MODULE dom_oce !!====================================================================== !! *** MODULE dom_oce *** !! !! ** Purpose : Define in memory all the ocean space domain variables !!====================================================================== !! History : 1.0 ! 2005-10 (A. Beckmann, G. Madec) reactivate s-coordinate !! 3.3 ! 2010-11 (G. Madec) add mbk. arrays associated to the deepest ocean level !! 4.0 ! 2011-01 (A. R. Porter, STFC Daresbury) dynamical allocation !! 3.5 ! 2012 (S. Mocavero, I. Epicoco) Add arrays associated !! to the optimization of BDY communications !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! Agrif_Root : dummy function used when lk_agrif=F !! Agrif_CFixed : dummy function used when lk_agrif=F !! dom_oce_alloc : dynamical allocation of dom_oce arrays !!---------------------------------------------------------------------- USE par_oce ! ocean parameters IMPLICIT NONE PUBLIC ! allows the acces to par_oce when dom_oce is used ! ! exception to coding rules... to be suppressed ??? PUBLIC dom_oce_alloc ! Called from nemogcm.F90 !!---------------------------------------------------------------------- !! time & space domain namelist !! ---------------------------- ! !!* Namelist namdom : time & space domain * INTEGER , PUBLIC :: nn_bathy !: = 0/1 ,compute/read the bathymetry file REAL(wp), PUBLIC :: rn_bathy !: depth of flat bottom (active if nn_bathy=0; if =0 depth=jpkm1) REAL(wp), PUBLIC :: rn_hmin !: minimum ocean depth (>0) or minimum number of ocean levels (<0) REAL(wp), PUBLIC :: rn_e3zps_min !: miminum thickness for partial steps (meters) REAL(wp), PUBLIC :: rn_e3zps_rat !: minimum thickness ration for partial steps INTEGER , PUBLIC :: nn_msh !: = 1 create a mesh-mask file INTEGER , PUBLIC :: nn_acc !: = 0/1 use of the acceleration of convergence technique REAL(wp), PUBLIC :: rn_atfp !: asselin time filter parameter REAL(wp), PUBLIC :: rn_rdt !: time step for the dynamics (and tracer if nacc=0) REAL(wp), PUBLIC :: rn_rdtmin !: minimum time step on tracers REAL(wp), PUBLIC :: rn_rdtmax !: maximum time step on tracers REAL(wp), PUBLIC :: rn_rdth !: depth variation of tracer step INTEGER , PUBLIC :: nn_closea !: =0 suppress closed sea/lake from the ORCA domain or not (=1) INTEGER , PUBLIC :: nn_euler !: =0 start with forward time step or not (=1) LOGICAL , PUBLIC :: ln_crs !: Apply grid coarsening to dynamical model output or online passive tracers !! Time splitting parameters !! ========================= LOGICAL, PUBLIC :: ln_bt_fw !: Forward integration of barotropic sub-stepping LOGICAL, PUBLIC :: ln_bt_av !: Time averaging of barotropic variables LOGICAL, PUBLIC :: ln_bt_nn_auto !: Set number of barotropic iterations automatically INTEGER, PUBLIC :: nn_bt_flt !: Filter choice INTEGER, PUBLIC :: nn_baro !: Number of barotropic iterations during one baroclinic step (rdt) REAL(wp), PUBLIC :: rn_bt_cmax !: Maximum allowed courant number (used if ln_bt_nn_auto=T) !! Horizontal grid parameters for domhgr !! ===================================== INTEGER :: jphgr_msh !: type of horizontal mesh ! ! = 0 curvilinear coordinate on the sphere read in coordinate.nc ! ! = 1 geographical mesh on the sphere with regular grid-spacing ! ! = 2 f-plane with regular grid-spacing ! ! = 3 beta-plane with regular grid-spacing ! ! = 4 Mercator grid with T/U point at the equator REAL(wp) :: ppglam0 !: longitude of first raw and column T-point (jphgr_msh = 1) REAL(wp) :: ppgphi0 !: latitude of first raw and column T-point (jphgr_msh = 1) ! ! used for Coriolis & Beta parameters (jphgr_msh = 2 or 3) REAL(wp) :: ppe1_deg !: zonal grid-spacing (degrees) REAL(wp) :: ppe2_deg !: meridional grid-spacing (degrees) REAL(wp) :: ppe1_m !: zonal grid-spacing (degrees) REAL(wp) :: ppe2_m !: meridional grid-spacing (degrees) !! Vertical grid parameter for domzgr !! ================================== REAL(wp) :: ppsur !: ORCA r4, r2 and r05 coefficients REAL(wp) :: ppa0 !: (default coefficients) REAL(wp) :: ppa1 !: REAL(wp) :: ppkth !: REAL(wp) :: ppacr !: ! ! If both ppa0 ppa1 and ppsur are specified to 0, then ! they are computed from ppdzmin, pphmax , ppkth, ppacr in dom_zgr REAL(wp) :: ppdzmin !: Minimum vertical spacing REAL(wp) :: pphmax !: Maximum depth ! LOGICAL :: ldbletanh !: Use/do not use double tanf function for vertical coordinates REAL(wp) :: ppa2 !: Double tanh function parameters REAL(wp) :: ppkth2 !: REAL(wp) :: ppacr2 !: ! !! old non-DOCTOR names still used in the model INTEGER , PUBLIC :: ntopo !: = 0/1 ,compute/read the bathymetry file REAL(wp), PUBLIC :: e3zps_min !: miminum thickness for partial steps (meters) REAL(wp), PUBLIC :: e3zps_rat !: minimum thickness ration for partial steps INTEGER , PUBLIC :: nmsh !: = 1 create a mesh-mask file INTEGER , PUBLIC :: nacc !: = 0/1 use of the acceleration of convergence technique REAL(wp), PUBLIC :: atfp !: asselin time filter parameter REAL(wp), PUBLIC :: rdt !: time step for the dynamics (and tracer if nacc=0) REAL(wp), PUBLIC :: rdtmin !: minimum time step on tracers REAL(wp), PUBLIC :: rdtmax !: maximum time step on tracers REAL(wp), PUBLIC :: rdth !: depth variation of tracer step ! !!! associated variables INTEGER , PUBLIC :: neuler !: restart euler forward option (0=Euler) REAL(wp), PUBLIC :: atfp1 !: asselin time filter coeff. (atfp1= 1-2*atfp) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: rdttra !: vertical profile of tracer time step REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: r2dtra !: = 2*rdttra except at nit000 (=rdttra) if neuler=0 ! !!* Namelist namcla : cross land advection INTEGER, PUBLIC :: nn_cla !: =1 cross land advection for exchanges through some straits (ORCA2) !!---------------------------------------------------------------------- !! space domain parameters !!---------------------------------------------------------------------- LOGICAL, PUBLIC :: lzoom = .FALSE. !: zoom flag LOGICAL, PUBLIC :: lzoom_e = .FALSE. !: East zoom type flag LOGICAL, PUBLIC :: lzoom_w = .FALSE. !: West zoom type flag LOGICAL, PUBLIC :: lzoom_s = .FALSE. !: South zoom type flag LOGICAL, PUBLIC :: lzoom_n = .FALSE. !: North zoom type flag ! !!! domain parameters linked to mpp INTEGER, PUBLIC :: nperio !: type of lateral boundary condition INTEGER, PUBLIC :: nimpp, njmpp !: i- & j-indexes for mpp-subdomain left bottom INTEGER, PUBLIC :: nreci, nrecj !: overlap region in i and j INTEGER, PUBLIC :: nproc !: number for local processor INTEGER, PUBLIC :: narea !: number for local area INTEGER, PUBLIC :: nbondi, nbondj !: mark of i- and j-direction local boundaries INTEGER, ALLOCATABLE, PUBLIC :: nbondi_bdy(:) !: mark i-direction local boundaries for BDY open boundaries INTEGER, ALLOCATABLE, PUBLIC :: nbondj_bdy(:) !: mark j-direction local boundaries for BDY open boundaries INTEGER, ALLOCATABLE, PUBLIC :: nbondi_bdy_b(:) !: mark i-direction of neighbours local boundaries for BDY open boundaries INTEGER, ALLOCATABLE, PUBLIC :: nbondj_bdy_b(:) !: mark j-direction of neighbours local boundaries for BDY open boundaries INTEGER, PUBLIC :: npolj !: north fold mark (0, 3 or 4) INTEGER, PUBLIC :: nlci, nldi, nlei !: i-dimensions of the local subdomain and its first and last indoor indices INTEGER, PUBLIC :: nlcj, nldj, nlej !: i-dimensions of the local subdomain and its first and last indoor indices INTEGER, PUBLIC :: noea, nowe !: index of the local neighboring processors in INTEGER, PUBLIC :: noso, nono !: east, west, south and north directions INTEGER, PUBLIC :: npne, npnw !: index of north east and north west processor INTEGER, PUBLIC :: npse, npsw !: index of south east and south west processor INTEGER, PUBLIC :: nbne, nbnw !: logical of north east & north west processor INTEGER, PUBLIC :: nbse, nbsw !: logical of south east & south west processor INTEGER, PUBLIC :: nidom !: ??? INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: mig !: local ==> global domain i-index INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: mjg !: local ==> global domain j-index INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: mi0, mi1 !: global ==> local domain i-index !!bug ==> other solution? ! ! (mi0=1 and mi1=0 if the global index is not in the local domain) INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: mj0, mj1 !: global ==> local domain j-index !!bug ==> other solution? ! ! (mi0=1 and mi1=0 if the global index is not in the local domain) INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: nimppt, njmppt !: i-, j-indexes for each processor INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: ibonit, ibonjt !: i-, j- processor neighbour existence INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: nlcit , nlcjt !: dimensions of every subdomain INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: nldit , nldjt !: first, last indoor index for each i-domain INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: nleit , nlejt !: first, last indoor index for each j-domain INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nfiimpp, nfipproc, nfilcit !!---------------------------------------------------------------------- !! horizontal curvilinear coordinate and scale factors !! --------------------------------------------------------------------- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: glamt, glamu !: longitude of t-, u-, v- and f-points (degre) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: glamv, glamf !: REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: gphit, gphiu !: latitude of t-, u-, v- and f-points (degre) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: gphiv, gphif !: REAL(wp), PUBLIC, ALLOCATABLE, SAVE, TARGET, DIMENSION(:,:) :: e1t, e2t, r1_e1t, r1_e2t !: horizontal scale factors and inverse at t-point (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, TARGET, DIMENSION(:,:) :: e1u, e2u, r1_e1u, r1_e2u !: horizontal scale factors and inverse at u-point (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, TARGET, DIMENSION(:,:) :: e1v, e2v, r1_e1v, r1_e2v !: horizontal scale factors and inverse at v-point (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, TARGET, DIMENSION(:,:) :: e1f, e2f, r1_e1f, r1_e2f !: horizontal scale factors and inverse at f-point (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: e1e2t !: surface at t-point (m2) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ff !: coriolis factor (2.*omega*sin(yphi) ) (s-1) !!---------------------------------------------------------------------- !! vertical coordinate and scale factors !! --------------------------------------------------------------------- ! !!* Namelist namzgr : vertical coordinate * LOGICAL, PUBLIC :: ln_zco !: z-coordinate - full step LOGICAL, PUBLIC :: ln_zps !: z-coordinate - partial step LOGICAL, PUBLIC :: ln_sco !: s-coordinate or hybrid z-s coordinate LOGICAL, PUBLIC :: ln_isfcav !: presence of ISF !! All coordinates !! --------------- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: gdep3w_0 !: depth of t-points (sum of e3w) (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: gdept_0, gdepw_0 !: analytical (time invariant) depth at t-w points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3v_0 , e3f_0 !: analytical (time invariant) vertical scale factors at v-f REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3t_0 , e3u_0 !: t-u points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3vw_0 !: analytical (time invariant) vertical scale factors at vw REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3w_0 , e3uw_0 !: w-uw points (m) #if defined key_vvl LOGICAL, PUBLIC, PARAMETER :: lk_vvl = .TRUE. !: variable grid flag !! All coordinates !! --------------- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: gdep3w_n !: now depth of T-points (sum of e3w) (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: gdept_n, gdepw_n !: now depth at T-W points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: gdept_b, gdepw_b !: before depth at T-W points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3t_n !: now vertical scale factors at t point (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3u_n , e3v_n !: - - - - u --v points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3w_n , e3f_n !: - - - - w --f points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3uw_n , e3vw_n !: - - - - uw--vw points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3t_b !: before - - - - t points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3w_b !: before - - - - t points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3u_b , e3v_b !: - - - - - u --v points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3uw_b , e3vw_b !: - - - - - uw--vw points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3t_a !: after - - - - t point (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: e3u_a , e3v_a !: - - - - - u --v points (m) #else LOGICAL, PUBLIC, PARAMETER :: lk_vvl = .FALSE. !: fixed grid flag #endif REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hur , hvr !: Now inverse of u and v-points ocean depth (1/m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hu , hv !: depth at u- and v-points (meters) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ht !: depth at t-points (meters) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ehur_a, ehvr_a !: After inverse of u and v-points ocean depth (1/m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ehu_a , ehv_a !: depth at u- and v-points (meters) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ehur_b, ehvr_b !: Before inverse of u and v-points ocean depth (1/m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ehu_b , ehv_b !: depth at u- and v-points (meters) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ht_0 , hf_0 !: reference depth at t- and f-points (meters) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hu_0 , hv_0 !: reference depth at u- and v-points (meters) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: re2u_e1u !: scale factor coeffs at u points (e2u/e1u) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: re1v_e2v !: scale factor coeffs at v points (e1v/e2v) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: e12t , r1_e12t !: horizontal cell surface and inverse at t points REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: e12u , r1_e12u !: horizontal cell surface and inverse at u points REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: e12v , r1_e12v !: horizontal cell surface and inverse at v points REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: e12f , r1_e12f !: horizontal cell surface and inverse at f points INTEGER, PUBLIC :: nla10 !: deepest W level Above ~10m (nlb10 - 1) INTEGER, PUBLIC :: nlb10 !: shallowest W level Bellow ~10m (nla10 + 1) !! z-coordinate with full steps (also used in the other cases as reference z-coordinate) !! =-----------------====------ REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: gdept_1d, gdepw_1d !: reference depth of t- and w-points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: e3t_1d , e3w_1d !: reference vertical scale factors at T- and W-pts (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: e3tp , e3wp !: ocean bottom level thickness at T and W points !! s-coordinate and hybrid z-s-coordinate !! =----------------======--------------- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: gsigt, gsigw !: model level depth coefficient at t-, w-levels (analytic) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: gsi3w !: model level depth coefficient at w-level (sum of gsigw) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: esigt, esigw !: vertical scale factor coef. at t-, w-levels REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hbatv , hbatf !: ocean depth at the vertical of v--f REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hbatt , hbatu !: t--u points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: scosrf, scobot !: ocean surface and bottom topographies ! ! (if deviating from coordinate surfaces in HYBRID) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hifv , hiff !: interface depth between stretching at v--f REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hift , hifu !: and quasi-uniform spacing t--u points (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rx1 !: Maximum grid stiffness ratio !!---------------------------------------------------------------------- !! masks, bathymetry !! --------------------------------------------------------------------- INTEGER , PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: mbathy !: number of ocean level (=0, 1, ... , jpk-1) INTEGER , PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: mbkt !: vertical index of the bottom last T- ocean level INTEGER , PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: mbku, mbkv !: vertical index of the bottom last U- and W- ocean level REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: bathy !: ocean depth (meters) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: tmask_i, umask_i, vmask_i, fmask_i !: interior domain T-point mask REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: bmask !: land/ocean mask of barotropic stream function INTEGER , PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: misfdep !: top first ocean level (ISF) INTEGER , PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: mikt, miku, mikv, mikf !: first wet T-, U-, V-, F- ocean level (ISF) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: risfdep !: Iceshelf draft (ISF) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ssmask !: surface domain T-point mask REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:), TARGET :: tmask, umask, vmask, fmask !: land/ocean mask at T-, U-, V- and F-pts REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:), TARGET :: wmask, wumask, wvmask !: land/ocean mask at WT-, WU- and WV-pts REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: tpol, fpol !: north fold mask (jperio= 3 or 4) #if defined key_noslip_accurate INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,: ) :: npcoa !: ??? INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: nicoa, njcoa !: ??? #endif !!---------------------------------------------------------------------- !! calendar variables !! --------------------------------------------------------------------- INTEGER , PUBLIC :: nyear !: current year INTEGER , PUBLIC :: nmonth !: current month INTEGER , PUBLIC :: nday !: current day of the month INTEGER , PUBLIC :: ndastp !: time step date in yyyymmdd format INTEGER , PUBLIC :: nday_year !: current day counted from jan 1st of the current year INTEGER , PUBLIC :: nsec_year !: current time step counted in second since 00h jan 1st of the current year INTEGER , PUBLIC :: nsec_month !: current time step counted in second since 00h 1st day of the current month INTEGER , PUBLIC :: nsec_week !: current time step counted in second since 00h of last monday INTEGER , PUBLIC :: nsec_day !: current time step counted in second since 00h of the current day REAL(wp), PUBLIC :: fjulday !: current julian day REAL(wp), PUBLIC :: fjulstartyear !: first day of the current year in julian days REAL(wp), PUBLIC :: adatrj !: number of elapsed days since the begining of the whole simulation ! !: (cumulative duration of previous runs that may have used different time-step size) INTEGER , PUBLIC, DIMENSION(0: 2) :: nyear_len !: length in days of the previous/current/next year INTEGER , PUBLIC, DIMENSION(0:13) :: nmonth_len !: length in days of the months of the current year INTEGER , PUBLIC, DIMENSION(0:13) :: nmonth_half !: second since Jan 1st 0h of the current year and the half of the months INTEGER , PUBLIC, DIMENSION(0:13) :: nmonth_end !: second since Jan 1st 0h of the current year and the end of the months INTEGER , PUBLIC :: nsec1jan000 !: second since Jan 1st 0h of nit000 year and Jan 1st 0h the current year !!---------------------------------------------------------------------- !! mpp reproducibility !!---------------------------------------------------------------------- #if defined key_mpp_rep LOGICAL, PUBLIC, PARAMETER :: lk_mpp_rep = .TRUE. !: agrif flag #else LOGICAL, PUBLIC, PARAMETER :: lk_mpp_rep = .FALSE. !: agrif flag #endif !!---------------------------------------------------------------------- !! agrif domain !!---------------------------------------------------------------------- #if defined key_agrif LOGICAL, PUBLIC, PARAMETER :: lk_agrif = .TRUE. !: agrif flag #else LOGICAL, PUBLIC, PARAMETER :: lk_agrif = .FALSE. !: agrif flag #endif !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2011) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS #if ! defined key_agrif !!---------------------------------------------------------------------- !! NOT 'key_agrif' dummy function No AGRIF zoom !!---------------------------------------------------------------------- LOGICAL FUNCTION Agrif_Root() Agrif_Root = .TRUE. END FUNCTION Agrif_Root CHARACTER(len=3) FUNCTION Agrif_CFixed() Agrif_CFixed = '0' END FUNCTION Agrif_CFixed #endif INTEGER FUNCTION dom_oce_alloc() !!---------------------------------------------------------------------- INTEGER, DIMENSION(12) :: ierr !!---------------------------------------------------------------------- ierr(:) = 0 ! ALLOCATE( rdttra(jpk), r2dtra(jpk), mig(jpi), mjg(jpj), nfiimpp(jpni,jpnj), & & nfipproc(jpni,jpnj), nfilcit(jpni,jpnj), STAT=ierr(1) ) ! ALLOCATE( nimppt(jpnij) , ibonit(jpnij) , nlcit(jpnij) , nlcjt(jpnij) , & & njmppt(jpnij) , ibonjt(jpnij) , nldit(jpnij) , nldjt(jpnij) , & & nleit(jpnij) , nlejt(jpnij) , & & mi0(jpidta) , mi1 (jpidta), mj0(jpjdta) , mj1 (jpjdta), & & tpol(jpiglo) , fpol(jpiglo) , STAT=ierr(2) ) ! ALLOCATE( glamt(jpi,jpj) , gphit(jpi,jpj) , e1t(jpi,jpj) , e2t(jpi,jpj) , r1_e1t(jpi,jpj) , r1_e2t(jpi,jpj) , & & glamu(jpi,jpj) , gphiu(jpi,jpj) , e1u(jpi,jpj) , e2u(jpi,jpj) , r1_e1u(jpi,jpj) , r1_e2u(jpi,jpj) , & & glamv(jpi,jpj) , gphiv(jpi,jpj) , e1v(jpi,jpj) , e2v(jpi,jpj) , r1_e1v(jpi,jpj) , r1_e2v(jpi,jpj) , & & glamf(jpi,jpj) , gphif(jpi,jpj) , e1f(jpi,jpj) , e2f(jpi,jpj) , r1_e1f(jpi,jpj) , r1_e2f(jpi,jpj) , & & e1e2t(jpi,jpj) , ff (jpi,jpj) , STAT=ierr(3) ) ! ALLOCATE( gdep3w_0(jpi,jpj,jpk) , e3v_0(jpi,jpj,jpk) , e3f_0 (jpi,jpj,jpk) , & & gdept_0 (jpi,jpj,jpk) , e3t_0(jpi,jpj,jpk) , e3u_0 (jpi,jpj,jpk) , & & gdepw_0 (jpi,jpj,jpk) , e3w_0(jpi,jpj,jpk) , e3vw_0(jpi,jpj,jpk) , e3uw_0(jpi,jpj,jpk) , STAT=ierr(4) ) ! #if defined key_vvl ALLOCATE( gdep3w_n(jpi,jpj,jpk) , e3t_n (jpi,jpj,jpk) , e3u_n (jpi,jpj,jpk) , & & gdept_n (jpi,jpj,jpk) , e3v_n (jpi,jpj,jpk) , e3w_n (jpi,jpj,jpk) , & & gdepw_n (jpi,jpj,jpk) , e3f_n (jpi,jpj,jpk) , e3vw_n(jpi,jpj,jpk) , e3uw_n(jpi,jpj,jpk) , & & e3t_b (jpi,jpj,jpk) , e3u_b (jpi,jpj,jpk) , e3v_b (jpi,jpj,jpk) , & & e3uw_b (jpi,jpj,jpk) , e3vw_b(jpi,jpj,jpk) , & & gdept_b (jpi,jpj,jpk) ,gdepw_b(jpi,jpj,jpk) , e3w_b (jpi,jpj,jpk) , & & e3t_a (jpi,jpj,jpk) , e3u_a (jpi,jpj,jpk) , e3v_a (jpi,jpj,jpk) , & & ehu_a (jpi,jpj) , ehv_a (jpi,jpj), & & ehur_a (jpi,jpj) , ehvr_a (jpi,jpj), & & ehu_b (jpi,jpj) , ehv_b (jpi,jpj), & & ehur_b (jpi,jpj) , ehvr_b (jpi,jpj), STAT=ierr(5) ) #endif ! ALLOCATE( hu (jpi,jpj) , hur (jpi,jpj) , hu_0(jpi,jpj) , ht_0 (jpi,jpj) , hf_0 (jpi,jpj), & & hv (jpi,jpj) , hvr (jpi,jpj) , hv_0(jpi,jpj) , ht (jpi,jpj) , & & re2u_e1u(jpi,jpj) , re1v_e2v(jpi,jpj) , & & e12t (jpi,jpj) , r1_e12t (jpi,jpj) , & & e12u (jpi,jpj) , r1_e12u (jpi,jpj) , & & e12v (jpi,jpj) , r1_e12v (jpi,jpj) , & & e12f (jpi,jpj) , r1_e12f (jpi,jpj) , STAT=ierr(6) ) ! ALLOCATE( gdept_1d(jpk) , gdepw_1d(jpk) , & & e3t_1d (jpk) , e3w_1d (jpk) , e3tp (jpi,jpj), e3wp(jpi,jpj) , & & gsigt (jpk) , gsigw (jpk) , gsi3w(jpk) , & & esigt (jpk) , esigw (jpk) , STAT=ierr(7) ) ! ALLOCATE( hbatv (jpi,jpj) , hbatf (jpi,jpj) , & & hbatt (jpi,jpj) , hbatu (jpi,jpj) , & & scosrf(jpi,jpj) , scobot(jpi,jpj) , & & hifv (jpi,jpj) , hiff (jpi,jpj) , & & hift (jpi,jpj) , hifu (jpi,jpj) , rx1 (jpi,jpj) , STAT=ierr(8) ) ALLOCATE( mbathy(jpi,jpj) , bathy(jpi,jpj) , & & tmask_i(jpi,jpj) , umask_i(jpi,jpj), vmask_i(jpi,jpj), fmask_i(jpi,jpj), & & bmask(jpi,jpj) , & & mbkt (jpi,jpj) , mbku (jpi,jpj) , mbkv(jpi,jpj) , STAT=ierr(9) ) ! (ISF) Allocation of basic array ALLOCATE( misfdep(jpi,jpj) , risfdep(jpi,jpj), & & mikt(jpi,jpj), miku(jpi,jpj), mikv(jpi,jpj) , & & mikf(jpi,jpj), ssmask(jpi,jpj), STAT=ierr(10) ) ALLOCATE( tmask(jpi,jpj,jpk) , umask(jpi,jpj,jpk), & & vmask(jpi,jpj,jpk) , fmask(jpi,jpj,jpk), STAT=ierr(11) ) ALLOCATE( wmask(jpi,jpj,jpk) , wumask(jpi,jpj,jpk), wvmask(jpi,jpj,jpk) , STAT=ierr(12) ) #if defined key_noslip_accurate ALLOCATE( npcoa(4,jpk), nicoa(2*(jpi+jpj),4,jpk), njcoa(2*(jpi+jpj),4,jpk), STAT=ierr(12) ) #endif ! dom_oce_alloc = MAXVAL(ierr) ! END FUNCTION dom_oce_alloc !!====================================================================== END MODULE dom_oce