete total energy conservation : vector invariant form

C.3.1 Total energy conservation

The discrete form of the total energy conservation, (C.3), is given by:

∂t

∑
i,j,k

{
u2

2
bu +

v2

2
bv + ρ g zt bt

} = 0

which in vector invariant forms, it leads to:

∑
i,j,k

{
u ∂tu bu + v ∂tv bv

}
+

1

2

∑
i,j,k

{
u2

e3u
∂te3u bu +

v2

e3v
∂te3v bv

}

= −
∑
i,j,k

{
1

e3t
∂t(e3tρ) g zt bt

}
−
∑
i,j,k

{
ρ g ∂t(zt) bt

} (C.7)

Substituting the discrete expression of the time derivative of the velocity either
in vector invariant, leads to the discrete equivalent of the four equations (C.6).

C.3.2 Vorticity term (coriolis + vorticity part of the advection)

Let q, located at f -points, be either the relative (q = ζ/e3f), or the planetary
(q = f/e3f), or the total potential vorticity (q = (ζ + f)/e3f). Two discretisation
of the vorticity term (ENE and EEN) allows the conservation of the kinetic energy.

C.3. Discrete total energy conservation : vector invariant form 319

Vorticity Term with ENE scheme (ln dynvor ene=.true.)

For the ENE scheme, the two components of the vorticity term are given by :

−e3 q k× Uh ≡

 + 1
e1u

q (e1v e3v v)
i+1/2

j

− 1
e2v

q (e2u e3u u)
j+1/2

i

This formulation does not conserve the enstrophy but it does conserve the total

kinetic energy. Indeed, the kinetic energy tendency associated to the vorticity term
and averaged over the ocean domain can be transformed as follows:

∫
D

− (e3 q k× Uh) · Uh dv

≡
∑
i,j,k

{
1
e1u

q V
i+1/2

j

u bu − 1
e2v

q U
j+1/2

i

v bv

}
≡
∑
i,j,k

{
q V

i+1/2
j

U − q U
j+1/2

i

V

}
≡
∑
i,j,k

q

{
V
i+1/2

U
j+1/2 − U j+1/2

V
i+1/2

}
≡ 0

In other words, the domain averaged kinetic energy does not change due to the
vorticity term.

Vorticity Term with EEN scheme (ln dynvor een=.true.)

With the EEN scheme, the vorticity terms are represented as:

+q e3 v ≡ +

1

e1u

∑
ip, kp

i+1/2−ip
j Qip

jp
(e1ve3v v)

i+ip−1/2
j+jp

−q e3 u ≡ −
1

e2v

∑
ip, kp

i
j+1/2−jpQ

ip
jp

(e2ue3u u)
i+ip
j+jp−1/2

(C.8)

where the indices ip and jp take the following value: ip = −1/2 or 1/2 and jp =

−1/2 or 1/2, and the vorticity triads, ijQ
ip
jp

, defined at T -point, are given by:

j
iQ

ip
jp

=
1

12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(C.9)

320 Discrete Invariants of the Equations

This formulation does conserve the total kinetic energy. Indeed,∫
D

−Uh · (ζ k× Uh) dv

≡
∑
i,j,k

{∑
ip, kp

i+1/2−ip
j Qip

jp
V
i+1/2−ip
j+jp

U i+1/2
j −

∑
ip, kp

i
j+1/2−jpQ

ip
jp
U
i+ip
j+1/2−jp

V i
j+1/2

}

≡
∑
i,j,k

∑
ip, kp

{
i+1/2−ip
j Qip

jp
V
i+1/2−ip
j+jp

U
i+1/2
j − i

j+1/2−jpQ
ip
jp
U
i+ip
j+1/2−jp V

i
j+1/2

}

Expending the summation on ip and kp, it becomes:

≡
∑
i,j,k

{
i+1
j Q−1/2

+1/2 V
i+1
j+1/2 U

i+1/2
j − i

j Q−1/2
+1/2 U

i−1/2
j V i

j+1/2

+ i+1
j Q−1/2

−1/2 V
i+1
j−1/2 U

i+1/2
j − i

j+1Q
−1/2
−1/2 U

i−1/2
j+1 V i

j+1/2

+ i
j Q+1/2

+1/2 V
i
j+1/2 U

i+1/2
j − i

j Q+1/2
+1/2 U

i+1/2
j V i

j+1/2

+ i
j Q+1/2

−1/2 V
i
j−1/2 U

i+1/2
j − i

j+1Q
+1/2
−1/2 U

i+1/2
j+1 V i

j+1/2

}

The summation is done over all i and j indices, it is therefore possible to introduce
a shift of −1 either in i or j direction in some of the term of the summation (first
term of the first and second lines, second term of the second and fourth lines). By
doning so, we can regroup all the terms of the summation by triad at a (i,j) point.
In other words, we regroup all the terms in the neighbourhood that contain a triad
at the same (i,j) indices. It becomes:

≡
∑
i,j,k

{
i
jQ
−1/2
+1/2

[
V i
j+1/2 U

i−1/2
j − U i−1/2

j V i
j+1/2

]
+ i
jQ
−1/2
−1/2

[
V i
j−1/2 U

i−1/2
j − U i−1/2

j V i
j−1/2

]
+ i
jQ

+1/2
+1/2

[
V i
j+1/2 U

i+1/2
j − U i+1/2

j V i
j+1/2

]
+ i
jQ

+1/2
−1/2

[
V i
j−1/2 U

i+1/2
j − U i+1/2

j−1 V i
j−1/2

] }
≡ 0

C.3. Discrete total energy conservation : vector invariant form 321

Gradient of Kinetic Energy / Vertical Advection

The change of Kinetic Energy (KE) due to the vertical advection is exactly bal-
anced by the change of KE due to the horizontal gradient of KE :

∫
D

Uh ·
1

e3
ω∂kUh dv = −

∫
D

Uh · ∇h
(

1

2
Uh

2

)
dv +

1

2

∫
D

Uh
2

e3
∂t(e3) dv

Indeed, using successively (4.11) (i.e. the skew symmetry property of the δ op-
erator) and the continuity equation, then (4.11) again, then the commutativity of
operators · and δ, and finally (4.12) (i.e. the symmetry property of the · operator)
applied in the horizontal and vertical directions, it becomes:

−
∫
D

Uh · KEG dv = −
∫
D

Uh · ∇h
(

1

2
Uh

2

)
dv

≡−
∑
i,j,k

1

2

{
1

e1u
δi+1/2

[
u2

i
+ v2

j
]
u bu +

1

e2v
δj+1/2

[
u2

i
+ v2

j
]
v bv

}

≡+
∑
i,j,k

1

2

(
u2

i
+ v2

j
) {

δi [U] + δj [V]

}

≡−
∑
i,j,k

1

2

(
u2

i
+ v2

j
) { bt

e3t
∂t(e3t) + δk [W]

}
≡+

∑
i,j,k

1

2
δk+1/2

[
u2

i
+ v2

j
]
W −

∑
i,j,k

1

2

(
u2

i
+ v2

j
)
∂tbt

≡+
∑
i,j,k

1

2

(
δk+1/2 [u2]

i
+ δk+1/2 [v2]

j
)
W −

∑
i,j,k

(
u2

2
∂tbt

i+1/2
+
v2

2
∂tbt

j+1/2
)

Assuming that bu = bt
i+1/2

and bv = bt
j+1/2

, or at least that the time derivative
of these two equations is satisfied, it becomes:

≡
∑
i,j,k

1

2

{
W

i+1/2
δk+1/2

[
u2
]

+W
j+1/2

δk+1/2

[
v2
] }
−
∑
i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

≡
∑
i,j,k

{
W

i+1/2
u k+1/2 δk+1/2[u] +W

j+1/2
v k+1/2 δk+1/2[v]

}
−
∑
i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

≡
∑
i,j,k

{
1

bu
W

i+1/2
δk+1/2 [u]

k

u bu +
1

bv
W

j+1/2
δk+1/2 [v]

k

v bv

}
−
∑
i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

322 Discrete Invariants of the Equations

The first term provides the discrete expression for the vertical advection of mo-
mentum (ZAD), while the second term corresponds exactly to (C.7), therefore:

≡
∫
D

Uh · ZAD dv +
1

2

∫
D

Uh
2 1

e3
∂t(e3) dv

≡
∫
D

Uh · w∂kUh dv +
1

2

∫
D

Uh
2 1

e3
∂t(e3) dv

There is two main points here. First, the satisfaction of this property links the
choice of the discrete formulation of the vertical advection and of the horizontal
gradient of KE. Choosing one imposes the other. For example KE can also be
discretized as 1/2 (u i

2
+ v j

2
). This leads to the following expression for the

vertical advection:

1

e3
ω ∂kUh ≡

 1
e1u e2u e3u

e1t e2t ω δk+1/2

[
u i+1/2

] i+1/2,k

1
e1v e2v e3v

e1t e2t ω δk+1/2

[
v j+1/2

] j+1/2,k

a formulation that requires an additional horizontal mean in contrast with the one
used in NEMO. Nine velocity points have to be used instead of 3. This is the reason
why it has not been chosen.

Second, as soon as the chosen s-coordinate depends on time, an extra constraint
arises on the time derivative of the volume at u- and v-points:

e1u e2u ∂t(e3u) = e1t e2t ∂t(e3t)
i+1/2

e1v e2v ∂t(e3v) = e1t e2t ∂t(e3t)
j+1/2

which is (over-)satified by defining the vertical scale factor as follows:

e3u =
1

e1u e2u
e1t e2t e3t

i+1/2 (C.10)

e3v =
1

e1v e2v
e1t e2t e3t

j+1/2 (C.11)

Blah blah required on the the step representation of bottom topography.....

C.3.3 Pressure Gradient Term

When the equation of state is linear (i.e. when an advection-diffusion equation for
density can be derived from those of temperature and salinity) the change of KE
due to the work of pressure forces is balanced by the change of potential energy
due to buoyancy forces:

−
∫
D
∇p|z · Uh dv = −

∫
D
∇ · (ρU) g z dv +

∫
D
g ρ ∂t(z) dv

C.3. Discrete total energy conservation : vector invariant form 323

This property can be satisfied in a discrete sense for both z- and s-coordinates.
Indeed, defining the depth of a T -point, zt, as the sum of the vertical scale factors
at w-points starting from the surface, the work of pressure forces can be written as:

−
∫
D
∇p|z · Uh dv ≡

∑
i,j,k

{
− 1

e1u

(
δi+1/2[pt]− g ρ i+1/2 δi+1/2[zt]

)
u bu

− 1

e2v

(
δj+1/2[pt]− g ρ j+1/2δj+1/2[zt]

)
v bv

}

Using successively (4.11), i.e. the skew symmetry property of the δ operator, (6.4),
the continuity equation, (6.20), the hydrostatic equation in the s-coordinate, and
δk+1/2 [zt] ≡ e3w, which comes from the definition of zt, it becomes:

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +

(
δi[U] + δj [V]

) pt
g

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt]−

(
bt
e3t
∂t(e3t) + δk [W]

)
pt
g

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +

W

g
δk+1/2[pt]−

pt
g
∂tbt

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt]−W e3wρ

k+1/2 − pt
g
∂tbt

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +W ρ k+1/2 δk+1/2[zt]−

pt
g
∂tbt

}

≡−
∑
i,j,k

g zt

{
δi

[
U ρ i+1/2

]
+ δj

[
V ρ j+1/2

]
+ δk

[
W ρ k+1/2

]}
−
∑
i,j,k

{
pt ∂tbt

}

≡+
∑
i,j,k

g zt

{
∂t(e3t ρ)

}
bt −

∑
i,j,k

{
pt ∂tbt

}

The first term is exactly the first term of the right-hand-side of (C.7). It remains to
demonstrate that the last term, which is obviously a discrete analogue of

∫
D

p
e3
∂t(e3) dv

is equal to the last term of (C.7). In other words, the following property must be
satisfied: ∑

i,j,k

{
pt ∂tbt

}
≡
∑
i,j,k

{
ρ g ∂t(zt) bt

}
Let introduce pw the pressure at w-point such that δk[pw] = −ρ g e3t. The

right-hand-side of the above equation can be transformed as follows:

324 Discrete Invariants of the Equations

∑
i,j,k

{
ρ g ∂t(zt) bt

}
≡ −

∑
i,j,k

{
δk[pw] ∂t(zt) e1t e2t

}

≡ +
∑
i,j,k

{
pw δk+1/2[∂t(zt)] e1t e2t

}
≡ +

∑
i,j,k

{
pw ∂t(e3w) e1t e2t

}

≡ +
∑
i,j,k

{
pw ∂t(bw)

}
therefore, the balance to be satisfied is:∑

i,j,k

{
pt ∂t(bt)

}
≡
∑
i,j,k

{
pw ∂t(bw)

}
which is a purely vertical balance:∑

k

{
pt ∂t(e3t)

}
≡
∑
k

{
pw ∂t(e3w)

}
Defining pw = pt

k+1/2

Note that this property strongly constrains the discrete expression of both the
depth of T−points and of the term added to the pressure gradient in the s-coordinate.
Nevertheless, it is almost never satisfied since a linear equation of state is rarely
used.

C.4 Discrete total energy conservation : flux form

C.4.1 Total energy conservation

The discrete form of the total energy conservation, (C.3), is given by:

∂t

∑
i,j,k

{
u2

2
bu +

v2

2
bv + ρ g zt bt

} = 0

which in flux form, it leads to:∑
i,j,k

{
u

e3u

∂(e3uu)

∂t
bu +

v

e3v

∂(e3vv)

∂t
bv

}
− 1

2

∑
i,j,k

{
u2

e3u

∂e3u

∂t
bu +

v2

e3v

∂e3v

∂t
bv

}

= −
∑
i,j,k

{
1

e3t

∂e3tρ

∂t
g zt bt

}
−
∑
i,j,k

{
ρ g

∂zt
∂t

bt

}

Substituting the discrete expression of the time derivative of the velocity either
in vector invariant or in flux form, leads to the discrete equivalent of the

C.4. Discrete total energy conservation : flux form 325

C.4.2 Coriolis and advection terms: flux form

Coriolis plus “metric” Term

In flux from the vorticity term reduces to a Coriolis term in which the Coriolis
parameter has been modified to account for the “metric” term. This altered Coriolis
parameter is discretised at an f-point. It is given by:

f+
1

e1e2

(
v
∂e2

∂i
− u∂e1

∂j

)
≡ f+

1

e1f e2f

(
v i+1/2δi+1/2 [e2u]− u j+1/2δj+1/2 [e1u]

)
Either the ENE or EEN scheme is then applied to obtain the vorticity term in

flux form. It therefore conserves the total KE. The derivation is the same as for the
vorticity term in the vector invariant form (§C.3.2).

Flux form advection

The flux form operator of the momentum advection is evaluated using a centered
second order finite difference scheme. Because of the flux form, the discrete oper-
ator does not contribute to the global budget of linear momentum. Because of the
centered second order scheme, it conserves the horizontal kinetic energy, that is :

−
∫
D

Uh ·
(
∇ · (Uu)
∇ · (U v)

)
dv − 1

2

∫
D

Uh
2 1

e3

∂e3

∂t
dv = 0 (C.12)

Let us first consider the first term of the scalar product (i.e. just the the terms
associated with the i-component of the advection) :

−
∫
D
u · ∇ · (Uu) dv

≡−
∑
i,j,k

{
1

bu

(
δi+1/2

[
U
i
u i
]

+ δj

[
V
i+1/2

u j+1/2
]

+ δk

[
W

i+1/2
u k+1/2

]) }
bu u

≡−
∑
i,j,k

{
δi+1/2

[
U
i
u i
]

+ δj

[
V
i+1/2

u j+1/2
]

+ δk

[
W

i+12
u k+1/2

] }
u

≡+
∑
i,j,k

{
U
i
u iδi [u] + V

i+1/2
u j+1/2δj+1/2 [u] +W

i+1/2
u k+1/2δk+1/2 [u]

}

≡+
1

2

∑
i,j,k

{
U
i
δi
[
u2
]

+ V
i+1/2

δj+/2
[
u2
]

+W
i+1/2

δk+1/2

[
u2
]}

≡−
∑
i,j,k

1

2

{
U δi+1/2

[
u2

i
]

+ V δj+1/2

[
u2

i
]

+W δk+1/2

[
u2

i
]}

≡−
∑
i,j,k

1

2
u2

i
{
δi+1/2 [U] + δj+1/2 [V] + δk+1/2 [W]

}

326 Discrete Invariants of the Equations

≡+
∑
i,j,k

1

2
u2

i
{(

1

e3t

∂e3t

∂t

)
bt

}

Applying similar manipulation applied to the second term of the scalar product
leads to :

−
∫
D

Uh ·
(
∇ · (Uu)
∇ · (U v)

)
dv ≡ +

∑
i,j,k

1

2

(
u2

i
+ v2

j
){(1

e3t

∂e3t

∂t

)
bt

}
which is the discrete form of 1

2

∫
D u · ∇ · (Uu) dv. (C.12) is thus satisfied.

When the UBS scheme is used to evaluate the flux form momentum advection,
the discrete operator does not contribute to the global budget of linear momentum
(flux form). The horizontal kinetic energy is not conserved, but forced to decay
(i.e. the scheme is diffusive).

C.5 Discrete enstrophy conservation

Vorticity Term with ENS scheme (ln dynvor ens=.true.)

In the ENS scheme, the vorticity term is descretized as follows:
+

1

e1u
q i (e1v e3v v)

i,j+1/2

− 1

e2v
q j (e2u e3u u)

i+1/2,j
(C.13)

The scheme does not allow but the conservation of the total kinetic energy but
the conservation of q2, the potential enstrophy for a horizontally non-divergent flow
(i.e. when χ=0). Indeed, using the symmetry or skew symmetry properties of the
operators (Eqs (4.12) and (4.11)), it can be shown that:∫

D
q k · 1

e3
∇× (e3 q k× Uh) dv ≡ 0 (C.14)

where dv = e1 e2 e3 di dj dk is the volume element. Indeed, using (C.13), the
discrete form of the right hand side of (C.14) can be transformed as follow:∫

D
q k · 1

e3
∇× (e3 q k× Uh) dv

≡
∑
i,j,k

q

{
δi+1/2

[
− q i U

i,j+1/2
]
− δj+1/2

[
q j V

i+1/2,j
]}

≡
∑
i,j,k

{
δi[q] q

i U
i,j+1/2

+ δj [q] q
j V

i+1/2,j
}

≡ 1
2

∑
i,j,k

{
δi
[
q2
]
U
i,j+1/2

+ δj
[
q2
]
V
i+1/2,j

}
≡ −1

2

∑
i,j,k

q2

{
δi+1/2

[
U
i,j+1/2

]
+ δj+1/2

[
V
i+1/2,j

]}

C.5. Discrete enstrophy conservation 327

Since · and δ operators commute: δi+1/2

[
a i
]

= δi [a]
i+1/2

, and introducing the
horizontal divergence χ, it becomes:

≡
∑
i,j,k

−1
2q

2 e1t e2t e3t χ
i+1/2,j+1/2 ≡ 0

The later equality is obtain only when the flow is horizontally non-divergent, i.e.
χ=0.

Vorticity Term with EEN scheme (ln dynvor een=.true.)

With the EEN scheme, the vorticity terms are represented as:
+q e3 v ≡ +

1

e1u

∑
ip, kp

i+1/2−ip
j Qip

jp
(e1ve3v v)

i+ip−1/2
j+jp

−q e3 u ≡ −
1

e2v

∑
ip, kp

i
j+1/2−jpQ

ip
jp

(e2ue3u u)
i+ip
j+jp−1/2

(C.15)

where the indices ip and kp take the following value: ip = −1/2 or 1/2 and
jp = −1/2 or 1/2, and the vorticity triads, ijQ

ip
jp

, defined at T -point, are given by:

j
iQ

ip
jp

=
1

12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(C.16)

This formulation does conserve the potential enstrophy for a horizontally non-
divergent flow (i.e. χ = 0).

Let consider one of the vorticity triad, for example i
jQ

+1/2
+1/2, similar manipula-

tion can be done for the 3 others. The discrete form of the right hand side of (C.14)
applied to this triad only can be transformed as follow:

∫
D
q k · 1

e3
∇× (e3 q k× Uh) dv

≡
∑
i,j,k

q

{
δi+1/2

[
− i
jQ

+1/2
+1/2 U

i+1/2
j

]
− δj+1/2

[
i
jQ

+1/2
+1/2 V

i
j+1/2

] }

≡
∑
i,j,k

{
δi[q]

i
jQ

+1/2
+1/2 U

i+1/2
j + δj [q]

i
jQ

+1/2
+1/2 V

i
j+1/2

}
...

Demonstation to be done...

...

≡1

2

∑
i,j,k

{
δi

[(
i
jQ

+1/2
+1/2

)2]
U
i,j+1/2

+ δj

[(
i
jQ

+1/2
+1/2

)2]
V
i+1/2,j

}

328 Discrete Invariants of the Equations

≡− 1

2

∑
i,j,k

(
i
jQ

+1/2
+1/2

)2
{
δi+1/2

[
U
i,j+1/2

]
+ δj+1/2

[
V
i+1/2,j

]}
≡
∑
i,j,k

−1

2

(
i
jQ

+1/2
+1/2

)2
bt χ

i+1/2, j+1/2

≡ 0

C.6 Conservation Properties on Tracers

All the numerical schemes used in NEMO are written such that the tracer content
is conserved by the internal dynamics and physics (equations in flux form). For
advection, only the CEN2 scheme (i.e. 2nd order finite different scheme) conserves
the global variance of tracer. Nevertheless the other schemes ensure that the global
variance decreases (i.e. they are at least slightly diffusive). For diffusion, all the
schemes ensure the decrease of the total tracer variance, except the iso-neutral
operator. There is generally no strict conservation of mass, as the equation of state
is non linear with respect to T and S. In practice, the mass is conserved to a very
high accuracy.

C.6.1 Advection Term

conservation of a tracer, T :

∂

∂t

(∫
D
T dv

)
=

∫
D

1

e3

∂ (e3 T)

∂t
dv = 0

conservation of its variance:

∂

∂t

(∫
D

1

2
T 2 dv

)
=

∫
D

1

e3
Q
∂ (e3 T)

∂t
dv − 1

2

∫
D
T 2 1

e3

∂e3

∂t
dv

Whatever the advection scheme considered it conserves of the tracer content
as all the scheme are written in flux form. Indeed, let T be the tracer and τu,
τv, and τw its interpolated values at velocity point (whatever the interpolation is),
the conservation of the tracer content due to the advection tendency is obtained as
follows:∫
D

1

e3

∂ (e3 T)

∂t
dv = −

∫
D
∇ · (TU) dv

≡ −
∑
i,j,k

{
1

bt
(δi [U τu] + δj [V τv]) +

1

e3t
δk [w τw]

}
bt

≡ −
∑
i,j,k

{δi [U τu] + δj [V τv] + δk [W τw]}

≡ 0

C.7. Conservation Properties on Lateral Momentum Physics 329

The conservation of the variance of tracer due to the advection tendency can be
achieved only with the CEN2 scheme, i.e. when τu = T

i+1/2, τv = T
j+1/2, and

τw = T
k+1/2. It can be demonstarted as follows:∫

D

1

e3
Q
∂ (e3 T)

∂t
dv = −

∫
D

τ ∇ · (T U) dv

≡−
∑
i,j,k

T
{
δi

[
UT

i+1/2
]

+ δj

[
V T

j+1/2
]

+ δk

[
WT

k+1/2
]}

≡+
∑
i,j,k

{
UT

i+1/2
δi+1/2 [T] + V T

j+1/2
δj+1/2 [T] +WT

k+1/2
δk+1/2 [T]

}
≡+

1

2

∑
i,j,k

{
U δi+1/2

[
T 2
]

+ V δj+1/2

[
T 2
]

+W δk+1/2

[
T 2
]}

≡− 1

2

∑
i,j,k

T 2
{
δi [U] + δj [V] + δk [W]

}
≡+

1

2

∑
i,j,k

T 2
{ 1

e3t

∂e3t T

∂t

}

which is the discrete form of 1
2

∫
D T

2 1
e3
∂e3
∂t dv.

C.7 Conservation Properties on Lateral Momentum Physics

The discrete formulation of the horizontal diffusion of momentum ensures the con-
servation of potential vorticity and the horizontal divergence, and the dissipation of
the square of these quantities (i.e. enstrophy and the variance of the horizontal di-
vergence) as well as the dissipation of the horizontal kinetic energy. In particular,
when the eddy coefficients are horizontally uniform, it ensures a complete sepa-
ration of vorticity and horizontal divergence fields, so that diffusion (dissipation)
of vorticity (enstrophy) does not generate horizontal divergence (variance of the
horizontal divergence) and vice versa.

These properties of the horizontal diffusion operator are a direct consequence
of properties (4.9) and (4.10). When the vertical curl of the horizontal diffusion
of momentum (discrete sense) is taken, the term associated with the horizontal
gradient of the divergence is locally zero.

C.7.1 Conservation of Potential Vorticity

The lateral momentum diffusion term conserves the potential vorticity :∫
D

1

e3
k · ∇ ×

[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

330 Discrete Invariants of the Equations

=

∫
D

− 1

e3
k · ∇ ×

[
∇h ×

(
A lm ζ k

)]
dv

≡
∑
i,j

{
δi+1/2

[
e2v

e1v e3v
δi

[
A lm
f e3fζ

]]
+ δj+1/2

[
e1u

e2u e3u
δj

[
A lm
f e3fζ

]]}

Using (4.11), it follows:

≡
∑
i,j,k

−
{

e2v

e1v e3v
δi

[
A lm
f e3fζ

]
δi [1] +

e1u

e2u e3u
δj

[
A lm
f e3fζ

]
δj [1]

}
≡ 0

C.7.2 Dissipation of Horizontal Kinetic Energy

The lateral momentum diffusion term dissipates the horizontal kinetic energy:

∫
D

Uh · [∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

≡
∑
i,j,k

{
1

e1u
δi+1/2

[
A lm
T χ

]
− 1

e2u e3u
δj

[
A lm
f e3fζ

]}
e1u e2u e3u u

+

{
1

e2u
δj+1/2

[
A lm
T χ

]
+

1

e1v e3v
δi

[
A lm
f e3fζ

]}
e1v e2u e3v v

≡
∑
i,j,k

{
e2u e3u u δi+1/2

[
A lm
T χ

]
− e1u u δj

[
A lm
f e3fζ

]}
+
{
e1v e3v v δj+1/2

[
A lm
T χ

]
+ e2v v δi

[
A lm
f e3fζ

]}

≡
∑
i,j,k

−
(
δi [e2u e3u u] + δj [e1v e3v v]

)
A lm
T χ

−
(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
A lm
f e3fζ

≡
∑
i,j,k

−A lm
T χ2 e1t e2t e3t −A lm

f ζ2 e1f e2f e3f ≤ 0

C.7. Conservation Properties on Lateral Momentum Physics 331

C.7.3 Dissipation of Enstrophy

The lateral momentum diffusion term dissipates the enstrophy when the eddy co-
efficients are horizontally uniform:∫
D

ζ k · ∇ ×
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

= A lm

∫
D

ζk · ∇ × [∇h × (ζ k)] dv

≡ A lm
∑
i,j,k

ζ e3f

{
δi+1/2

[
e2v

e1v e3v
δi [e3fζ]

]
+ δj+1/2

[
e1u

e2u e3u
δj [e3fζ]

]}
Using (4.11), it follows:

≡ −A lm
∑
i,j,k

{(
1

e1v e3v
δi [e3fζ]

)2

bv +

(
1

e2u e3u
δj [e3fζ]

)2

bu

}
≤ 0

C.7.4 Conservation of Horizontal Divergence

When the horizontal divergence of the horizontal diffusion of momentum (discrete
sense) is taken, the term associated with the vertical curl of the vorticity is zero
locally, due to (4.10). The resulting term conserves the χ and dissipates χ2 when
the eddy coefficients are horizontally uniform.∫
D

∇h ·
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv =

∫
D

∇h · ∇h
(
A lm χ

)
dv

≡
∑
i,j,k

{
δi

[
A lm
u

e2u e3u

e1u
δi+1/2 [χ]

]
+ δj

[
A lm
v

e1v e3v

e2v
δj+1/2 [χ]

]}
Using (4.11), it follows:

≡
∑
i,j,k

−
{
e2u e3u

e1u
A lm
u δi+1/2 [χ] δi+1/2 [1] +

e1v e3v

e2v
A lm
v δj+1/2 [χ] δj+1/2 [1]

}
≡ 0

C.7.5 Dissipation of Horizontal Divergence Variance∫
D

χ ∇h ·
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv = A lm

∫
D

χ ∇h · ∇h (χ) dv

≡ A lm
∑
i,j,k

1

e1t e2t e3t
χ

{
δi

[
e2u e3u

e1u
δi+1/2 [χ]

]
+ δj

[
e1v e3v

e2v
δj+1/2 [χ]

]}
e1t e2t e3t

332 Discrete Invariants of the Equations

Using (4.11), it turns out to be:

≡ −A lm
∑
i,j,k

{(
1

e1u
δi+1/2 [χ]

)2

bu +

(
1

e2v
δj+1/2 [χ]

)2

bv

}
≤ 0

C.8 Conservation Properties on Vertical Momentum Physics

As for the lateral momentum physics, the continuous form of the vertical diffusion
of momentum satisfies several integral constraints. The first two are associated with
the conservation of momentum and the dissipation of horizontal kinetic energy:∫

D

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv = ~0

and ∫
D

Uh ·
1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv ≤ 0

The first property is obvious. The second results from:∫
D

Uh ·
1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv

≡
∑
i,j,k

(
u δk

[
A vm
u

e3uw
δk+1/2 [u]

]
e1u e2u + v δk

[
A vm
v

e3vw
δk+1/2 [v]

]
e1v e2v

)

since the horizontal scale factor does not depend on k, it follows:

≡ −
∑
i,j,k

(
A vm
u

e3uw

(
δk+1/2 [u]

)2
e1u e2u +

A vm
v

e3vw

(
δk+1/2 [v]

)2
e1v e2v

)
≤ 0

The vorticity is also conserved. Indeed:∫
D

1

e3
k · ∇ ×

(
1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

C.8. Conservation Properties on Vertical Momentum Physics 333

≡
∑
i,j,k

1

e3f

1

e1f e2f

{
δi+1/2

(
e2v

e3v
δk

[
1

e3vw
δk+1/2 [v]

])

−δj+1/2

(
e1u

e3u
δk

[
1

e3uw
δk+1/2 [u]

])}
e1f e2f e3f ≡ 0

If the vertical diffusion coefficient is uniform over the whole domain, the en-
strophy is dissipated, i.e.∫
D

ζ k · ∇ ×
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

This property is only satisfied in z-coordinates:∫
D

ζ k · ∇ ×
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

≡
∑
i,j,k

ζ e3f

{
δi+1/2

(
e2v

e3v
δk

[
A vm
v

e3vw
δk+1/2[v]

])

−δj+1/2

(
e1u

e3u
δk

[
A vm
u

e3uw
δk+1/2[u]

])}

≡
∑
i,j,k

ζ e3f

{
1

e3v
δk

[
A vm
v

e3vw
δk+1/2

[
δi+1/2 [e2v v]

]]

− 1

e3u
δk

[
A vm
u

e3uw
δk+1/2

[
δj+1/2 [e1u u]

]]}

Using the fact that the vertical diffusion coefficients are uniform, and that in z-
coordinate, the vertical scale factors do not depend on i and j so that: e3f = e3u =
e3v = e3t and e3w = e3uw = e3vw, it follows:

≡ A vm
∑
i,j,k

ζ δk

[
1

e3w
δk+1/2

[
δi+1/2 [e2v v]− δj+1/2 [e1u u]

]]

334 Discrete Invariants of the Equations

≡ −A vm
∑
i,j,k

1

e3w

(
δk+1/2 [ζ]

)2
e1f e2f ≤ 0

Similarly, the horizontal divergence is obviously conserved:

∫
D

∇ ·
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

and the square of the horizontal divergence decreases (i.e. the horizontal diver-
gence is dissipated) if the vertical diffusion coefficient is uniform over the whole
domain:

∫
D

χ ∇ ·
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

This property is only satisfied in the z-coordinate:∫
D

χ ∇ ·
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

≡
∑
i,j,k

χ

e1t e2t

{
δi+1/2

(
e2u

e3u
δk

[
A vm
u

e3uw
δk+1/2[u]

])

+δj+1/2

(
e1v

e3v
δk

[
A vm
v

e3vw
δk+1/2[v]

])}
e1t e2t e3t

≡ A vm
∑
i,j,k

χ

{
δi+1/2

(
δk

[
1

e3uw
δk+1/2 [e2u u]

])

+δj+1/2

(
δk

[
1

e3vw
δk+1/2 [e1v v]

])}

C.9. Conservation Properties on Tracer Physics 335

≡ −A vm
∑
i,j,k

δk+1/2 [χ]

e3w

{
δk+1/2

[
δi+1/2 [e2u u] + δj+1/2 [e1v v]

]}

≡ −A vm
∑
i,j,k

1

e3w
δk+1/2 [χ] δk+1/2 [e1t e2t χ]

≡ −A vm
∑
i,j,k

e1t e2t

e3w

(
δk+1/2 [χ]

)2 ≡ 0

C.9 Conservation Properties on Tracer Physics

The numerical schemes used for tracer subgridscale physics are written such that
the heat and salt contents are conserved (equations in flux form). Since a flux
form is used to compute the temperature and salinity, the quadratic form of these
quantities (i.e. their variance) globally tends to diminish. As for the advection
term, there is conservation of mass only if the Equation Of Seawater is linear.

C.9.1 Conservation of Tracers

constraint of conservation of tracers:∫
D

∇ · (A ∇T) dv

≡
∑
i,j,k

{
δi

[
A lT
u

e2u e3u

e1u
δi+1/2 [T]

]
+ δj

[
A lT
v

e1v e3v

e2v
δj+1/2 [T]

]

+ δk

[
A vT
w

e1t e2t

e3t
δk+1/2 [T]

]}
≡ 0

In fact, this property simply results from the flux form of the operator.

336 Discrete Invariants of the Equations

C.9.2 Dissipation of Tracer Variance

constraint on the dissipation of tracer variance:∫
D

T ∇ · (A ∇T) dv

≡
∑
i,j,k

T

{
δi

[
A lT
u

e2u e3u

e1u
δi+1/2 [T]

]
+δj

[
A lT
v

e1v e3v

e2v
δj+1/2 [T]

]

+δk

[
A vT
w

e1t e2t

e3t
δk+1/2 [T]

]}

≡ −
∑
i,j,k

{
A lT
u

(
1

e1u
δi+1/2 [T]

)2

e1u e2u e3u

+A lT
v

(
1

e2v
δj+1/2 [T]

)2

e1v e2v e3v

+A vT
w

(
1

e3w
δk+1/2 [T]

)2

e1w e2w e3w

}
≤ 0

D Iso-neutral diffusion and eddy advection using triads

Contents
D.1 Choice of namtra ldf namelist parameters 338

D.2 Triad formulation of iso-neutral diffusion 339

D.2.1 The iso-neutral diffusion operator 339

D.2.2 The standard discretization 340

D.2.3 Expression of the skew-flux in terms of triad slopes . . 341

D.2.4 The full triad fluxes 343

D.2.5 Ensuring the scheme does not increase tracer variance 344

D.2.6 Triad volumes in Griffes’s scheme and in NEMO . . . 345

D.2.7 Summary of the scheme 346

D.2.8 Treatment of the triads at the boundaries 347

D.2.9 Limiting of the slopes within the interior 349

D.2.10 Tapering within the surface mixed layer 349

D.3 Eddy induced advection formulated as a skew flux 352

D.3.1 The continuous skew flux formulation 352

D.3.2 The discrete skew flux formulation 354

D.3.3 Treatment of the triads at the boundaries 355

D.3.4 Limiting of the slopes within the interior 356

D.3.5 Tapering within the surface mixed layer 356

D.3.6 Streamfunction diagnostics 356

338 Iso-neutral diffusion and eddy advection using triads

D.1 Choice of namtra ldf namelist parameters
!---
&namtra_ldf ! lateral diffusion scheme for tracers (default: NO selection)
!---

! ! Operator type:
ln_traldf_NONE = .false. ! No explicit diffusion
ln_traldf_lap = .false. ! laplacian operator
ln_traldf_blp = .false. ! bilaplacian operator
!
! ! Direction of action:
ln_traldf_lev = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential)
ln_traldf_iso = .false. ! iso-neutral (standard operator)
ln_traldf_triad = .false. ! iso-neutral (triad operator)
!
! ! iso-neutral options:
ln_traldf_msc = .false. ! Method of Stabilizing Correction (both operators)
rn_slpmax = 0.01 ! slope limit (both operators)
ln_triad_iso = .false. ! pure horizontal mixing in ML (triad only)
rn_sw_triad = 1 ! =1 switching triad ; =0 all 4 triads used (triad only)
ln_botmix_triad = .false. ! lateral mixing on bottom (triad only)
!
! ! Coefficients:
nn_aht_ijk_t = 0 ! space/time variation of eddy coef
! ! =-20 (=-30) read in eddy_diffusivity_2D.nc (..._3D.nc) file
! ! = 0 constant
! ! = 10 F(k) =ldf_c1d
! ! = 20 F(i,j) =ldf_c2d
! ! = 21 F(i,j,t) =Treguier et al. JPO 1997 formulation
! ! = 30 F(i,j,k) =ldf_c2d * ldf_c1d
! ! = 31 F(i,j,k,t)=F(local velocity and grid-spacing)
rn_aht_0 = 2000. ! lateral eddy diffusivity (lap. operator) [m2/s]
rn_bht_0 = 1.e+12 ! lateral eddy diffusivity (bilap. operator) [m4/s]

/

Two scheme are available to perform the iso-neutral diffusion. If the namelist
logical ln traldf triad is set true, NEMO updates both active and passive tracers
using the Griffies triad representation of iso-neutral diffusion and the eddy-induced
advective skew (GM) fluxes. If the namelist logical ln traldf iso is set true, the
filtered version of Cox’s original scheme (the Standard scheme) is employed (§9.1).
In the present implementation of the Griffies scheme, the advective skew fluxes are
implemented even if ln traldf eiv is false.

Values of iso-neutral diffusivity and GM coefficient are set as described in §9.3.
Note that when GM fluxes are used, the eddy-advective (GM) velocities are output
for diagnostic purposes using xIOS, even though the eddy advection is accom-
plished by means of the skew fluxes.

The options specific to the Griffies scheme include:

ln triad iso See §D.2.10. If this is set false (the default), then ‘iso-neutral’ mix-
ing is accomplished within the surface mixed-layer along slopes linearly de-
creasing with depth from the value immediately below the mixed-layer to
zero (flat) at the surface (§D.2.10). This is the same treatment as used in
the default implementation §9.1.2; Fig. 9.2. Where ln triad iso is set true,
the vertical skew flux is further reduced to ensure no vertical buoyancy flux,
giving an almost pure horizontal diffusive tracer flux within the mixed layer.
This is similar to the tapering suggested by Gerdes et al. [1991]. See §D.2.10

ln botmix triad See §D.2.8. If this is set false (the default) then the lateral diffusive
fluxes associated with triads partly masked by topography are neglected. If
it is set true, however, then these lateral diffusive fluxes are applied, giving
smoother bottom tracer fields at the cost of introducing diapycnal mixing.

D.2. Triad formulation of iso-neutral diffusion 339

rn sw triad blah blah to be added....

The options shared with the Standard scheme include:

ln traldf msc blah blah to be added

rn slpmax blah blah to be added

D.2 Triad formulation of iso-neutral diffusion

We have implemented into NEMO a scheme inspired by Griffies et al. [1998], but
formulated within the NEMO framework, using scale factors rather than grid-sizes.

D.2.1 The iso-neutral diffusion operator

The iso-neutral second order tracer diffusive operator for small angles between
iso-neutral surfaces and geopotentials is given by (2.35):

DlT = −∇·f lT ≡ − 1

e1e2e3

[
∂

∂i

(
f lT1 e2e3

)
+

∂

∂j

(
f lT2 e2e3

)
+

∂

∂k

(
f lT3 e1e2

)]
,

(D.1a)
where the diffusive flux per unit area of physical space

f lT = −AlT< · ∇T, (D.1b)

with < =

1 0 −r1

0 1 −r2

−r1 −r2 r2
1 + r2

2

 and ∇T =

1
e1
∂T
∂i

1
e2
∂T
∂j

1
e3
∂T
∂k

 . (D.1c)

Here (2.36)

r1 = −e3

e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

= −e3

e1

(
−α∂T

∂i
+ β

∂S

∂i

)(
−α∂T

∂k
+ β

∂S

∂k

)−1

is the i-component of the slope of the iso-neutral surface relative to the computa-
tional surface, and r2 is the j-component.

We will find it useful to consider the fluxes per unit area in i, j, k space; we
write

Fiso =
(
f lT1 e2e3, f

lT
2 e1e3, f

lT
3 e1e2

)
. (D.2)

Additionally, we will sometimes write the contributions towards the fluxes f and
Fiso from the component Rij of < as fij , Fiso ij , with fij = Rije

−1
i ∂T/∂xi (no

summation) etc.

340 Iso-neutral diffusion and eddy advection using triads

The off-diagonal terms of the small angle diffusion tensor (2.35), (D.1c) pro-
duce skew-fluxes along the i- and j-directions resulting from the vertical tracer
gradient:

f13 = +AlT r1
1

e3

∂T

∂k
, f23 = +AlT r2

1

e3

∂T

∂k
(D.3)

and in the k-direction resulting from the lateral tracer gradients

f31 + f32 =AlT r1
1

e1

∂T

∂i
+AlT r2

1

e1

∂T

∂i
(D.4)

The vertical diffusive flux associated with the 33 component of the small angle
diffusion tensor is

f33 = −AlT (r2
1 + r2

2)
1

e3

∂T

∂k
. (D.5)

Since there are no cross terms involving r1 and r2 in the above, we can consider
the iso-neutral diffusive fluxes separately in the i-k and j-k planes, just adding
together the vertical components from each plane. The following description will
describe the fluxes on the i-k plane.

There is no natural discretization for the i-component of the skew-flux, (D.3),
as although it must be evaluated at u-points, it involves vertical gradients (both for
the tracer and the slope r1), defined at w-points. Similarly, the vertical skew flux,
(D.4), is evaluated atw-points but involves horizontal gradients defined at u-points.

D.2.2 The standard discretization

The straightforward approach to discretize the lateral skew flux (D.3) from tracer
cell i, k to i+ 1, k, introduced in 1995 into OPA, (5.10), is to calculate a mean ver-
tical gradient at the u-point from the average of the four surrounding vertical tracer
gradients, and multiply this by a mean slope at the u-point, calculated from the av-
eraged surrounding vertical density gradients. The total area-integrated skew-flux
(flux per unit area in ijk space) from tracer cell i, k to i + 1, k, noting that the
e3k
i+1/2

in the area e3
k
i+1/2e2i+1/2i

k at the u-point cancels out with the 1/e3
k
i+1/2

associated with the vertical tracer gradient, is then (5.10)

(
F 13
u

)k
i+ 1

2
= Ak

i+ 1
2

e2
k
i+1/2r1

i,k
δkT

i,k
,

where

r1
i,k

= −
e3u

k
i+1/2

e1u
k
i+1/2

δi+1/2[ρ]

δkρ
i,k

,

and here and in the following we drop the lT superscript from AlT for simplicity.

Unfortunately the resulting combination δk•
i,k

of a k average and a k difference

D.2. Triad formulation of iso-neutral diffusion 341

i,k i+1/2,k

i,k+1

i,k–1

i+1,k

i+1,k+1i–1,k+1

i–1,k

i–1,k–1

S1

S3

S2

S4

a

i+1,k–1

i,k

i,k+1
i,k+1/2

i,k–1

i+1,k

i+1,k+1
i–1,k+1

i–1,k

i–1,k–1

S′4

b

i+1,k–1

S′1

S′3

S′2T

w

u

Figure D.1: (a) Arrangement of triads Si and tracer gradients to give lateral tracer
flux from box i, k to i + 1, k (b) Triads S′i and tracer gradients to give vertical tracer
flux from box i, k to i, k + 1.

reduces to •k+1 − •k−1, so two-grid-point oscillations are invisible to this dis-
cretization of the iso-neutral operator. These computational modes will not be
damped by this operator, and may even possibly be amplified by it. Consequently,
applying this operator to a tracer does not guarantee the decrease of its global-
average variance. To correct this, we introduced a smoothing of the slopes of the
iso-neutral surfaces (see §9). This technique works for T and S in so far as they
are active tracers (i.e. they enter the computation of density), but it does not work
for a passive tracer.

D.2.3 Expression of the skew-flux in terms of triad slopes

[Griffies et al. 1998] introduce a different discretization of the off-diagonal terms
that nicely solves the problem. They get the skew flux from the products of the
vertical gradients at each w-point surrounding the u-point with the corresponding
‘triad’ slope calculated from the lateral density gradient across the u-point divided
by the vertical density gradient at the same w-point as the tracer gradient. See
Fig. D.1a, where the thick lines denote the tracer gradients, and the thin lines the
corresponding triads, with slopes s1, . . . s4. The total area-integrated skew-flux
from tracer cell i, k to i+ 1, k

(
F 13
u

)k
i+ 1

2
= Aki+1a1s1δk+ 1

2

[
T i+1

]
/e
k+ 1

2
3wi+1

+Aki a2s2δk+ 1
2

[
T i
]
/e
k+ 1

2
3wi+1

+Aki+1a3s3δk− 1
2

[
T i+1

]
/e
k+ 1

2
3wi+1

+Aki a4s4δk− 1
2

[
T i
]
/e
k+ 1

2
3wi+1

, (D.6)

where the contributions of the triad fluxes are weighted by areas a1, . . . a4, andA is
now defined at the tracer points rather than the u-points. This discretization gives
a much closer stencil, and disallows the two-point computational modes.

The vertical skew flux (D.4) from tracer cell i, k to i, k + 1 at the w-point
i, k + 1

2
is constructed similarly (Fig. D.1b) by multiplying lateral tracer gradients

342 Iso-neutral diffusion and eddy advection using triads

i,k+1

i+1,k

i+1,k+1

i+1/2,k

i,k+1/2

i,k

k +1 !1 2
i !1 2

"
#
$

%$

&
'
$

($

k +1 !1 2
i +1 2

"
#
$

%$

&
'
$

($

k +1 2
i +1 2

!
"
#

$#

%
&
#

'#

k !1 2
i +1 !1 2

"
#
$

%$

&
'
$

($

k !1 2
i +1 2

"
#
$

%$

&
'
$

($

k +1 2
i +1 !1 2

"
#
$

%$

&
'
$

($

T

w

u
k +1 2
i !1 2

"
#
$

%$

&
'
$

($

Figure D.2: Triad notation for quarter cells. T -cells are inside boxes, while the
i+ 1

2 , k u-cell is shaded in green and the i, k + 1
2 w-cell is shaded in pink.

from each of the four surrounding u-points by the appropriate triad slope:

(
F 31
w

)k+ 1
2

i
= Ak+1

i a′1s
′
1δi− 1

2

[
T k+1

]
/e3u

k+1
i− 1

2

+Ak+1
i a′2s

′
2δi+ 1

2

[
T k+1

]
/e3u

k+1
i+ 1

2

+Aki a
′
3s
′
3δi− 1

2

[
T k
]
/e3u

k
i− 1

2

+Aki a
′
4s
′
4δi+ 1

2

[
T k
]
/e3u

k
i+ 1

2

. (D.7)

We notate the triad slopes si and s′i in terms of the ‘anchor point’ i, k (appearing
in both the vertical and lateral gradient), and the u- and w-points (i+ ip, k), (i, k+
kp) at the centres of the ‘arms’ of the triad as follows (see also Fig. D.1):

k
iR

kp
ip

= −
e3w

k+kp
i

e1u
k
i+ip

αki δi+ip [T
k]− βki δi+ip [Sk]

αki δk+kp [T
i]− βki δk+kp [S

i]
. (D.8)

In calculating the slopes of the local neutral surfaces, the expansion coefficients α
and β are evaluated at the anchor points of the triad, while the metrics are calculated
at the u- and w-points on the arms.

Each triad {ki
kp
ip
} is associated (Fig. D.2) with the quarter cell that is the inter-

section of the i, k T -cell, the i+ip, k u-cell and the i, k+kp w-cell. Expressing the
slopes si and s′i in (D.6) and (D.7) in this notation, we have e.g. s1 = s′1 = k

iR
1/2
1/2.

Each triad slope k
iR

kp
ip

is used once (as an s) to calculate the lateral flux along its
u-arm, at (i + ip, k), and then again as an s′ to calculate the vertical flux along its
w-arm at (i, k+kp). Each vertical area ai used to calculate the lateral flux and hor-
izontal area a′i used to calculate the vertical flux can also be identified as the area
across the u- and w-arms of a unique triad, and we notate these areas, similarly to
the triad slopes, as kiAu

kp
ip

, kiAw
kp
ip

, where e.g. in (D.6) a1 = k
iAu

1/2
1/2, and in (D.7)

a′1 = k
iAw

1/2
1/2.

D.2. Triad formulation of iso-neutral diffusion 343

D.2.4 The full triad fluxes

A key property of iso-neutral diffusion is that it should not affect the (locally ref-
erenced) density. In particular there should be no lateral or vertical density flux.
The lateral density flux disappears so long as the area-integrated lateral diffusive
flux from tracer cell i, k to i+ 1, k coming from the 11 term of the diffusion tensor
takes the form

(
F 11
u

)k
i+ 1

2
= −

(
Ak+1
i a1 +Ak+1

i a2 +Aki a3 +Aki a4

) δi+1/2

[
T k
]

e1u
k
i+1/2

, (D.9)

where the areas ai are as in (D.6). In this case, separating the total lateral flux, the
sum of (D.6) and (D.9), into triad components, a lateral tracer flux

k
i Fu

kp
ip

(T) = −Aki kiAu
kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
(D.10)

can be identified with each triad. Then, because the same metric factors e3w
k+kp
i

and e1u
k
i+ip

are employed for both the density gradients in k
iR

kp
ip

and the tracer
gradients, the lateral density flux associated with each triad separately disappears.

Fu
kp
ip

(ρ) = −αki ki Fu
kp
ip

(T) + βki
k
i Fu

kp
ip

(S) = 0 (D.11)

Thus the total flux
(
F 31
u

)i
i,k+ 1

2
+
(
F 11
u

)i
i,k+ 1

2
from tracer cell i, k to i + 1, k must

also vanish since it is a sum of four such triad fluxes.
The squared slope r2

1 in the expression (D.5) for the 33 component is also ex-
pressed in terms of area-weighted squared triad slopes, so the area-integrated ver-
tical flux from tracer cell i, k to i, k + 1 resulting from the r2

1 term is(
F 33
w

)k+ 1
2

i
= −

(
Ak+1
i a′1s

′2
1 +Ak+1

i a′2s
′2
2 +Aki a

′
3s
′2
3 +Aki a

′
4s
′2
4

)
δk+ 1

2

[
T i+1

]
,

(D.12)
where the areas a′ and slopes s′ are the same as in (D.7). Then, separating the total
vertical flux, the sum of (D.7) and (D.12), into triad components, a vertical flux

k
i Fw

kp
ip

(T) = Aki
k
iAw

kp
ip

(
k
iR

kp
ip

δi+ip [T
k]

e1u
k
i+ip

−
(
k
iR

kp
ip

)2 δk+kp [T
i]

e3w
k+kp
i

)
(D.13)

= −
(
k
iAw

kp
ip

/
k
iAu

kp
ip

)
k
iR

kp
ip

k
i Fu

kp
ip

(T) (D.14)

may be associated with each triad. Each vertical density flux k
i Fw

kp
ip

(ρ) associated

with a triad then separately disappears (because the lateral flux k
i Fu

kp
ip

(ρ) disap-

pears). Consequently the total vertical density flux
(
F 31
w

)k+ 1
2

i
+
(
F 33
w

)k+ 1
2

i
from

tracer cell i, k to i, k+1 must also vanish since it is a sum of four such triad fluxes.

344 Iso-neutral diffusion and eddy advection using triads

We can explicitly identify (Fig. D.2) the triads associated with the si, ai, and s′i,
a′i used in the definition of the u-fluxes and w-fluxes in (D.7), (D.6), (D.9) (D.12)
and Fig. D.1 to write out the iso-neutral fluxes at u- and w-points as sums of the
triad fluxes that cross the u- and w-faces:

Fiso(T) ≡
∑
ip, kp

 k
i+1/2−ipFu

kp
ip

(T)

k+1/2−kp
i Fw

kp
ip

(T)

 . (D.15)

D.2.5 Ensuring the scheme does not increase tracer variance

We now require that this operator should not increase the globally-integrated tracer
variance. Each triad slope k

iR
kp
ip

drives a lateral flux k
i Fu

kp
ip

(T) across the u-point

i+ ip, k and a vertical flux k
i Fw

kp
ip

(T) across the w-point i, k+ kp. The lateral flux
drives a net rate of change of variance, summed over the two T -points i+ ip− 1

2 , k
and i+ ip + 1

2 , k, of

bT
k
i+ip−1/2

(
∂T

∂t
T

)k
i+ip−1/2

+ bT
k
i+ip+1/2

(
∂T

∂t
T

)k
i+ip+1/2

= −T ki+ip−1/2
k
i Fu

kp
ip

(T) + T ki+ip+1/2
k
i Fu

kp
ip

(T)

= k
i Fu

kp
ip

(T) δi+ip [T
k],

(D.16)

while the vertical flux similarly drives a net rate of change of variance summed
over the T -points i, k + kp − 1

2 (above) and i, k + kp + 1
2 (below) of

k
i Fw

kp
ip

(T) δk+kp [T
i]. (D.17)

The total variance tendency driven by the triad is the sum of these two. Expanding
k
i Fu

kp
ip

(T) and k
i Fw

kp
ip

(T) with (D.10) and (D.13), it is

−Aki

{
k
iAu

kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
δi+ip [T

k]

− k
iAw

kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
k
iR

kp
ip
δk+kp [T

i]

}
.

The key point is then that if we require k
iAu

kp
ip

and k
iAw

kp
ip

to be related to a triad

volume kiV
kp
ip

by

k
iV

kp
ip

= k
iAu

kp
ip
e1u

k
i+ip = k

iAw
kp
ip
e3w

k+kp
i , (D.18)

D.2. Triad formulation of iso-neutral diffusion 345

the variance tendency reduces to the perfect square

−Aki kiV
kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)2

≤ 0. (D.19)

Thus, the constraint (D.18) ensures that the fluxes (D.10, D.13) associated with a
given slope triad k

iR
kp
ip

do not increase the net variance. Since the total fluxes are
sums of such fluxes from the various triads, this constraint, applied to all triads, is
sufficient to ensure that the globally integrated variance does not increase.

The expression (D.18) can be interpreted as a discretization of the global inte-
gral

∂

∂t

∫
1
2T

2 dV =
∫

F · ∇T dV, (D.20)

where, within each triad volume kiV
kp
ip

, the lateral and vertical fluxes/unit area

F =
(
k
i Fu

kp
ip

(T)
/
k
iAu

kp
ip
, ki Fw

kp
ip

(T)
/
k
iAw

kp
ip

)
and the gradient

∇T =
(
δi+ip [T

k]
/
e1u

k
i+ip , δk+kp [T

i]
/
e3w

k+kp
i

)
D.2.6 Triad volumes in Griffes’s scheme and in NEMO

To complete the discretization we now need only specify the triad volumes kiV
kp
ip

.

Griffies et al. [1998] identify these k
iV

kp
ip

as the volumes of the quarter cells, de-
fined in terms of the distances between T , u,f and w-points. This is the natural
discretization of (D.20). The NEMO model, however, operates with scale factors
instead of grid sizes, and scale factors for the quarter cells are not defined. Instead,
therefore we simply choose

k
iV

kp
ip

= 1
4bu

k
i+ip , (D.21)

as a quarter of the volume of the u-cell inside which the triad quarter-cell lies. This
has the nice property that when the slopes R vanish, the lateral flux from tracer cell
i, k to i+ 1, k reduces to the classical form

−Aki+1/2

bu
k
i+1/2

e1u
k
i+ip

δi+1/2[T k]

e1u
k
i+ip

= −Aki+1/2

e1w
k
i+1/2 e1v

k
i+1/2 δi+1/2[T k]

e1u
k
i+1/2

.

(D.22)
In fact if the diffusive coefficient is defined at u-points, so that we employ Aki+ip
instead ofAki in the definitions of the triad fluxes (D.10) and (D.13), we can replace
A
k
i+1/2 by Aki+1/2 in the above.

346 Iso-neutral diffusion and eddy advection using triads

D.2.7 Summary of the scheme

The iso-neutral fluxes at u- and w-points are the sums of the triad fluxes that cross
the u- and w-faces (D.15):

Fiso(T) ≡
∑
ip, kp

 k
i+1/2−ipFu

kp
ip

(T)

k+1/2−kp
i Fw

kp
ip

(T)

 , (D.23a)

where (D.10):

k
i Fu

kp
ip

(T) = −Aki
k
iV

kp
ip

e1u
k
i+ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
, (D.23b)

and

k
i Fw

kp
ip

(T) = Aki

k
iV

kp
ip

e3w
k+kp
i

(
k
iR

kp
ip

δi+ip [T
k]

e1u
k
i+ip

−
(
k
iR

kp
ip

)2 δk+kp [T
i]

e3w
k+kp
i

)
, (D.23c)

with (D.21)
k
iV

kp
ip

= 1
4bu

k
i+ip . (D.23d)

The divergence of the expression (D.15) for the fluxes gives the iso-neutral
diffusion tendency at each tracer point:

DT
l =

1

bT

∑
ip, kp

{
δi

[
k
i+1/2−ipFu

kp
ip

]
+ δk

[
k+1/2−kp
i Fw

kp
ip

]}
(D.24)

where bT = e1T e2T e3T is the volume of T -cells. The diffusion scheme satisfies
the following six properties:

• horizontal diffusion The discretization of the diffusion operator recovers (D.22)
the traditional five-point Laplacian in the limit of flat iso-neutral direction :

DT
l =

1

bT
δi

[
e2u e3u

e1u
A
i
δi+1/2[T]

]
when k

iR
kp
ip

= 0 (D.25)

• implicit treatment in the vertical Only tracer values associated with a single
water column appear in the expression (D.12) for the 33 fluxes, vertical
fluxes driven by vertical gradients. This is of paramount importance since it
means that a time-implicit algorithm can be used to solve the vertical diffu-
sion equation. This is necessary since the vertical eddy diffusivity associated
with this term,

1

bw

∑
ip, kp

{
k
iV

kp
ip
Aki

(
k
iR

kp
ip

)2
}

=
1

4bw

∑
ip, kp

{
bu
k
i+ip A

k
i

(
k
iR

kp
ip

)2
}
,

(D.26)
(where bw = e1w e2w e3w is the volume of w-cells) can be quite large.

D.2. Triad formulation of iso-neutral diffusion 347

• pure iso-neutral operator The iso-neutral flux of locally referenced potential
density is zero. See (D.11) and (D.14).

• conservation of tracer The iso-neutral diffusion conserves tracer content, i.e.∑
i,j,k

{
DT
l bT

}
= 0 (D.27)

This property is trivially satisfied since the iso-neutral diffusive operator is
written in flux form.

• no increase of tracer variance The iso-neutral diffusion does not increase the
tracer variance, i.e. ∑

i,j,k

{
T DT

l bT
}
≤ 0 (D.28)

The property is demonstrated in §D.2.5 above. It is a key property for a
diffusion term. It means that it is also a dissipation term, i.e. it dissipates the
square of the quantity on which it is applied. It therefore ensures that, when
the diffusivity coefficient is large enough, the field on which it is applied
becomes free of grid-point noise.

• self-adjoint operator The iso-neutral diffusion operator is self-adjoint, i.e.∑
i,j,k

{
S DT

l bT
}

=
∑
i,j,k

{
DS
l T bT

}
(D.29)

In other word, there is no need to develop a specific routine from the adjoint
of this operator. We just have to apply the same routine. This property can
be demonstrated similarly to the proof of the ‘no increase of tracer variance’
property. The contribution by a single triad towards the left hand side of
(D.29), can be found by replacing δ[T] by δ[S] in (D.16) and (D.17). This
results in a term similar to (D.19),

−Aki kiV
kp
ip

(
δi+ip [T

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)(
δi+ip [S

k]

e1u
k
i+ip

− k
iR

kp
ip

δk+kp [S
i]

e3w
k+kp
i

)
.

(D.30)
This is symmetrical in T and S, so exactly the same term arises from the
discretization of this triad’s contribution towards the RHS of (D.29).

D.2.8 Treatment of the triads at the boundaries

The triad slope can only be defined where both the grid boxes centred at the end
of the arms exist. Triads that would poke up through the upper ocean surface
into the atmosphere, or down into the ocean floor, must be masked out. See
Fig. D.3. Surface layer triads 1

iR
−1/2
1/2 (magenta) and 1

i+1R
−1/2
−1/2 (blue) that re-

quire density to be specified above the ocean surface are masked (Fig. D.3a):

348 Iso-neutral diffusion and eddy advection using triads

this ensures that lateral tracer gradients produce no flux through the ocean sur-
face. However, to prevent surface noise, it is customary to retain the 11 contribu-
tions towards the lateral triad fluxes 1

iFu
−1/2
1/2 and 1

i+1Fu
−1/2
−1/2 ; this drives diapyc-

nal tracer fluxes. Similar comments apply to triads that would intersect the ocean
floor (Fig. D.3b). Note that both near bottom triad slopes kiR

1/2
1/2 and k

i+1R
1/2
−1/2 are

masked when either of the i, k + 1 or i + 1, k + 1 tracer points is masked, i.e. the
i, k + 1 u-point is masked. The associated lateral fluxes (grey-black dashed line)
are masked if ln botmix triad=false, but left unmasked, giving bottom mixing, if
ln botmix triad=true.

The default option ln botmix triad=false is suitable when the bbl mixing op-
tion is enabled (key trabbl, with nn bbl ldf =1), or for simple idealized problems.
For setups with topography without bbl mixing, ln botmix triad=true may be nec-
essary.

i+1,1

i,k

i,k–1

i,1

i+1,k

a

b

i,k–1

Figure D.3: (a) Uppermost model layer k = 1 with i, 1 and i + 1, 1 tracer points
(black dots), and i + 1/2, 1 u-point (blue square). Triad slopes 1

iR
−1/2
1/2 (magenta)

and 1
i+1R

−1/2
−1/2 (blue) poking through the ocean surface are masked (faded in figure).

However, the lateral 11 contributions towards 1
iFu

−1/2
1/2 and 1

i+1Fu
−1/2
−1/2 (yellow line)

are still applied, giving diapycnal diffusive fluxes.
(b) Both near bottom triad slopes k

iR
1/2
1/2 and k

i+1R
1/2
−1/2 are masked when either of the

i, k+ 1 or i+ 1, k+ 1 tracer points is masked, i.e. the i, k+ 1 u-point is masked. The
associated lateral fluxes (grey-black dashed line) are masked if botmix triad=.false.,
but left unmasked, giving bottom mixing, if botmix triad=.true.

D.2. Triad formulation of iso-neutral diffusion 349

D.2.9 Limiting of the slopes within the interior

As discussed in §9.1.2, iso-neutral slopes relative to geopotentials must be bounded
everywhere, both for consistency with the small-slope approximation and for nu-
merical stability [Cox 1987, Griffies 2004]. The bound chosen in NEMO is applied
to each component of the slope separately and has a value of 1/100 in the ocean
interior. It is of course relevant to the iso-neutral slopes r̃i = ri + σi relative
to geopotentials (here the σi are the slopes of the coordinate surfaces relative to
geopotentials) (2.39) rather than the slope ri relative to coordinate surfaces, so we
require

|r̃i| ≤ r̃max = 0.01.

and then recalculate the slopes ri relative to coordinates. Each individual triad
slope

k
i R̃

kp
ip

= k
iR

kp
ip

+
δi+ip [z

k
T]

e1u
k
i+ip

(D.31)

is limited like this and then the corresponding k
iR

kp
ip

are recalculated and combined
to form the fluxes. Note that where the slopes have been limited, there is now a
non-zero iso-neutral density flux that drives dianeutral mixing. In particular this
iso-neutral density flux is always downwards, and so acts to reduce gravitational
potential energy.

D.2.10 Tapering within the surface mixed layer

Additional tapering of the iso-neutral fluxes is necessary within the surface mixed
layer. When the Griffies triads are used, we offer two options for this.

Linear slope tapering within the surface mixed layer

This is the option activated by the default choice ln triad iso=false. Slopes r̃i
relative to geopotentials are tapered linearly from their value immediately below
the mixed layer to zero at the surface, as described in option (c) of Fig. 9.2, to
values

r̃ML i = − z
h
r̃i|z=−h for z > −h, (D.32a)

and then the ri relative to vertical coordinate surfaces are appropriately adjusted to

rML i = r̃ML i − σi for z > −h. (D.32b)

Thus the diffusion operator within the mixed layer is given by:

DlT = ∇.
(
AlT < ∇T

)
with < =

 1 0 −rML 1

0 1 −rML 2

−rML 1 −rML 2 r2
ML 1 + r2

ML 2

(D.33)

350 Iso-neutral diffusion and eddy advection using triads

This slope tapering gives a natural connection between tracer in the mixed-
layer and in isopycnal layers immediately below, in the thermocline. It is consistent
with the way the r̃i are tapered within the mixed layer (see §D.3.5 below) so as to
ensure a uniform GM eddy-induced velocity throughout the mixed layer. However,
it gives a downwards density flux and so acts so as to reduce potential energy in
the same way as does the slope limiting discussed above in §D.2.9.

As in §D.2.9 above, the tapering (D.32a) is applied separately to each triad
k
i R̃

kp
ip

, and the kiR
kp
ip

adjusted. For clarity, we assume z-coordinates in the following;

the conversion from R to R̃ and back to R follows exactly as described above by
(D.31).

1. Mixed-layer depth is defined so as to avoid including regions of weak vertical
stratification in the slope definition. At each i, j (simplified to i in Fig. D.4),
we define the mixed-layer by setting the vertical index of the tracer point
immediately below the mixed layer, kML, as the maximum k (shallowest
tracer point) such that the potential density ρ0i,k > ρ0i,k10

+ ∆ρc, where
i, k10 is the tracer gridbox within which the depth reaches 10 m. See the left
side of Fig. D.4. We use the k10-gridbox instead of the surface gridbox to
avoid problems e.g. with thin daytime mixed-layers. Currently we use the
same ∆ρc = 0.01 kg m−3 for ML triad tapering as is used to output the
diagnosed mixed-layer depth hML = |zW |kML+1/2, the depth of the w-point
above the i, kML tracer point.

2. We define ‘basal’ triad slopes iRbase
kp
ip

as the slopes of those triads whose
vertical ‘arms’ go down from the i, kML tracer point to the i, kML − 1 tracer
point below. This is to ensure that the vertical density gradients associated
with these basal triad slopes iRbase

kp
ip

are representative of the thermocline.
The four basal triads defined in the bottom part of Fig. D.4 are then

iRbase
kp
ip

=
kML−kp−1/2
i Rbase

kp
ip
, (D.34)

with e.g. the green triad

iRbase
−1/2
1/2 = kML

i Rbase
−1/2
1/2 .

The vertical flux associated with each of these triads passes through the w-
point i, kML − 1/2 lying below the i, kML tracer point, so it is this depth

zbase i = zwkML−1/2 (D.35)

(one gridbox deeper than the diagnosed ML depth zML) that sets the h used
to taper the slopes in (D.32a).

3. Finally, we calculate the adjusted triads k
iRML

kp
ip

within the mixed layer, by

multiplying the appropriate iRbase
kp
ip

by the ratio of the depth of the w-point

D.2. Triad formulation of iso-neutral diffusion 351

zwk+kp to zbase i. For instance the green triad centred on i, k

k
iRML

−1/2
1/2 =

zwk−1/2

zbase i
iRbase

−1/2
1/2

and more generally

k
iRML

kp
ip

=
zwk+kp

zbase i
iRbase

kp
ip
. (D.36)

Figure D.4: Definition of mixed-layer
depth and calculation of linearly ta-
pered triads. The figure shows a wa-
ter column at a given i, j (simplified to
i), with the ocean surface at the top.
Tracer points are denoted by bullets,
and black lines the edges of the tracer
cells; k increases upwards.
We define the mixed-layer by setting
the vertical index of the tracer point
immediately below the mixed layer,
kML, as the maximum k (shallow-
est tracer point) such that ρ0i,k >
ρ0i,k10

+ ∆ρc, where i, k10 is the
tracer gridbox within which the depth
reaches 10 m. We calculate the
triad slopes within the mixed layer
by linearly tapering them from zero
(at the surface) to the ‘basal’ slopes,
the slopes of the four triads passing
through the w-point i, kML−1/2 (blue
square), iRbase

kp

ip
. Triads with differ-

ent ip, kp, denoted by different colours,
(e.g. the green triad ip = 1/2, kp =
−1/2) are tapered to the appropriate
basal triad.

i,k–1

i,k

i,kML

i,kML –1

i,k10m

10m

Δρ0 > Δρc

zbase = zw kML – 1/2

z = zw k–1/2

z = zw k+1/2

i
kRML1/2!1/2

iRbase 1/2
!1/2

Additional truncation of skew iso-neutral flux components

The alternative option is activated by setting ln triad iso = true. This retains the
same tapered slope rML i described above for the calculation of the 33 term of

352 Iso-neutral diffusion and eddy advection using triads

the iso-neutral diffusion tensor (the vertical tracer flux driven by vertical tracer
gradients), but replaces the rML i in the skew term by

r∗ML i = r̃2
ML i

/
r̃i − σi, (D.37)

giving a ML diffusive operator

DlT = ∇.
(
AlT < ∇T

)
with < =

 1 0 −r∗ML 1

0 1 −r∗ML 2

−r∗ML 1 −r∗ML 2 r2
ML 1 + r2

ML 2

 .

(D.38)
This operator 1 then has the property it gives no vertical density flux, and so does
not change the potential energy. This approach is similar to multiplying the iso-
neutral diffusion coefficient by r̃−2

maxr̃
−2
i for steep slopes, as suggested by Gerdes

et al. [1991] (see also Griffies [2004]). Again it is applied separately to each triad
k
iR

kp
ip
In practice, this approach gives weak vertical tracer fluxes through the mixed-

layer, as well as vanishing density fluxes. While it is theoretically advantageous
that it does not change the potential energy, it may give a discontinuity between the
fluxes within the mixed-layer (purely horizontal) and just below (along iso-neutral
surfaces).

D.3 Eddy induced advection formulated as a skew flux

D.3.1 The continuous skew flux formulation

When Gent and McWilliams’s [1990] diffusion is used, an additional advection
term is added. The associated velocity is the so called eddy induced velocity, the
formulation of which depends on the slopes of iso- neutral surfaces. Contrary to the
case of iso-neutral mixing, the slopes used here are referenced to the geopotential
surfaces, i.e. (9.1) is used in z-coordinate, and the sum (9.1) + (9.2) in z∗ or s-
coordinates.

The eddy induced velocity is given by:

u∗ = − 1

e3
∂iψ1,

v∗ = − 1

e3
∂jψ2,

w∗ =
1

e1e2
{∂i (e2 ψ1) + ∂j (e1 ψ2)} ,

(D.39a)

where the streamfunctions ψi are given by

ψ1 = Ae r̃1,

ψ2 = Ae r̃2,
(D.39b)

1To ensure good behaviour where horizontal density gradients are weak, we in fact follow Gerdes
et al. [1991] and set r∗ML i = sgn(r̃i)min(|r̃2

ML i/r̃i|, |r̃i|)− σi.

D.3. Eddy induced advection formulated as a skew flux 353

with Ae the eddy induced velocity coefficient, and r̃1 and r̃2 the slopes between
the iso-neutral and the geopotential surfaces.

The traditional way to implement this additional advection is to add it to the
Eulerian velocity prior to computing the tracer advection. This is implemented
if key traldf eiv is set in the default implementation, where ln traldf triad is set
false. This allows us to take advantage of all the advection schemes offered for the
tracers (see §5.1) and not just a 2nd order advection scheme. This is particularly
useful for passive tracers where positivity of the advection scheme is of paramount
importance.

However, when ln traldf triad is set true, NEMO instead implements eddy in-
duced advection according to the so-called skew form [Griffies 1998]. It is based
on a transformation of the advective fluxes using the non-divergent nature of the
eddy induced velocity. For example in the (i,k) plane, the tracer advective fluxes
per unit area in ijk space can be transformed as follows:

FTeiv =

(
e2 e3 u

∗

e1 e2 w
∗

)
T =

(
−∂k (e2 ψ1) T
+∂i (e2 ψ1) T

)
=

(
−∂k (e2 ψ1 T)
+∂i (e2 ψ1 T)

)
+

(
+e2 ψ1 ∂kT
−e2 ψ1 ∂iT

)
and since the eddy induced velocity field is non-divergent, we end up with the skew
form of the eddy induced advective fluxes per unit area in ijk space:

FTeiv =

(
+e2 ψ1 ∂kT
−e2 ψ1 ∂iT

)
(D.40)

The total fluxes per unit physical area are then

f∗1 =
1

e3
ψ1∂kT

f∗2 =
1

e3
ψ2∂kT

f∗3 = − 1

e1e2
{e2ψ1∂iT + e1ψ2∂jT} .

(D.41)

Note that Eq. (D.41) takes the same form whatever the vertical coordinate, though
of course the slopes r̃i which define the ψi in (D.39b) are relative to geopotentials.
The tendency associated with eddy induced velocity is then simply the convergence
of the fluxes (D.40, D.41), so

∂T

∂t
= − 1

e1 e2 e3

[
∂

∂i
(e2ψ1∂kT) +

∂

∂j
(e1 ψ2∂kT)− ∂

∂k
(e2ψ1∂iT + e1ψ2∂jT)

]
(D.42)

It naturally conserves the tracer content, as it is expressed in flux form. Since it has
the same divergence as the advective form it also preserves the tracer variance.

354 Iso-neutral diffusion and eddy advection using triads

D.3.2 The discrete skew flux formulation

The skew fluxes in (D.41, D.40), like the off-diagonal terms (D.3, D.4) of the small
angle diffusion tensor, are best expressed in terms of the triad slopes, as in Fig. D.1
and Eqs (D.6, D.7); but now in terms of the triad slopes R̃ relative to geopotentials
instead of the R relative to coordinate surfaces. The discrete form of (D.40) using
the slopes (D.8) and defining Ae at T -points is then given by:

Feiv(T) ≡
∑
ip, kp

 k
i+1/2−ipSu

kp
ip

(T)

k+1/2−kp
i Sw

kp
ip

(T)

 , (D.43a)

where the skew flux in the i-direction associated with a given triad is (D.10, D.23b):

k
i Su

kp
ip

(T) = +1
4Ae

k
i

bu
k
i+ip

e1u ki+ip

k
i R̃

kp
ip

δk+kp [T i]

e3w
k+kp
i

, (D.43b)

and (D.23c) in the k-direction, changing the sign to be consistent with (D.40):

k
i Sw

kp
ip

(T) = −1
4Ae

k
i

bu
k
i+ip

e3w
k+kp
i

k
i R̃

kp
ip

δi+ip [Tk]

e1u ki+ip
. (D.43c)

Such a discretisation is consistent with the iso-neutral operator as it uses the
same definition for the slopes. It also ensures the following two key properties.

No change in tracer variance

The discretization conserves tracer variance, i.e. it does not include a diffusive
component but is a ‘pure’ advection term. This can be seen by considering the
fluxes associated with a given triad slope k

iR
kp
ip

(T). For, following §D.2.5 and

(D.16), the associated horizontal skew-flux k
i Su

kp
ip

(T) drives a net rate of change of
variance, summed over the two T -points i+ ip − 1

2 , k and i+ ip + 1
2 , k, of

k
i Su

kp
ip

(T) δi+ip [T
k], (D.44)

while the associated vertical skew-flux gives a variance change summed over the
T -points i, k + kp − 1

2 (above) and i, k + kp + 1
2 (below) of

k
i Sw

kp
ip

(T) δk+kp [T
i]. (D.45)

Inspection of the definitions (D.43b, D.43c) shows that these two variance changes
(D.44, D.45) sum to zero. Hence the two fluxes associated with each triad make no
net contribution to the variance budget.

D.3. Eddy induced advection formulated as a skew flux 355

Reduction in gravitational PE

The vertical density flux associated with the vertical skew-flux always has the same
sign as the vertical density gradient; thus, so long as the fluid is stable (the vertical
density gradient is negative) the vertical density flux is negative (downward) and
hence reduces the gravitational PE.

For the change in gravitational PE driven by the k-flux is

ge3w
k+kp
i Sw

kp
ip

(ρ) = ge3w
k+kp
i

[
−αki ki Sw

kp
ip

(T) + βki
k
i Sw

kp
ip

(S)
]
.

Substituting k
i Sw

kp
ip

from (D.43c), gives

= −1
4gAe

k
i bu

k
i+ip

k
i R̃

kp
ip

−αki δi+ip [Tk]+βki δi+ip [Sk]

e1u ki+ip

= +1
4gAe

k
i bu

k
i+ip

(
k
iR

kp
ip

+
δi+ip [zkT]

e1u ki+ip

)
k
iR

kp
ip

−αki δk+kp [T i]+βki δk+kp [Si]

e3w
k+kp
i

,

(D.46)

using the definition of the triad slope k
iR

kp
ip

, (D.8) to express −αki δi+ip [T k] +

βki δi+ip [S
k] in terms of −αki δk+kp [T

i] + βki δk+kp [S
i].

Where the coordinates slope, the i-flux gives a PE change

gδi+ip [z
k
T]
[
−αki ki Su

kp
ip

(T) + βki
k
i Su

kp
ip

(S)
]

= +1
4gAe

k
i bu

k
i+ip

δi+ip [zkT]

e1u ki+ip

(
k
iR

kp
ip

+
δi+ip [zkT]

e1u ki+ip

)
−αki δk+kp [T i]+βki δk+kp [Si]

e3w
k+kp
i

,

(D.47)

(using (D.43b)) and so the total PE change (D.46) + (D.47) associated with the
triad fluxes is

ge3w
k+kp
i Sw

kp
ip

(ρ) + gδi+ip [z
k
T] ki Su

kp
ip

(ρ)

= +1
4gAe

k
i bu

k
i+ip

(
k
iR

kp
ip

+
δi+ip [zkT]

e1u ki+ip

)2
−αki δk+kp [T i]+βki δk+kp [Si]

e3w
k+kp
i

. (D.48)

Where the fluid is stable, with −αki δk+kp [T
i] + βki δk+kp [S

i] < 0, this PE change
is negative.

D.3.3 Treatment of the triads at the boundaries

Triad slopes k
i R̃

kp
ip

used for the calculation of the eddy-induced skew-fluxes are

masked at the boundaries in exactly the same way as are the triad slopes k
iR

kp
ip

used for the iso-neutral diffusive fluxes, as described in §D.2.8 and Fig. D.3. Thus
surface layer triads 1

i R̃
−1/2
1/2 and 1

i+1R̃
−1/2
−1/2 are masked, and both near bottom triad

356 Iso-neutral diffusion and eddy advection using triads

slopes ki R̃
1/2
1/2 and k

i+1R̃
1/2
−1/2 are masked when either of the i, k + 1 or i+ 1, k + 1

tracer points is masked, i.e. the i, k+ 1 u-point is masked. The namelist parameter
ln botmix triad has no effect on the eddy-induced skew-fluxes.

D.3.4 Limiting of the slopes within the interior

Presently, the iso-neutral slopes r̃i relative to geopotentials are limited to be less
than 1/100, exactly as in calculating the iso-neutral diffusion, §D.2.9. Each indi-
vidual triad k

i R̃
kp
ip

is so limited.

D.3.5 Tapering within the surface mixed layer

The slopes r̃i relative to geopotentials (and thus the individual triads k
i R̃

kp
ip

) are
always tapered linearly from their value immediately below the mixed layer to zero
at the surface (D.32a), as described in §D.2.10. This is option (c) of Fig. 9.2. This
linear tapering for the slopes used to calculate the eddy-induced fluxes is unaffected
by the value of ln triad iso.

The justification for this linear slope tapering is that, for Ae that is constant or
varies only in the horizontal (the most commonly used options in NEMO: see §9.3),
it is equivalent to a horizontal eiv (eddy-induced velocity) that is uniform within the
mixed layer (D.39a). This ensures that the eiv velocities do not restratify the mixed
layer [Tréguier et al. 1997, Danabasoglu et al. 2008]. Equivantly, in terms of the
skew-flux formulation we use here, the linear slope tapering within the mixed-layer
gives a linearly varying vertical flux, and so a tracer convergence uniform in depth
(the horizontal flux convergence is relatively insignificant within the mixed-layer).

D.3.6 Streamfunction diagnostics

Where the namelist parameter ln traldf gdia=true, diagnosed mean eddy-induced
velocities are output. Each time step, streamfunctions are calculated in the i-k and
j-k planes at uw (integer +1/2 i, integer j, integer +1/2 k) and vw (integer i, integer
+1/2 j, integer +1/2 k) points (see Table 4.1) respectively. We follow [Griffies
2004] and calculate the streamfunction at a given uw-point from the surrounding
four triads according to:

ψ1
k+1/2
i+1/2 = 1

4

∑
ip, kp

Ae
k+1/2−kp
i+1/2−ip

k+1/2−kp
i+1/2−ip R kp

ip
. (D.49)

D.3. Eddy induced advection formulated as a skew flux 357

The streamfunction ψ1 is calculated similarly at vw points. The eddy-induced
velocities are then calculated from the straightforward discretisation of (D.39a):

u∗ki+1/2 = − 1

e3u
k
i

(
ψ1

k+1/2
i+1/2 − ψ1

k+1/2
i+1/2

)
,

v∗kj+1/2 = − 1

e3v
k
j

(
ψ2

k+1/2
j+1/2 − ψ2

k+1/2
j+1/2

)
,

w∗
k+1/2
i,j =

1

e1te2t

{
e2u

k+1/2
i+1/2 ψ1

k+1/2
i+1/2 − e2u

k+1/2
i−1/2 ψ1

k+1/2
i−1/2 +

e2v
k+1/2
j+1/2 ψ2

k+1/2
j+1/2 − e2v

k+1/2
j−1/2 ψ2

k+1/2
j−1/2

}
,

(D.50)

E Coding Rules

Contents
E.1 The program structure . 360
E.2 Coding conventions . 360
E.3 Naming Conventions . 362
E.4 The program structure . 363

360 Coding Rules

A ”model life” is more than ten years. Its software, composed of a few hundred
modules, is used by many people who are scientists or students and do not neces-
sarily know every aspect of computing very well. Moreover, a well thought-out
program is easier to read and understand, less difficult to modify, produces fewer
bugs and is easier to maintain. Therefore, it is essential that the model development
follows some rules :

- well planned and designed
- well written
- well documented (both on- and off-line)
- maintainable
- easily portable
- flexible.
To satisfy part of these aims, NEMO is written with a coding standard which is

close to the ECMWF rules, named DOCTOR [Gibson 1986]. These rules present
some advantages like :

- to provide a well presented program
- to use rules for variable names which allow recognition of their type (integer,

real, parameter, local or shared variables, etc.).
This facilitates both the understanding and the debugging of an algorithm.

E.1 The program structure

Each program begins with a set of headline comments containing :
- the program title
- the purpose of the routine
- the method and algorithms used
- the detail of input and output interfaces
- the external routines and functions used (if they exist)
- references (if they exist)
- the author name(s), the date of creation and any updates.
- Each program is split into several well separated sections and sub-sections

with an underlined title and specific labelled statements.
- A program has not more than 200 to 300 lines.
A template of a module style can be found on the NEMO depository in the

following file : NEMO/OPA SRC/module example.

E.2 Coding conventions

- Use of the universal language FORTRAN 90, and try to avoid obsolescent features
like statement functions, do not use GO TO and EQUIVALENCE statements.

E.2. Coding conventions 361

- A continuation line begins with the character & indented by three spaces
compared to the previous line, while the previous line ended with the character &.

- All the variables must be declared. The code is usually compiled with implicit
none.

- Never use continuation lines in the declaration of a variable. When searching
a variable in the code through a grep command, the declaration line will be found.

- In the declaration of a PUBLIC variable, the comment part at the end of the
line should start with the two characters ”!:”. the following UNIX command,
grep var_name *90 \ grep \!:
will display the module name and the line where the var name declaration is.

- Always use a three spaces indentation in DO loop, CASE, or IF-ELSEIF-
ELSE-ENDIF statements.

- use a space after a comma, except when it appears to separate the indices of
an array.

- use call to ctl stop routine instead of just a STOP.

362 Coding Rules

E.3 Naming Conventions

The purpose of the naming conventions is to use prefix letters to classify model
variables. These conventions allow the variable type to be easily known and rapidly
identified. The naming conventions are summarised in the Table below:

Type
/ Status

integer real logical character structure double
precision

complex

public
or
module
variable

m n
but not
nn np

a b e f g h
o q r
t to x
but not
fs rn

l
but not
lp ld
ll ln

c
but not
cp cd
cl cn

s
but not
sd sd
sl sn

d
but not
dp dd
dl dn

y
but not
yp yd
yl yn

dummy
argument

k
but not
kf

p
but not
pp pf

ld cd sd dd yd

local
variable

i z ll cl sl dl yl

loop
control

j
but not
jp

parameter jp np pp lp cp sp dp yp
namelist nn rn ln cn sn dn yn
CPP
macro

kf fs

N.B. Parameter here, in not only parameter in the FORTRAN acceptation, it
is also used for code variables that are read in namelist and should never been
modified during a simulation. It is the case, for example, for the size of a domain
(jpi,jpj,jpk).

E.4. The program structure 363

E.4 The program structure

To be done....

Index

CPP keys, 7
key agrif, 295
key asminc, 274
key c1d, 290, 291
key cice, 151
key coupled, 139
key cpl carbon cycle, 139
key diaar5, 244, 245
key diadct, 239
key diaharm, 238, 239
key diahth, 244
key diainstant, 216
key dynldf c1d, 180
key dynldf c2d, 180, 181
key dynldf c3d, 180, 181
key dynspg exp, 113, 209
key dynspg flt, 116, 209
key dynspg ts, 113, 114, 209
key floats, 237
key IOM, 236
key iomput, 216, 235, 238
key lim3, 139, 151
key mpp mpi, 52, 147, 162, 217,

286
key nemocice decomp, 152
key netcdf4, 233–235
key nosignedzero, 285, 286
key oasis3, 138
key pisces, 139
key top, 139
key trabbl, 87, 88, 187, 348
key traldf c1d, 180
key traldf c2d, 180, 181
key traldf c3d, 180, 181
key traldf eiv, 181, 182, 353
key trddyn, 100
key trdmld trc, 236
key trdtrc, 236
key trdvor, 100
key vectopt loop, 287
key vvl, 102, 110, 111, 113, 116,

120, 142, 196, 237, 243
key zdfcst, 187, 188
key zdfddm, 82, 203
key zdfgls, 197, 198, 203
key zdfosm, 199, 203

INDEX 365

key zdfric, 188
key zdftke, 189, 194, 203
key zdftmx, 210
key zdftmx new, 213

h90 file
ldfdyn substitute, 180
ldftra substitute, 180
traldf c1d, 180

Input NetCDF files
bathy level.nc, 58
bathy meter.nc, 58, 59
bfr coef.nc, 206
geothermal heating.nc, 87
isf draft meter.nc, 58
isfdraft meter.nc, 59
mask itf.nc, 212
subbasins.nc, 245

Model parameters
jpi, 162
jpiglo, 288
jpj, 162
jpjglo, 288
jpk, 57, 59–61, 63, 162, 295
jpni, 162, 163
jpnij, 162, 163
jpnj, 162, 163
jpreci, 162
lk vvl, 93

Modules
closea, 284
daymod, 134
diaar5, 244, 245
diahth, 244
diaptr, 245
diawri, 134, 216
divcur, 101, 142, 145
domhgr, 54, 55, 282
dommsk, 282
domzgr, 55, 57, 59, 66
dtatsd, 67
dynadv, 107
dynadv ubs, 109

dynbfr, 205, 207–210
dyncor c1d, 291
dynhpg, 96, 109
dynkeg, 106
dynldf, 100, 116
dynnxt, 40, 113, 120, 121
dynsp flt, 121
dynspg, 112, 140
dynspg exp, 113
dynspg flt, 113
dynspg ts, 209
dynvor, 102, 103, 107
dynzad, 106
dynzdf, 100, 118, 127, 187
dynzdf imp, 209
eosbn2, 70, 93, 96, 204
fldread, 10, 90, 128
geo2ocean, 150
iom, 134, 291
istate, 67, 68
lbclnk, 159–161
lbcnfd, 160
ldfdyn, 180
ldfdyn c2d, 181
ldfeiv, 182
ldfslp, 78, 175
ldftra, 180
lib fortran, 285, 286
lib mpp, 160, 162
nemogcm, 134, 248
par oce, 162
phycst, 55, 70, 94
sbc ana gyre, 135
sbcana, 134, 135
sbcapr, 139
sbcblk clio, 135, 136
sbcblk core, 135
sbcblk mfs, 135, 137
sbccpl, 138
sbcdcy, 147, 148
sbcflx, 135
sbcfwb, 152
sbcice cice, 151
sbcice if, 151

366 INDEX

sbcisf, 143
sbcmod, 82, 127, 134
sbcrnf, 141
sbcsas, 134
sbcssr, 140, 150
sbctide, 140
sbcwave, 152, 153
sshwzv, 101
step, 134, 248
step c1d, 291
stopar, 279, 280
stopts, 280
storng, 279
stpctl, 134
traadv, 71
traadv cen, 73
traadv eiv, 182, 183
traadv fct, 74
traadv mus, 75, 76
traadv qck, 77
traadv ubs, 76
trabbc, 85
trabbl, 87
tradmp, 90
traldf, 8, 77, 96, 180
traldf iso, 79, 80
traldf lap, 79
traldf lap blp, 79
traldf triad, 79, 80
tranpc, 70
tranxt, 40, 92, 93
traqsr, 83, 85, 127
trasbc, 82, 127
trazdf, 80, 81, 93, 187
trc oce, 85
trddyn, 236
trdtra, 236
userdef hgr, 54
userdef zgr, 54
zdfbfr, 205–208, 210
zdfddm, 203
zdfgls, 187
zdfini, 187
zdfkpp, 203

zdfric, 187
zdftke, 187
zpsdhe, 110
zpshde, 79, 96, 98

Namelist, 7
Namelist Group Name

namnc4, 235
nam asminc, 274
nam dynldf, 174
nam tide, 140
nam traldf, 174
namasm, 275
nambbl, 87
nambdy, 165
nambdy dta, 165
nambdy dta2, 165
nambdy index, 165
nambdy tide, 171
namberg, 146
nambfr, 205
namcfg, 54, 59, 61, 159, 284, 290,

291
namctl, 246, 287
namdct, 240
namdia harm, 239
namdom, 56, 57, 59, 63, 92, 120
namdyn adv, 102, 107
namdyn hpg, 109
namdyn ldf, 117
namdyn spg, 113
namdyn vor, 103
namelist cfg, 73
namelist ref, 73
nameos, 94
namflo, 237
namlbc, 156
nammpp, 162, 163
namobs, 249
namptr, 245
namrun, 46, 233
namsbc, 125, 139, 143, 148, 151,

152
namsbc clio, 137

INDEX 367

namsbc core, 136
namsbc mfs, 137
namsbc rnf, 141
namsbc sas, 134
namsbc ssr, 150
namsbc wave, 153
namsbc ana, 135
namsbc cpl, 139
namsbc flx, 135
namsto, 280
namtra adv, 73
namtra bbc, 87
namtra dmp, 90
namtra ldf, 78, 338
namtra qsr, 84
namtrd, 236
namtsd, 67
namusr def, 295, 296
namzdf, 81, 119, 188, 200, 202
namzdf ddm, 203
namzdf gls, 198
namzdf ric, 188
namzdf tmx, 210
namzdf tmx new, 214
namzdfy tke, 190
namzgr, 57
namzgr sco, 63

Namelist variables
botmix triad, 348
clname, 140
cn dir, 128, 136
cn domcfg, 54
cn mask file, 168
cn profbfiles, 249
cn resto, 91
cn storst in, 280
cn storst out, 280
cp cfg, 91
cp cpz, 91
init float ariane, 237
iom get, 285
iom put, 235
jp cfg, 91
jperio, 59, 91, 159

jpiglo, 52, 162, 294, 295
jpindt, 168
jpinft, 168
jpizoom, 290
jpjdta, 285
jpjglo, 52, 162, 285, 294, 295
jpjnob, 168
jpjzoom, 290
jpkglo, 52
jpnfl, 238
jpnflnewflo, 238
jpni, 287
ln ana, 125
ln apr dyn, 120, 126, 139
ln apr obc, 140
ln ariane, 237
ln asmdin, 274
ln asmiau, 274
ln bdy, 165, 296
ln bench=true, 296
ln bfr2d, 206, 207
ln bfrimp, 208–210
ln blk clio, 126
ln blk core, 125, 148
ln blk mfs, 126
ln botmix triad, 81, 338, 348, 356
ln bt av, 114–116
ln bt fw, 114, 115
ln bt nn auto, 114
ln cdgw, 126, 152
ln cfmeta, 233
ln clio, 135, 136, 149
ln coast, 92
ln coords file, 165
ln core, 135, 149
ln cpl, 126, 139
ln crban, 198
ln ctl, 147, 287
ln custom, 92
ln diaobs, 248
ln diaptr, 245
ln dm2dc, 126, 148
ln dyn mxl, 236
ln dyn trd, 236

368 INDEX

ln dynadv cen2, 108
ln dynadv ubs, 108, 182
ln dynhpg djc, 111
ln dynhpg imp, 111, 112
ln dynhpg isf, 111
ln dynhpg prj, 111
ln dynhpg sco, 110, 111
ln dynhpg vec, 120
ln dynhpg zco, 109
ln dynhpg zps, 110
ln dynldf bilap, 108, 118, 182
ln dynldf hor, 117, 175
ln dynldf iso, 117
ln dynldf lap, 108, 117, 182
ln dynvor een, 104, 319, 327
ln dynvor ene, 103, 319
ln dynvor ens, 103, 326
ln dynvor mix, 103
ln dynzad zts, 106
ln flo ascii, 238
ln flork4, 237
ln flx, 125, 135, 148–150
ln flxqsr, 84
ln full field, 92
ln glo trd, 236
ln grid global, 249
ln grid search lookup, 249
ln hsb = true, 145
ln icebergs, 146
ln iscpl = true, 145
ln isf, 126
ln isfcav, 58–60, 96, 111, 143, 144,

207
ln isfcav = .false., 284
ln KE trd, 236
ln lc, 193
ln length lim, 199
ln linssh, 57, 58, 66, 71, 72, 83
ln loglayer, 207
ln med red seas, 92
ln mevar, 213
ln mfs, 135, 137
ln mixcpl, 126, 133
ln mldw, 189

ln mus ups, 75
ln mxl0, 193
ln nc4zip, 234
ln nnogather, 287
ln old 31 lev code, 92
ln qsr 2bd, 84
ln qsr bio, 85
ln qsr rgb, 85
ln read cfg=false, 295
ln ref apr, 139
ln rnf, 126
ln rnf depth, 141
ln rnf sal, 141
ln rnf temp, 141
ln rstflo, 238
ln rstseed, 280
ln rststo, 280
ln s3d, 249
ln s SF12, 64, 65
ln s SH94, 64
ln sco, 58, 63, 79, 175
ln sigcrit, 66
ln ssr, 126
ln sstnight, 248
ln subbas, 245
ln t3d, 249
ln taudif, 136
ln tide, 120, 140
ln tide pot, 120, 140
ln tmx itf, 212
ln tra mxl, 71, 236, 237
ln tra trd, 71, 236
ln traadv cen, 73
ln traadv fct, 74
ln traadv mus, 75
ln traadv NONE, 71
ln traadv qck, 77
ln traadv tvd zts, 106
ln traadv ubs, 76
ln trabbc, 87
ln tradmp, 90, 91
ln traldf blp, 78, 79
ln traldf eiv, 338
ln traldf gdia, 356

INDEX 369

ln traldf grif, 80
ln traldf hor, 79, 80, 175
ln traldf iso, 79, 80, 338
ln traldf lap, 78–80
ln traldf lev, 79
ln traldf msc, 78, 81, 339
ln traldf NONE, 78
ln traldf triad, 79, 80, 338, 353
ln tranpc, 200
ln traqsr, 127
ln triad iso, 81, 338, 349, 351, 356
ln tsd ini, 67
ln tsd init, 90
ln tsd tradmp, 90
ln tsdiff, 213
ln useCT, 94
ln vor trd, 236
ln zco, 58, 59, 79, 80
ln zdfevd, 202, 203
ln zdfexp, 42, 82, 119, 187, 202,

208
ln zdfnpc, 200, 203
ln zdftmx itf, 211
ln zero top layer, 92
ln zps, 58, 61, 79, 80, 96, 97
lzoom e, 91
lzoom n, 91
lzoom s, 91
lzoom w, 91
namelist cfg, 285
nb ana, 239
nb bdy, 165
nb harmo, 140
nbdysegn, 168
nit000, 239
nit000 han, 239
nitend, 239
nitend han, 239
nn atfp, 121
nn baro, 114, 209
nn bathy, 59
nn bbl adv, 88
nn bbl ldf, 88, 348
nn bench, 288

nn bit cmp, 287
nn botfr, 206, 207
nn cen h, 73
nn cen v, 73, 74, 76
nn chdta, 85
nn clo, 198
nn clos, 198
nn dct, 240
nn dctwri, 240
nn debug, 240
nn diacfl, 246
nn divdmp, 275
nn drown, 145
nn dttrc, 226
nn dynhpg rst, 46, 112
nn ediff, 190
nn ediss, 190
nn een e3f, 104
nn eos, 93–95, 176
nn eos flt, 280
nn eos ord, 280
nn etau, 194
nn evdm, 202
nn fct h, 74, 75
nn fct v, 74, 75
nn fct zts, 75
nn fsbc, 126, 127, 130, 148, 151,

226
nn fwb, 126, 152
nn gammablk = 0 , 143
nn gammablk = 1 , 143
nn gammablk = 2 , 144
nn geoflx, 87
nn geoflx cst, 87
nn GYRE, 295
nn hdmp, 92
nn ice, 126, 151
nn ice embd, 120
nn isf, 143, 144
nn isfblk, 143
nn msh, 56, 91, 163
nn mxl, 191
nn nit000, 147
nn npc, 200

370 INDEX

nn pdl, 190
nn profdavtypes, 248
nn ric, 188
nn rimwidth, 167
nn sample rate, 147
nn stab func, 198
nn sto eos, 280
nn stockfl, 238
nn tau000, 135
nn test box, 147
nn test icebergs, 146, 147
nn tkebc bot, 198
nn tkebc surf, 198
nn tra, 166
nn tra dta, 166
nn trd, 236
nn verbose level, 147
nn verbose write, 147
nn volctl, 169
nn writefl, 238
nn zdfexp, 42, 82, 119
nn zdmp, 91
nn zpyc, 214
nstep han, 239
nz rnf, 142
open ocean jstart, 284, 285
ORCA index, 294
ppa0, 61
ppa1, 61
ppacr, 61
ppacr=0, 59
ppdzmin, 61
pphmax, 59, 61, 63
ppkth, 61
ppsur, 61
rn a0, 95
rn abs, 84
rn aeiv, 182
rn ahm0, 180, 181
rn ahmb0, 182
rn aht0, 180, 181
rn ahtb0, 182
rn ahtbbl, 88
rn alp, 188

rn alpha, 65
rn atfp, 41, 92, 93
rn avevd, 202
rn avm0, 188, 190
rn avmri, 188
rn avt0, 188, 190
rn b0, 95
rn bb, 64
rn bfeb2, 207
rn bfri1, 206
rn bfri2, 207
rn bfri2 max, 207
rn bfrien, 206, 207
rn bfrz0, 207
rn bits erosion fraction, 147
rn bot, 92
rn bt cmax, 114
rn charn, 199
rn clim galp, 199
rn crban, 198
rn dep, 92
rn e3zps min, 63
rn e3zps rat, 63
rn ebb, 190, 193
rn efac, 136
rn efr, 194
rn emin, 190
rn emin0, 193
rn emp0, 135
rn eos lim, 280
rn eos stdxy, 280
rn eos stdz, 280
rn eos tcor, 280
rn fiscpl, 145, 146
rn gambbl, 89
rn gammas0, 143
rn gammat0, 143
rn hc, 64
rn hisf tbl, 143, 144
rn htmx, 211
rn initial mass, 146
rn initial thickness, 146
rn isfhmin, 66
rn lambda1, 95

INDEX 371

rn lambda2, 95
rn lc, 194
rn mass scaling, 146
rn me, 211
rn mldmax, 189
rn mldmin, 189
rn mu1, 95
rn mu2, 95
rn mxl0, 191, 192
rn n2min, 211
rn nu, 95
rn pfac, 136
rn qns0, 135
rn qsr0, 135
rn rdt, 209, 226
rn rmax, 63
rn sbot max, 63
rn sbot min, 63
rn shlat, 156, 157, 159
rn si0, 84
rn slpmax, 81, 339
rn surf, 92
rn sw triad, 81, 339
rn tfe, 211
rn tfe itf, 213
rn tfri2, 207
rn tfri2 max, 207
rn tfrz0, 207
rn theta, 64
rn utau0, 135
rn vfac, 136
rn vtau0, 135
rn wtmix, 189
rn wvmix, 189
rn zb a, 65
rn zb b, 65
rn zqt, 136
rn zs, 65
rn zu, 136
sbc wave, 153
sn apr, 139
sn clc, 138
sn depmax isf, 144
sn depmin isf, 144

sn fwfisf, 144
sn humi, 136
sn icb, 147
sn Leff isf, 144
sn msl, 138
sn prec, 136, 138
sn qlw, 136
sn qsr, 136, 148
sn rhm, 138
sn rnfisf, 144
sn sal, 67, 90
sn snow, 136
sn tair, 136, 138
sn tdif, 136
sn tem, 67, 90
sn windi, 137
sn windj, 137
sn wndi, 136
sn wndj, 136
tname, 239
traldf grif, 174, 176
traldf grif iso, 177
xmlio server.def, 235

Routines
dyn spg ts, 210
fld read, 128, 132
inimpp2, 163
istate t s, 68
lbc lnk, 161, 291
ldf dyn c2d orca, 181
ldfslp init, 175
sbc blk init, 128
sbc isf div, 144
sbc rnf div, 142
sto par, 280
sto par init, 280
sto rst write, 280
stp, 291
stp c1d, 291
stp ctl, 134
tra dmp init, 91
traldf blp, 79
traldf lap, 79

372 INDEX

trc oce rgb, 85
zdf bfr, 210

Bibliography

Adcroft, A. and J.-M. Campin, 2004: Re-scaled height coordinates for accurate
representation of free-surface flows in ocean circulation models. Ocean Mod-
elling, 7, 269–284, doi:10.1016/j.ocemod.2003.09.003, URL http://dx.
doi.org/10.1016/j.ocemod.2003.09.003.

Arakawa, A. and Y.-J. G. Hsu, 1990: Energy conserving and potential-enstrophy
dissipating schemes for the shallow water equations. Mon. Wea. Rev., 118 (10),
1960–1969.

Arakawa, A. and V. R. Lamb, 1981: A potential enstrophy and energy conserving
scheme for the shallow water equations. Mon. Wea. Rev., 109 (1), 18–36.

Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100 (6),
487–490.

Axell, L. B., 2002: Wind-driven internal waves and langmuir circulations
in a numerical ocean model of the southern baltic sea. J. Geophys. Res,
107, doi:10.1029/2001JC000922, URL http://dx.doi.org/10.1029/
2001JC000922.

Barnier, B., G. Madec, T. Penduff, J.-M. Molines, A.-M. Treguier, J. L. Som-
mer, A. Beckmann, A. Biastoch, C. Boning, J. Dengg, C. Derval, E. Du-
rand, S. Gulev, E. Remy, C. Talandier, S. Theetten, M. Maltrud, J. McClean,
and B. D. Cuevas, 2006: Impact of partial steps and momentum advection
schemes in a global ocean circulation model at eddy-permitting resolution.
Ocean Dyn., 56, 543–567, doi:10.1007/s10236-006-0082-1, URL http://
dx.doi.org/10.1007/s10236-006-0082-1.

http://dx.doi.org/10.1016/j.ocemod.2003.09.003
http://dx.doi.org/10.1016/j.ocemod.2003.09.003
http://dx.doi.org/10.1029/2001JC000922
http://dx.doi.org/10.1029/2001JC000922
http://dx.doi.org/10.1007/s10236-006-0082-1
http://dx.doi.org/10.1007/s10236-006-0082-1

374 BIBLIOGRAPHY

Beckmann, A. and R. Döscher, 1997: A method for improved representation of
dense water spreading over topography in geopotential-coordinate models. J.
Phys. Oceanogr., 27, 581–591.

Beckmann, A. and H. Goosse, 2003: A parameterization of ice shelf-ocean inter-
action for climate models. Ocean Modelling, 5, 157–170.

Beckmann, A. and D. B. Haidvogel, 1993: Numerical simulation of flow around a
tall isolated seamount. part i - problem formulation and model accuracy. J. Phys.
Oceanogr., 23 (8), 1736–1753.

Bernie, D., E. Guilyardi, G. Madec, J. M. Slingo, and S. J. Woolnough, 2007:
Impact of resolving the diurnal cycle in an ocean–atmosphere gcm. part 1: a
diurnally forced ogcm. Clim. Dyn., 29 (6), 575–590.

Bernie, D. J., S. J. Woolnough, J. M. Slingo, and E. Guilyardi, 2005: Modelling
diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18 (8),
1190–1200.

Bignami, F., S. Marullo, R. Santoleri, and M. E. Schiano, 1995: Longwave radi-
ation budget in the mediterranean sea. J. Geophys. Res, 100 (C2), 2501–2514,
doi:10.1029/94JC02496.

Blanke, B. and P. Delecluse, 1993: Low frequency variability of the tropical at-
lantic ocean simulated by a general circulation model with mixed layer physics.
J. Phys. Oceanogr., 23, 1363–1388.

Blanke, B. and S. Raynaud, 1997: Kinematics of the pacific equatorial undercur-
rent: An eulerian and lagrangian approach from gcm results. J. Phys. Oceanogr.,
27 (6), 1038–1053.

Bloom, S. C., L. L. Takacs, A. M. D. Silva, and D. Ledvina, 1996: Data assimila-
tion using incremental analysis updates. Mon. Wea. Rev., 124, 1256–1271.

Bouffard, D. and L. Boegman, 2013: A diapycnal diffusivity model for
stratified environmental flows. Dyn. Atmos. Ocean, 61-62, 14–34, doi:10.
1016/j.dynatmoce.2013.02.002, URL http://dx.doi.org/10.1016/
j.dynatmoce.2013.02.002.

Bougeault, P. and P. Lacarrere, 1989: Parameterization of orography-induced tur-
bulence in a mesobeta–scale model. Mon. Wea. Rev., 117 (8), 1872–1890.

Bouillon, S., M. M. Maqueda, V. Legat, and T. Fichefet, 2009: An elastic-viscous-
plastic sea ice model formulated on arakawa b and c grids. Ocean Modelling, 27,
174–184, doi:10.1016/j.ocemod.2009.01.004, URL http://dx.doi.org/
10.1016/j.ocemod.2009.01.004.

http://dx.doi.org/10.1016/j.dynatmoce.2013.02.002
http://dx.doi.org/10.1016/j.dynatmoce.2013.02.002
http://dx.doi.org/10.1016/j.ocemod.2009.01.004
http://dx.doi.org/10.1016/j.ocemod.2009.01.004

BIBLIOGRAPHY 375

Brankart, J.-M., 2013: Impact of uncertainties in the horizontal density
gradient upon low resolution global ocean modelling. Ocean Modelling,
66, 64–76, doi:http://dx.doi.org/10.1016/j.ocemod.2013.02.004, URL
http://www.sciencedirect.com/science/article/pii/
S1463500313000309.

Brankart, J.-M., G. Candille, F. Garnier, C. Calone, A. Melet, P.-A. Bouttier,
P. Brasseur, and J. Verron, 2015: A generic approach to explicit simula-
tion of uncertainty in the nemo ocean model. Geoscientific Model Develop-
ment, 8 (5), 1285–1297, doi:10.5194/gmd-8-1285-2015, URL http://www.
geosci-model-dev.net/8/1285/2015/.

Brodeau, L., B. Barnier, A.-M. Tréguier, T. Penduff, and S. Gulev, 2009: An
era40-based atmospheric forcing for global ocean circulation models. Ocean
Modelling, 31 (3-4), 88–104.

Brown, J. A. and K. A. Campana, 1978: An economical time-differencing system
for numerical weather prediction. Mon. Wea. Rev., 106 (8), 1125–1136.

Burchard, H., 2002: Energy-conserving discretisation of turbulent shear
and buoyancy production. Ocean Modelling, 4 (3-4), 347–361, doi:
10.1016/S1463-5003(02)00009-4, URL http://dx.doi.org/10.1016/
S1463-5003(02)00009-4.

Campin, J.-M., A. Adcroft, C. Hill, and J. Marshall, 2004: Conservation of prop-
erties in a free-surface model. Ocean Modelling, 6 (3-4), 221–244.

Campin, J.-M. and H. Goosse, 1999: Parameterization of density-driven downslop-
ing flow for a coarse-resolution ocean model in z-coordinate. Tellus, 51, 412–
430.

Campin, J.-M., J. Marshall, and D. Ferreira, 2008: Sea ice-ocean coupling
using a rescaled vertical coordinate z*. Ocean Modelling, 24 (1-2), 1–
14, doi:10.1016/j.ocemod.2008.05.005, URL http://dx.doi.org/10.
1016/j.ocemod.2008.05.005.

Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbu-
lence. parti: One-point closure model-momentum and heat vertical diffusivities.
J. Phys. Oceanogr., 24 (12), 2546–2559.

Carrère, L. and F. Lyard, 2003: Modelling the barotropic response of the global
ocean to atmospheric wind and pressure forcing - comparisons with observa-
tions. Geophys. Res. Let., 30 (6), doi:10.1029/2002GL016473, URL http:
//dx.doi.org/10.1029/2002GL016473.

Castellari, S., N. Pinardi, and K. Leaman, 1998: A model study of air-sea interac-
tions in the mediterranean sea. J. Mar. Sys., 18, 89–114.

http://www.sciencedirect.com/science/article/pii/S1463500313000309
http://www.sciencedirect.com/science/article/pii/S1463500313000309
http://www.geosci-model-dev.net/8/1285/2015/
http://www.geosci-model-dev.net/8/1285/2015/
http://dx.doi.org/10.1016/S1463-5003(02)00009-4
http://dx.doi.org/10.1016/S1463-5003(02)00009-4
http://dx.doi.org/10.1016/j.ocemod.2008.05.005
http://dx.doi.org/10.1016/j.ocemod.2008.05.005
http://dx.doi.org/10.1029/2002GL016473
http://dx.doi.org/10.1029/2002GL016473

376 BIBLIOGRAPHY

Chanut, J., 2005: Nesting code for nemo. Tech. rep., European Union: Marine
Environment and Security for the European Area (MERSEA) Integrated Project,
mERSEA-WP09-MERCA-TASK-9.1.1.

Chassignet, E. P., L. T. Smith, and G. R. Halliwell, 2003: North atlantic simula-
tions with the hybrid coordinate ocean model (hycom): Impact of the vertical
coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr.,
33, 2504–2526.

Cox, M., 1987: Isopycnal diffusion in a z-coordinate ocean model. Ocean Mod-
elling, 74, 1–9.

Craig, P. D. and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the
ocean surface layer. J. Phys. Oceanogr., 24 (12), 2546–2559.

Craik, A. D. D. and S. Leibovich, 1976: A rational model for langmuir circulations.
J. Fluid Mech., 73, 401–426.

D’Alessio, S. J. D., K. Abdella, and N. A. McFarlane, 1998: A new second-
order turbulence closure scheme for modeling the oceanic mixed layer. J. Phys.
Oceanogr., 28, 1624–1641.

Daley, R. and E. Barker, 2001: NAVDAS Source Book 2001. NRL/PU/7530-01-441,
Available from the Naval Research Laboratory, Monterey, CA., 93943-5502,
163pp pp.

Danabasoglu, G., R. Ferrari, and J. C. McWilliams, 2008: Sensitivity of an
ocean general circulation model to a parameterization of near-surface eddy
fluxes. J. Climate, 21, 1192–1208, doi:10.1175/2007JCLI1508.1, URL http:
//dx.doi.org/10.1175/2007JCLI1508.1.

Davies, H., 1976: A lateral boundary formulation for multi-level prediction mod-
els. Quart. J. Roy. Meteor. Soc., 102, 405–418.

de Boyer Montégut, C., G. Madec, A. Fischer, A. Lazar, and D. Iudicone, 2004:
Mixed layer depth over the global ocean: An examination of profile data
and a profile-based climatology. J. Geophys. Res, 109, C12 003, doi:10.1029/
2004JC002378, URL http://dx.doi.org/10.1029/2004JC002378.

de Lavergne, C., G. Madec, J. L. Sommer, A. J. G. Nurser, and A. C. N. Garabato,
2016: The impact of a variable mixing efficiency on the abyssal overturning.
Journal of Physical Oceanography, 46, 663–681, doi:10.1175/JPO-D-14-0259.
1, URL http://dx.doi.org//10.1175/JPO-D-14-0259.1.

Debreu, L., C. Vouland, and E. Blayo, 2008: Agrif: Adaptive grid refinement in
fortran. Computers and Geosciences, 34, 8–13.

http://dx.doi.org/10.1175/2007JCLI1508.1
http://dx.doi.org/10.1175/2007JCLI1508.1
http://dx.doi.org/10.1029/2004JC002378
http://dx.doi.org//10.1175/JPO-D-14-0259.1

BIBLIOGRAPHY 377

Delecluse, P. and G. Madec, 2000: Ocean modelling and the role of the ocean
in the climate system. In Modeling the Earth’s Climate and its Variability, Les
Houches, Session, LXVII 1997, Eds. W. R. Holland, S. Joussaume and F. David,
Elsevier Science, 237–313.

Demange, J., 2014: Schémas numériques d’advection et de propagation dondes
de gravité dans les modèles de circulation océanique. Ph.D. thesis, Doctorat es
Applied Mathematiques, Grenoble University, France.

Dobricic, S., N. Pinardi, M. Adani, M. Tonani, C. Fratianni, A. Bonazzi, and V. Fer-
nandez, 2007: Daily oceanographic analysis by the mediterranean basin scale
assimilation system. Ocean Sc., 3, 149–157.

Drijfhout, S. S., 1994: Heat transport by mesoscale eddies in an ocean circulation
model. J. Phys. Oceanogr., 24, 353–369.

Dukowicz, J. K. and R. D. Smith, 1994: Implicit free-surface method for the bryan-
cox-semtner ocean model. J. Geophys. Res, 99, 7991–8014.

Egbert, G. and R. Ray, 2000: Significant dissipation of tidal energy in the deep
ocean inferred from satellite altimeter data. Nature, 405, 775–778.

———, 2001: Estimates of m2 tidal energy dissipation from topex/poseidon al-
timeter data. J. Geophys. Res, 106, 22 475–22 502.

Eiseman, P. R. and A. P. Stone, 1980: Conservation lows of fluid dynamics – a
survey. SIAM Review, 22, 12–27.

Emile-Geay, J. and G. Madec, 2009: Geothermal heating, diapycnal mixing and
the abyssal circulation. Ocean Sc., 5, 281–325.

Engerdahl, H., 1995: Use of the flow relaxation scheme in a three-dimensional
baroclinic ocean model with realistic topography. Tellus, 47A, 365–382.

Farge, M., 1987: Dynamique non lineaire des ondes et des tourbillons dans les
equations de saint venant. Ph.D. thesis, Doctorat es Mathematiques, Paris VI
University, France.

Farrow, D. E. and D. P. Stevens, 1995: A new tracer advection scheme for bryan–
cox type ocean general circulation models. J. Phys. Oceanogr., 25, 1731–1741.

Flather, R., 1994: A storm surge prediction model for the northern bay of bengal
with application to the cyclone disaster in april 1991. J. Phys. Oceanogr., 24,
172–190.

Fujio, S. and N. Imasato, 1991: Diagnostic calculation for circulation and water
mass movement in the deep pacific. J. Geophys. Res, 96, 759–774.

378 BIBLIOGRAPHY

Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988: A quasi-equilibrium
turbulent energy model for geophysical flows. J. Atmos. Sc., 45, 55–62.

Gargett, A. E., 1984: Vertical eddy diffusivity in the ocean interior. J. Mar. Res.,
42.

Gaspar, P., Y. Grégoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy
model for simulations of the oceanic vertical mixing Tests at station papa and
long-term upper ocean study site. J. Geophys. Res, 95 (C9).

Gent, P. R. and J. C. Mcwilliams, 1990: Isopycnal mixing in ocean circulation
models. J. Phys. Oceanogr., 20 (1), 150–155.

Gerdes, R., 1993a: A primitive equation ocean circulation model using a gen-
eral vertical coordinate transformation 1. description and testing of the model. J.
Geophys. Res, 98.

———, 1993b: A primitive equation ocean circulation model using a general verti-
cal coordinate transformation 2. application to an overflow problem. J. Geophys.
Res, 98, 14 703–14 726.

Gerdes, R., C. Köberle, and J. Willebrand, 1991: The influence of numerical ad-
vection schemes on the results of ocean general circulation models. Clim. Dy-
namics, 5 (4), 211–226, doi:10.1007/BF00210006, URL http://dx.doi.
org/10.1007/BF00210006.

Gibson, J. K., 1986: Standard software development and maintenance. Tech. rep.,
Operational Dep., ECMWF, Reading, UK.

Gill, A. E., 1982: Atmosphere-Ocean Dynamics. International Geophysics Series,
Academic Press, New-York.

Goff, J. A., 2010: Global prediction of abyssal hill root-mean-square heights
from small-scale altimetric gravity variability. Journal of Geophysical Research:
Solid Earth, 115 (B12), B12 104, doi:10.1029/2010JB007867, URL http:
//dx.doi.org/10.1029/2010JB007867.

Goosse, H., E. Deleersnijder, T. Fichefet, and M. England, 1999: Sensitivity of a
global coupled ocean-sea ice model to the parameterization of vertical mixing.
J. Geophys. Res, 104, 13,681–13,695.

Graham, F. and T. McDougall, 2013: Quantifying the nonconservative pro-
duction of conservative temperature, potential temperature, and entropy. J.
Phys. Oceanogr., 43, 838–862, URL http://dx.doi.org/10.1175/
JPO-D-11-0188.1.

Greatbatch, R. J., 1994: A note on the representation of steric sea level in mod-
els that conserve volume rather than mass. J. Geophys. Res, 99 (C6), 12,767–
12,771.

http://dx.doi.org/10.1007/BF00210006
http://dx.doi.org/10.1007/BF00210006
http://dx.doi.org/10.1029/2010JB007867
http://dx.doi.org/10.1029/2010JB007867
http://dx.doi.org/10.1175/JPO-D-11-0188.1
http://dx.doi.org/10.1175/JPO-D-11-0188.1

BIBLIOGRAPHY 379

Griffies, S., 1998: The gent-mcwilliams skew-flux. J. Phys. Oceanogr., 28, 831–
841.

———, 2004: Fundamentals of ocean climate models. Princeton University Press,
434pp.

Griffies, S., A. Biastoch, C. Boning, F. Bryan, G. Danabasoglu, E. P. Chas-
signet, M. H. England, R. Gerdes, H. Haak, R. W. Hallberg, W. Hazeleger,
J. Jungclaus, W. G. Large, G. Madec, A. Pirani, B. L. Samuels, M. Schein-
ert, A. S. Gupta, C. A. Severijns, H. L. Simmons, A.-M. Treguier, M. Win-
ton, S. Yeager, and J. Yin, 2009: Coordinated ocean-ice reference experiments
(cores). Ocean Modelling, 26 (1-2), 1–46, doi:10.1016/j.ocemod.2008.08.007,
URL http://dx.doi.org/10.1016/j.ocemod.2008.08.007.

Griffies, S., A. Gnanadesikan, R. Pacanowski, V. Larichev, J. Dukowicz, and
R. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys.
Oceanogr., 28 (5), 805–830.

Griffies, S., R. Pacanowski, M. Schmidt, and V. Balaji, 2001: Tracer conservation
with an explicit free surface method for z-coordinate ocean models. Mon. Wea.
Rev., 129 (5), 1081–1098.

Guilyardi, E., G. Madec, and L. Terray, 2001: The role of lateral ocean physics
in the upper ocean thermal balance of a coupled ocean-atmosphere gcm. Clim.
Dyn., 17 (8), 589–599.

Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma
coordinate ocean models. J. Phys. Oceanogr., 21 (4), 610–619.

Hazeleger, W. and S. S. Drijfhout, 1998: Mode water variability in a model of
the subtropical gyre: response to anomalous forcing. J. Phys. Oceanogr., 28,
266–288.

———, 1999: Stochastically forced mode water variability. J. Phys. Oceanogr.,
29, 1772–1786.

———, 2000a: Eddy subduction in a model of the subtropical gyre. J. Phys.
Oceanogr., 30, 677–695.

———, 2000b: A model study on internally generated variability in subtropical
mode water formation. J. Geophys. Res, 105, 13,965–13,979.

He, Y. and C. H. Q. Ding, 2001: Using accurate arithmetics to improve numeri-
cal reproducibility and stability in parallel applications. J. Supercomputing., 18,
259–277.

Hellerman, S. and M. Rosenstein, 1983: Normal monthly wind stress over the
world ocean with error estimates. J. Phys. Oceanogr., 13, 1093–1104.

http://dx.doi.org/10.1016/j.ocemod.2008.08.007

380 BIBLIOGRAPHY

Hirt, C. W., A. A. Amsden, and J. L. Cook, 1974: An arbitrary lagrangian–eulerian
computing method for all flow speeds. J. Comput. Phys., 14, 227–253.

Hofmeister, R., H. Burchard, and J.-M. Beckers, 2009: Non-uniform adap-
tive vertical grids for 3d numerical ocean models. Ocean Modelling, 33, 70–
86, doi:10.1016/j.ocemod.2009.12.003, URL http://dx.doi.org/10.
1016/j.ocemod.2009.12.003.

Holland, D. and A. Jenkins, 1999: Modeling thermodynamic ice-ocean interactions
at the base of an ice shelf. J. Phys. Oceanogr., 29, 1787–1800.

Hunke, E. and W. Lipscomb, 2008: Cice: the los alamos sea ice model documen-
tation and software user’s manual, version 4.0. Tech. rep., Los Alamos National
Laboratory, N.M.

Hunter, J. R., 2006: Specification for test models of ice shelf cavities. Tech. rep.,
Antarctic Climate & Ecosystems Cooperative Research Centre Private Bag 80,
Hobart, Tasmania 7001.

IOC, SCOR, and IAPSO, 2010: The international thermodynamic equation of
seawater - 2010: Calculation and use of thermodynamic properties. Tech.
rep., Intergovernmental Oceanographic Commission, URL http://www.
teos-10.org/pubs/TEOS-10_Manual.pdf.

Jackson, P. R. and C. R. Rehmann, 2014: Experiments on differential scalar mix-
ing in turbulence in a sheared, stratified flow. J. Phys. Oceanogr., 44 (10),
2661–2680, doi:10.1175/JPO-D-14-0027.1, URL http://dx.doi.org/
10.1175/JPO-D-14-0027.1.

Jenkins, A., 1991: A one-dimensional model of ice shelf-ocean interaction. J. Geo-
phys. Res, 96 (C11), 2298–2312.

———, 2010: observation and parameterization of ablation at the base of ronne
ice shelf, antarctica. J. Phys. Oceanogr., 40 (10), 2298–2312.

Jones, P. W., 1998: A user’s guide for scrip: A spherical coordinate
remapping and interpolation package. version 1.4. Tech. rep., Los Alamos
National Laboratory, URL http://climate.lanl.gov/Software/
SCRIP/SCRIPusers.pdf.

Kantha, L. and S. Carniel, 2005: Comment on ”generic length-scale equation for
geophysical turbulence models” by l. umlauf and h. burchard. J. Mar. Sys., 61,
693–702.

Kantha, L. H. and C. A. Clayson, 1994: An improved mixed layer model for geo-
physical applications. J. Geophys. Res, 99, 25,235–25,266.

Kasahara, A., 1974: Various vertical coordinate systems used for numerical
weather prediction. Mon. Wea. Rev., 102, 509–522.

http://dx.doi.org/10.1016/j.ocemod.2009.12.003
http://dx.doi.org/10.1016/j.ocemod.2009.12.003
http://www.teos-10.org/pubs/TEOS-10_Manual.pdf
http://www.teos-10.org/pubs/TEOS-10_Manual.pdf
http://dx.doi.org/10.1175/JPO-D-14-0027.1
http://dx.doi.org/10.1175/JPO-D-14-0027.1
http://climate.lanl.gov/Software/SCRIP/SCRIPusers.pdf
http://climate.lanl.gov/Software/SCRIP/SCRIPusers.pdf

BIBLIOGRAPHY 381

Killworth, P., D. Stainforth, D. Webb, and S. Paterson, 1991: The development
of a free-surface bryan-cox-semtner ocean model. J. Phys. Oceanogr., 21 (9),
1333–1348.

Killworth, P. D., 1989: On the parameterization of deep convection in ocean mod-
els. Parameterization of small-scale processes, winter workshop, H., Ed., Uni-
versity of Hawaii at Manoa.

———, 1992: An equivalent-barotropic mode in the fine resolution antarctic
model. J. Phys. Oceanogr., 22, 1379–1387.

Koch-Larrouy, A., M. Lengaigne, P. Terray, G. Madec, and S. Masson, 2010: Tidal
mixing in the indonesian seas and its effect on the tropical climate system. Clim.
Dyn., 34 (6), 891–904, doi:10.1007/s00382-009-0642-4, URL http://dx.
doi.org/10.1007/s00382-009-0642-4.

Koch-Larrouy, A., G. Madec, B. Blanke, and R. Molcard, 2008a: Water mass
transformation along the indonesian throughflow in an ogcm. Ocean Dyn., 58 (3-
4), 289–309, doi:10.1007/s10236-008-0155-4, URL http://dx.doi.org/
10.1007/s10236-008-0155-4.

Koch-Larrouy, A., G. Madec, P. Bouruet-Aubertot, T. Gerkema, L. Bessieres,
and R. Molcard, 2007: Tidal mixing in the indonesian seas and
its effect on the tropical climate system. Geophys. Res. Let., 34,
L04 604, doi:10.1029/2006GL028405, URL http://dx.doi.org/10.
1029/2006GL028405.

Koch-Larrouy, A., G. Madec, D. Iudicone, A. Atmadipoera, and R. Mol-
card, 2008b: Physical processes contributing to the water mass transfor-
mation of the indonesian throughflow. Ocean Dyn., 58 (3-4), 275–288,
doi:10.1007/s10236-008-0154-5, URL http://dx.doi.org/10.1007/
s10236-008-0154-5.

Kolmogorov, A. N., 1942: The equation of turbulent motion in an incompressible
fluid. Izv. Akad. Nauk SSSR, Ser. Fiz., 6, 56–58.

Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions.
Boundary-Layer Meteorol, 9, 91–112.

Large, W. G. and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and
sea-ice models: the data sets and flux climatologies. NCAR Technical Note,
NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric
Research.

Lazar, A., 1997: La branche froide de la circulation thermohaline - sensibilité à
la diffusion turbulente dans un modèle de circulation générale idéalisée. Ph.D.
thesis, Université Pierre et Marie Curie, Paris, France, 200pp.

http://dx.doi.org/10.1007/s00382-009-0642-4
http://dx.doi.org/10.1007/s00382-009-0642-4
http://dx.doi.org/10.1007/s10236-008-0155-4
http://dx.doi.org/10.1007/s10236-008-0155-4
http://dx.doi.org/10.1029/2006GL028405
http://dx.doi.org/10.1029/2006GL028405
http://dx.doi.org/10.1007/s10236-008-0154-5
http://dx.doi.org/10.1007/s10236-008-0154-5

382 BIBLIOGRAPHY

Lazar, A., G. Madec, and P. Delecluse, 1999: The deep interior downwelling, the
veronis effect, and mesoscale tracer transport parameterizations in an ogcm. J.
Phys. Oceanogr., 29 (11), 2945–2961.

Le Sommer, J., T. Penduff, S. Theetten, G. Madec, and B. Barnier, 2009: How
momentum advection schemes influence current-topography interactions at eddy
permitting resolution. Ocean Modelling, 29 (1), 1–14, doi:10.1016/j.ocemod.
2008.11.007, URL http://dx.doi.org/10.1016/j.ocemod.2008.
11.007.

Leclair, M., 2010: introduction d’une coordonnée verticale arbitrairement lagrang-
ienne eulérienne dans le code nemo, 180pp. Ph.D. thesis, Université Pierre and
Marie Curie.

Leclair, M. and G. Madec, 2009: A conservative leap-frog time stepping method.
Ocean Modelling, 30 (2-3), 88–94, doi:10.1016/j.ocemod.2009.06.006, URL
http://dx.doi.org/10.1016/j.ocemod.2009.06.006.

———, 2011: z̃-coordinate, an arbitrary lagrangian-eulerian coordinate separating
high and low frequency. Ocean Modelling, 37, 139–152, doi:10.1016/j.ocemod.
2011.02.001, URL http://dx.doi.org/10.1016/j.ocemod.2011.
02.001.

Lele, S., 1992: Compact finite difference schemes with spectral-like resolution. J.
Comput. Phys., 103, 16–42.

Lemarié, F., L. Debreu, J. Demange, G. Madec, J. Molines, and M. Honno-
rat, 2015: Stability constraints for oceanic numerical models: Implications for
the formulation of time and space discretizations. Ocean Modelling, 92, 124–
148, doi:10.1016/j.ocemod.2015.06.006, URL http://dx.doi.org/10.
1016/j.ocemod.2015.06.006.

Lemarié, F., L. Debreu, A. Shchepetkin, and J. McWilliams, 2012: On the sta-
bility and accuracy of the harmonic and biharmonic isoneutral mixing opera-
tors in ocean models. Ocean Modelling, 5253, 9–35, doi:http://dx.doi.org/10.
1016/j.ocemod.2012.04.007, URL http://www.sciencedirect.com/
science/article/pii/S1463500312000674.

Lengaigne, M., G. Madec, G. Alory, and C. Menkes, 2003: Sensitivity of the tropi-
cal pacific ocean to isopycnal diffusion on tracer and dynamics. J. Geophys. Res,
108 (C11), 3345, doi:10.1029/2002JC001704, URL http://dx.doi.org/
10.1029/2002JC001704.

Lengaigne, M., C. Menkes, O. Aumont, T. Gorgues, L. Bopp, and J.-M. A. G.
Madec, 2007: Bio-physical feedbacks on the tropical pacific climate in a coupled
general circulation model. Clim. Dyn., 28, 503–516.

http://dx.doi.org/10.1016/j.ocemod.2008.11.007
http://dx.doi.org/10.1016/j.ocemod.2008.11.007
http://dx.doi.org/10.1016/j.ocemod.2009.06.006
http://dx.doi.org/10.1016/j.ocemod.2011.02.001
http://dx.doi.org/10.1016/j.ocemod.2011.02.001
http://dx.doi.org/10.1016/j.ocemod.2015.06.006
http://dx.doi.org/10.1016/j.ocemod.2015.06.006
http://www.sciencedirect.com/science/article/pii/S1463500312000674
http://www.sciencedirect.com/science/article/pii/S1463500312000674
http://dx.doi.org/10.1029/2002JC001704
http://dx.doi.org/10.1029/2002JC001704

BIBLIOGRAPHY 383

Leonard, B. P., 1979: A stable and accurate convective modelling procedure based
on quadratic upstream interpolation. Computer Methods in Applied Mechanics
and Engineering, 19, 59–98.

———, 1991: The ultimate conservative difference scheme applied to unsteady
one–dimensional advection. Computer Methods in Applied Mechanics and En-
gineering, 17–74.

Lermusiaux, P. F. J., 2001: Evolving the subspace of three-dimensional miltiscale
ocean variability: Massachusetts bay. J. Mar. Sys., 29, 385–422.

Levier, B., A.-M. Tréguier, G. Madec, and V. Garnier, 2007: Free surface and
variable volume in the nemo code. Tech. rep., MERSEA MERSEA IP report
WP09-CNRS-STR-03-1A, 47pp, available on the NEMO web site.

Lévy, M., A. Estubier, and G. Madec, 2001: Choice of an advection scheme for
biogeochemical models. Geophys. Res. Let., 28.

Lévy, M., P. Klein, A.-M. Tréguier, D. Iovino, G. Madec, S. Masson, and T. Taka-
hashi, 2010: Impacts of sub-mesoscale physics on idealized gyres. Ocean Mod-
elling, 34 (1-2), doi:10.1016/j.ocemod.2010.04.001, URL http://dx.doi.
org/10.1016/j.ocemod.2010.04.001.

Li, M. and C. Garrett, 1993: Cell merging and the jet/downwelling ratio in lang-
muir circulation. J. Mar. Res., 51, 737–769.

Losch, M., 2008: Modeling ice shelf cavities in a z coordinate ocean general cir-
culation model. J. Geophys. Res, 113 (C13).

Lott, F., G. Madec, and J. Verron, 1990: Topographic experiments in an ocean
general circulation model. Ocean Modelling, 88, 1–4.

Madec, G., M. Chartier, and M. Crépon, 1991a: Effect of thermohaline forcing
variability on deep water formation in the northwestern mediterranean sea - a
high resulution three-dimensional study. Dyn. Atmos. Ocean, 15, 301–332.

Madec, G., M. Chartier, P. Delecluse, and M. Crépon, 1991b: A three-dimensional
numerical study of deep water formation in the northwestern mediterranean sea
. J. Phys. Oceanogr., 21, 1349–1371.

Madec, G. and M. Crépon, 1991: Deep convection and deep water formation in the
oceans, chap. Thermohaline-driven deep water formation in the Northwestern
Mediterranean Sea, 241–265. Elsevier Oceanographic Series, P.C. Chu and J.C.
Gascard (Eds.).

Madec, G. and P. Delecluse, 1997: The opa/arpege and opa/lmd global ocean-
atmosphere coupled model. Int. WOCE Newsletter, 26, 12–15.

http://dx.doi.org/10.1016/j.ocemod.2010.04.001
http://dx.doi.org/10.1016/j.ocemod.2010.04.001

384 BIBLIOGRAPHY

Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: Opa 8 ocean general
circulation model - reference manual. Tech. rep., LODYC/IPSL Note 11.

Madec, G. and M. Imbard, 1996: A global ocean mesh to overcome the north pole
singularity. Clim. Dyn., 12, 381–388.

Madec, G., F. Lott, P. Delecluse, and M. Crépon, 1996: Large-scale precondi-
tioning of deep-water formation in the northwestern mediterranean sea. J. Phys.
Oceanogr., 26 (8), 1393–1408.

Maggiore, A., M. Zavatarelli, M. G. Angelucci, and N. Pinardi, 1998: Surface heat
and water fluxes in the adriatic sea: seasonal and interannual variability. Phys
Chem Earth, 23, 561–567.

Maltrud, M. E., R. D. Smith, A. J. Semtner, and R. C. Malone, 1998: Global
eddy-resolving ocean simulations driven by 1985-1995 atmospheric winds. J.
Geophys. Res, 103 (C13), 30,825–30,854.

Marsaleix, P., F. Auclair, J. W. Floor, M. J. Herrmann, C. Estournel, I. Pairaud,
and C. Ulses, 2008: Energy conservation issues in sigma-coordinate free-
surface ocean models. Ocean Modelling, 20 (1), 61–89, doi:10.1016/j.ocemod.
2007.07.005, URL http://dx.doi.org/10.1016/j.ocemod.2007.
07.005.

Marsh, R., V. O. Ivchenko, N. Skliris, S. Alderson, G. R. Bigg, G. Madec, A. T.
Blaker, Y. Aksenov, B. Sinha, A. C. Coward, J. L. Sommer, N. Merino, and
V. B. Zalesny, 2015: Nemo-icb (v1.0): interactive icebergs in the nemo ocean
model globally configured at eddy-permitting resolution. Geoscientific Model
Development, 8 (5), 1547–1562, doi:10.5194/gmd-8-1547-2015, URL HTTP:
//www.geosci-model-dev.net/8/1547/2015/.

Marti, O., 1992: Etude de l’océan mondial : modélisation de la circulation et du
transport de traceurs anthropogéniques. Ph.D. thesis, Université Pierre et Marie
Curie, Paris, France, 201pp.

Marti, O., G. Madec, and P. Delecluse, 1992: Comment on ”net diffusivity in ocean
general circulation models with nonuniform grids” by f. l. yin and i. y. fung. J.
Geophys. Res, 97, 12,763–12,766.

Martin, T. and A. Adcroft, 2010: Parameterizing the fresh-water flux from land
ice to ocean with interactive icebergs in a coupled climate model. Ocean Mod-
elling, 34 (3–4), 111–124, doi:10.1016/j.ocemod.2010.05.001, URL http:
//dx.doi.org/10.1016/j.ocemod.2010.05.001.

McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17 (11), 1950–1964.

McDougall, T. J. and J. R. Taylor, 1984: Flux measurements across a finger inter-
face at low values of the stability ratio. J. Mar. Res., 42, 1–14.

http://dx.doi.org/10.1016/j.ocemod.2007.07.005
http://dx.doi.org/10.1016/j.ocemod.2007.07.005
HTTP://www.geosci-model-dev.net/8/1547/2015/
HTTP://www.geosci-model-dev.net/8/1547/2015/
http://dx.doi.org/10.1016/j.ocemod.2010.05.001
http://dx.doi.org/10.1016/j.ocemod.2010.05.001

BIBLIOGRAPHY 385

Mellor, G. and A. Blumberg, 2004: Wave breaking and ocean surface layer ther-
mal response. J. Phys. Oceanogr., 34 (3), 693–698, doi:10.1175/2517.1, URL
http://journals.ametsoc.org/doi/abs/10.1175/2517.1.

Mellor, G. L. and T. Yamada, 1982: Development of a turbulence closure model
for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875.

Merryfield, W. J., G. Holloway, and A. E. Gargett, 1999: A global ocean model
with double-diffusive mixing. J. Phys. Oceanogr., 29 (6), 1124–1142.

Mesinger, F. and A. Arakawa, 1976: Numerical methods used in Atmospheric mod-
els. GARP Publication Series No 17.

Morel, A., 1988: Optical modeling of the upper ocean in relation to its biogenous
matter content (case i waters). J. Geophys. Res, 93, 10,749–10,768.

Morel, A. and J.-F. Berthon, 1989: Surface pigments, algal biomass profiles, and
potential production of the euphotic layer: Relationships reinvestigated in view
of remote-sensing applications. Limnol. Oceanogr., 34(8), 1545–1562.

Morel, A. and S. Maritorena, 2001: Bio-optical properties of oceanic waters: a
reappraisal. J. Geophys. Res, 106 (C4), 7163–7180.

Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J.
Comput. Phys., 126 (2), 251–273.

Oddo, P., M. Adani, N. Pinardi, C. Fratianni, M. Tonani, and D. Pettenuzzo, 2009:
A nested atlantic-mediterranean sea general circulation model for operational
forecasting. Ocean Sc., 5, 1–13.

Osborn, T., 1980: Estimates of the local rate of vertical diffusion from dissipation
measurements. J. Phys. Oceanogr., 10, 83–89.

Pacanowski, R. and S. Philander, 1981: Parameterization of vertical mixing in
numerical models of tropical oceans. J. Phys. Oceanogr., 11 (11), 1443–1451.

Pacanowski, R. C. and A. Gnanadesikan, 1998: Transient response in a z-level
ocean model that resolves topography with partial-cells. Mon. Wea. Rev., 126,
3248–3270.

Paulson, C. A. and J. J. Simpson, 1977: Irradiance measurements in the upper
ocean. J. Phys. Oceanogr., 7 (6), 952–956.

Payne, R. E., 1972: Albedo of the sea surface. J. Atmos. Sc., 29, 959–970.

Penduff, T., J. L. Sommer, B. Barnier, A. Treguier, J. Molines, and G. Madec,
2007: Influence of numerical schemes on current-topography interactions in
1/4◦ global ocean simulations. Ocean Sc., 3, 509–524.

http://journals.ametsoc.org/doi/abs/10.1175/2517.1

386 BIBLIOGRAPHY

Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys.
Oceanogr., 13, 1154–1158.

Reed, R. K., 1977: On estimating insolation over the ocean. J. Phys. Oceanogr., 1,
874–971.

Reverdin, G., P. Delecluse, C. Lévy, P. Andrich, A. Morlière, and J. M. Verstraete,
1991: The near surface tropical atlantic in 1982-1984 : results from a numerical
simulation and a data analysis. Prog. Oceangr., 27, 273–340.

Richtmyer, R. D. and K. W. Morton, 1967: Difference methods for initial-value
problems. Interscience Publisher, Second Edition, 405pp pp.

Robert, A. J., 1966: The integration of a low order spectral form of the primitive
meteorological equations. J. Met. Soc. Japan, 44 (2).

Rodgers, K. B., O. Aumont, S. E. Mikaloff Fletcher, Y. Plancherel, L. Bopp,
C. de Boyer Montégut, D. Iudicone, R. F. Keeling, G. Madec, and R. Wan-
ninkhof, 2014: Strong sensitivity of southern ocean carbon uptake and nu-
trient cycling to wind stirring. Biogeosciences, 11 (15), 4077–4098, doi:10.
5194/bg-11-4077-2014, URL HTTP://www.biogeosciences.net/11/
4077/2014/.

Rodi, W., 1987: Examples of calculation methods for flow and mixing in stratified
fluids. J. Geophys. Res, 92 (C5), 5305–5328.

Roquet, F., G. Madec, L. Brodeau, and J. Nycander, 2015a: Defining a sim-
plified yet realistic equation of state for seawater. J. Phys. Oceanogr., 45,
2564–2579, doi:10.1175/JPO-D-15-0080.1, URL http://dx.doi.org/
10.1175/JPO-D-15-0080.1.

Roquet, F., G. Madec, T. McDougall, and P. Barker, 2015b: Accurate polyno-
mial expressions for the density and specific volume of seawater using the teos-
10 standard. Ocean Modelling, 90, 29–43, doi:10.1016/j.ocemod.2015.04.002,
URL http://dx.doi.org/10.1016/j.ocemod.2015.04.002.

Roullet, G. and G. Madec, 2000: salt conservation, free surface, and varying levels:
a new formulation for ocean general circulation models. J. Geophys. Res, 105,
23,927–23,942.

Sarmiento, J. L. and K. Bryan, 1982: Ocean transport model for the north atlantic.
J. Geophys. Res, 87, 394–409.

Shchepetkin, A. F. and J. C. McWilliams, 2005: The regional oceanic modeling
system (roms) - a split-explicit, free-surface, topography-following-coordinate
oceanic modelr. Ocean Modelling, 9 (4), 347–404.

HTTP://www.biogeosciences.net/11/4077/2014/
HTTP://www.biogeosciences.net/11/4077/2014/
http://dx.doi.org/10.1175/JPO-D-15-0080.1
http://dx.doi.org/10.1175/JPO-D-15-0080.1
http://dx.doi.org/10.1016/j.ocemod.2015.04.002

BIBLIOGRAPHY 387

———, 2008: Handbook of Numerical Analysis, Vol. XIV: Computational Meth-
ods for the Ocean and the Atmosphere, pp 121-183. P. G. Ciarlet, editor, R.
Temam and J. Tribbia, guest eds., Elsevier Science, 784 pp.

Siddorn, J. and R. Furner, 2012: An analytical stretching function that combines
the best attributes of geopotential and terrain-following vertical coordinates.
Ocean Modelling, submitted.

Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally
driven mixing in a numerical model of the ocean general circulation. Ocean
Modelling, 245–263.

Song, Y. and D. Haidvogel, 1994: A semi-implicit ocean circulation model using a
generalized topography-following coordinate system. J. Comput. Phys., 115 (1),
228–244.

Song, Y. T., 1998: A general pressure gradient formulation for ocean models. part
i: Scheme design and diagnostic analysis. Mon. Wea. Rev., 126 (12), 3213–3230.

St. Laurent, L. and J. D. Nash, 2004: An examination of the radiative and
dissipative properties of deep ocean internal tides. Deep-Sea Res., II (51),
3029–3042, doi:10.1016/j.dsr2.2004.09.008, URL http://dx.doi.org/
10.1016/j.dsr2.2004.09.008.

St. Laurent, L., H. Simmons, and S. Jayne, 2002: Estimating tidally driven mixing
in the deep ocean. Geophys. Res. Let., 29, 2106, doi:10.1029/2002GL015633,
URL http://dx.doi.org/10.1029/2002GL015633.

Stacey, M. W., 1999: Simulations of the wind-forced near-surface circulation in
knight inlet: A parameterization of the roughness length. J. Phys. Oceanogr.,
29, 1363–1367.

Steele, M., R. Morley, and W. Ermold, 2001: Phc- a global ocean hydrography
with a high-quality arctic ocean. J. Climate, 14 (9), 2079–2087.

Stein, C. A. and S. Stein, 1992: A model for the global variation in oceanic depth
and heat flow with lithospheric age. Nature, 359, 123–129.

Talagrand, O., 1972: On the damping of high-frequency motions in four-
dimensional assimilation of meteorological data. J. Atmos. Sc., 29, 1571–1574.

Tonani, M., N. Pinardi, S. Dobricic, I. Pujol, and C. Fratianni, 2008: A high-
resolution free-surface model of the mediterranean sea. Ocean Sc., 4, 1–14.

Tréguier, A., 1992: Kinetic energy analysis of an eddy resolving, primitive equa-
tion north atlantic model. J. Geophys. Res, 97, 687–701.

Tréguier, A.-M., J. Dukowicz, and K. Bryan, 1996: Properties of nonuniform grids
used in ocean general circulation models. J. Geophys. Res, 101, 20,877–20,881.

http://dx.doi.org/10.1016/j.dsr2.2004.09.008
http://dx.doi.org/10.1016/j.dsr2.2004.09.008
http://dx.doi.org/10.1029/2002GL015633

388 BIBLIOGRAPHY

Tréguier, A. M., I. M. Held, and V. D. Larichev, 1997: Parameterization of quasi-
geostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr.,
27 (4), 567–580.

Umlauf, L. and H. Burchard, 2003: A generic length-scale equation for geophysi-
cal turbulence models. J. Mar. Sys., 61 (2), 235–265.

———, 2005: Second-order turbulence closure models for geophysical boundary
layers. a review of recent work. J. Mar. Sys., 25, 795–827.

UNESCO, 1983: Algorithms for computation of fundamental property of sea wa-
ter. Techn. Paper in Mar. Sci, 44, UNESCO.

Valcke, S., 2006: Oasis3 user guide (prism 2-5). Tech. rep., PRISM Support Ini-
tiative Report No 3, CERFACS, Toulouse, France.

Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge Uni-
versity Press, Cambridge, U.K., 745 pp.

Vancoppenolle, M., T. Fichefet, and H. Goosse, 2009a: Simulating the mass bal-
ance and salinity of arctic and antarctic sea ice. 2. importance of sea ice salinity
variations. Ocean Modelling, 27, 54–69.

Vancoppenolle, M., T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M. A. M.
Maqueda, 2009b: Simulating the mass balance and salinity of arctic and antarc-
tic sea ice. 1. model description and validation. Ocean Modelling, 27, 33–
53, doi:10.1016/j.ocemod.2008.10.005, URL http://dx.doi.org/10.
1016/j.ocemod.2008.10.005.

Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Perfor-
mance of four turbulence closure models implemented using a generic length
scale method. Ocean Modelling, 8, 81–113, doi:10.1016/j.ocemod.2003.12.003,
URL http://dx.doi.org/j.ocemod.2003.12.003.

Weatherly, G. L., 1984: An estimate of bottom frictional dissipation by gulf stream
fluctuations. J. Mar. Res., 42 (2), 289–301.

Weaver, A. J. and M. Eby, 1997: On the numerical implementation of advection
schemes for use in conjuction with various mixing parameterizations in the gfdl
ocean model. J. Phys. Oceanogr., 27.

Webb, D. J., B. A. de Cuevas, and C. S. Richmond, 1998: Improved advection
schemes for ocean models. J. Atmos. Ocean Tech., 15 (5), 1171–1187.

White, L., A. Adcroft, and R. Hallberg, 2009: High-order regridding-remapping
schemes for continuous isopycnal and generalized coordinates in ocean models.
J. Climate, 228, 8665–8692.

http://dx.doi.org/10.1016/j.ocemod.2008.10.005
http://dx.doi.org/10.1016/j.ocemod.2008.10.005
http://dx.doi.org/j.ocemod.2003.12.003

BIBLIOGRAPHY 389

Wilcox, D. C., 1988: Reassessment of the scale-determining equation for advanced
turbulence models. AIAA journal, 26 (11), 1299–1310.

Willebrand, J., B. Barnier, C. Boning, C. Dieterich, P. D. Killworth, C. L. Provost,
Y. Jia, J.-M. Molines, and A. L. New, 2001: Circulation characteristics in three
eddy-permitting models of the north atlantic. Prog. Oceangr., 48 (2), 123–161.

Zalesak, S. T., 1979: Fully multidimensional flux corrected transport algorithms
for fluids. J. Comput. Phys., 31.

Zhang, R.-H. and M. Endoh, 1992: A free surface general circulation model for
the tropical pacific ocean. J. Geophys. Res, 97, 11,237–11,255.

	Introduction
	Model basics
	Primitive Equations
	Vector Invariant Formulation
	Boundary Conditions

	The Horizontal Pressure Gradient
	Pressure Formulation
	Free Surface Formulation

	Curvilinear z-coordinate System
	Tensorial Formalism
	Continuous Model Equations

	Curvilinear generalised vertical coordinate System
	The s-coordinate Formulation
	Curvilinear z*–coordinate System
	Curvilinear Terrain-following s–coordinate
	Curvilinear –coordinate

	Subgrid Scale Physics
	Vertical Subgrid Scale Physics
	Formulation of the Lateral Diffusive and Viscous Operators

	Time Domain (STP)
	Time stepping environment
	Non-Diffusive Part — Leapfrog Scheme
	Diffusive Part — Forward or Backward Scheme
	Surface Pressure Gradient
	The Modified Leapfrog – Asselin Filter scheme
	Start/Restart strategy

	Space Domain (DOM)
	Fundamentals of the Discretisation
	Arrangement of Variables
	Discrete Operators
	Numerical Indexing

	Domain: Needed fields
	Domain: Horizontal Grid (mesh) (domhgr)
	Coordinates and scale factors
	Choice of horizontal grid
	Output Grid files

	Domain: Vertical Grid (domzgr)
	Meter Bathymetry
	z-coordinate (ln_zco
	z-coordinate with partial step (ln_zps)
	s-coordinate (ln_sco)
	z*- or s*-coordinate (ln_linssh=false)
	level bathymetry and mask

	Domain: Initial State (istate and dtatsd)

	Ocean Tracers (TRA)
	Tracer Advection (traadv)
	Centred schemes (CEN) (ln_traadv_cen)
	Flux Corrected Transport schemes (FCT) (ln_traadv_fct)
	MUSCL scheme (ln_traadv_mus)
	Upstream-Biased Scheme (UBS) (ln_traadv_ubs)
	QUICKEST scheme (QCK) (ln_traadv_qck)

	Tracer Lateral Diffusion (traldf)
	Type of operator (ln_traldf_NONE, ln_traldf_lap, ln_traldf_blp)
	Direction of action (ln_traldf_lev, ln_traldf_hor, ln_traldf_iso, ln_traldf_triad)
	Iso-level (bi-)laplacian operator (ln_traldf_iso)
	Standard and triad rotated (bi-)laplacian operator (traldf_iso.F90, traldf_triad.F90)

	Tracer Vertical Diffusion (trazdf)
	External Forcing
	Surface boundary condition (trasbc)
	Solar Radiation Penetration (traqsr)
	Bottom Boundary Condition (trabbc)

	Bottom Boundary Layer (trabbl.F90 - key_trabbl)
	Diffusive Bottom Boundary layer (nn_bbl_ldf=1)
	Advective Bottom Boundary Layer (nn_bbl_adv= 1 or 2)

	Tracer damping (tradmp)
	DMP_TOOLS

	Tracer time evolution (tranxt)
	Equation of State (eosbn2)
	Equation Of Seawater (nn_eos = -1, 0, or 1)
	Brunt-Väisälä Frequency (nn_eos = 0, 1 or 2)
	Freezing Point of Seawater

	Horizontal Derivative in zps-coordinate (zpshde)

	Ocean Dynamics (DYN)
	Sea surface height and diagnostic variables (, , , w)
	Horizontal divergence and relative vorticity (divcur)
	Sea surface height evolution and vertical velocity (sshwzv)

	Coriolis and Advection: vector invariant form
	Vorticity term (dynvor)
	Kinetic Energy Gradient term (dynkeg)
	Vertical advection term (dynzad)

	Coriolis and Advection: flux form
	Coriolis plus curvature metric terms (dynvor)
	Flux form Advection term (dynadv)

	Hydrostatic pressure gradient (dynhpg)
	z-coordinate with full step (ln_dynhpg_zco)
	z-coordinate with partial step (ln_dynhpg_zps)
	s- and z-s-coordinates
	Ice shelf cavity
	Time-scheme (ln_dynhpg_imp)

	Surface pressure gradient (dynspg)
	Explicit free surface (key_dynspg_exp)
	Split-Explicit free surface (key_dynspg_ts)
	Filtered free surface (key_dynspg_flt)

	Lateral diffusion term (dynldf)
	Iso-level laplacian operator (ln_dynldf_lap)
	Rotated laplacian operator (ln_dynldf_iso)
	Iso-level bilaplacian operator (ln_dynldf_bilap)

	Vertical diffusion term (dynzdf.F90)
	External Forcings
	Time evolution term (dynnxt)

	Surface Boundary Condition (SBC, ISF, ICB)
	Surface boundary condition for the ocean
	Input Data generic interface
	Input Data specification (fldread.F90)
	Interpolation on-the-Fly
	Standalone Surface Boundary Condition Scheme

	Analytical formulation (sbcana)
	Flux formulation (sbcflx)
	Bulk formulation (sbcblk_core, sbcblk_clio or sbcblk_mfs)
	CORE Bulk formulea (ln_core=true)
	CLIO Bulk formulea (ln_clio=true)
	MFS Bulk formulea (ln_mfs=true)

	Coupled formulation (sbccpl)
	Atmospheric pressure (sbcapr)
	Tidal Potential (sbctide)
	River runoffs (sbcrnf)
	Ice shelf melting (sbcisf)
	 Ice sheet coupling
	Handling of icebergs (ICB)
	Miscellaneous options
	Diurnal cycle (sbcdcy)
	Rotation of vector pairs onto the model grid directions
	Surface restoring to observed SST and/or SSS (sbcssr)
	Handling of ice-covered area (sbcice_...)
	Interface to CICE (sbcice_cice)
	Freshwater budget control (sbcfwb)
	Neutral drag coefficient from external wave model (sbcwave)

	Lateral Boundary Condition (LBC)
	Boundary Condition at the Coast (rn_shlat)
	Model Domain Boundary Condition (jperio)
	Closed, cyclic, south symmetric (jperio = 0, 1 or 2)
	North-fold (jperio = 3 to 6)

	Exchange with neighbouring processors (lbclnk, lib_mpp)
	Unstructured Open Boundary Conditions (BDY)
	The namelists
	The Flow Relaxation Scheme
	The Flather radiation scheme
	Boundary geometry
	Input boundary data files
	Volume correction
	Tidal harmonic forcing

	Lateral Ocean Physics (LDF)
	Direction of Lateral Mixing (ldfslp)
	slopes for tracer geopotential mixing in the s-coordinate
	Slopes for tracer iso-neutral mixing
	slopes for momentum iso-neutral mixing

	Lateral Mixing Operators (ldftra, ldfdyn)
	Lateral Mixing Coefficient (ldftra, ldfdyn)
	Eddy Induced Velocity (traadv_eiv, ldfeiv)

	Vertical Ocean Physics (ZDF)
	Vertical Mixing
	Constant (key_zdfcst)
	Richardson Number Dependent (key_zdfric)
	TKE Turbulent Closure Scheme (key_zdftke)
	TKE discretization considerations (key_zdftke)
	GLS Generic Length Scale (key_zdfgls)
	OSM OSMOSIS Boundary Layer scheme (key_zdfosm)

	Convection
	Non-Penetrative Convective Adjustment (ln_tranpc)
	Enhanced Vertical Diffusion (ln_zdfevd)
	Turbulent Closure Scheme (key_zdftke, key_zdfgls or key_zdfosm)

	Double Diffusion Mixing (key_zdfddm)
	Bottom and Top Friction (zdfbfr)
	Linear Bottom Friction (nn_botfr = 0 or 1)
	Non-Linear Bottom Friction (nn_botfr = 2)
	Log-layer Bottom Friction enhancement (nn_botfr = 2, ln_loglayer = .true.)
	Bottom Friction stability considerations
	Implicit Bottom Friction (ln_bfrimp=T)
	Bottom Friction with split-explicit time splitting (ln_bfrimp=F)

	Tidal Mixing (key_zdftmx)
	Bottom intensified tidal mixing
	Indonesian area specific treatment (ln_zdftmx_itf)

	Internal wave-driven mixing (key_zdftmx_new)

	Output and Diagnostics (IOM, DIA, TRD, FLO)
	Old Model Output (default)
	Standard model Output (IOM)
	XIOS: the IO_SERVER
	Practical issues
	XML fundamentals
	Detailed functionalities
	XML reference tables
	CF metadata standard compliance

	NetCDF4 Support (key_netcdf4)
	Tracer/Dynamics Trends (TRD)
	On-line Floats trajectories (FLO) (key_floats)
	Harmonic analysis of tidal constituents (key_diaharm)
	Transports across sections (key_diadct)
	Diagnosing the Steric effect in sea surface height
	Other Diagnostics (key_diahth, key_diaar5)
	Depth of various quantities (diahth.F90)
	Poleward heat and salt transports (diaptr.F90)
	CMIP specific diagnostics (diaar5.F90)
	25 hour mean output for tidal models
	Top Middle and Bed hourly output
	Courant numbers

	Observation and model comparison (OBS)
	Running the observation operator code example
	Technical details
	Profile feedback type observation file header
	Sea level anomaly feedback type observation file header
	Sea surface temperature feedback type observation file header

	Theoretical details
	Horizontal interpolation methods
	Grid search
	Parallel aspects of horizontal interpolation
	Vertical interpolation operator

	Offline observation operator
	Concept
	Using the offline observation operator
	Configuring the offline observation operator
	Advanced usage

	Observation Utilities
	Obstools
	building the obstools
	Dataplot

	Apply assimilation increments (ASM)
	Direct initialization
	Incremental Analysis Updates
	Divergence damping initialisation
	Implementation details

	Stochastic parametrization of EOS (STO)
	Stochastic processes
	Implementation details

	Miscellaneous Topics
	Representation of Unresolved Straits
	Hand made geometry changes

	Closed seas (closea.F90)
	Sub-Domain Functionality
	Simple subsetting of input files via netCDF attributes

	Accuracy and Reproducibility (lib_fortran.F90)
	Issues with intrinsinc SIGN function (key_nosignedzero)
	MPP reproducibility
	MPP scalability

	Model Optimisation, Control Print and Benchmark

	Configurations
	Introduction
	Water column model: 1D model (C1D) (key_c1d)
	ORCA family: global ocean with tripolar grid
	ORCA tripolar grid
	ORCA pre-defined resolution

	GYRE family: double gyre basin
	AMM: atlantic margin configuration

	Curvilinear s-Coordinate Equations
	The chain rule for s-coordinates
	Continuity Equation in s-coordinates
	Momentum Equation in s-coordinate
	Tracer Equation

	Appendix B : Diffusive Operators
	Horizontal/Vertical 2nd Order Tracer Diffusive Operators
	Iso/diapycnal 2nd Order Tracer Diffusive Operators
	Lateral/Vertical Momentum Diffusive Operators

	Discrete Invariants of the Equations
	Introduction / Notations
	Continuous conservation
	Discrete total energy conservation : vector invariant form
	Total energy conservation
	Vorticity term (coriolis + vorticity part of the advection)
	Pressure Gradient Term

	Discrete total energy conservation : flux form
	Total energy conservation
	Coriolis and advection terms: flux form

	Discrete enstrophy conservation
	Conservation Properties on Tracers
	Advection Term

	Conservation Properties on Lateral Momentum Physics
	Conservation of Potential Vorticity
	Dissipation of Horizontal Kinetic Energy
	Dissipation of Enstrophy
	Conservation of Horizontal Divergence
	Dissipation of Horizontal Divergence Variance

	Conservation Properties on Vertical Momentum Physics
	Conservation Properties on Tracer Physics
	Conservation of Tracers
	Dissipation of Tracer Variance

	Iso-neutral diffusion and eddy advection using triads
	Choice of namtra_ldf namelist parameters
	Triad formulation of iso-neutral diffusion
	The iso-neutral diffusion operator
	The standard discretization
	Expression of the skew-flux in terms of triad slopes
	The full triad fluxes
	Ensuring the scheme does not increase tracer variance
	Triad volumes in Griffes's scheme and in NEMO
	Summary of the scheme
	Treatment of the triads at the boundaries
	 Limiting of the slopes within the interior
	Tapering within the surface mixed layer

	Eddy induced advection formulated as a skew flux
	The continuous skew flux formulation
	The discrete skew flux formulation
	Treatment of the triads at the boundaries
	 Limiting of the slopes within the interior
	Tapering within the surface mixed layer
	Streamfunction diagnostics

	Coding Rules
	The program structure
	Coding conventions
	Naming Conventions
	The program structure

	Index
	Index
	Bibliography

